target-arm: Enable vPMU support under TCG mode
[qemu/ar7.git] / hw / arm / virt.c
blob8eef143a5bf56b539a8b9821b9eed87aabc866ec
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/compat.h"
45 #include "hw/loader.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/bitops.h"
48 #include "qemu/error-report.h"
49 #include "hw/pci-host/gpex.h"
50 #include "hw/arm/sysbus-fdt.h"
51 #include "hw/platform-bus.h"
52 #include "hw/arm/fdt.h"
53 #include "hw/intc/arm_gic.h"
54 #include "hw/intc/arm_gicv3_common.h"
55 #include "kvm_arm.h"
56 #include "hw/smbios/smbios.h"
57 #include "qapi/visitor.h"
58 #include "standard-headers/linux/input.h"
60 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
61 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
62 void *data) \
63 { \
64 MachineClass *mc = MACHINE_CLASS(oc); \
65 virt_machine_##major##_##minor##_options(mc); \
66 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
67 if (latest) { \
68 mc->alias = "virt"; \
69 } \
70 } \
71 static const TypeInfo machvirt_##major##_##minor##_info = { \
72 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
73 .parent = TYPE_VIRT_MACHINE, \
74 .instance_init = virt_##major##_##minor##_instance_init, \
75 .class_init = virt_##major##_##minor##_class_init, \
76 }; \
77 static void machvirt_machine_##major##_##minor##_init(void) \
78 { \
79 type_register_static(&machvirt_##major##_##minor##_info); \
80 } \
81 type_init(machvirt_machine_##major##_##minor##_init);
83 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
84 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
85 #define DEFINE_VIRT_MACHINE(major, minor) \
86 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
89 /* Number of external interrupt lines to configure the GIC with */
90 #define NUM_IRQS 256
92 #define PLATFORM_BUS_NUM_IRQS 64
94 static ARMPlatformBusSystemParams platform_bus_params;
96 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
97 * RAM can go up to the 256GB mark, leaving 256GB of the physical
98 * address space unallocated and free for future use between 256G and 512G.
99 * If we need to provide more RAM to VMs in the future then we need to:
100 * * allocate a second bank of RAM starting at 2TB and working up
101 * * fix the DT and ACPI table generation code in QEMU to correctly
102 * report two split lumps of RAM to the guest
103 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
104 * (We don't want to fill all the way up to 512GB with RAM because
105 * we might want it for non-RAM purposes later. Conversely it seems
106 * reasonable to assume that anybody configuring a VM with a quarter
107 * of a terabyte of RAM will be doing it on a host with more than a
108 * terabyte of physical address space.)
110 #define RAMLIMIT_GB 255
111 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
113 /* Addresses and sizes of our components.
114 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
115 * 128MB..256MB is used for miscellaneous device I/O.
116 * 256MB..1GB is reserved for possible future PCI support (ie where the
117 * PCI memory window will go if we add a PCI host controller).
118 * 1GB and up is RAM (which may happily spill over into the
119 * high memory region beyond 4GB).
120 * This represents a compromise between how much RAM can be given to
121 * a 32 bit VM and leaving space for expansion and in particular for PCI.
122 * Note that devices should generally be placed at multiples of 0x10000,
123 * to accommodate guests using 64K pages.
125 static const MemMapEntry a15memmap[] = {
126 /* Space up to 0x8000000 is reserved for a boot ROM */
127 [VIRT_FLASH] = { 0, 0x08000000 },
128 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
129 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
130 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
131 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
132 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
133 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
134 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
135 /* This redistributor space allows up to 2*64kB*123 CPUs */
136 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
137 [VIRT_UART] = { 0x09000000, 0x00001000 },
138 [VIRT_RTC] = { 0x09010000, 0x00001000 },
139 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
140 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
141 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
142 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
143 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
144 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
145 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
146 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
147 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
148 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
149 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
150 /* Second PCIe window, 512GB wide at the 512GB boundary */
151 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
154 static const int a15irqmap[] = {
155 [VIRT_UART] = 1,
156 [VIRT_RTC] = 2,
157 [VIRT_PCIE] = 3, /* ... to 6 */
158 [VIRT_GPIO] = 7,
159 [VIRT_SECURE_UART] = 8,
160 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
161 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
162 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
165 static const char *valid_cpus[] = {
166 "cortex-a15",
167 "cortex-a53",
168 "cortex-a57",
169 "host",
172 static bool cpuname_valid(const char *cpu)
174 int i;
176 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
177 if (strcmp(cpu, valid_cpus[i]) == 0) {
178 return true;
181 return false;
184 static void create_fdt(VirtMachineState *vms)
186 void *fdt = create_device_tree(&vms->fdt_size);
188 if (!fdt) {
189 error_report("create_device_tree() failed");
190 exit(1);
193 vms->fdt = fdt;
195 /* Header */
196 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
197 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
198 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
201 * /chosen and /memory nodes must exist for load_dtb
202 * to fill in necessary properties later
204 qemu_fdt_add_subnode(fdt, "/chosen");
205 qemu_fdt_add_subnode(fdt, "/memory");
206 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
208 /* Clock node, for the benefit of the UART. The kernel device tree
209 * binding documentation claims the PL011 node clock properties are
210 * optional but in practice if you omit them the kernel refuses to
211 * probe for the device.
213 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
214 qemu_fdt_add_subnode(fdt, "/apb-pclk");
215 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
216 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
217 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
218 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
219 "clk24mhz");
220 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
224 static void fdt_add_psci_node(const VirtMachineState *vms)
226 uint32_t cpu_suspend_fn;
227 uint32_t cpu_off_fn;
228 uint32_t cpu_on_fn;
229 uint32_t migrate_fn;
230 void *fdt = vms->fdt;
231 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
232 const char *psci_method;
234 switch (vms->psci_conduit) {
235 case QEMU_PSCI_CONDUIT_DISABLED:
236 return;
237 case QEMU_PSCI_CONDUIT_HVC:
238 psci_method = "hvc";
239 break;
240 case QEMU_PSCI_CONDUIT_SMC:
241 psci_method = "smc";
242 break;
243 default:
244 g_assert_not_reached();
247 qemu_fdt_add_subnode(fdt, "/psci");
248 if (armcpu->psci_version == 2) {
249 const char comp[] = "arm,psci-0.2\0arm,psci";
250 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
252 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
253 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
254 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
255 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
256 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
257 } else {
258 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
259 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
260 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
262 } else {
263 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
265 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
266 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
267 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
268 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
271 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
272 * to the instruction that should be used to invoke PSCI functions.
273 * However, the device tree binding uses 'method' instead, so that is
274 * what we should use here.
276 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
278 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
279 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
280 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
281 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
284 static void fdt_add_timer_nodes(const VirtMachineState *vms)
286 /* On real hardware these interrupts are level-triggered.
287 * On KVM they were edge-triggered before host kernel version 4.4,
288 * and level-triggered afterwards.
289 * On emulated QEMU they are level-triggered.
291 * Getting the DTB info about them wrong is awkward for some
292 * guest kernels:
293 * pre-4.8 ignore the DT and leave the interrupt configured
294 * with whatever the GIC reset value (or the bootloader) left it at
295 * 4.8 before rc6 honour the incorrect data by programming it back
296 * into the GIC, causing problems
297 * 4.8rc6 and later ignore the DT and always write "level triggered"
298 * into the GIC
300 * For backwards-compatibility, virt-2.8 and earlier will continue
301 * to say these are edge-triggered, but later machines will report
302 * the correct information.
304 ARMCPU *armcpu;
305 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
306 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
308 if (vmc->claim_edge_triggered_timers) {
309 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
312 if (vms->gic_version == 2) {
313 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
314 GIC_FDT_IRQ_PPI_CPU_WIDTH,
315 (1 << vms->smp_cpus) - 1);
318 qemu_fdt_add_subnode(vms->fdt, "/timer");
320 armcpu = ARM_CPU(qemu_get_cpu(0));
321 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
322 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
323 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
324 compat, sizeof(compat));
325 } else {
326 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
327 "arm,armv7-timer");
329 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
330 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
331 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
332 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
333 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
334 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
337 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
339 int cpu;
340 int addr_cells = 1;
341 unsigned int i;
344 * From Documentation/devicetree/bindings/arm/cpus.txt
345 * On ARM v8 64-bit systems value should be set to 2,
346 * that corresponds to the MPIDR_EL1 register size.
347 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
348 * in the system, #address-cells can be set to 1, since
349 * MPIDR_EL1[63:32] bits are not used for CPUs
350 * identification.
352 * Here we actually don't know whether our system is 32- or 64-bit one.
353 * The simplest way to go is to examine affinity IDs of all our CPUs. If
354 * at least one of them has Aff3 populated, we set #address-cells to 2.
356 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
357 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
359 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
360 addr_cells = 2;
361 break;
365 qemu_fdt_add_subnode(vms->fdt, "/cpus");
366 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
367 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
369 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
370 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
371 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
373 qemu_fdt_add_subnode(vms->fdt, nodename);
374 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
375 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
376 armcpu->dtb_compatible);
378 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
379 && vms->smp_cpus > 1) {
380 qemu_fdt_setprop_string(vms->fdt, nodename,
381 "enable-method", "psci");
384 if (addr_cells == 2) {
385 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
386 armcpu->mp_affinity);
387 } else {
388 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
389 armcpu->mp_affinity);
392 i = numa_get_node_for_cpu(cpu);
393 if (i < nb_numa_nodes) {
394 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", i);
397 g_free(nodename);
401 static void fdt_add_its_gic_node(VirtMachineState *vms)
403 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
404 qemu_fdt_add_subnode(vms->fdt, "/intc/its");
405 qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
406 "arm,gic-v3-its");
407 qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
408 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
409 2, vms->memmap[VIRT_GIC_ITS].base,
410 2, vms->memmap[VIRT_GIC_ITS].size);
411 qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
414 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
416 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
417 qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
418 qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
419 "arm,gic-v2m-frame");
420 qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
421 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
422 2, vms->memmap[VIRT_GIC_V2M].base,
423 2, vms->memmap[VIRT_GIC_V2M].size);
424 qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
427 static void fdt_add_gic_node(VirtMachineState *vms)
429 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
430 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
432 qemu_fdt_add_subnode(vms->fdt, "/intc");
433 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
434 qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
435 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
436 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
437 qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
438 if (vms->gic_version == 3) {
439 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
440 "arm,gic-v3");
441 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
442 2, vms->memmap[VIRT_GIC_DIST].base,
443 2, vms->memmap[VIRT_GIC_DIST].size,
444 2, vms->memmap[VIRT_GIC_REDIST].base,
445 2, vms->memmap[VIRT_GIC_REDIST].size);
446 if (vms->virt) {
447 qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
448 GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
449 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
451 } else {
452 /* 'cortex-a15-gic' means 'GIC v2' */
453 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
454 "arm,cortex-a15-gic");
455 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
456 2, vms->memmap[VIRT_GIC_DIST].base,
457 2, vms->memmap[VIRT_GIC_DIST].size,
458 2, vms->memmap[VIRT_GIC_CPU].base,
459 2, vms->memmap[VIRT_GIC_CPU].size);
462 qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
465 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
467 CPUState *cpu;
468 ARMCPU *armcpu;
469 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
471 CPU_FOREACH(cpu) {
472 armcpu = ARM_CPU(cpu);
473 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
474 (kvm_enabled() && !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ)))) {
475 return;
479 if (vms->gic_version == 2) {
480 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
481 GIC_FDT_IRQ_PPI_CPU_WIDTH,
482 (1 << vms->smp_cpus) - 1);
485 armcpu = ARM_CPU(qemu_get_cpu(0));
486 qemu_fdt_add_subnode(vms->fdt, "/pmu");
487 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
488 const char compat[] = "arm,armv8-pmuv3";
489 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
490 compat, sizeof(compat));
491 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
492 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
496 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
498 const char *itsclass = its_class_name();
499 DeviceState *dev;
501 if (!itsclass) {
502 /* Do nothing if not supported */
503 return;
506 dev = qdev_create(NULL, itsclass);
508 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
509 &error_abort);
510 qdev_init_nofail(dev);
511 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
513 fdt_add_its_gic_node(vms);
516 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
518 int i;
519 int irq = vms->irqmap[VIRT_GIC_V2M];
520 DeviceState *dev;
522 dev = qdev_create(NULL, "arm-gicv2m");
523 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
524 qdev_prop_set_uint32(dev, "base-spi", irq);
525 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
526 qdev_init_nofail(dev);
528 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
529 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
532 fdt_add_v2m_gic_node(vms);
535 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
537 /* We create a standalone GIC */
538 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
539 DeviceState *gicdev;
540 SysBusDevice *gicbusdev;
541 const char *gictype;
542 int type = vms->gic_version, i;
544 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
546 gicdev = qdev_create(NULL, gictype);
547 qdev_prop_set_uint32(gicdev, "revision", type);
548 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
549 /* Note that the num-irq property counts both internal and external
550 * interrupts; there are always 32 of the former (mandated by GIC spec).
552 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
553 if (!kvm_irqchip_in_kernel()) {
554 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
556 qdev_init_nofail(gicdev);
557 gicbusdev = SYS_BUS_DEVICE(gicdev);
558 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
559 if (type == 3) {
560 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
561 } else {
562 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
565 /* Wire the outputs from each CPU's generic timer and the GICv3
566 * maintenance interrupt signal to the appropriate GIC PPI inputs,
567 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
569 for (i = 0; i < smp_cpus; i++) {
570 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
571 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
572 int irq;
573 /* Mapping from the output timer irq lines from the CPU to the
574 * GIC PPI inputs we use for the virt board.
576 const int timer_irq[] = {
577 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
578 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
579 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
580 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
583 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
584 qdev_connect_gpio_out(cpudev, irq,
585 qdev_get_gpio_in(gicdev,
586 ppibase + timer_irq[irq]));
589 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
590 qdev_get_gpio_in(gicdev, ppibase
591 + ARCH_GICV3_MAINT_IRQ));
593 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
594 sysbus_connect_irq(gicbusdev, i + smp_cpus,
595 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
596 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
597 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
598 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
599 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
602 for (i = 0; i < NUM_IRQS; i++) {
603 pic[i] = qdev_get_gpio_in(gicdev, i);
606 fdt_add_gic_node(vms);
608 if (type == 3 && !vmc->no_its) {
609 create_its(vms, gicdev);
610 } else if (type == 2) {
611 create_v2m(vms, pic);
615 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
616 MemoryRegion *mem, Chardev *chr)
618 char *nodename;
619 hwaddr base = vms->memmap[uart].base;
620 hwaddr size = vms->memmap[uart].size;
621 int irq = vms->irqmap[uart];
622 const char compat[] = "arm,pl011\0arm,primecell";
623 const char clocknames[] = "uartclk\0apb_pclk";
624 DeviceState *dev = qdev_create(NULL, "pl011");
625 SysBusDevice *s = SYS_BUS_DEVICE(dev);
627 qdev_prop_set_chr(dev, "chardev", chr);
628 qdev_init_nofail(dev);
629 memory_region_add_subregion(mem, base,
630 sysbus_mmio_get_region(s, 0));
631 sysbus_connect_irq(s, 0, pic[irq]);
633 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
634 qemu_fdt_add_subnode(vms->fdt, nodename);
635 /* Note that we can't use setprop_string because of the embedded NUL */
636 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
637 compat, sizeof(compat));
638 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
639 2, base, 2, size);
640 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
641 GIC_FDT_IRQ_TYPE_SPI, irq,
642 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
643 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
644 vms->clock_phandle, vms->clock_phandle);
645 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
646 clocknames, sizeof(clocknames));
648 if (uart == VIRT_UART) {
649 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
650 } else {
651 /* Mark as not usable by the normal world */
652 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
653 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
656 g_free(nodename);
659 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
661 char *nodename;
662 hwaddr base = vms->memmap[VIRT_RTC].base;
663 hwaddr size = vms->memmap[VIRT_RTC].size;
664 int irq = vms->irqmap[VIRT_RTC];
665 const char compat[] = "arm,pl031\0arm,primecell";
667 sysbus_create_simple("pl031", base, pic[irq]);
669 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
670 qemu_fdt_add_subnode(vms->fdt, nodename);
671 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
672 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
673 2, base, 2, size);
674 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
675 GIC_FDT_IRQ_TYPE_SPI, irq,
676 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
677 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
678 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
679 g_free(nodename);
682 static DeviceState *gpio_key_dev;
683 static void virt_powerdown_req(Notifier *n, void *opaque)
685 /* use gpio Pin 3 for power button event */
686 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
689 static Notifier virt_system_powerdown_notifier = {
690 .notify = virt_powerdown_req
693 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
695 char *nodename;
696 DeviceState *pl061_dev;
697 hwaddr base = vms->memmap[VIRT_GPIO].base;
698 hwaddr size = vms->memmap[VIRT_GPIO].size;
699 int irq = vms->irqmap[VIRT_GPIO];
700 const char compat[] = "arm,pl061\0arm,primecell";
702 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
704 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
705 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
706 qemu_fdt_add_subnode(vms->fdt, nodename);
707 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
708 2, base, 2, size);
709 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
710 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
711 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
712 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
713 GIC_FDT_IRQ_TYPE_SPI, irq,
714 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
715 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
716 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
717 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
719 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
720 qdev_get_gpio_in(pl061_dev, 3));
721 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
722 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
723 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
724 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
726 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
727 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
728 "label", "GPIO Key Poweroff");
729 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
730 KEY_POWER);
731 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
732 "gpios", phandle, 3, 0);
734 /* connect powerdown request */
735 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
737 g_free(nodename);
740 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
742 int i;
743 hwaddr size = vms->memmap[VIRT_MMIO].size;
745 /* We create the transports in forwards order. Since qbus_realize()
746 * prepends (not appends) new child buses, the incrementing loop below will
747 * create a list of virtio-mmio buses with decreasing base addresses.
749 * When a -device option is processed from the command line,
750 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
751 * order. The upshot is that -device options in increasing command line
752 * order are mapped to virtio-mmio buses with decreasing base addresses.
754 * When this code was originally written, that arrangement ensured that the
755 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
756 * the first -device on the command line. (The end-to-end order is a
757 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
758 * guest kernel's name-to-address assignment strategy.)
760 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
761 * the message, if not necessarily the code, of commit 70161ff336.
762 * Therefore the loop now establishes the inverse of the original intent.
764 * Unfortunately, we can't counteract the kernel change by reversing the
765 * loop; it would break existing command lines.
767 * In any case, the kernel makes no guarantee about the stability of
768 * enumeration order of virtio devices (as demonstrated by it changing
769 * between kernel versions). For reliable and stable identification
770 * of disks users must use UUIDs or similar mechanisms.
772 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
773 int irq = vms->irqmap[VIRT_MMIO] + i;
774 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
776 sysbus_create_simple("virtio-mmio", base, pic[irq]);
779 /* We add dtb nodes in reverse order so that they appear in the finished
780 * device tree lowest address first.
782 * Note that this mapping is independent of the loop above. The previous
783 * loop influences virtio device to virtio transport assignment, whereas
784 * this loop controls how virtio transports are laid out in the dtb.
786 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
787 char *nodename;
788 int irq = vms->irqmap[VIRT_MMIO] + i;
789 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
791 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
792 qemu_fdt_add_subnode(vms->fdt, nodename);
793 qemu_fdt_setprop_string(vms->fdt, nodename,
794 "compatible", "virtio,mmio");
795 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
796 2, base, 2, size);
797 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
798 GIC_FDT_IRQ_TYPE_SPI, irq,
799 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
800 g_free(nodename);
804 static void create_one_flash(const char *name, hwaddr flashbase,
805 hwaddr flashsize, const char *file,
806 MemoryRegion *sysmem)
808 /* Create and map a single flash device. We use the same
809 * parameters as the flash devices on the Versatile Express board.
811 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
812 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
813 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
814 const uint64_t sectorlength = 256 * 1024;
816 if (dinfo) {
817 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
818 &error_abort);
821 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
822 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
823 qdev_prop_set_uint8(dev, "width", 4);
824 qdev_prop_set_uint8(dev, "device-width", 2);
825 qdev_prop_set_bit(dev, "big-endian", false);
826 qdev_prop_set_uint16(dev, "id0", 0x89);
827 qdev_prop_set_uint16(dev, "id1", 0x18);
828 qdev_prop_set_uint16(dev, "id2", 0x00);
829 qdev_prop_set_uint16(dev, "id3", 0x00);
830 qdev_prop_set_string(dev, "name", name);
831 qdev_init_nofail(dev);
833 memory_region_add_subregion(sysmem, flashbase,
834 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
836 if (file) {
837 char *fn;
838 int image_size;
840 if (drive_get(IF_PFLASH, 0, 0)) {
841 error_report("The contents of the first flash device may be "
842 "specified with -bios or with -drive if=pflash... "
843 "but you cannot use both options at once");
844 exit(1);
846 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
847 if (!fn) {
848 error_report("Could not find ROM image '%s'", file);
849 exit(1);
851 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
852 g_free(fn);
853 if (image_size < 0) {
854 error_report("Could not load ROM image '%s'", file);
855 exit(1);
860 static void create_flash(const VirtMachineState *vms,
861 MemoryRegion *sysmem,
862 MemoryRegion *secure_sysmem)
864 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
865 * Any file passed via -bios goes in the first of these.
866 * sysmem is the system memory space. secure_sysmem is the secure view
867 * of the system, and the first flash device should be made visible only
868 * there. The second flash device is visible to both secure and nonsecure.
869 * If sysmem == secure_sysmem this means there is no separate Secure
870 * address space and both flash devices are generally visible.
872 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
873 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
874 char *nodename;
876 create_one_flash("virt.flash0", flashbase, flashsize,
877 bios_name, secure_sysmem);
878 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
879 NULL, sysmem);
881 if (sysmem == secure_sysmem) {
882 /* Report both flash devices as a single node in the DT */
883 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
884 qemu_fdt_add_subnode(vms->fdt, nodename);
885 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
886 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
887 2, flashbase, 2, flashsize,
888 2, flashbase + flashsize, 2, flashsize);
889 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
890 g_free(nodename);
891 } else {
892 /* Report the devices as separate nodes so we can mark one as
893 * only visible to the secure world.
895 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
896 qemu_fdt_add_subnode(vms->fdt, nodename);
897 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
898 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
899 2, flashbase, 2, flashsize);
900 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
901 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
902 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
903 g_free(nodename);
905 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
906 qemu_fdt_add_subnode(vms->fdt, nodename);
907 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
908 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
909 2, flashbase + flashsize, 2, flashsize);
910 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
911 g_free(nodename);
915 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
917 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
918 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
919 FWCfgState *fw_cfg;
920 char *nodename;
922 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
923 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
925 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
926 qemu_fdt_add_subnode(vms->fdt, nodename);
927 qemu_fdt_setprop_string(vms->fdt, nodename,
928 "compatible", "qemu,fw-cfg-mmio");
929 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
930 2, base, 2, size);
931 g_free(nodename);
932 return fw_cfg;
935 static void create_pcie_irq_map(const VirtMachineState *vms,
936 uint32_t gic_phandle,
937 int first_irq, const char *nodename)
939 int devfn, pin;
940 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
941 uint32_t *irq_map = full_irq_map;
943 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
944 for (pin = 0; pin < 4; pin++) {
945 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
946 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
947 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
948 int i;
950 uint32_t map[] = {
951 devfn << 8, 0, 0, /* devfn */
952 pin + 1, /* PCI pin */
953 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
955 /* Convert map to big endian */
956 for (i = 0; i < 10; i++) {
957 irq_map[i] = cpu_to_be32(map[i]);
959 irq_map += 10;
963 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
964 full_irq_map, sizeof(full_irq_map));
966 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
967 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
968 0x7 /* PCI irq */);
971 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
973 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
974 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
975 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
976 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
977 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
978 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
979 hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
980 hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
981 hwaddr base = base_mmio;
982 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
983 int irq = vms->irqmap[VIRT_PCIE];
984 MemoryRegion *mmio_alias;
985 MemoryRegion *mmio_reg;
986 MemoryRegion *ecam_alias;
987 MemoryRegion *ecam_reg;
988 DeviceState *dev;
989 char *nodename;
990 int i;
991 PCIHostState *pci;
993 dev = qdev_create(NULL, TYPE_GPEX_HOST);
994 qdev_init_nofail(dev);
996 /* Map only the first size_ecam bytes of ECAM space */
997 ecam_alias = g_new0(MemoryRegion, 1);
998 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
999 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1000 ecam_reg, 0, size_ecam);
1001 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1003 /* Map the MMIO window into system address space so as to expose
1004 * the section of PCI MMIO space which starts at the same base address
1005 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1006 * the window).
1008 mmio_alias = g_new0(MemoryRegion, 1);
1009 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1010 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1011 mmio_reg, base_mmio, size_mmio);
1012 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1014 if (vms->highmem) {
1015 /* Map high MMIO space */
1016 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1018 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1019 mmio_reg, base_mmio_high, size_mmio_high);
1020 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1021 high_mmio_alias);
1024 /* Map IO port space */
1025 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1027 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1028 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1031 pci = PCI_HOST_BRIDGE(dev);
1032 if (pci->bus) {
1033 for (i = 0; i < nb_nics; i++) {
1034 NICInfo *nd = &nd_table[i];
1036 if (!nd->model) {
1037 nd->model = g_strdup("virtio");
1040 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1044 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1045 qemu_fdt_add_subnode(vms->fdt, nodename);
1046 qemu_fdt_setprop_string(vms->fdt, nodename,
1047 "compatible", "pci-host-ecam-generic");
1048 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1049 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1050 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1051 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1052 nr_pcie_buses - 1);
1053 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1055 if (vms->msi_phandle) {
1056 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1057 vms->msi_phandle);
1060 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1061 2, base_ecam, 2, size_ecam);
1063 if (vms->highmem) {
1064 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1065 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1066 2, base_pio, 2, size_pio,
1067 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1068 2, base_mmio, 2, size_mmio,
1069 1, FDT_PCI_RANGE_MMIO_64BIT,
1070 2, base_mmio_high,
1071 2, base_mmio_high, 2, size_mmio_high);
1072 } else {
1073 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1074 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1075 2, base_pio, 2, size_pio,
1076 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1077 2, base_mmio, 2, size_mmio);
1080 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1081 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1083 g_free(nodename);
1086 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1088 DeviceState *dev;
1089 SysBusDevice *s;
1090 int i;
1091 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1092 MemoryRegion *sysmem = get_system_memory();
1094 platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1095 platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1096 platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1097 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1099 fdt_params->system_params = &platform_bus_params;
1100 fdt_params->binfo = &vms->bootinfo;
1101 fdt_params->intc = "/intc";
1103 * register a machine init done notifier that creates the device tree
1104 * nodes of the platform bus and its children dynamic sysbus devices
1106 arm_register_platform_bus_fdt_creator(fdt_params);
1108 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1109 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1110 qdev_prop_set_uint32(dev, "num_irqs",
1111 platform_bus_params.platform_bus_num_irqs);
1112 qdev_prop_set_uint32(dev, "mmio_size",
1113 platform_bus_params.platform_bus_size);
1114 qdev_init_nofail(dev);
1115 s = SYS_BUS_DEVICE(dev);
1117 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1118 int irqn = platform_bus_params.platform_bus_first_irq + i;
1119 sysbus_connect_irq(s, i, pic[irqn]);
1122 memory_region_add_subregion(sysmem,
1123 platform_bus_params.platform_bus_base,
1124 sysbus_mmio_get_region(s, 0));
1127 static void create_secure_ram(VirtMachineState *vms,
1128 MemoryRegion *secure_sysmem)
1130 MemoryRegion *secram = g_new(MemoryRegion, 1);
1131 char *nodename;
1132 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1133 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1135 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1136 vmstate_register_ram_global(secram);
1137 memory_region_add_subregion(secure_sysmem, base, secram);
1139 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1140 qemu_fdt_add_subnode(vms->fdt, nodename);
1141 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1142 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1143 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1144 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1146 g_free(nodename);
1149 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1151 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1152 bootinfo);
1154 *fdt_size = board->fdt_size;
1155 return board->fdt;
1158 static void virt_build_smbios(VirtMachineState *vms)
1160 uint8_t *smbios_tables, *smbios_anchor;
1161 size_t smbios_tables_len, smbios_anchor_len;
1162 const char *product = "QEMU Virtual Machine";
1164 if (!vms->fw_cfg) {
1165 return;
1168 if (kvm_enabled()) {
1169 product = "KVM Virtual Machine";
1172 smbios_set_defaults("QEMU", product,
1173 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1175 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1176 &smbios_anchor, &smbios_anchor_len);
1178 if (smbios_anchor) {
1179 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1180 smbios_tables, smbios_tables_len);
1181 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1182 smbios_anchor, smbios_anchor_len);
1186 static
1187 void virt_machine_done(Notifier *notifier, void *data)
1189 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1190 machine_done);
1192 virt_acpi_setup(vms);
1193 virt_build_smbios(vms);
1196 static void machvirt_init(MachineState *machine)
1198 VirtMachineState *vms = VIRT_MACHINE(machine);
1199 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1200 qemu_irq pic[NUM_IRQS];
1201 MemoryRegion *sysmem = get_system_memory();
1202 MemoryRegion *secure_sysmem = NULL;
1203 int n, virt_max_cpus;
1204 MemoryRegion *ram = g_new(MemoryRegion, 1);
1205 const char *cpu_model = machine->cpu_model;
1206 char **cpustr;
1207 ObjectClass *oc;
1208 const char *typename;
1209 CPUClass *cc;
1210 Error *err = NULL;
1211 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1212 uint8_t clustersz;
1214 if (!cpu_model) {
1215 cpu_model = "cortex-a15";
1218 /* We can probe only here because during property set
1219 * KVM is not available yet
1221 if (!vms->gic_version) {
1222 if (!kvm_enabled()) {
1223 error_report("gic-version=host requires KVM");
1224 exit(1);
1227 vms->gic_version = kvm_arm_vgic_probe();
1228 if (!vms->gic_version) {
1229 error_report("Unable to determine GIC version supported by host");
1230 exit(1);
1234 /* Separate the actual CPU model name from any appended features */
1235 cpustr = g_strsplit(cpu_model, ",", 2);
1237 if (!cpuname_valid(cpustr[0])) {
1238 error_report("mach-virt: CPU %s not supported", cpustr[0]);
1239 exit(1);
1242 /* If we have an EL3 boot ROM then the assumption is that it will
1243 * implement PSCI itself, so disable QEMU's internal implementation
1244 * so it doesn't get in the way. Instead of starting secondary
1245 * CPUs in PSCI powerdown state we will start them all running and
1246 * let the boot ROM sort them out.
1247 * The usual case is that we do use QEMU's PSCI implementation;
1248 * if the guest has EL2 then we will use SMC as the conduit,
1249 * and otherwise we will use HVC (for backwards compatibility and
1250 * because if we're using KVM then we must use HVC).
1252 if (vms->secure && firmware_loaded) {
1253 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1254 } else if (vms->virt) {
1255 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1256 } else {
1257 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1260 /* The maximum number of CPUs depends on the GIC version, or on how
1261 * many redistributors we can fit into the memory map.
1263 if (vms->gic_version == 3) {
1264 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1265 clustersz = GICV3_TARGETLIST_BITS;
1266 } else {
1267 virt_max_cpus = GIC_NCPU;
1268 clustersz = GIC_TARGETLIST_BITS;
1271 if (max_cpus > virt_max_cpus) {
1272 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1273 "supported by machine 'mach-virt' (%d)",
1274 max_cpus, virt_max_cpus);
1275 exit(1);
1278 vms->smp_cpus = smp_cpus;
1280 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1281 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1282 exit(1);
1285 if (vms->virt && kvm_enabled()) {
1286 error_report("mach-virt: KVM does not support providing "
1287 "Virtualization extensions to the guest CPU");
1288 exit(1);
1291 if (vms->secure) {
1292 if (kvm_enabled()) {
1293 error_report("mach-virt: KVM does not support Security extensions");
1294 exit(1);
1297 /* The Secure view of the world is the same as the NonSecure,
1298 * but with a few extra devices. Create it as a container region
1299 * containing the system memory at low priority; any secure-only
1300 * devices go in at higher priority and take precedence.
1302 secure_sysmem = g_new(MemoryRegion, 1);
1303 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1304 UINT64_MAX);
1305 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1308 create_fdt(vms);
1310 oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1311 if (!oc) {
1312 error_report("Unable to find CPU definition");
1313 exit(1);
1315 typename = object_class_get_name(oc);
1317 /* convert -smp CPU options specified by the user into global props */
1318 cc = CPU_CLASS(oc);
1319 cc->parse_features(typename, cpustr[1], &err);
1320 g_strfreev(cpustr);
1321 if (err) {
1322 error_report_err(err);
1323 exit(1);
1326 for (n = 0; n < smp_cpus; n++) {
1327 Object *cpuobj = object_new(typename);
1328 if (!vmc->disallow_affinity_adjustment) {
1329 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1330 * GIC's target-list limitations. 32-bit KVM hosts currently
1331 * always create clusters of 4 CPUs, but that is expected to
1332 * change when they gain support for gicv3. When KVM is enabled
1333 * it will override the changes we make here, therefore our
1334 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1335 * and to improve SGI efficiency.
1337 uint8_t aff1 = n / clustersz;
1338 uint8_t aff0 = n % clustersz;
1339 object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
1340 "mp-affinity", NULL);
1343 if (!vms->secure) {
1344 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1347 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1348 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1351 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1352 object_property_set_int(cpuobj, vms->psci_conduit,
1353 "psci-conduit", NULL);
1355 /* Secondary CPUs start in PSCI powered-down state */
1356 if (n > 0) {
1357 object_property_set_bool(cpuobj, true,
1358 "start-powered-off", NULL);
1362 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1363 object_property_set_bool(cpuobj, false, "pmu", NULL);
1366 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1367 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1368 "reset-cbar", &error_abort);
1371 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1372 &error_abort);
1373 if (vms->secure) {
1374 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1375 "secure-memory", &error_abort);
1378 object_property_set_bool(cpuobj, true, "realized", NULL);
1380 fdt_add_timer_nodes(vms);
1381 fdt_add_cpu_nodes(vms);
1382 fdt_add_psci_node(vms);
1384 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1385 machine->ram_size);
1386 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1388 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1390 create_gic(vms, pic);
1392 fdt_add_pmu_nodes(vms);
1394 create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1396 if (vms->secure) {
1397 create_secure_ram(vms, secure_sysmem);
1398 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1401 create_rtc(vms, pic);
1403 create_pcie(vms, pic);
1405 create_gpio(vms, pic);
1407 /* Create mmio transports, so the user can create virtio backends
1408 * (which will be automatically plugged in to the transports). If
1409 * no backend is created the transport will just sit harmlessly idle.
1411 create_virtio_devices(vms, pic);
1413 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1414 rom_set_fw(vms->fw_cfg);
1416 vms->machine_done.notify = virt_machine_done;
1417 qemu_add_machine_init_done_notifier(&vms->machine_done);
1419 vms->bootinfo.ram_size = machine->ram_size;
1420 vms->bootinfo.kernel_filename = machine->kernel_filename;
1421 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1422 vms->bootinfo.initrd_filename = machine->initrd_filename;
1423 vms->bootinfo.nb_cpus = smp_cpus;
1424 vms->bootinfo.board_id = -1;
1425 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1426 vms->bootinfo.get_dtb = machvirt_dtb;
1427 vms->bootinfo.firmware_loaded = firmware_loaded;
1428 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1431 * arm_load_kernel machine init done notifier registration must
1432 * happen before the platform_bus_create call. In this latter,
1433 * another notifier is registered which adds platform bus nodes.
1434 * Notifiers are executed in registration reverse order.
1436 create_platform_bus(vms, pic);
1439 static bool virt_get_secure(Object *obj, Error **errp)
1441 VirtMachineState *vms = VIRT_MACHINE(obj);
1443 return vms->secure;
1446 static void virt_set_secure(Object *obj, bool value, Error **errp)
1448 VirtMachineState *vms = VIRT_MACHINE(obj);
1450 vms->secure = value;
1453 static bool virt_get_virt(Object *obj, Error **errp)
1455 VirtMachineState *vms = VIRT_MACHINE(obj);
1457 return vms->virt;
1460 static void virt_set_virt(Object *obj, bool value, Error **errp)
1462 VirtMachineState *vms = VIRT_MACHINE(obj);
1464 vms->virt = value;
1467 static bool virt_get_highmem(Object *obj, Error **errp)
1469 VirtMachineState *vms = VIRT_MACHINE(obj);
1471 return vms->highmem;
1474 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1476 VirtMachineState *vms = VIRT_MACHINE(obj);
1478 vms->highmem = value;
1481 static char *virt_get_gic_version(Object *obj, Error **errp)
1483 VirtMachineState *vms = VIRT_MACHINE(obj);
1484 const char *val = vms->gic_version == 3 ? "3" : "2";
1486 return g_strdup(val);
1489 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1491 VirtMachineState *vms = VIRT_MACHINE(obj);
1493 if (!strcmp(value, "3")) {
1494 vms->gic_version = 3;
1495 } else if (!strcmp(value, "2")) {
1496 vms->gic_version = 2;
1497 } else if (!strcmp(value, "host")) {
1498 vms->gic_version = 0; /* Will probe later */
1499 } else {
1500 error_setg(errp, "Invalid gic-version value");
1501 error_append_hint(errp, "Valid values are 3, 2, host.\n");
1505 static void virt_machine_class_init(ObjectClass *oc, void *data)
1507 MachineClass *mc = MACHINE_CLASS(oc);
1509 mc->init = machvirt_init;
1510 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1511 * it later in machvirt_init, where we have more information about the
1512 * configuration of the particular instance.
1514 mc->max_cpus = 255;
1515 mc->has_dynamic_sysbus = true;
1516 mc->block_default_type = IF_VIRTIO;
1517 mc->no_cdrom = 1;
1518 mc->pci_allow_0_address = true;
1519 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1520 mc->minimum_page_bits = 12;
1523 static const TypeInfo virt_machine_info = {
1524 .name = TYPE_VIRT_MACHINE,
1525 .parent = TYPE_MACHINE,
1526 .abstract = true,
1527 .instance_size = sizeof(VirtMachineState),
1528 .class_size = sizeof(VirtMachineClass),
1529 .class_init = virt_machine_class_init,
1532 static void machvirt_machine_init(void)
1534 type_register_static(&virt_machine_info);
1536 type_init(machvirt_machine_init);
1538 static void virt_2_9_instance_init(Object *obj)
1540 VirtMachineState *vms = VIRT_MACHINE(obj);
1542 /* EL3 is disabled by default on virt: this makes us consistent
1543 * between KVM and TCG for this board, and it also allows us to
1544 * boot UEFI blobs which assume no TrustZone support.
1546 vms->secure = false;
1547 object_property_add_bool(obj, "secure", virt_get_secure,
1548 virt_set_secure, NULL);
1549 object_property_set_description(obj, "secure",
1550 "Set on/off to enable/disable the ARM "
1551 "Security Extensions (TrustZone)",
1552 NULL);
1554 /* EL2 is also disabled by default, for similar reasons */
1555 vms->virt = false;
1556 object_property_add_bool(obj, "virtualization", virt_get_virt,
1557 virt_set_virt, NULL);
1558 object_property_set_description(obj, "virtualization",
1559 "Set on/off to enable/disable emulating a "
1560 "guest CPU which implements the ARM "
1561 "Virtualization Extensions",
1562 NULL);
1564 /* High memory is enabled by default */
1565 vms->highmem = true;
1566 object_property_add_bool(obj, "highmem", virt_get_highmem,
1567 virt_set_highmem, NULL);
1568 object_property_set_description(obj, "highmem",
1569 "Set on/off to enable/disable using "
1570 "physical address space above 32 bits",
1571 NULL);
1572 /* Default GIC type is v2 */
1573 vms->gic_version = 2;
1574 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1575 virt_set_gic_version, NULL);
1576 object_property_set_description(obj, "gic-version",
1577 "Set GIC version. "
1578 "Valid values are 2, 3 and host", NULL);
1580 vms->memmap = a15memmap;
1581 vms->irqmap = a15irqmap;
1584 static void virt_machine_2_9_options(MachineClass *mc)
1587 DEFINE_VIRT_MACHINE_AS_LATEST(2, 9)
1589 #define VIRT_COMPAT_2_8 \
1590 HW_COMPAT_2_8
1592 static void virt_2_8_instance_init(Object *obj)
1594 virt_2_9_instance_init(obj);
1597 static void virt_machine_2_8_options(MachineClass *mc)
1599 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1601 virt_machine_2_9_options(mc);
1602 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1603 /* For 2.8 and earlier we falsely claimed in the DT that
1604 * our timers were edge-triggered, not level-triggered.
1606 vmc->claim_edge_triggered_timers = true;
1608 DEFINE_VIRT_MACHINE(2, 8)
1610 #define VIRT_COMPAT_2_7 \
1611 HW_COMPAT_2_7
1613 static void virt_2_7_instance_init(Object *obj)
1615 virt_2_8_instance_init(obj);
1618 static void virt_machine_2_7_options(MachineClass *mc)
1620 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1622 virt_machine_2_8_options(mc);
1623 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1624 /* ITS was introduced with 2.8 */
1625 vmc->no_its = true;
1626 /* Stick with 1K pages for migration compatibility */
1627 mc->minimum_page_bits = 0;
1629 DEFINE_VIRT_MACHINE(2, 7)
1631 #define VIRT_COMPAT_2_6 \
1632 HW_COMPAT_2_6
1634 static void virt_2_6_instance_init(Object *obj)
1636 virt_2_7_instance_init(obj);
1639 static void virt_machine_2_6_options(MachineClass *mc)
1641 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1643 virt_machine_2_7_options(mc);
1644 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1645 vmc->disallow_affinity_adjustment = true;
1646 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1647 vmc->no_pmu = true;
1649 DEFINE_VIRT_MACHINE(2, 6)