rtl8139: drop tautologous if (ip) {...} statement (CVE-2015-5165)
[qemu/ar7.git] / hw / block / m25p80.c
blobefc43dde6a4b4415117751510ee2e0c3cdaaddbe
1 /*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "hw/hw.h"
25 #include "sysemu/block-backend.h"
26 #include "sysemu/blockdev.h"
27 #include "hw/ssi.h"
29 #ifndef M25P80_ERR_DEBUG
30 #define M25P80_ERR_DEBUG 0
31 #endif
33 #define DB_PRINT_L(level, ...) do { \
34 if (M25P80_ERR_DEBUG > (level)) { \
35 fprintf(stderr, ": %s: ", __func__); \
36 fprintf(stderr, ## __VA_ARGS__); \
37 } \
38 } while (0);
40 /* Fields for FlashPartInfo->flags */
42 /* erase capabilities */
43 #define ER_4K 1
44 #define ER_32K 2
45 /* set to allow the page program command to write 0s back to 1. Useful for
46 * modelling EEPROM with SPI flash command set
48 #define WR_1 0x100
50 typedef struct FlashPartInfo {
51 const char *part_name;
52 /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
53 uint32_t jedec;
54 /* extended jedec code */
55 uint16_t ext_jedec;
56 /* there is confusion between manufacturers as to what a sector is. In this
57 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
58 * command (opcode 0xd8).
60 uint32_t sector_size;
61 uint32_t n_sectors;
62 uint32_t page_size;
63 uint8_t flags;
64 } FlashPartInfo;
66 /* adapted from linux */
68 #define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
69 .part_name = (_part_name),\
70 .jedec = (_jedec),\
71 .ext_jedec = (_ext_jedec),\
72 .sector_size = (_sector_size),\
73 .n_sectors = (_n_sectors),\
74 .page_size = 256,\
75 .flags = (_flags),\
77 #define JEDEC_NUMONYX 0x20
78 #define JEDEC_WINBOND 0xEF
79 #define JEDEC_SPANSION 0x01
81 static const FlashPartInfo known_devices[] = {
82 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
83 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
84 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
86 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
87 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
88 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
90 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
91 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
92 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
93 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
95 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
97 /* EON -- en25xxx */
98 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
99 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
100 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
101 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
102 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
104 /* GigaDevice */
105 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
106 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
108 /* Intel/Numonyx -- xxxs33b */
109 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
110 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
111 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
112 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
114 /* Macronix */
115 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
116 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
117 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
118 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
119 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
120 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
121 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
122 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
123 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
124 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
126 /* Micron */
127 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
128 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
129 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
130 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
131 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
132 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
133 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
134 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
136 /* Spansion -- single (large) sector size only, at least
137 * for the chips listed here (without boot sectors).
139 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
140 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
141 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
142 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
143 { INFO("s25fl512s", 0x010220, 0x4d00, 256 << 10, 256, 0) },
144 { INFO("s70fl01gs", 0x010221, 0x4d00, 256 << 10, 256, 0) },
145 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
146 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
147 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
148 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
149 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
150 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
151 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
152 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
153 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
154 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
155 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
157 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
158 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
159 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
160 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
161 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
162 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
163 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
164 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
165 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
167 /* ST Microelectronics -- newer production may have feature updates */
168 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
169 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
170 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
171 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
172 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
173 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
174 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
175 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
176 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
177 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
179 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
180 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
181 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
183 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
184 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
185 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
187 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
188 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
189 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
190 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
192 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
193 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
194 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
195 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
196 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
197 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
198 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
199 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
200 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
201 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
202 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
203 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
204 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
205 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
207 /* Numonyx -- n25q128 */
208 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
211 typedef enum {
212 NOP = 0,
213 WRSR = 0x1,
214 WRDI = 0x4,
215 RDSR = 0x5,
216 WREN = 0x6,
217 JEDEC_READ = 0x9f,
218 BULK_ERASE = 0xc7,
220 READ = 0x3,
221 FAST_READ = 0xb,
222 DOR = 0x3b,
223 QOR = 0x6b,
224 DIOR = 0xbb,
225 QIOR = 0xeb,
227 PP = 0x2,
228 DPP = 0xa2,
229 QPP = 0x32,
231 ERASE_4K = 0x20,
232 ERASE_32K = 0x52,
233 ERASE_SECTOR = 0xd8,
234 } FlashCMD;
236 typedef enum {
237 STATE_IDLE,
238 STATE_PAGE_PROGRAM,
239 STATE_READ,
240 STATE_COLLECTING_DATA,
241 STATE_READING_DATA,
242 } CMDState;
244 typedef struct Flash {
245 SSISlave parent_obj;
247 uint32_t r;
249 BlockBackend *blk;
251 uint8_t *storage;
252 uint32_t size;
253 int page_size;
255 uint8_t state;
256 uint8_t data[16];
257 uint32_t len;
258 uint32_t pos;
259 uint8_t needed_bytes;
260 uint8_t cmd_in_progress;
261 uint64_t cur_addr;
262 bool write_enable;
264 int64_t dirty_page;
266 const FlashPartInfo *pi;
268 } Flash;
270 typedef struct M25P80Class {
271 SSISlaveClass parent_class;
272 FlashPartInfo *pi;
273 } M25P80Class;
275 #define TYPE_M25P80 "m25p80-generic"
276 #define M25P80(obj) \
277 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
278 #define M25P80_CLASS(klass) \
279 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
280 #define M25P80_GET_CLASS(obj) \
281 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
283 static void blk_sync_complete(void *opaque, int ret)
285 /* do nothing. Masters do not directly interact with the backing store,
286 * only the working copy so no mutexing required.
290 static void flash_sync_page(Flash *s, int page)
292 int blk_sector, nb_sectors;
293 QEMUIOVector iov;
295 if (!s->blk || blk_is_read_only(s->blk)) {
296 return;
299 blk_sector = (page * s->pi->page_size) / BDRV_SECTOR_SIZE;
300 nb_sectors = DIV_ROUND_UP(s->pi->page_size, BDRV_SECTOR_SIZE);
301 qemu_iovec_init(&iov, 1);
302 qemu_iovec_add(&iov, s->storage + blk_sector * BDRV_SECTOR_SIZE,
303 nb_sectors * BDRV_SECTOR_SIZE);
304 blk_aio_writev(s->blk, blk_sector, &iov, nb_sectors, blk_sync_complete,
305 NULL);
308 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
310 int64_t start, end, nb_sectors;
311 QEMUIOVector iov;
313 if (!s->blk || blk_is_read_only(s->blk)) {
314 return;
317 assert(!(len % BDRV_SECTOR_SIZE));
318 start = off / BDRV_SECTOR_SIZE;
319 end = (off + len) / BDRV_SECTOR_SIZE;
320 nb_sectors = end - start;
321 qemu_iovec_init(&iov, 1);
322 qemu_iovec_add(&iov, s->storage + (start * BDRV_SECTOR_SIZE),
323 nb_sectors * BDRV_SECTOR_SIZE);
324 blk_aio_writev(s->blk, start, &iov, nb_sectors, blk_sync_complete, NULL);
327 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
329 uint32_t len;
330 uint8_t capa_to_assert = 0;
332 switch (cmd) {
333 case ERASE_4K:
334 len = 4 << 10;
335 capa_to_assert = ER_4K;
336 break;
337 case ERASE_32K:
338 len = 32 << 10;
339 capa_to_assert = ER_32K;
340 break;
341 case ERASE_SECTOR:
342 len = s->pi->sector_size;
343 break;
344 case BULK_ERASE:
345 len = s->size;
346 break;
347 default:
348 abort();
351 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
352 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
353 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
354 " device\n", len);
357 if (!s->write_enable) {
358 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
359 return;
361 memset(s->storage + offset, 0xff, len);
362 flash_sync_area(s, offset, len);
365 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
367 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
368 flash_sync_page(s, s->dirty_page);
369 s->dirty_page = newpage;
373 static inline
374 void flash_write8(Flash *s, uint64_t addr, uint8_t data)
376 int64_t page = addr / s->pi->page_size;
377 uint8_t prev = s->storage[s->cur_addr];
379 if (!s->write_enable) {
380 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
383 if ((prev ^ data) & data) {
384 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx64 " %" PRIx8
385 " -> %" PRIx8 "\n", addr, prev, data);
388 if (s->pi->flags & WR_1) {
389 s->storage[s->cur_addr] = data;
390 } else {
391 s->storage[s->cur_addr] &= data;
394 flash_sync_dirty(s, page);
395 s->dirty_page = page;
398 static void complete_collecting_data(Flash *s)
400 s->cur_addr = s->data[0] << 16;
401 s->cur_addr |= s->data[1] << 8;
402 s->cur_addr |= s->data[2];
404 s->state = STATE_IDLE;
406 switch (s->cmd_in_progress) {
407 case DPP:
408 case QPP:
409 case PP:
410 s->state = STATE_PAGE_PROGRAM;
411 break;
412 case READ:
413 case FAST_READ:
414 case DOR:
415 case QOR:
416 case DIOR:
417 case QIOR:
418 s->state = STATE_READ;
419 break;
420 case ERASE_4K:
421 case ERASE_32K:
422 case ERASE_SECTOR:
423 flash_erase(s, s->cur_addr, s->cmd_in_progress);
424 break;
425 case WRSR:
426 if (s->write_enable) {
427 s->write_enable = false;
429 break;
430 default:
431 break;
435 static void decode_new_cmd(Flash *s, uint32_t value)
437 s->cmd_in_progress = value;
438 DB_PRINT_L(0, "decoded new command:%x\n", value);
440 switch (value) {
442 case ERASE_4K:
443 case ERASE_32K:
444 case ERASE_SECTOR:
445 case READ:
446 case DPP:
447 case QPP:
448 case PP:
449 s->needed_bytes = 3;
450 s->pos = 0;
451 s->len = 0;
452 s->state = STATE_COLLECTING_DATA;
453 break;
455 case FAST_READ:
456 case DOR:
457 case QOR:
458 s->needed_bytes = 4;
459 s->pos = 0;
460 s->len = 0;
461 s->state = STATE_COLLECTING_DATA;
462 break;
464 case DIOR:
465 switch ((s->pi->jedec >> 16) & 0xFF) {
466 case JEDEC_WINBOND:
467 case JEDEC_SPANSION:
468 s->needed_bytes = 4;
469 break;
470 case JEDEC_NUMONYX:
471 default:
472 s->needed_bytes = 5;
474 s->pos = 0;
475 s->len = 0;
476 s->state = STATE_COLLECTING_DATA;
477 break;
479 case QIOR:
480 switch ((s->pi->jedec >> 16) & 0xFF) {
481 case JEDEC_WINBOND:
482 case JEDEC_SPANSION:
483 s->needed_bytes = 6;
484 break;
485 case JEDEC_NUMONYX:
486 default:
487 s->needed_bytes = 8;
489 s->pos = 0;
490 s->len = 0;
491 s->state = STATE_COLLECTING_DATA;
492 break;
494 case WRSR:
495 if (s->write_enable) {
496 s->needed_bytes = 1;
497 s->pos = 0;
498 s->len = 0;
499 s->state = STATE_COLLECTING_DATA;
501 break;
503 case WRDI:
504 s->write_enable = false;
505 break;
506 case WREN:
507 s->write_enable = true;
508 break;
510 case RDSR:
511 s->data[0] = (!!s->write_enable) << 1;
512 s->pos = 0;
513 s->len = 1;
514 s->state = STATE_READING_DATA;
515 break;
517 case JEDEC_READ:
518 DB_PRINT_L(0, "populated jedec code\n");
519 s->data[0] = (s->pi->jedec >> 16) & 0xff;
520 s->data[1] = (s->pi->jedec >> 8) & 0xff;
521 s->data[2] = s->pi->jedec & 0xff;
522 if (s->pi->ext_jedec) {
523 s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
524 s->data[4] = s->pi->ext_jedec & 0xff;
525 s->len = 5;
526 } else {
527 s->len = 3;
529 s->pos = 0;
530 s->state = STATE_READING_DATA;
531 break;
533 case BULK_ERASE:
534 if (s->write_enable) {
535 DB_PRINT_L(0, "chip erase\n");
536 flash_erase(s, 0, BULK_ERASE);
537 } else {
538 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
539 "protect!\n");
541 break;
542 case NOP:
543 break;
544 default:
545 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
546 break;
550 static int m25p80_cs(SSISlave *ss, bool select)
552 Flash *s = M25P80(ss);
554 if (select) {
555 s->len = 0;
556 s->pos = 0;
557 s->state = STATE_IDLE;
558 flash_sync_dirty(s, -1);
561 DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
563 return 0;
566 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
568 Flash *s = M25P80(ss);
569 uint32_t r = 0;
571 switch (s->state) {
573 case STATE_PAGE_PROGRAM:
574 DB_PRINT_L(1, "page program cur_addr=%#" PRIx64 " data=%" PRIx8 "\n",
575 s->cur_addr, (uint8_t)tx);
576 flash_write8(s, s->cur_addr, (uint8_t)tx);
577 s->cur_addr++;
578 break;
580 case STATE_READ:
581 r = s->storage[s->cur_addr];
582 DB_PRINT_L(1, "READ 0x%" PRIx64 "=%" PRIx8 "\n", s->cur_addr,
583 (uint8_t)r);
584 s->cur_addr = (s->cur_addr + 1) % s->size;
585 break;
587 case STATE_COLLECTING_DATA:
588 s->data[s->len] = (uint8_t)tx;
589 s->len++;
591 if (s->len == s->needed_bytes) {
592 complete_collecting_data(s);
594 break;
596 case STATE_READING_DATA:
597 r = s->data[s->pos];
598 s->pos++;
599 if (s->pos == s->len) {
600 s->pos = 0;
601 s->state = STATE_IDLE;
603 break;
605 default:
606 case STATE_IDLE:
607 decode_new_cmd(s, (uint8_t)tx);
608 break;
611 return r;
614 static int m25p80_init(SSISlave *ss)
616 DriveInfo *dinfo;
617 Flash *s = M25P80(ss);
618 M25P80Class *mc = M25P80_GET_CLASS(s);
620 s->pi = mc->pi;
622 s->size = s->pi->sector_size * s->pi->n_sectors;
623 s->dirty_page = -1;
625 /* FIXME use a qdev drive property instead of drive_get_next() */
626 dinfo = drive_get_next(IF_MTD);
628 if (dinfo) {
629 DB_PRINT_L(0, "Binding to IF_MTD drive\n");
630 s->blk = blk_by_legacy_dinfo(dinfo);
631 blk_attach_dev_nofail(s->blk, s);
633 s->storage = blk_blockalign(s->blk, s->size);
635 /* FIXME: Move to late init */
636 if (blk_read(s->blk, 0, s->storage,
637 DIV_ROUND_UP(s->size, BDRV_SECTOR_SIZE))) {
638 fprintf(stderr, "Failed to initialize SPI flash!\n");
639 return 1;
641 } else {
642 DB_PRINT_L(0, "No BDRV - binding to RAM\n");
643 s->storage = blk_blockalign(NULL, s->size);
644 memset(s->storage, 0xFF, s->size);
647 return 0;
650 static void m25p80_pre_save(void *opaque)
652 flash_sync_dirty((Flash *)opaque, -1);
655 static const VMStateDescription vmstate_m25p80 = {
656 .name = "xilinx_spi",
657 .version_id = 1,
658 .minimum_version_id = 1,
659 .pre_save = m25p80_pre_save,
660 .fields = (VMStateField[]) {
661 VMSTATE_UINT8(state, Flash),
662 VMSTATE_UINT8_ARRAY(data, Flash, 16),
663 VMSTATE_UINT32(len, Flash),
664 VMSTATE_UINT32(pos, Flash),
665 VMSTATE_UINT8(needed_bytes, Flash),
666 VMSTATE_UINT8(cmd_in_progress, Flash),
667 VMSTATE_UINT64(cur_addr, Flash),
668 VMSTATE_BOOL(write_enable, Flash),
669 VMSTATE_END_OF_LIST()
673 static void m25p80_class_init(ObjectClass *klass, void *data)
675 DeviceClass *dc = DEVICE_CLASS(klass);
676 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
677 M25P80Class *mc = M25P80_CLASS(klass);
679 k->init = m25p80_init;
680 k->transfer = m25p80_transfer8;
681 k->set_cs = m25p80_cs;
682 k->cs_polarity = SSI_CS_LOW;
683 dc->vmsd = &vmstate_m25p80;
684 mc->pi = data;
687 static const TypeInfo m25p80_info = {
688 .name = TYPE_M25P80,
689 .parent = TYPE_SSI_SLAVE,
690 .instance_size = sizeof(Flash),
691 .class_size = sizeof(M25P80Class),
692 .abstract = true,
695 static void m25p80_register_types(void)
697 int i;
699 type_register_static(&m25p80_info);
700 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
701 TypeInfo ti = {
702 .name = known_devices[i].part_name,
703 .parent = TYPE_M25P80,
704 .class_init = m25p80_class_init,
705 .class_data = (void *)&known_devices[i],
707 type_register(&ti);
711 type_init(m25p80_register_types)