exec/memory: Use struct Object typedef
[qemu/ar7.git] / hw / intc / arm_gic.c
bloba994b1f0245042ca603a2eb386b7f17cfa810682
1 /*
2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
21 #include "qemu/osdep.h"
22 #include "hw/irq.h"
23 #include "hw/sysbus.h"
24 #include "gic_internal.h"
25 #include "qapi/error.h"
26 #include "hw/core/cpu.h"
27 #include "qemu/log.h"
28 #include "qemu/module.h"
29 #include "trace.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/qtest.h"
33 /* #define DEBUG_GIC */
35 #ifdef DEBUG_GIC
36 #define DEBUG_GIC_GATE 1
37 #else
38 #define DEBUG_GIC_GATE 0
39 #endif
41 #define DPRINTF(fmt, ...) do { \
42 if (DEBUG_GIC_GATE) { \
43 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
44 } \
45 } while (0)
47 static const uint8_t gic_id_11mpcore[] = {
48 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
51 static const uint8_t gic_id_gicv1[] = {
52 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
55 static const uint8_t gic_id_gicv2[] = {
56 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
59 static inline int gic_get_current_cpu(GICState *s)
61 if (!qtest_enabled() && s->num_cpu > 1) {
62 return current_cpu->cpu_index;
64 return 0;
67 static inline int gic_get_current_vcpu(GICState *s)
69 return gic_get_current_cpu(s) + GIC_NCPU;
72 /* Return true if this GIC config has interrupt groups, which is
73 * true if we're a GICv2, or a GICv1 with the security extensions.
75 static inline bool gic_has_groups(GICState *s)
77 return s->revision == 2 || s->security_extn;
80 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
82 return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
85 static inline void gic_get_best_irq(GICState *s, int cpu,
86 int *best_irq, int *best_prio, int *group)
88 int irq;
89 int cm = 1 << cpu;
91 *best_irq = 1023;
92 *best_prio = 0x100;
94 for (irq = 0; irq < s->num_irq; irq++) {
95 if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
96 (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
97 (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
98 if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
99 *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
100 *best_irq = irq;
105 if (*best_irq < 1023) {
106 *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
110 static inline void gic_get_best_virq(GICState *s, int cpu,
111 int *best_irq, int *best_prio, int *group)
113 int lr_idx = 0;
115 *best_irq = 1023;
116 *best_prio = 0x100;
118 for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
119 uint32_t lr_entry = s->h_lr[lr_idx][cpu];
120 int state = GICH_LR_STATE(lr_entry);
122 if (state == GICH_LR_STATE_PENDING) {
123 int prio = GICH_LR_PRIORITY(lr_entry);
125 if (prio < *best_prio) {
126 *best_prio = prio;
127 *best_irq = GICH_LR_VIRT_ID(lr_entry);
128 *group = GICH_LR_GROUP(lr_entry);
134 /* Return true if IRQ signaling is enabled for the given cpu and at least one
135 * of the given groups:
136 * - in the non-virt case, the distributor must be enabled for one of the
137 * given groups
138 * - in the virt case, the virtual interface must be enabled.
139 * - in all cases, the (v)CPU interface must be enabled for one of the given
140 * groups.
142 static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
143 int group_mask)
145 int cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
147 if (!virt && !(s->ctlr & group_mask)) {
148 return false;
151 if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
152 return false;
155 if (!(s->cpu_ctlr[cpu_iface] & group_mask)) {
156 return false;
159 return true;
162 /* TODO: Many places that call this routine could be optimized. */
163 /* Update interrupt status after enabled or pending bits have been changed. */
164 static inline void gic_update_internal(GICState *s, bool virt)
166 int best_irq;
167 int best_prio;
168 int irq_level, fiq_level;
169 int cpu, cpu_iface;
170 int group = 0;
171 qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
172 qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
174 for (cpu = 0; cpu < s->num_cpu; cpu++) {
175 cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
177 s->current_pending[cpu_iface] = 1023;
178 if (!gic_irq_signaling_enabled(s, cpu, virt,
179 GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
180 qemu_irq_lower(irq_lines[cpu]);
181 qemu_irq_lower(fiq_lines[cpu]);
182 continue;
185 if (virt) {
186 gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
187 } else {
188 gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
191 if (best_irq != 1023) {
192 trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
193 best_irq, best_prio,
194 s->priority_mask[cpu_iface],
195 s->running_priority[cpu_iface]);
198 irq_level = fiq_level = 0;
200 if (best_prio < s->priority_mask[cpu_iface]) {
201 s->current_pending[cpu_iface] = best_irq;
202 if (best_prio < s->running_priority[cpu_iface]) {
203 if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
204 if (group == 0 &&
205 s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
206 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
207 best_irq, cpu_iface);
208 fiq_level = 1;
209 trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
210 fiq_level);
211 } else {
212 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
213 best_irq, cpu_iface);
214 irq_level = 1;
215 trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
216 irq_level);
222 qemu_set_irq(irq_lines[cpu], irq_level);
223 qemu_set_irq(fiq_lines[cpu], fiq_level);
227 static void gic_update(GICState *s)
229 gic_update_internal(s, false);
232 /* Return true if this LR is empty, i.e. the corresponding bit
233 * in ELRSR is set.
235 static inline bool gic_lr_entry_is_free(uint32_t entry)
237 return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
238 && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
241 /* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
242 * corrsponding bit in EISR is set.
244 static inline bool gic_lr_entry_is_eoi(uint32_t entry)
246 return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
247 && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
250 static inline void gic_extract_lr_info(GICState *s, int cpu,
251 int *num_eoi, int *num_valid, int *num_pending)
253 int lr_idx;
255 *num_eoi = 0;
256 *num_valid = 0;
257 *num_pending = 0;
259 for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
260 uint32_t *entry = &s->h_lr[lr_idx][cpu];
262 if (gic_lr_entry_is_eoi(*entry)) {
263 (*num_eoi)++;
266 if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
267 (*num_valid)++;
270 if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
271 (*num_pending)++;
276 static void gic_compute_misr(GICState *s, int cpu)
278 uint32_t value = 0;
279 int vcpu = cpu + GIC_NCPU;
281 int num_eoi, num_valid, num_pending;
283 gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
285 /* EOI */
286 if (num_eoi) {
287 value |= R_GICH_MISR_EOI_MASK;
290 /* U: true if only 0 or 1 LR entry is valid */
291 if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
292 value |= R_GICH_MISR_U_MASK;
295 /* LRENP: EOICount is not 0 */
296 if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
297 ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
298 value |= R_GICH_MISR_LRENP_MASK;
301 /* NP: no pending interrupts */
302 if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
303 value |= R_GICH_MISR_NP_MASK;
306 /* VGrp0E: group0 virq signaling enabled */
307 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
308 (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
309 value |= R_GICH_MISR_VGrp0E_MASK;
312 /* VGrp0D: group0 virq signaling disabled */
313 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
314 !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
315 value |= R_GICH_MISR_VGrp0D_MASK;
318 /* VGrp1E: group1 virq signaling enabled */
319 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
320 (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
321 value |= R_GICH_MISR_VGrp1E_MASK;
324 /* VGrp1D: group1 virq signaling disabled */
325 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
326 !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
327 value |= R_GICH_MISR_VGrp1D_MASK;
330 s->h_misr[cpu] = value;
333 static void gic_update_maintenance(GICState *s)
335 int cpu = 0;
336 int maint_level;
338 for (cpu = 0; cpu < s->num_cpu; cpu++) {
339 gic_compute_misr(s, cpu);
340 maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
342 trace_gic_update_maintenance_irq(cpu, maint_level);
343 qemu_set_irq(s->maintenance_irq[cpu], maint_level);
347 static void gic_update_virt(GICState *s)
349 gic_update_internal(s, true);
350 gic_update_maintenance(s);
353 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
354 int cm, int target)
356 if (level) {
357 GIC_DIST_SET_LEVEL(irq, cm);
358 if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
359 DPRINTF("Set %d pending mask %x\n", irq, target);
360 GIC_DIST_SET_PENDING(irq, target);
362 } else {
363 GIC_DIST_CLEAR_LEVEL(irq, cm);
367 static void gic_set_irq_generic(GICState *s, int irq, int level,
368 int cm, int target)
370 if (level) {
371 GIC_DIST_SET_LEVEL(irq, cm);
372 DPRINTF("Set %d pending mask %x\n", irq, target);
373 if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
374 GIC_DIST_SET_PENDING(irq, target);
376 } else {
377 GIC_DIST_CLEAR_LEVEL(irq, cm);
381 /* Process a change in an external IRQ input. */
382 static void gic_set_irq(void *opaque, int irq, int level)
384 /* Meaning of the 'irq' parameter:
385 * [0..N-1] : external interrupts
386 * [N..N+31] : PPI (internal) interrupts for CPU 0
387 * [N+32..N+63] : PPI (internal interrupts for CPU 1
388 * ...
390 GICState *s = (GICState *)opaque;
391 int cm, target;
392 if (irq < (s->num_irq - GIC_INTERNAL)) {
393 /* The first external input line is internal interrupt 32. */
394 cm = ALL_CPU_MASK;
395 irq += GIC_INTERNAL;
396 target = GIC_DIST_TARGET(irq);
397 } else {
398 int cpu;
399 irq -= (s->num_irq - GIC_INTERNAL);
400 cpu = irq / GIC_INTERNAL;
401 irq %= GIC_INTERNAL;
402 cm = 1 << cpu;
403 target = cm;
406 assert(irq >= GIC_NR_SGIS);
408 if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
409 return;
412 if (s->revision == REV_11MPCORE) {
413 gic_set_irq_11mpcore(s, irq, level, cm, target);
414 } else {
415 gic_set_irq_generic(s, irq, level, cm, target);
417 trace_gic_set_irq(irq, level, cm, target);
419 gic_update(s);
422 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
423 MemTxAttrs attrs)
425 uint16_t pending_irq = s->current_pending[cpu];
427 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
428 int group = gic_test_group(s, pending_irq, cpu);
430 /* On a GIC without the security extensions, reading this register
431 * behaves in the same way as a secure access to a GIC with them.
433 bool secure = !gic_cpu_ns_access(s, cpu, attrs);
435 if (group == 0 && !secure) {
436 /* Group0 interrupts hidden from Non-secure access */
437 return 1023;
439 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
440 /* Group1 interrupts only seen by Secure access if
441 * AckCtl bit set.
443 return 1022;
446 return pending_irq;
449 static int gic_get_group_priority(GICState *s, int cpu, int irq)
451 /* Return the group priority of the specified interrupt
452 * (which is the top bits of its priority, with the number
453 * of bits masked determined by the applicable binary point register).
455 int bpr;
456 uint32_t mask;
458 if (gic_has_groups(s) &&
459 !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
460 gic_test_group(s, irq, cpu)) {
461 bpr = s->abpr[cpu] - 1;
462 assert(bpr >= 0);
463 } else {
464 bpr = s->bpr[cpu];
467 /* a BPR of 0 means the group priority bits are [7:1];
468 * a BPR of 1 means they are [7:2], and so on down to
469 * a BPR of 7 meaning no group priority bits at all.
471 mask = ~0U << ((bpr & 7) + 1);
473 return gic_get_priority(s, irq, cpu) & mask;
476 static void gic_activate_irq(GICState *s, int cpu, int irq)
478 /* Set the appropriate Active Priority Register bit for this IRQ,
479 * and update the running priority.
481 int prio = gic_get_group_priority(s, cpu, irq);
482 int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
483 int preemption_level = prio >> (min_bpr + 1);
484 int regno = preemption_level / 32;
485 int bitno = preemption_level % 32;
486 uint32_t *papr = NULL;
488 if (gic_is_vcpu(cpu)) {
489 assert(regno == 0);
490 papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
491 } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
492 papr = &s->nsapr[regno][cpu];
493 } else {
494 papr = &s->apr[regno][cpu];
497 *papr |= (1 << bitno);
499 s->running_priority[cpu] = prio;
500 gic_set_active(s, irq, cpu);
503 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
505 /* Recalculate the current running priority for this CPU based
506 * on the set bits in the Active Priority Registers.
508 int i;
510 if (gic_is_vcpu(cpu)) {
511 uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
512 if (apr) {
513 return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
514 } else {
515 return 0x100;
519 for (i = 0; i < GIC_NR_APRS; i++) {
520 uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
521 if (!apr) {
522 continue;
524 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
526 return 0x100;
529 static void gic_drop_prio(GICState *s, int cpu, int group)
531 /* Drop the priority of the currently active interrupt in the
532 * specified group.
534 * Note that we can guarantee (because of the requirement to nest
535 * GICC_IAR reads [which activate an interrupt and raise priority]
536 * with GICC_EOIR writes [which drop the priority for the interrupt])
537 * that the interrupt we're being called for is the highest priority
538 * active interrupt, meaning that it has the lowest set bit in the
539 * APR registers.
541 * If the guest does not honour the ordering constraints then the
542 * behaviour of the GIC is UNPREDICTABLE, which for us means that
543 * the values of the APR registers might become incorrect and the
544 * running priority will be wrong, so interrupts that should preempt
545 * might not do so, and interrupts that should not preempt might do so.
547 if (gic_is_vcpu(cpu)) {
548 int rcpu = gic_get_vcpu_real_id(cpu);
550 if (s->h_apr[rcpu]) {
551 /* Clear lowest set bit */
552 s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
554 } else {
555 int i;
557 for (i = 0; i < GIC_NR_APRS; i++) {
558 uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
559 if (!*papr) {
560 continue;
562 /* Clear lowest set bit */
563 *papr &= *papr - 1;
564 break;
568 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
571 static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
573 int src;
574 uint32_t ret;
576 if (!gic_is_vcpu(cpu)) {
577 /* Lookup the source CPU for the SGI and clear this in the
578 * sgi_pending map. Return the src and clear the overall pending
579 * state on this CPU if the SGI is not pending from any CPUs.
581 assert(s->sgi_pending[irq][cpu] != 0);
582 src = ctz32(s->sgi_pending[irq][cpu]);
583 s->sgi_pending[irq][cpu] &= ~(1 << src);
584 if (s->sgi_pending[irq][cpu] == 0) {
585 gic_clear_pending(s, irq, cpu);
587 ret = irq | ((src & 0x7) << 10);
588 } else {
589 uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
590 src = GICH_LR_CPUID(*lr_entry);
592 gic_clear_pending(s, irq, cpu);
593 ret = irq | (src << 10);
596 return ret;
599 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
601 int ret, irq;
603 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
604 * for the case where this GIC supports grouping and the pending interrupt
605 * is in the wrong group.
607 irq = gic_get_current_pending_irq(s, cpu, attrs);
608 trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
609 gic_get_vcpu_real_id(cpu), irq);
611 if (irq >= GIC_MAXIRQ) {
612 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
613 return irq;
616 if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
617 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
618 return 1023;
621 gic_activate_irq(s, cpu, irq);
623 if (s->revision == REV_11MPCORE) {
624 /* Clear pending flags for both level and edge triggered interrupts.
625 * Level triggered IRQs will be reasserted once they become inactive.
627 gic_clear_pending(s, irq, cpu);
628 ret = irq;
629 } else {
630 if (irq < GIC_NR_SGIS) {
631 ret = gic_clear_pending_sgi(s, irq, cpu);
632 } else {
633 gic_clear_pending(s, irq, cpu);
634 ret = irq;
638 if (gic_is_vcpu(cpu)) {
639 gic_update_virt(s);
640 } else {
641 gic_update(s);
643 DPRINTF("ACK %d\n", irq);
644 return ret;
647 static uint32_t gic_fullprio_mask(GICState *s, int cpu)
650 * Return a mask word which clears the unimplemented priority
651 * bits from a priority value for an interrupt. (Not to be
652 * confused with the group priority, whose mask depends on BPR.)
654 int priBits;
656 if (gic_is_vcpu(cpu)) {
657 priBits = GIC_VIRT_MAX_GROUP_PRIO_BITS;
658 } else {
659 priBits = s->n_prio_bits;
661 return ~0U << (8 - priBits);
664 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
665 MemTxAttrs attrs)
667 if (s->security_extn && !attrs.secure) {
668 if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
669 return; /* Ignore Non-secure access of Group0 IRQ */
671 val = 0x80 | (val >> 1); /* Non-secure view */
674 val &= gic_fullprio_mask(s, cpu);
676 if (irq < GIC_INTERNAL) {
677 s->priority1[irq][cpu] = val;
678 } else {
679 s->priority2[(irq) - GIC_INTERNAL] = val;
683 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
684 MemTxAttrs attrs)
686 uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
688 if (s->security_extn && !attrs.secure) {
689 if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
690 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
692 prio = (prio << 1) & 0xff; /* Non-secure view */
694 return prio & gic_fullprio_mask(s, cpu);
697 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
698 MemTxAttrs attrs)
700 if (gic_cpu_ns_access(s, cpu, attrs)) {
701 if (s->priority_mask[cpu] & 0x80) {
702 /* Priority Mask in upper half */
703 pmask = 0x80 | (pmask >> 1);
704 } else {
705 /* Non-secure write ignored if priority mask is in lower half */
706 return;
709 s->priority_mask[cpu] = pmask & gic_fullprio_mask(s, cpu);
712 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
714 uint32_t pmask = s->priority_mask[cpu];
716 if (gic_cpu_ns_access(s, cpu, attrs)) {
717 if (pmask & 0x80) {
718 /* Priority Mask in upper half, return Non-secure view */
719 pmask = (pmask << 1) & 0xff;
720 } else {
721 /* Priority Mask in lower half, RAZ */
722 pmask = 0;
725 return pmask;
728 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
730 uint32_t ret = s->cpu_ctlr[cpu];
732 if (gic_cpu_ns_access(s, cpu, attrs)) {
733 /* Construct the NS banked view of GICC_CTLR from the correct
734 * bits of the S banked view. We don't need to move the bypass
735 * control bits because we don't implement that (IMPDEF) part
736 * of the GIC architecture.
738 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
740 return ret;
743 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
744 MemTxAttrs attrs)
746 uint32_t mask;
748 if (gic_cpu_ns_access(s, cpu, attrs)) {
749 /* The NS view can only write certain bits in the register;
750 * the rest are unchanged
752 mask = GICC_CTLR_EN_GRP1;
753 if (s->revision == 2) {
754 mask |= GICC_CTLR_EOIMODE_NS;
756 s->cpu_ctlr[cpu] &= ~mask;
757 s->cpu_ctlr[cpu] |= (value << 1) & mask;
758 } else {
759 if (s->revision == 2) {
760 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
761 } else {
762 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
764 s->cpu_ctlr[cpu] = value & mask;
766 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
767 "Group1 Interrupts %sabled\n", cpu,
768 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
769 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
772 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
774 if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
775 /* Idle priority */
776 return 0xff;
779 if (gic_cpu_ns_access(s, cpu, attrs)) {
780 if (s->running_priority[cpu] & 0x80) {
781 /* Running priority in upper half of range: return the Non-secure
782 * view of the priority.
784 return s->running_priority[cpu] << 1;
785 } else {
786 /* Running priority in lower half of range: RAZ */
787 return 0;
789 } else {
790 return s->running_priority[cpu];
794 /* Return true if we should split priority drop and interrupt deactivation,
795 * ie whether the relevant EOIMode bit is set.
797 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
799 if (s->revision != 2) {
800 /* Before GICv2 prio-drop and deactivate are not separable */
801 return false;
803 if (gic_cpu_ns_access(s, cpu, attrs)) {
804 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
806 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
809 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
811 int group;
813 if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
815 * This handles two cases:
816 * 1. If software writes the ID of a spurious interrupt [ie 1023]
817 * to the GICC_DIR, the GIC ignores that write.
818 * 2. If software writes the number of a non-existent interrupt
819 * this must be a subcase of "value written is not an active interrupt"
820 * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
821 * all IRQs potentially exist, so this limit does not apply.
823 return;
826 if (!gic_eoi_split(s, cpu, attrs)) {
827 /* This is UNPREDICTABLE; we choose to ignore it */
828 qemu_log_mask(LOG_GUEST_ERROR,
829 "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
830 return;
833 if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
834 /* This vIRQ does not have an LR entry which is either active or
835 * pending and active. Increment EOICount and ignore the write.
837 int rcpu = gic_get_vcpu_real_id(cpu);
838 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
840 /* Update the virtual interface in case a maintenance interrupt should
841 * be raised.
843 gic_update_virt(s);
844 return;
847 group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
849 if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
850 DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
851 return;
854 gic_clear_active(s, irq, cpu);
857 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
859 int cm = 1 << cpu;
860 int group;
862 DPRINTF("EOI %d\n", irq);
863 if (gic_is_vcpu(cpu)) {
864 /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
865 * running prio is < 0x100.
867 bool prio_drop = s->running_priority[cpu] < 0x100;
869 if (irq >= GIC_MAXIRQ) {
870 /* Ignore spurious interrupt */
871 return;
874 gic_drop_prio(s, cpu, 0);
876 if (!gic_eoi_split(s, cpu, attrs)) {
877 bool valid = gic_virq_is_valid(s, irq, cpu);
878 if (prio_drop && !valid) {
879 /* We are in a situation where:
880 * - V_CTRL.EOIMode is false (no EOI split),
881 * - The call to gic_drop_prio() cleared a bit in GICH_APR,
882 * - This vIRQ does not have an LR entry which is either
883 * active or pending and active.
884 * In that case, we must increment EOICount.
886 int rcpu = gic_get_vcpu_real_id(cpu);
887 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
888 } else if (valid) {
889 gic_clear_active(s, irq, cpu);
893 gic_update_virt(s);
894 return;
897 if (irq >= s->num_irq) {
898 /* This handles two cases:
899 * 1. If software writes the ID of a spurious interrupt [ie 1023]
900 * to the GICC_EOIR, the GIC ignores that write.
901 * 2. If software writes the number of a non-existent interrupt
902 * this must be a subcase of "value written does not match the last
903 * valid interrupt value read from the Interrupt Acknowledge
904 * register" and so this is UNPREDICTABLE. We choose to ignore it.
906 return;
908 if (s->running_priority[cpu] == 0x100) {
909 return; /* No active IRQ. */
912 if (s->revision == REV_11MPCORE) {
913 /* Mark level triggered interrupts as pending if they are still
914 raised. */
915 if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
916 && GIC_DIST_TEST_LEVEL(irq, cm)
917 && (GIC_DIST_TARGET(irq) & cm) != 0) {
918 DPRINTF("Set %d pending mask %x\n", irq, cm);
919 GIC_DIST_SET_PENDING(irq, cm);
923 group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
925 if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
926 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
927 return;
930 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
931 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
932 * i.e. go ahead and complete the irq anyway.
935 gic_drop_prio(s, cpu, group);
937 /* In GICv2 the guest can choose to split priority-drop and deactivate */
938 if (!gic_eoi_split(s, cpu, attrs)) {
939 gic_clear_active(s, irq, cpu);
941 gic_update(s);
944 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
946 GICState *s = (GICState *)opaque;
947 uint32_t res;
948 int irq;
949 int i;
950 int cpu;
951 int cm;
952 int mask;
954 cpu = gic_get_current_cpu(s);
955 cm = 1 << cpu;
956 if (offset < 0x100) {
957 if (offset == 0) { /* GICD_CTLR */
958 if (s->security_extn && !attrs.secure) {
959 /* The NS bank of this register is just an alias of the
960 * EnableGrp1 bit in the S bank version.
962 return extract32(s->ctlr, 1, 1);
963 } else {
964 return s->ctlr;
967 if (offset == 4)
968 /* Interrupt Controller Type Register */
969 return ((s->num_irq / 32) - 1)
970 | ((s->num_cpu - 1) << 5)
971 | (s->security_extn << 10);
972 if (offset < 0x08)
973 return 0;
974 if (offset >= 0x80) {
975 /* Interrupt Group Registers: these RAZ/WI if this is an NS
976 * access to a GIC with the security extensions, or if the GIC
977 * doesn't have groups at all.
979 res = 0;
980 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
981 /* Every byte offset holds 8 group status bits */
982 irq = (offset - 0x080) * 8;
983 if (irq >= s->num_irq) {
984 goto bad_reg;
986 for (i = 0; i < 8; i++) {
987 if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
988 res |= (1 << i);
992 return res;
994 goto bad_reg;
995 } else if (offset < 0x200) {
996 /* Interrupt Set/Clear Enable. */
997 if (offset < 0x180)
998 irq = (offset - 0x100) * 8;
999 else
1000 irq = (offset - 0x180) * 8;
1001 if (irq >= s->num_irq)
1002 goto bad_reg;
1003 res = 0;
1004 for (i = 0; i < 8; i++) {
1005 if (s->security_extn && !attrs.secure &&
1006 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1007 continue; /* Ignore Non-secure access of Group0 IRQ */
1010 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1011 res |= (1 << i);
1014 } else if (offset < 0x300) {
1015 /* Interrupt Set/Clear Pending. */
1016 if (offset < 0x280)
1017 irq = (offset - 0x200) * 8;
1018 else
1019 irq = (offset - 0x280) * 8;
1020 if (irq >= s->num_irq)
1021 goto bad_reg;
1022 res = 0;
1023 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
1024 for (i = 0; i < 8; i++) {
1025 if (s->security_extn && !attrs.secure &&
1026 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1027 continue; /* Ignore Non-secure access of Group0 IRQ */
1030 if (gic_test_pending(s, irq + i, mask)) {
1031 res |= (1 << i);
1034 } else if (offset < 0x400) {
1035 /* Interrupt Set/Clear Active. */
1036 if (offset < 0x380) {
1037 irq = (offset - 0x300) * 8;
1038 } else if (s->revision == 2) {
1039 irq = (offset - 0x380) * 8;
1040 } else {
1041 goto bad_reg;
1044 if (irq >= s->num_irq)
1045 goto bad_reg;
1046 res = 0;
1047 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
1048 for (i = 0; i < 8; i++) {
1049 if (s->security_extn && !attrs.secure &&
1050 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1051 continue; /* Ignore Non-secure access of Group0 IRQ */
1054 if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
1055 res |= (1 << i);
1058 } else if (offset < 0x800) {
1059 /* Interrupt Priority. */
1060 irq = (offset - 0x400);
1061 if (irq >= s->num_irq)
1062 goto bad_reg;
1063 res = gic_dist_get_priority(s, cpu, irq, attrs);
1064 } else if (offset < 0xc00) {
1065 /* Interrupt CPU Target. */
1066 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
1067 /* For uniprocessor GICs these RAZ/WI */
1068 res = 0;
1069 } else {
1070 irq = (offset - 0x800);
1071 if (irq >= s->num_irq) {
1072 goto bad_reg;
1074 if (irq < 29 && s->revision == REV_11MPCORE) {
1075 res = 0;
1076 } else if (irq < GIC_INTERNAL) {
1077 res = cm;
1078 } else {
1079 res = GIC_DIST_TARGET(irq);
1082 } else if (offset < 0xf00) {
1083 /* Interrupt Configuration. */
1084 irq = (offset - 0xc00) * 4;
1085 if (irq >= s->num_irq)
1086 goto bad_reg;
1087 res = 0;
1088 for (i = 0; i < 4; i++) {
1089 if (s->security_extn && !attrs.secure &&
1090 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1091 continue; /* Ignore Non-secure access of Group0 IRQ */
1094 if (GIC_DIST_TEST_MODEL(irq + i)) {
1095 res |= (1 << (i * 2));
1097 if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1098 res |= (2 << (i * 2));
1101 } else if (offset < 0xf10) {
1102 goto bad_reg;
1103 } else if (offset < 0xf30) {
1104 if (s->revision == REV_11MPCORE) {
1105 goto bad_reg;
1108 if (offset < 0xf20) {
1109 /* GICD_CPENDSGIRn */
1110 irq = (offset - 0xf10);
1111 } else {
1112 irq = (offset - 0xf20);
1113 /* GICD_SPENDSGIRn */
1116 if (s->security_extn && !attrs.secure &&
1117 !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1118 res = 0; /* Ignore Non-secure access of Group0 IRQ */
1119 } else {
1120 res = s->sgi_pending[irq][cpu];
1122 } else if (offset < 0xfd0) {
1123 goto bad_reg;
1124 } else if (offset < 0x1000) {
1125 if (offset & 3) {
1126 res = 0;
1127 } else {
1128 switch (s->revision) {
1129 case REV_11MPCORE:
1130 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
1131 break;
1132 case 1:
1133 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
1134 break;
1135 case 2:
1136 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
1137 break;
1138 default:
1139 res = 0;
1142 } else {
1143 g_assert_not_reached();
1145 return res;
1146 bad_reg:
1147 qemu_log_mask(LOG_GUEST_ERROR,
1148 "gic_dist_readb: Bad offset %x\n", (int)offset);
1149 return 0;
1152 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
1153 unsigned size, MemTxAttrs attrs)
1155 switch (size) {
1156 case 1:
1157 *data = gic_dist_readb(opaque, offset, attrs);
1158 break;
1159 case 2:
1160 *data = gic_dist_readb(opaque, offset, attrs);
1161 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1162 break;
1163 case 4:
1164 *data = gic_dist_readb(opaque, offset, attrs);
1165 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1166 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
1167 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
1168 break;
1169 default:
1170 return MEMTX_ERROR;
1173 trace_gic_dist_read(offset, size, *data);
1174 return MEMTX_OK;
1177 static void gic_dist_writeb(void *opaque, hwaddr offset,
1178 uint32_t value, MemTxAttrs attrs)
1180 GICState *s = (GICState *)opaque;
1181 int irq;
1182 int i;
1183 int cpu;
1185 cpu = gic_get_current_cpu(s);
1186 if (offset < 0x100) {
1187 if (offset == 0) {
1188 if (s->security_extn && !attrs.secure) {
1189 /* NS version is just an alias of the S version's bit 1 */
1190 s->ctlr = deposit32(s->ctlr, 1, 1, value);
1191 } else if (gic_has_groups(s)) {
1192 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
1193 } else {
1194 s->ctlr = value & GICD_CTLR_EN_GRP0;
1196 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
1197 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
1198 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
1199 } else if (offset < 4) {
1200 /* ignored. */
1201 } else if (offset >= 0x80) {
1202 /* Interrupt Group Registers: RAZ/WI for NS access to secure
1203 * GIC, or for GICs without groups.
1205 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
1206 /* Every byte offset holds 8 group status bits */
1207 irq = (offset - 0x80) * 8;
1208 if (irq >= s->num_irq) {
1209 goto bad_reg;
1211 for (i = 0; i < 8; i++) {
1212 /* Group bits are banked for private interrupts */
1213 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1214 if (value & (1 << i)) {
1215 /* Group1 (Non-secure) */
1216 GIC_DIST_SET_GROUP(irq + i, cm);
1217 } else {
1218 /* Group0 (Secure) */
1219 GIC_DIST_CLEAR_GROUP(irq + i, cm);
1223 } else {
1224 goto bad_reg;
1226 } else if (offset < 0x180) {
1227 /* Interrupt Set Enable. */
1228 irq = (offset - 0x100) * 8;
1229 if (irq >= s->num_irq)
1230 goto bad_reg;
1231 if (irq < GIC_NR_SGIS) {
1232 value = 0xff;
1235 for (i = 0; i < 8; i++) {
1236 if (value & (1 << i)) {
1237 int mask =
1238 (irq < GIC_INTERNAL) ? (1 << cpu)
1239 : GIC_DIST_TARGET(irq + i);
1240 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1242 if (s->security_extn && !attrs.secure &&
1243 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1244 continue; /* Ignore Non-secure access of Group0 IRQ */
1247 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1248 DPRINTF("Enabled IRQ %d\n", irq + i);
1249 trace_gic_enable_irq(irq + i);
1251 GIC_DIST_SET_ENABLED(irq + i, cm);
1252 /* If a raised level triggered IRQ enabled then mark
1253 is as pending. */
1254 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1255 && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1256 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1257 GIC_DIST_SET_PENDING(irq + i, mask);
1261 } else if (offset < 0x200) {
1262 /* Interrupt Clear Enable. */
1263 irq = (offset - 0x180) * 8;
1264 if (irq >= s->num_irq)
1265 goto bad_reg;
1266 if (irq < GIC_NR_SGIS) {
1267 value = 0;
1270 for (i = 0; i < 8; i++) {
1271 if (value & (1 << i)) {
1272 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1274 if (s->security_extn && !attrs.secure &&
1275 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1276 continue; /* Ignore Non-secure access of Group0 IRQ */
1279 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1280 DPRINTF("Disabled IRQ %d\n", irq + i);
1281 trace_gic_disable_irq(irq + i);
1283 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1286 } else if (offset < 0x280) {
1287 /* Interrupt Set Pending. */
1288 irq = (offset - 0x200) * 8;
1289 if (irq >= s->num_irq)
1290 goto bad_reg;
1291 if (irq < GIC_NR_SGIS) {
1292 value = 0;
1295 for (i = 0; i < 8; i++) {
1296 if (value & (1 << i)) {
1297 if (s->security_extn && !attrs.secure &&
1298 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1299 continue; /* Ignore Non-secure access of Group0 IRQ */
1302 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1305 } else if (offset < 0x300) {
1306 /* Interrupt Clear Pending. */
1307 irq = (offset - 0x280) * 8;
1308 if (irq >= s->num_irq)
1309 goto bad_reg;
1310 if (irq < GIC_NR_SGIS) {
1311 value = 0;
1314 for (i = 0; i < 8; i++) {
1315 if (s->security_extn && !attrs.secure &&
1316 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1317 continue; /* Ignore Non-secure access of Group0 IRQ */
1320 /* ??? This currently clears the pending bit for all CPUs, even
1321 for per-CPU interrupts. It's unclear whether this is the
1322 corect behavior. */
1323 if (value & (1 << i)) {
1324 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1327 } else if (offset < 0x380) {
1328 /* Interrupt Set Active. */
1329 if (s->revision != 2) {
1330 goto bad_reg;
1333 irq = (offset - 0x300) * 8;
1334 if (irq >= s->num_irq) {
1335 goto bad_reg;
1338 /* This register is banked per-cpu for PPIs */
1339 int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1341 for (i = 0; i < 8; i++) {
1342 if (s->security_extn && !attrs.secure &&
1343 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1344 continue; /* Ignore Non-secure access of Group0 IRQ */
1347 if (value & (1 << i)) {
1348 GIC_DIST_SET_ACTIVE(irq + i, cm);
1351 } else if (offset < 0x400) {
1352 /* Interrupt Clear Active. */
1353 if (s->revision != 2) {
1354 goto bad_reg;
1357 irq = (offset - 0x380) * 8;
1358 if (irq >= s->num_irq) {
1359 goto bad_reg;
1362 /* This register is banked per-cpu for PPIs */
1363 int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1365 for (i = 0; i < 8; i++) {
1366 if (s->security_extn && !attrs.secure &&
1367 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1368 continue; /* Ignore Non-secure access of Group0 IRQ */
1371 if (value & (1 << i)) {
1372 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1375 } else if (offset < 0x800) {
1376 /* Interrupt Priority. */
1377 irq = (offset - 0x400);
1378 if (irq >= s->num_irq)
1379 goto bad_reg;
1380 gic_dist_set_priority(s, cpu, irq, value, attrs);
1381 } else if (offset < 0xc00) {
1382 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1383 * annoying exception of the 11MPCore's GIC.
1385 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1386 irq = (offset - 0x800);
1387 if (irq >= s->num_irq) {
1388 goto bad_reg;
1390 if (irq < 29 && s->revision == REV_11MPCORE) {
1391 value = 0;
1392 } else if (irq < GIC_INTERNAL) {
1393 value = ALL_CPU_MASK;
1395 s->irq_target[irq] = value & ALL_CPU_MASK;
1397 } else if (offset < 0xf00) {
1398 /* Interrupt Configuration. */
1399 irq = (offset - 0xc00) * 4;
1400 if (irq >= s->num_irq)
1401 goto bad_reg;
1402 if (irq < GIC_NR_SGIS)
1403 value |= 0xaa;
1404 for (i = 0; i < 4; i++) {
1405 if (s->security_extn && !attrs.secure &&
1406 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1407 continue; /* Ignore Non-secure access of Group0 IRQ */
1410 if (s->revision == REV_11MPCORE) {
1411 if (value & (1 << (i * 2))) {
1412 GIC_DIST_SET_MODEL(irq + i);
1413 } else {
1414 GIC_DIST_CLEAR_MODEL(irq + i);
1417 if (value & (2 << (i * 2))) {
1418 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1419 } else {
1420 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1423 } else if (offset < 0xf10) {
1424 /* 0xf00 is only handled for 32-bit writes. */
1425 goto bad_reg;
1426 } else if (offset < 0xf20) {
1427 /* GICD_CPENDSGIRn */
1428 if (s->revision == REV_11MPCORE) {
1429 goto bad_reg;
1431 irq = (offset - 0xf10);
1433 if (!s->security_extn || attrs.secure ||
1434 GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1435 s->sgi_pending[irq][cpu] &= ~value;
1436 if (s->sgi_pending[irq][cpu] == 0) {
1437 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1440 } else if (offset < 0xf30) {
1441 /* GICD_SPENDSGIRn */
1442 if (s->revision == REV_11MPCORE) {
1443 goto bad_reg;
1445 irq = (offset - 0xf20);
1447 if (!s->security_extn || attrs.secure ||
1448 GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1449 GIC_DIST_SET_PENDING(irq, 1 << cpu);
1450 s->sgi_pending[irq][cpu] |= value;
1452 } else {
1453 goto bad_reg;
1455 gic_update(s);
1456 return;
1457 bad_reg:
1458 qemu_log_mask(LOG_GUEST_ERROR,
1459 "gic_dist_writeb: Bad offset %x\n", (int)offset);
1462 static void gic_dist_writew(void *opaque, hwaddr offset,
1463 uint32_t value, MemTxAttrs attrs)
1465 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1466 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1469 static void gic_dist_writel(void *opaque, hwaddr offset,
1470 uint32_t value, MemTxAttrs attrs)
1472 GICState *s = (GICState *)opaque;
1473 if (offset == 0xf00) {
1474 int cpu;
1475 int irq;
1476 int mask;
1477 int target_cpu;
1479 cpu = gic_get_current_cpu(s);
1480 irq = value & 0xf;
1481 switch ((value >> 24) & 3) {
1482 case 0:
1483 mask = (value >> 16) & ALL_CPU_MASK;
1484 break;
1485 case 1:
1486 mask = ALL_CPU_MASK ^ (1 << cpu);
1487 break;
1488 case 2:
1489 mask = 1 << cpu;
1490 break;
1491 default:
1492 DPRINTF("Bad Soft Int target filter\n");
1493 mask = ALL_CPU_MASK;
1494 break;
1496 GIC_DIST_SET_PENDING(irq, mask);
1497 target_cpu = ctz32(mask);
1498 while (target_cpu < GIC_NCPU) {
1499 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1500 mask &= ~(1 << target_cpu);
1501 target_cpu = ctz32(mask);
1503 gic_update(s);
1504 return;
1506 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1507 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1510 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1511 unsigned size, MemTxAttrs attrs)
1513 trace_gic_dist_write(offset, size, data);
1515 switch (size) {
1516 case 1:
1517 gic_dist_writeb(opaque, offset, data, attrs);
1518 return MEMTX_OK;
1519 case 2:
1520 gic_dist_writew(opaque, offset, data, attrs);
1521 return MEMTX_OK;
1522 case 4:
1523 gic_dist_writel(opaque, offset, data, attrs);
1524 return MEMTX_OK;
1525 default:
1526 return MEMTX_ERROR;
1530 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1532 /* Return the Nonsecure view of GICC_APR<regno>. This is the
1533 * second half of GICC_NSAPR.
1535 switch (GIC_MIN_BPR) {
1536 case 0:
1537 if (regno < 2) {
1538 return s->nsapr[regno + 2][cpu];
1540 break;
1541 case 1:
1542 if (regno == 0) {
1543 return s->nsapr[regno + 1][cpu];
1545 break;
1546 case 2:
1547 if (regno == 0) {
1548 return extract32(s->nsapr[0][cpu], 16, 16);
1550 break;
1551 case 3:
1552 if (regno == 0) {
1553 return extract32(s->nsapr[0][cpu], 8, 8);
1555 break;
1556 default:
1557 g_assert_not_reached();
1559 return 0;
1562 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1563 uint32_t value)
1565 /* Write the Nonsecure view of GICC_APR<regno>. */
1566 switch (GIC_MIN_BPR) {
1567 case 0:
1568 if (regno < 2) {
1569 s->nsapr[regno + 2][cpu] = value;
1571 break;
1572 case 1:
1573 if (regno == 0) {
1574 s->nsapr[regno + 1][cpu] = value;
1576 break;
1577 case 2:
1578 if (regno == 0) {
1579 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1581 break;
1582 case 3:
1583 if (regno == 0) {
1584 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1586 break;
1587 default:
1588 g_assert_not_reached();
1592 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1593 uint64_t *data, MemTxAttrs attrs)
1595 switch (offset) {
1596 case 0x00: /* Control */
1597 *data = gic_get_cpu_control(s, cpu, attrs);
1598 break;
1599 case 0x04: /* Priority mask */
1600 *data = gic_get_priority_mask(s, cpu, attrs);
1601 break;
1602 case 0x08: /* Binary Point */
1603 if (gic_cpu_ns_access(s, cpu, attrs)) {
1604 if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1605 /* NS view of BPR when CBPR is 1 */
1606 *data = MIN(s->bpr[cpu] + 1, 7);
1607 } else {
1608 /* BPR is banked. Non-secure copy stored in ABPR. */
1609 *data = s->abpr[cpu];
1611 } else {
1612 *data = s->bpr[cpu];
1614 break;
1615 case 0x0c: /* Acknowledge */
1616 *data = gic_acknowledge_irq(s, cpu, attrs);
1617 break;
1618 case 0x14: /* Running Priority */
1619 *data = gic_get_running_priority(s, cpu, attrs);
1620 break;
1621 case 0x18: /* Highest Pending Interrupt */
1622 *data = gic_get_current_pending_irq(s, cpu, attrs);
1623 break;
1624 case 0x1c: /* Aliased Binary Point */
1625 /* GIC v2, no security: ABPR
1626 * GIC v1, no security: not implemented (RAZ/WI)
1627 * With security extensions, secure access: ABPR (alias of NS BPR)
1628 * With security extensions, nonsecure access: RAZ/WI
1630 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1631 *data = 0;
1632 } else {
1633 *data = s->abpr[cpu];
1635 break;
1636 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1638 int regno = (offset - 0xd0) / 4;
1639 int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1641 if (regno >= nr_aprs || s->revision != 2) {
1642 *data = 0;
1643 } else if (gic_is_vcpu(cpu)) {
1644 *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
1645 } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1646 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1647 *data = gic_apr_ns_view(s, regno, cpu);
1648 } else {
1649 *data = s->apr[regno][cpu];
1651 break;
1653 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1655 int regno = (offset - 0xe0) / 4;
1657 if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1658 gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
1659 *data = 0;
1660 } else {
1661 *data = s->nsapr[regno][cpu];
1663 break;
1665 default:
1666 qemu_log_mask(LOG_GUEST_ERROR,
1667 "gic_cpu_read: Bad offset %x\n", (int)offset);
1668 *data = 0;
1669 break;
1672 trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1673 gic_get_vcpu_real_id(cpu), offset, *data);
1674 return MEMTX_OK;
1677 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1678 uint32_t value, MemTxAttrs attrs)
1680 trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1681 gic_get_vcpu_real_id(cpu), offset, value);
1683 switch (offset) {
1684 case 0x00: /* Control */
1685 gic_set_cpu_control(s, cpu, value, attrs);
1686 break;
1687 case 0x04: /* Priority mask */
1688 gic_set_priority_mask(s, cpu, value, attrs);
1689 break;
1690 case 0x08: /* Binary Point */
1691 if (gic_cpu_ns_access(s, cpu, attrs)) {
1692 if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1693 /* WI when CBPR is 1 */
1694 return MEMTX_OK;
1695 } else {
1696 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1698 } else {
1699 int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1700 s->bpr[cpu] = MAX(value & 0x7, min_bpr);
1702 break;
1703 case 0x10: /* End Of Interrupt */
1704 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1705 return MEMTX_OK;
1706 case 0x1c: /* Aliased Binary Point */
1707 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1708 /* unimplemented, or NS access: RAZ/WI */
1709 return MEMTX_OK;
1710 } else {
1711 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1713 break;
1714 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1716 int regno = (offset - 0xd0) / 4;
1717 int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1719 if (regno >= nr_aprs || s->revision != 2) {
1720 return MEMTX_OK;
1722 if (gic_is_vcpu(cpu)) {
1723 s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1724 } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1725 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1726 gic_apr_write_ns_view(s, regno, cpu, value);
1727 } else {
1728 s->apr[regno][cpu] = value;
1730 break;
1732 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1734 int regno = (offset - 0xe0) / 4;
1736 if (regno >= GIC_NR_APRS || s->revision != 2) {
1737 return MEMTX_OK;
1739 if (gic_is_vcpu(cpu)) {
1740 return MEMTX_OK;
1742 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1743 return MEMTX_OK;
1745 s->nsapr[regno][cpu] = value;
1746 break;
1748 case 0x1000:
1749 /* GICC_DIR */
1750 gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1751 break;
1752 default:
1753 qemu_log_mask(LOG_GUEST_ERROR,
1754 "gic_cpu_write: Bad offset %x\n", (int)offset);
1755 return MEMTX_OK;
1758 if (gic_is_vcpu(cpu)) {
1759 gic_update_virt(s);
1760 } else {
1761 gic_update(s);
1764 return MEMTX_OK;
1767 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1768 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1769 unsigned size, MemTxAttrs attrs)
1771 GICState *s = (GICState *)opaque;
1772 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1775 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1776 uint64_t value, unsigned size,
1777 MemTxAttrs attrs)
1779 GICState *s = (GICState *)opaque;
1780 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1783 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1784 * These just decode the opaque pointer into GICState* + cpu id.
1786 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1787 unsigned size, MemTxAttrs attrs)
1789 GICState **backref = (GICState **)opaque;
1790 GICState *s = *backref;
1791 int id = (backref - s->backref);
1792 return gic_cpu_read(s, id, addr, data, attrs);
1795 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1796 uint64_t value, unsigned size,
1797 MemTxAttrs attrs)
1799 GICState **backref = (GICState **)opaque;
1800 GICState *s = *backref;
1801 int id = (backref - s->backref);
1802 return gic_cpu_write(s, id, addr, value, attrs);
1805 static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
1806 unsigned size, MemTxAttrs attrs)
1808 GICState *s = (GICState *)opaque;
1810 return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
1813 static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
1814 uint64_t value, unsigned size,
1815 MemTxAttrs attrs)
1817 GICState *s = (GICState *)opaque;
1819 return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
1822 static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
1824 int lr_idx;
1825 uint32_t ret = 0;
1827 for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1828 uint32_t *entry = &s->h_lr[lr_idx][cpu];
1829 ret = deposit32(ret, lr_idx - lr_start, 1,
1830 gic_lr_entry_is_eoi(*entry));
1833 return ret;
1836 static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
1838 int lr_idx;
1839 uint32_t ret = 0;
1841 for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1842 uint32_t *entry = &s->h_lr[lr_idx][cpu];
1843 ret = deposit32(ret, lr_idx - lr_start, 1,
1844 gic_lr_entry_is_free(*entry));
1847 return ret;
1850 static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
1852 int vcpu = gic_get_current_vcpu(s);
1853 uint32_t ctlr;
1854 uint32_t abpr;
1855 uint32_t bpr;
1856 uint32_t prio_mask;
1858 ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
1859 abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
1860 bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
1861 prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
1863 gic_set_cpu_control(s, vcpu, ctlr, attrs);
1864 s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
1865 s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
1866 gic_set_priority_mask(s, vcpu, prio_mask, attrs);
1869 static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
1870 uint64_t *data, MemTxAttrs attrs)
1872 GICState *s = ARM_GIC(opaque);
1873 int vcpu = cpu + GIC_NCPU;
1875 switch (addr) {
1876 case A_GICH_HCR: /* Hypervisor Control */
1877 *data = s->h_hcr[cpu];
1878 break;
1880 case A_GICH_VTR: /* VGIC Type */
1881 *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
1882 *data = FIELD_DP32(*data, GICH_VTR, PREbits,
1883 GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
1884 *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
1885 (7 - GIC_VIRT_MIN_BPR) - 1);
1886 break;
1888 case A_GICH_VMCR: /* Virtual Machine Control */
1889 *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
1890 extract32(s->cpu_ctlr[vcpu], 0, 10));
1891 *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
1892 *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
1893 *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
1894 extract32(s->priority_mask[vcpu], 3, 5));
1895 break;
1897 case A_GICH_MISR: /* Maintenance Interrupt Status */
1898 *data = s->h_misr[cpu];
1899 break;
1901 case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
1902 case A_GICH_EISR1:
1903 *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
1904 break;
1906 case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
1907 case A_GICH_ELRSR1:
1908 *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
1909 break;
1911 case A_GICH_APR: /* Active Priorities */
1912 *data = s->h_apr[cpu];
1913 break;
1915 case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1917 int lr_idx = (addr - A_GICH_LR0) / 4;
1919 if (lr_idx > s->num_lrs) {
1920 *data = 0;
1921 } else {
1922 *data = s->h_lr[lr_idx][cpu];
1924 break;
1927 default:
1928 qemu_log_mask(LOG_GUEST_ERROR,
1929 "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
1930 return MEMTX_OK;
1933 trace_gic_hyp_read(addr, *data);
1934 return MEMTX_OK;
1937 static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
1938 uint64_t value, MemTxAttrs attrs)
1940 GICState *s = ARM_GIC(opaque);
1941 int vcpu = cpu + GIC_NCPU;
1943 trace_gic_hyp_write(addr, value);
1945 switch (addr) {
1946 case A_GICH_HCR: /* Hypervisor Control */
1947 s->h_hcr[cpu] = value & GICH_HCR_MASK;
1948 break;
1950 case A_GICH_VMCR: /* Virtual Machine Control */
1951 gic_vmcr_write(s, value, attrs);
1952 break;
1954 case A_GICH_APR: /* Active Priorities */
1955 s->h_apr[cpu] = value;
1956 s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
1957 break;
1959 case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1961 int lr_idx = (addr - A_GICH_LR0) / 4;
1963 if (lr_idx > s->num_lrs) {
1964 return MEMTX_OK;
1967 s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
1968 trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
1969 break;
1972 default:
1973 qemu_log_mask(LOG_GUEST_ERROR,
1974 "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
1975 return MEMTX_OK;
1978 gic_update_virt(s);
1979 return MEMTX_OK;
1982 static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1983 unsigned size, MemTxAttrs attrs)
1985 GICState *s = (GICState *)opaque;
1987 return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
1990 static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
1991 uint64_t value, unsigned size,
1992 MemTxAttrs attrs)
1994 GICState *s = (GICState *)opaque;
1996 return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
1999 static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
2000 unsigned size, MemTxAttrs attrs)
2002 GICState **backref = (GICState **)opaque;
2003 GICState *s = *backref;
2004 int id = (backref - s->backref);
2006 return gic_hyp_read(s, id, addr, data, attrs);
2009 static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
2010 uint64_t value, unsigned size,
2011 MemTxAttrs attrs)
2013 GICState **backref = (GICState **)opaque;
2014 GICState *s = *backref;
2015 int id = (backref - s->backref);
2017 return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
2021 static const MemoryRegionOps gic_ops[2] = {
2023 .read_with_attrs = gic_dist_read,
2024 .write_with_attrs = gic_dist_write,
2025 .endianness = DEVICE_NATIVE_ENDIAN,
2028 .read_with_attrs = gic_thiscpu_read,
2029 .write_with_attrs = gic_thiscpu_write,
2030 .endianness = DEVICE_NATIVE_ENDIAN,
2034 static const MemoryRegionOps gic_cpu_ops = {
2035 .read_with_attrs = gic_do_cpu_read,
2036 .write_with_attrs = gic_do_cpu_write,
2037 .endianness = DEVICE_NATIVE_ENDIAN,
2040 static const MemoryRegionOps gic_virt_ops[2] = {
2042 .read_with_attrs = gic_thiscpu_hyp_read,
2043 .write_with_attrs = gic_thiscpu_hyp_write,
2044 .endianness = DEVICE_NATIVE_ENDIAN,
2047 .read_with_attrs = gic_thisvcpu_read,
2048 .write_with_attrs = gic_thisvcpu_write,
2049 .endianness = DEVICE_NATIVE_ENDIAN,
2053 static const MemoryRegionOps gic_viface_ops = {
2054 .read_with_attrs = gic_do_hyp_read,
2055 .write_with_attrs = gic_do_hyp_write,
2056 .endianness = DEVICE_NATIVE_ENDIAN,
2059 static void arm_gic_realize(DeviceState *dev, Error **errp)
2061 /* Device instance realize function for the GIC sysbus device */
2062 int i;
2063 GICState *s = ARM_GIC(dev);
2064 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2065 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
2066 Error *local_err = NULL;
2068 agc->parent_realize(dev, &local_err);
2069 if (local_err) {
2070 error_propagate(errp, local_err);
2071 return;
2074 if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
2075 error_setg(errp, "KVM with user space irqchip only works when the "
2076 "host kernel supports KVM_CAP_ARM_USER_IRQ");
2077 return;
2080 if (s->n_prio_bits > GIC_MAX_PRIORITY_BITS ||
2081 (s->virt_extn ? s->n_prio_bits < GIC_VIRT_MAX_GROUP_PRIO_BITS :
2082 s->n_prio_bits < GIC_MIN_PRIORITY_BITS)) {
2083 error_setg(errp, "num-priority-bits cannot be greater than %d"
2084 " or less than %d", GIC_MAX_PRIORITY_BITS,
2085 s->virt_extn ? GIC_VIRT_MAX_GROUP_PRIO_BITS :
2086 GIC_MIN_PRIORITY_BITS);
2087 return;
2090 /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
2091 * enabled, virtualization extensions related interfaces (main virtual
2092 * interface (s->vifaceiomem[0]) and virtual CPU interface).
2094 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
2096 /* Extra core-specific regions for the CPU interfaces. This is
2097 * necessary for "franken-GIC" implementations, for example on
2098 * Exynos 4.
2099 * NB that the memory region size of 0x100 applies for the 11MPCore
2100 * and also cores following the GIC v1 spec (ie A9).
2101 * GIC v2 defines a larger memory region (0x1000) so this will need
2102 * to be extended when we implement A15.
2104 for (i = 0; i < s->num_cpu; i++) {
2105 s->backref[i] = s;
2106 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
2107 &s->backref[i], "gic_cpu", 0x100);
2108 sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
2111 /* Extra core-specific regions for virtual interfaces. This is required by
2112 * the GICv2 specification.
2114 if (s->virt_extn) {
2115 for (i = 0; i < s->num_cpu; i++) {
2116 memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
2117 &gic_viface_ops, &s->backref[i],
2118 "gic_viface", 0x200);
2119 sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
2125 static void arm_gic_class_init(ObjectClass *klass, void *data)
2127 DeviceClass *dc = DEVICE_CLASS(klass);
2128 ARMGICClass *agc = ARM_GIC_CLASS(klass);
2130 device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
2133 static const TypeInfo arm_gic_info = {
2134 .name = TYPE_ARM_GIC,
2135 .parent = TYPE_ARM_GIC_COMMON,
2136 .instance_size = sizeof(GICState),
2137 .class_init = arm_gic_class_init,
2138 .class_size = sizeof(ARMGICClass),
2141 static void arm_gic_register_types(void)
2143 type_register_static(&arm_gic_info);
2146 type_init(arm_gic_register_types)