elf: Add EM_RX definition
[qemu/ar7.git] / hw / arm / virt.c
blobe465a988d6838627bbef0bc72d1ef0f2de8114db
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "qapi/error.h"
37 #include "hw/sysbus.h"
38 #include "hw/boards.h"
39 #include "hw/arm/boot.h"
40 #include "hw/arm/primecell.h"
41 #include "hw/arm/virt.h"
42 #include "hw/block/flash.h"
43 #include "hw/vfio/vfio-calxeda-xgmac.h"
44 #include "hw/vfio/vfio-amd-xgbe.h"
45 #include "hw/display/ramfb.h"
46 #include "net/net.h"
47 #include "sysemu/device_tree.h"
48 #include "sysemu/numa.h"
49 #include "sysemu/runstate.h"
50 #include "sysemu/sysemu.h"
51 #include "sysemu/tpm.h"
52 #include "sysemu/kvm.h"
53 #include "hw/loader.h"
54 #include "exec/address-spaces.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/arm/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/irq.h"
67 #include "kvm_arm.h"
68 #include "hw/firmware/smbios.h"
69 #include "qapi/visitor.h"
70 #include "qapi/qapi-visit-common.h"
71 #include "standard-headers/linux/input.h"
72 #include "hw/arm/smmuv3.h"
73 #include "hw/acpi/acpi.h"
74 #include "target/arm/internals.h"
75 #include "hw/mem/pc-dimm.h"
76 #include "hw/mem/nvdimm.h"
77 #include "hw/acpi/generic_event_device.h"
78 #include "hw/virtio/virtio-iommu.h"
79 #include "hw/char/pl011.h"
80 #include "qemu/guest-random.h"
82 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
83 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
84 void *data) \
85 { \
86 MachineClass *mc = MACHINE_CLASS(oc); \
87 virt_machine_##major##_##minor##_options(mc); \
88 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
89 if (latest) { \
90 mc->alias = "virt"; \
91 } \
92 } \
93 static const TypeInfo machvirt_##major##_##minor##_info = { \
94 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
95 .parent = TYPE_VIRT_MACHINE, \
96 .class_init = virt_##major##_##minor##_class_init, \
97 }; \
98 static void machvirt_machine_##major##_##minor##_init(void) \
99 { \
100 type_register_static(&machvirt_##major##_##minor##_info); \
102 type_init(machvirt_machine_##major##_##minor##_init);
104 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
105 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
106 #define DEFINE_VIRT_MACHINE(major, minor) \
107 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
110 /* Number of external interrupt lines to configure the GIC with */
111 #define NUM_IRQS 256
113 #define PLATFORM_BUS_NUM_IRQS 64
115 /* Legacy RAM limit in GB (< version 4.0) */
116 #define LEGACY_RAMLIMIT_GB 255
117 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
119 /* Addresses and sizes of our components.
120 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
121 * 128MB..256MB is used for miscellaneous device I/O.
122 * 256MB..1GB is reserved for possible future PCI support (ie where the
123 * PCI memory window will go if we add a PCI host controller).
124 * 1GB and up is RAM (which may happily spill over into the
125 * high memory region beyond 4GB).
126 * This represents a compromise between how much RAM can be given to
127 * a 32 bit VM and leaving space for expansion and in particular for PCI.
128 * Note that devices should generally be placed at multiples of 0x10000,
129 * to accommodate guests using 64K pages.
131 static const MemMapEntry base_memmap[] = {
132 /* Space up to 0x8000000 is reserved for a boot ROM */
133 [VIRT_FLASH] = { 0, 0x08000000 },
134 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
135 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
136 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
137 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
138 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
139 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
140 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
141 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
142 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
143 /* This redistributor space allows up to 2*64kB*123 CPUs */
144 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
145 [VIRT_UART] = { 0x09000000, 0x00001000 },
146 [VIRT_RTC] = { 0x09010000, 0x00001000 },
147 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
148 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
149 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
150 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
151 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
152 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
153 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
154 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
155 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
156 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
157 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
158 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
159 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
160 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
161 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
162 /* Actual RAM size depends on initial RAM and device memory settings */
163 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
167 * Highmem IO Regions: This memory map is floating, located after the RAM.
168 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
169 * top of the RAM, so that its base get the same alignment as the size,
170 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
171 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
172 * Note the extended_memmap is sized so that it eventually also includes the
173 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
174 * index of base_memmap).
176 static MemMapEntry extended_memmap[] = {
177 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
178 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
179 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
180 /* Second PCIe window */
181 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
184 static const int a15irqmap[] = {
185 [VIRT_UART] = 1,
186 [VIRT_RTC] = 2,
187 [VIRT_PCIE] = 3, /* ... to 6 */
188 [VIRT_GPIO] = 7,
189 [VIRT_SECURE_UART] = 8,
190 [VIRT_ACPI_GED] = 9,
191 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
192 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
193 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
194 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
197 static const char *valid_cpus[] = {
198 ARM_CPU_TYPE_NAME("cortex-a7"),
199 ARM_CPU_TYPE_NAME("cortex-a15"),
200 ARM_CPU_TYPE_NAME("cortex-a53"),
201 ARM_CPU_TYPE_NAME("cortex-a57"),
202 ARM_CPU_TYPE_NAME("cortex-a72"),
203 ARM_CPU_TYPE_NAME("host"),
204 ARM_CPU_TYPE_NAME("max"),
207 static bool cpu_type_valid(const char *cpu)
209 int i;
211 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
212 if (strcmp(cpu, valid_cpus[i]) == 0) {
213 return true;
216 return false;
219 static void create_kaslr_seed(VirtMachineState *vms, const char *node)
221 uint64_t seed;
223 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
224 return;
226 qemu_fdt_setprop_u64(vms->fdt, node, "kaslr-seed", seed);
229 static void create_fdt(VirtMachineState *vms)
231 MachineState *ms = MACHINE(vms);
232 int nb_numa_nodes = ms->numa_state->num_nodes;
233 void *fdt = create_device_tree(&vms->fdt_size);
235 if (!fdt) {
236 error_report("create_device_tree() failed");
237 exit(1);
240 vms->fdt = fdt;
242 /* Header */
243 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
244 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
245 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
247 /* /chosen must exist for load_dtb to fill in necessary properties later */
248 qemu_fdt_add_subnode(fdt, "/chosen");
249 create_kaslr_seed(vms, "/chosen");
251 if (vms->secure) {
252 qemu_fdt_add_subnode(fdt, "/secure-chosen");
253 create_kaslr_seed(vms, "/secure-chosen");
256 /* Clock node, for the benefit of the UART. The kernel device tree
257 * binding documentation claims the PL011 node clock properties are
258 * optional but in practice if you omit them the kernel refuses to
259 * probe for the device.
261 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
262 qemu_fdt_add_subnode(fdt, "/apb-pclk");
263 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
264 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
265 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
266 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
267 "clk24mhz");
268 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
270 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
271 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
272 uint32_t *matrix = g_malloc0(size);
273 int idx, i, j;
275 for (i = 0; i < nb_numa_nodes; i++) {
276 for (j = 0; j < nb_numa_nodes; j++) {
277 idx = (i * nb_numa_nodes + j) * 3;
278 matrix[idx + 0] = cpu_to_be32(i);
279 matrix[idx + 1] = cpu_to_be32(j);
280 matrix[idx + 2] =
281 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
285 qemu_fdt_add_subnode(fdt, "/distance-map");
286 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
287 "numa-distance-map-v1");
288 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
289 matrix, size);
290 g_free(matrix);
294 static void fdt_add_timer_nodes(const VirtMachineState *vms)
296 /* On real hardware these interrupts are level-triggered.
297 * On KVM they were edge-triggered before host kernel version 4.4,
298 * and level-triggered afterwards.
299 * On emulated QEMU they are level-triggered.
301 * Getting the DTB info about them wrong is awkward for some
302 * guest kernels:
303 * pre-4.8 ignore the DT and leave the interrupt configured
304 * with whatever the GIC reset value (or the bootloader) left it at
305 * 4.8 before rc6 honour the incorrect data by programming it back
306 * into the GIC, causing problems
307 * 4.8rc6 and later ignore the DT and always write "level triggered"
308 * into the GIC
310 * For backwards-compatibility, virt-2.8 and earlier will continue
311 * to say these are edge-triggered, but later machines will report
312 * the correct information.
314 ARMCPU *armcpu;
315 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
316 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
318 if (vmc->claim_edge_triggered_timers) {
319 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
322 if (vms->gic_version == VIRT_GIC_VERSION_2) {
323 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
324 GIC_FDT_IRQ_PPI_CPU_WIDTH,
325 (1 << vms->smp_cpus) - 1);
328 qemu_fdt_add_subnode(vms->fdt, "/timer");
330 armcpu = ARM_CPU(qemu_get_cpu(0));
331 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
332 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
333 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
334 compat, sizeof(compat));
335 } else {
336 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
337 "arm,armv7-timer");
339 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
340 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
341 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
342 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
343 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
344 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
347 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
349 int cpu;
350 int addr_cells = 1;
351 const MachineState *ms = MACHINE(vms);
354 * From Documentation/devicetree/bindings/arm/cpus.txt
355 * On ARM v8 64-bit systems value should be set to 2,
356 * that corresponds to the MPIDR_EL1 register size.
357 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
358 * in the system, #address-cells can be set to 1, since
359 * MPIDR_EL1[63:32] bits are not used for CPUs
360 * identification.
362 * Here we actually don't know whether our system is 32- or 64-bit one.
363 * The simplest way to go is to examine affinity IDs of all our CPUs. If
364 * at least one of them has Aff3 populated, we set #address-cells to 2.
366 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
367 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
369 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
370 addr_cells = 2;
371 break;
375 qemu_fdt_add_subnode(vms->fdt, "/cpus");
376 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
377 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
379 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
380 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
381 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
382 CPUState *cs = CPU(armcpu);
384 qemu_fdt_add_subnode(vms->fdt, nodename);
385 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
386 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
387 armcpu->dtb_compatible);
389 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
390 && vms->smp_cpus > 1) {
391 qemu_fdt_setprop_string(vms->fdt, nodename,
392 "enable-method", "psci");
395 if (addr_cells == 2) {
396 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
397 armcpu->mp_affinity);
398 } else {
399 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
400 armcpu->mp_affinity);
403 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
404 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
405 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
408 g_free(nodename);
412 static void fdt_add_its_gic_node(VirtMachineState *vms)
414 char *nodename;
416 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
417 nodename = g_strdup_printf("/intc/its@%" PRIx64,
418 vms->memmap[VIRT_GIC_ITS].base);
419 qemu_fdt_add_subnode(vms->fdt, nodename);
420 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
421 "arm,gic-v3-its");
422 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
423 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
424 2, vms->memmap[VIRT_GIC_ITS].base,
425 2, vms->memmap[VIRT_GIC_ITS].size);
426 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
427 g_free(nodename);
430 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
432 char *nodename;
434 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
435 vms->memmap[VIRT_GIC_V2M].base);
436 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
437 qemu_fdt_add_subnode(vms->fdt, nodename);
438 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
439 "arm,gic-v2m-frame");
440 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
441 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
442 2, vms->memmap[VIRT_GIC_V2M].base,
443 2, vms->memmap[VIRT_GIC_V2M].size);
444 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
445 g_free(nodename);
448 static void fdt_add_gic_node(VirtMachineState *vms)
450 char *nodename;
452 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
453 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
455 nodename = g_strdup_printf("/intc@%" PRIx64,
456 vms->memmap[VIRT_GIC_DIST].base);
457 qemu_fdt_add_subnode(vms->fdt, nodename);
458 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
459 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
460 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
461 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
462 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
463 if (vms->gic_version == VIRT_GIC_VERSION_3) {
464 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
466 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
467 "arm,gic-v3");
469 qemu_fdt_setprop_cell(vms->fdt, nodename,
470 "#redistributor-regions", nb_redist_regions);
472 if (nb_redist_regions == 1) {
473 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
474 2, vms->memmap[VIRT_GIC_DIST].base,
475 2, vms->memmap[VIRT_GIC_DIST].size,
476 2, vms->memmap[VIRT_GIC_REDIST].base,
477 2, vms->memmap[VIRT_GIC_REDIST].size);
478 } else {
479 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
480 2, vms->memmap[VIRT_GIC_DIST].base,
481 2, vms->memmap[VIRT_GIC_DIST].size,
482 2, vms->memmap[VIRT_GIC_REDIST].base,
483 2, vms->memmap[VIRT_GIC_REDIST].size,
484 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
485 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
488 if (vms->virt) {
489 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
490 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
491 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
493 } else {
494 /* 'cortex-a15-gic' means 'GIC v2' */
495 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
496 "arm,cortex-a15-gic");
497 if (!vms->virt) {
498 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
499 2, vms->memmap[VIRT_GIC_DIST].base,
500 2, vms->memmap[VIRT_GIC_DIST].size,
501 2, vms->memmap[VIRT_GIC_CPU].base,
502 2, vms->memmap[VIRT_GIC_CPU].size);
503 } else {
504 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
505 2, vms->memmap[VIRT_GIC_DIST].base,
506 2, vms->memmap[VIRT_GIC_DIST].size,
507 2, vms->memmap[VIRT_GIC_CPU].base,
508 2, vms->memmap[VIRT_GIC_CPU].size,
509 2, vms->memmap[VIRT_GIC_HYP].base,
510 2, vms->memmap[VIRT_GIC_HYP].size,
511 2, vms->memmap[VIRT_GIC_VCPU].base,
512 2, vms->memmap[VIRT_GIC_VCPU].size);
513 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
514 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
515 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
519 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
520 g_free(nodename);
523 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
525 ARMCPU *armcpu = ARM_CPU(first_cpu);
526 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
528 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
529 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
530 return;
533 if (vms->gic_version == VIRT_GIC_VERSION_2) {
534 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
535 GIC_FDT_IRQ_PPI_CPU_WIDTH,
536 (1 << vms->smp_cpus) - 1);
539 qemu_fdt_add_subnode(vms->fdt, "/pmu");
540 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
541 const char compat[] = "arm,armv8-pmuv3";
542 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
543 compat, sizeof(compat));
544 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
545 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
549 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
551 DeviceState *dev;
552 MachineState *ms = MACHINE(vms);
553 int irq = vms->irqmap[VIRT_ACPI_GED];
554 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
556 if (ms->ram_slots) {
557 event |= ACPI_GED_MEM_HOTPLUG_EVT;
560 if (ms->nvdimms_state->is_enabled) {
561 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
564 dev = qdev_new(TYPE_ACPI_GED);
565 qdev_prop_set_uint32(dev, "ged-event", event);
567 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
568 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
569 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
571 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
573 return dev;
576 static void create_its(VirtMachineState *vms)
578 const char *itsclass = its_class_name();
579 DeviceState *dev;
581 if (!itsclass) {
582 /* Do nothing if not supported */
583 return;
586 dev = qdev_new(itsclass);
588 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
589 &error_abort);
590 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
591 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
593 fdt_add_its_gic_node(vms);
594 vms->msi_controller = VIRT_MSI_CTRL_ITS;
597 static void create_v2m(VirtMachineState *vms)
599 int i;
600 int irq = vms->irqmap[VIRT_GIC_V2M];
601 DeviceState *dev;
603 dev = qdev_new("arm-gicv2m");
604 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
605 qdev_prop_set_uint32(dev, "base-spi", irq);
606 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
607 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
609 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
610 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
611 qdev_get_gpio_in(vms->gic, irq + i));
614 fdt_add_v2m_gic_node(vms);
615 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
618 static void create_gic(VirtMachineState *vms)
620 MachineState *ms = MACHINE(vms);
621 /* We create a standalone GIC */
622 SysBusDevice *gicbusdev;
623 const char *gictype;
624 int type = vms->gic_version, i;
625 unsigned int smp_cpus = ms->smp.cpus;
626 uint32_t nb_redist_regions = 0;
628 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
630 vms->gic = qdev_new(gictype);
631 qdev_prop_set_uint32(vms->gic, "revision", type);
632 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
633 /* Note that the num-irq property counts both internal and external
634 * interrupts; there are always 32 of the former (mandated by GIC spec).
636 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
637 if (!kvm_irqchip_in_kernel()) {
638 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
641 if (type == 3) {
642 uint32_t redist0_capacity =
643 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
644 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
646 nb_redist_regions = virt_gicv3_redist_region_count(vms);
648 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
649 nb_redist_regions);
650 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
652 if (nb_redist_regions == 2) {
653 uint32_t redist1_capacity =
654 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
656 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
657 MIN(smp_cpus - redist0_count, redist1_capacity));
659 } else {
660 if (!kvm_irqchip_in_kernel()) {
661 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
662 vms->virt);
665 gicbusdev = SYS_BUS_DEVICE(vms->gic);
666 sysbus_realize_and_unref(gicbusdev, &error_fatal);
667 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
668 if (type == 3) {
669 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
670 if (nb_redist_regions == 2) {
671 sysbus_mmio_map(gicbusdev, 2,
672 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
674 } else {
675 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
676 if (vms->virt) {
677 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
678 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
682 /* Wire the outputs from each CPU's generic timer and the GICv3
683 * maintenance interrupt signal to the appropriate GIC PPI inputs,
684 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
686 for (i = 0; i < smp_cpus; i++) {
687 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
688 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
689 int irq;
690 /* Mapping from the output timer irq lines from the CPU to the
691 * GIC PPI inputs we use for the virt board.
693 const int timer_irq[] = {
694 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
695 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
696 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
697 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
700 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
701 qdev_connect_gpio_out(cpudev, irq,
702 qdev_get_gpio_in(vms->gic,
703 ppibase + timer_irq[irq]));
706 if (type == 3) {
707 qemu_irq irq = qdev_get_gpio_in(vms->gic,
708 ppibase + ARCH_GIC_MAINT_IRQ);
709 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
710 0, irq);
711 } else if (vms->virt) {
712 qemu_irq irq = qdev_get_gpio_in(vms->gic,
713 ppibase + ARCH_GIC_MAINT_IRQ);
714 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
717 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
718 qdev_get_gpio_in(vms->gic, ppibase
719 + VIRTUAL_PMU_IRQ));
721 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
722 sysbus_connect_irq(gicbusdev, i + smp_cpus,
723 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
724 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
725 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
726 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
727 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
730 fdt_add_gic_node(vms);
732 if (type == 3 && vms->its) {
733 create_its(vms);
734 } else if (type == 2) {
735 create_v2m(vms);
739 static void create_uart(const VirtMachineState *vms, int uart,
740 MemoryRegion *mem, Chardev *chr)
742 char *nodename;
743 hwaddr base = vms->memmap[uart].base;
744 hwaddr size = vms->memmap[uart].size;
745 int irq = vms->irqmap[uart];
746 const char compat[] = "arm,pl011\0arm,primecell";
747 const char clocknames[] = "uartclk\0apb_pclk";
748 DeviceState *dev = qdev_new(TYPE_PL011);
749 SysBusDevice *s = SYS_BUS_DEVICE(dev);
751 qdev_prop_set_chr(dev, "chardev", chr);
752 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
753 memory_region_add_subregion(mem, base,
754 sysbus_mmio_get_region(s, 0));
755 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
757 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
758 qemu_fdt_add_subnode(vms->fdt, nodename);
759 /* Note that we can't use setprop_string because of the embedded NUL */
760 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
761 compat, sizeof(compat));
762 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
763 2, base, 2, size);
764 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
765 GIC_FDT_IRQ_TYPE_SPI, irq,
766 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
767 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
768 vms->clock_phandle, vms->clock_phandle);
769 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
770 clocknames, sizeof(clocknames));
772 if (uart == VIRT_UART) {
773 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
774 } else {
775 /* Mark as not usable by the normal world */
776 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
777 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
779 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
780 nodename);
783 g_free(nodename);
786 static void create_rtc(const VirtMachineState *vms)
788 char *nodename;
789 hwaddr base = vms->memmap[VIRT_RTC].base;
790 hwaddr size = vms->memmap[VIRT_RTC].size;
791 int irq = vms->irqmap[VIRT_RTC];
792 const char compat[] = "arm,pl031\0arm,primecell";
794 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
796 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
797 qemu_fdt_add_subnode(vms->fdt, nodename);
798 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
799 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
800 2, base, 2, size);
801 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
802 GIC_FDT_IRQ_TYPE_SPI, irq,
803 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
804 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
805 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
806 g_free(nodename);
809 static DeviceState *gpio_key_dev;
810 static void virt_powerdown_req(Notifier *n, void *opaque)
812 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
814 if (s->acpi_dev) {
815 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
816 } else {
817 /* use gpio Pin 3 for power button event */
818 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
822 static void create_gpio(const VirtMachineState *vms)
824 char *nodename;
825 DeviceState *pl061_dev;
826 hwaddr base = vms->memmap[VIRT_GPIO].base;
827 hwaddr size = vms->memmap[VIRT_GPIO].size;
828 int irq = vms->irqmap[VIRT_GPIO];
829 const char compat[] = "arm,pl061\0arm,primecell";
831 pl061_dev = sysbus_create_simple("pl061", base,
832 qdev_get_gpio_in(vms->gic, irq));
834 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
835 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
836 qemu_fdt_add_subnode(vms->fdt, nodename);
837 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
838 2, base, 2, size);
839 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
840 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
841 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
842 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
843 GIC_FDT_IRQ_TYPE_SPI, irq,
844 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
845 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
846 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
847 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
849 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
850 qdev_get_gpio_in(pl061_dev, 3));
851 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
852 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
853 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
854 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
856 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
857 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
858 "label", "GPIO Key Poweroff");
859 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
860 KEY_POWER);
861 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
862 "gpios", phandle, 3, 0);
863 g_free(nodename);
866 static void create_virtio_devices(const VirtMachineState *vms)
868 int i;
869 hwaddr size = vms->memmap[VIRT_MMIO].size;
871 /* We create the transports in forwards order. Since qbus_realize()
872 * prepends (not appends) new child buses, the incrementing loop below will
873 * create a list of virtio-mmio buses with decreasing base addresses.
875 * When a -device option is processed from the command line,
876 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
877 * order. The upshot is that -device options in increasing command line
878 * order are mapped to virtio-mmio buses with decreasing base addresses.
880 * When this code was originally written, that arrangement ensured that the
881 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
882 * the first -device on the command line. (The end-to-end order is a
883 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
884 * guest kernel's name-to-address assignment strategy.)
886 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
887 * the message, if not necessarily the code, of commit 70161ff336.
888 * Therefore the loop now establishes the inverse of the original intent.
890 * Unfortunately, we can't counteract the kernel change by reversing the
891 * loop; it would break existing command lines.
893 * In any case, the kernel makes no guarantee about the stability of
894 * enumeration order of virtio devices (as demonstrated by it changing
895 * between kernel versions). For reliable and stable identification
896 * of disks users must use UUIDs or similar mechanisms.
898 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
899 int irq = vms->irqmap[VIRT_MMIO] + i;
900 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
902 sysbus_create_simple("virtio-mmio", base,
903 qdev_get_gpio_in(vms->gic, irq));
906 /* We add dtb nodes in reverse order so that they appear in the finished
907 * device tree lowest address first.
909 * Note that this mapping is independent of the loop above. The previous
910 * loop influences virtio device to virtio transport assignment, whereas
911 * this loop controls how virtio transports are laid out in the dtb.
913 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
914 char *nodename;
915 int irq = vms->irqmap[VIRT_MMIO] + i;
916 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
918 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
919 qemu_fdt_add_subnode(vms->fdt, nodename);
920 qemu_fdt_setprop_string(vms->fdt, nodename,
921 "compatible", "virtio,mmio");
922 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
923 2, base, 2, size);
924 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
925 GIC_FDT_IRQ_TYPE_SPI, irq,
926 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
927 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
928 g_free(nodename);
932 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
934 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
935 const char *name,
936 const char *alias_prop_name)
939 * Create a single flash device. We use the same parameters as
940 * the flash devices on the Versatile Express board.
942 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
944 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
945 qdev_prop_set_uint8(dev, "width", 4);
946 qdev_prop_set_uint8(dev, "device-width", 2);
947 qdev_prop_set_bit(dev, "big-endian", false);
948 qdev_prop_set_uint16(dev, "id0", 0x89);
949 qdev_prop_set_uint16(dev, "id1", 0x18);
950 qdev_prop_set_uint16(dev, "id2", 0x00);
951 qdev_prop_set_uint16(dev, "id3", 0x00);
952 qdev_prop_set_string(dev, "name", name);
953 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
954 object_property_add_alias(OBJECT(vms), alias_prop_name,
955 OBJECT(dev), "drive");
956 return PFLASH_CFI01(dev);
959 static void virt_flash_create(VirtMachineState *vms)
961 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
962 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
965 static void virt_flash_map1(PFlashCFI01 *flash,
966 hwaddr base, hwaddr size,
967 MemoryRegion *sysmem)
969 DeviceState *dev = DEVICE(flash);
971 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
972 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
973 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
974 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
976 memory_region_add_subregion(sysmem, base,
977 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
978 0));
981 static void virt_flash_map(VirtMachineState *vms,
982 MemoryRegion *sysmem,
983 MemoryRegion *secure_sysmem)
986 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
987 * sysmem is the system memory space. secure_sysmem is the secure view
988 * of the system, and the first flash device should be made visible only
989 * there. The second flash device is visible to both secure and nonsecure.
990 * If sysmem == secure_sysmem this means there is no separate Secure
991 * address space and both flash devices are generally visible.
993 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
994 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
996 virt_flash_map1(vms->flash[0], flashbase, flashsize,
997 secure_sysmem);
998 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
999 sysmem);
1002 static void virt_flash_fdt(VirtMachineState *vms,
1003 MemoryRegion *sysmem,
1004 MemoryRegion *secure_sysmem)
1006 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1007 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1008 char *nodename;
1010 if (sysmem == secure_sysmem) {
1011 /* Report both flash devices as a single node in the DT */
1012 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1013 qemu_fdt_add_subnode(vms->fdt, nodename);
1014 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1015 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1016 2, flashbase, 2, flashsize,
1017 2, flashbase + flashsize, 2, flashsize);
1018 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1019 g_free(nodename);
1020 } else {
1022 * Report the devices as separate nodes so we can mark one as
1023 * only visible to the secure world.
1025 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1026 qemu_fdt_add_subnode(vms->fdt, nodename);
1027 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1028 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1029 2, flashbase, 2, flashsize);
1030 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1031 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1032 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1033 g_free(nodename);
1035 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1036 qemu_fdt_add_subnode(vms->fdt, nodename);
1037 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1038 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1039 2, flashbase + flashsize, 2, flashsize);
1040 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1041 g_free(nodename);
1045 static bool virt_firmware_init(VirtMachineState *vms,
1046 MemoryRegion *sysmem,
1047 MemoryRegion *secure_sysmem)
1049 int i;
1050 BlockBackend *pflash_blk0;
1052 /* Map legacy -drive if=pflash to machine properties */
1053 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1054 pflash_cfi01_legacy_drive(vms->flash[i],
1055 drive_get(IF_PFLASH, 0, i));
1058 virt_flash_map(vms, sysmem, secure_sysmem);
1060 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1062 if (bios_name) {
1063 char *fname;
1064 MemoryRegion *mr;
1065 int image_size;
1067 if (pflash_blk0) {
1068 error_report("The contents of the first flash device may be "
1069 "specified with -bios or with -drive if=pflash... "
1070 "but you cannot use both options at once");
1071 exit(1);
1074 /* Fall back to -bios */
1076 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1077 if (!fname) {
1078 error_report("Could not find ROM image '%s'", bios_name);
1079 exit(1);
1081 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1082 image_size = load_image_mr(fname, mr);
1083 g_free(fname);
1084 if (image_size < 0) {
1085 error_report("Could not load ROM image '%s'", bios_name);
1086 exit(1);
1090 return pflash_blk0 || bios_name;
1093 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1095 MachineState *ms = MACHINE(vms);
1096 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1097 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1098 FWCfgState *fw_cfg;
1099 char *nodename;
1101 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1102 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1104 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1105 qemu_fdt_add_subnode(vms->fdt, nodename);
1106 qemu_fdt_setprop_string(vms->fdt, nodename,
1107 "compatible", "qemu,fw-cfg-mmio");
1108 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1109 2, base, 2, size);
1110 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1111 g_free(nodename);
1112 return fw_cfg;
1115 static void create_pcie_irq_map(const VirtMachineState *vms,
1116 uint32_t gic_phandle,
1117 int first_irq, const char *nodename)
1119 int devfn, pin;
1120 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1121 uint32_t *irq_map = full_irq_map;
1123 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1124 for (pin = 0; pin < 4; pin++) {
1125 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1126 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1127 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1128 int i;
1130 uint32_t map[] = {
1131 devfn << 8, 0, 0, /* devfn */
1132 pin + 1, /* PCI pin */
1133 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1135 /* Convert map to big endian */
1136 for (i = 0; i < 10; i++) {
1137 irq_map[i] = cpu_to_be32(map[i]);
1139 irq_map += 10;
1143 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1144 full_irq_map, sizeof(full_irq_map));
1146 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1147 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1148 0x7 /* PCI irq */);
1151 static void create_smmu(const VirtMachineState *vms,
1152 PCIBus *bus)
1154 char *node;
1155 const char compat[] = "arm,smmu-v3";
1156 int irq = vms->irqmap[VIRT_SMMU];
1157 int i;
1158 hwaddr base = vms->memmap[VIRT_SMMU].base;
1159 hwaddr size = vms->memmap[VIRT_SMMU].size;
1160 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1161 DeviceState *dev;
1163 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1164 return;
1167 dev = qdev_new("arm-smmuv3");
1169 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1170 &error_abort);
1171 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1172 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1173 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1174 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1175 qdev_get_gpio_in(vms->gic, irq + i));
1178 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1179 qemu_fdt_add_subnode(vms->fdt, node);
1180 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1181 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1183 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1184 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1185 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1186 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1187 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1189 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1190 sizeof(irq_names));
1192 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1193 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1194 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1196 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1198 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1199 g_free(node);
1202 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1204 const char compat[] = "virtio,pci-iommu";
1205 uint16_t bdf = vms->virtio_iommu_bdf;
1206 char *node;
1208 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1210 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1211 qemu_fdt_add_subnode(vms->fdt, node);
1212 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1213 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg",
1214 1, bdf << 8, 1, 0, 1, 0,
1215 1, 0, 1, 0);
1217 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1218 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1219 g_free(node);
1221 qemu_fdt_setprop_cells(vms->fdt, vms->pciehb_nodename, "iommu-map",
1222 0x0, vms->iommu_phandle, 0x0, bdf,
1223 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1226 static void create_pcie(VirtMachineState *vms)
1228 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1229 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1230 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1231 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1232 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1233 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1234 hwaddr base_ecam, size_ecam;
1235 hwaddr base = base_mmio;
1236 int nr_pcie_buses;
1237 int irq = vms->irqmap[VIRT_PCIE];
1238 MemoryRegion *mmio_alias;
1239 MemoryRegion *mmio_reg;
1240 MemoryRegion *ecam_alias;
1241 MemoryRegion *ecam_reg;
1242 DeviceState *dev;
1243 char *nodename;
1244 int i, ecam_id;
1245 PCIHostState *pci;
1247 dev = qdev_new(TYPE_GPEX_HOST);
1248 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1250 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1251 base_ecam = vms->memmap[ecam_id].base;
1252 size_ecam = vms->memmap[ecam_id].size;
1253 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1254 /* Map only the first size_ecam bytes of ECAM space */
1255 ecam_alias = g_new0(MemoryRegion, 1);
1256 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1257 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1258 ecam_reg, 0, size_ecam);
1259 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1261 /* Map the MMIO window into system address space so as to expose
1262 * the section of PCI MMIO space which starts at the same base address
1263 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1264 * the window).
1266 mmio_alias = g_new0(MemoryRegion, 1);
1267 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1268 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1269 mmio_reg, base_mmio, size_mmio);
1270 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1272 if (vms->highmem) {
1273 /* Map high MMIO space */
1274 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1276 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1277 mmio_reg, base_mmio_high, size_mmio_high);
1278 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1279 high_mmio_alias);
1282 /* Map IO port space */
1283 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1285 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1286 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1287 qdev_get_gpio_in(vms->gic, irq + i));
1288 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1291 pci = PCI_HOST_BRIDGE(dev);
1292 if (pci->bus) {
1293 for (i = 0; i < nb_nics; i++) {
1294 NICInfo *nd = &nd_table[i];
1296 if (!nd->model) {
1297 nd->model = g_strdup("virtio");
1300 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1304 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1305 qemu_fdt_add_subnode(vms->fdt, nodename);
1306 qemu_fdt_setprop_string(vms->fdt, nodename,
1307 "compatible", "pci-host-ecam-generic");
1308 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1309 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1310 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1311 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1312 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1313 nr_pcie_buses - 1);
1314 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1316 if (vms->msi_phandle) {
1317 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1318 vms->msi_phandle);
1321 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1322 2, base_ecam, 2, size_ecam);
1324 if (vms->highmem) {
1325 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1326 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1327 2, base_pio, 2, size_pio,
1328 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1329 2, base_mmio, 2, size_mmio,
1330 1, FDT_PCI_RANGE_MMIO_64BIT,
1331 2, base_mmio_high,
1332 2, base_mmio_high, 2, size_mmio_high);
1333 } else {
1334 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1335 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1336 2, base_pio, 2, size_pio,
1337 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1338 2, base_mmio, 2, size_mmio);
1341 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1342 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1344 if (vms->iommu) {
1345 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1347 switch (vms->iommu) {
1348 case VIRT_IOMMU_SMMUV3:
1349 create_smmu(vms, pci->bus);
1350 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1351 0x0, vms->iommu_phandle, 0x0, 0x10000);
1352 break;
1353 default:
1354 g_assert_not_reached();
1359 static void create_platform_bus(VirtMachineState *vms)
1361 DeviceState *dev;
1362 SysBusDevice *s;
1363 int i;
1364 MemoryRegion *sysmem = get_system_memory();
1366 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1367 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1368 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1369 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1370 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1371 vms->platform_bus_dev = dev;
1373 s = SYS_BUS_DEVICE(dev);
1374 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1375 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1376 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1379 memory_region_add_subregion(sysmem,
1380 vms->memmap[VIRT_PLATFORM_BUS].base,
1381 sysbus_mmio_get_region(s, 0));
1384 static void create_tag_ram(MemoryRegion *tag_sysmem,
1385 hwaddr base, hwaddr size,
1386 const char *name)
1388 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1390 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1391 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1394 static void create_secure_ram(VirtMachineState *vms,
1395 MemoryRegion *secure_sysmem,
1396 MemoryRegion *secure_tag_sysmem)
1398 MemoryRegion *secram = g_new(MemoryRegion, 1);
1399 char *nodename;
1400 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1401 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1403 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1404 &error_fatal);
1405 memory_region_add_subregion(secure_sysmem, base, secram);
1407 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1408 qemu_fdt_add_subnode(vms->fdt, nodename);
1409 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1410 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1411 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1412 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1414 if (secure_tag_sysmem) {
1415 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1418 g_free(nodename);
1421 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1423 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1424 bootinfo);
1426 *fdt_size = board->fdt_size;
1427 return board->fdt;
1430 static void virt_build_smbios(VirtMachineState *vms)
1432 MachineClass *mc = MACHINE_GET_CLASS(vms);
1433 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1434 uint8_t *smbios_tables, *smbios_anchor;
1435 size_t smbios_tables_len, smbios_anchor_len;
1436 const char *product = "QEMU Virtual Machine";
1438 if (kvm_enabled()) {
1439 product = "KVM Virtual Machine";
1442 smbios_set_defaults("QEMU", product,
1443 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1444 true, SMBIOS_ENTRY_POINT_30);
1446 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1447 &smbios_anchor, &smbios_anchor_len);
1449 if (smbios_anchor) {
1450 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1451 smbios_tables, smbios_tables_len);
1452 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1453 smbios_anchor, smbios_anchor_len);
1457 static
1458 void virt_machine_done(Notifier *notifier, void *data)
1460 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1461 machine_done);
1462 MachineState *ms = MACHINE(vms);
1463 ARMCPU *cpu = ARM_CPU(first_cpu);
1464 struct arm_boot_info *info = &vms->bootinfo;
1465 AddressSpace *as = arm_boot_address_space(cpu, info);
1468 * If the user provided a dtb, we assume the dynamic sysbus nodes
1469 * already are integrated there. This corresponds to a use case where
1470 * the dynamic sysbus nodes are complex and their generation is not yet
1471 * supported. In that case the user can take charge of the guest dt
1472 * while qemu takes charge of the qom stuff.
1474 if (info->dtb_filename == NULL) {
1475 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1476 vms->memmap[VIRT_PLATFORM_BUS].base,
1477 vms->memmap[VIRT_PLATFORM_BUS].size,
1478 vms->irqmap[VIRT_PLATFORM_BUS]);
1480 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1481 exit(1);
1484 virt_acpi_setup(vms);
1485 virt_build_smbios(vms);
1488 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1490 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1491 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1493 if (!vmc->disallow_affinity_adjustment) {
1494 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1495 * GIC's target-list limitations. 32-bit KVM hosts currently
1496 * always create clusters of 4 CPUs, but that is expected to
1497 * change when they gain support for gicv3. When KVM is enabled
1498 * it will override the changes we make here, therefore our
1499 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1500 * and to improve SGI efficiency.
1502 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1503 clustersz = GICV3_TARGETLIST_BITS;
1504 } else {
1505 clustersz = GIC_TARGETLIST_BITS;
1508 return arm_cpu_mp_affinity(idx, clustersz);
1511 static void virt_set_memmap(VirtMachineState *vms)
1513 MachineState *ms = MACHINE(vms);
1514 hwaddr base, device_memory_base, device_memory_size;
1515 int i;
1517 vms->memmap = extended_memmap;
1519 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1520 vms->memmap[i] = base_memmap[i];
1523 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1524 error_report("unsupported number of memory slots: %"PRIu64,
1525 ms->ram_slots);
1526 exit(EXIT_FAILURE);
1530 * We compute the base of the high IO region depending on the
1531 * amount of initial and device memory. The device memory start/size
1532 * is aligned on 1GiB. We never put the high IO region below 256GiB
1533 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1534 * The device region size assumes 1GiB page max alignment per slot.
1536 device_memory_base =
1537 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1538 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1540 /* Base address of the high IO region */
1541 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1542 if (base < device_memory_base) {
1543 error_report("maxmem/slots too huge");
1544 exit(EXIT_FAILURE);
1546 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1547 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1550 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1551 hwaddr size = extended_memmap[i].size;
1553 base = ROUND_UP(base, size);
1554 vms->memmap[i].base = base;
1555 vms->memmap[i].size = size;
1556 base += size;
1558 vms->highest_gpa = base - 1;
1559 if (device_memory_size > 0) {
1560 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1561 ms->device_memory->base = device_memory_base;
1562 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1563 "device-memory", device_memory_size);
1568 * finalize_gic_version - Determines the final gic_version
1569 * according to the gic-version property
1571 * Default GIC type is v2
1573 static void finalize_gic_version(VirtMachineState *vms)
1575 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1577 if (kvm_enabled()) {
1578 int probe_bitmap;
1580 if (!kvm_irqchip_in_kernel()) {
1581 switch (vms->gic_version) {
1582 case VIRT_GIC_VERSION_HOST:
1583 warn_report(
1584 "gic-version=host not relevant with kernel-irqchip=off "
1585 "as only userspace GICv2 is supported. Using v2 ...");
1586 return;
1587 case VIRT_GIC_VERSION_MAX:
1588 case VIRT_GIC_VERSION_NOSEL:
1589 vms->gic_version = VIRT_GIC_VERSION_2;
1590 return;
1591 case VIRT_GIC_VERSION_2:
1592 return;
1593 case VIRT_GIC_VERSION_3:
1594 error_report(
1595 "gic-version=3 is not supported with kernel-irqchip=off");
1596 exit(1);
1600 probe_bitmap = kvm_arm_vgic_probe();
1601 if (!probe_bitmap) {
1602 error_report("Unable to determine GIC version supported by host");
1603 exit(1);
1606 switch (vms->gic_version) {
1607 case VIRT_GIC_VERSION_HOST:
1608 case VIRT_GIC_VERSION_MAX:
1609 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1610 vms->gic_version = VIRT_GIC_VERSION_3;
1611 } else {
1612 vms->gic_version = VIRT_GIC_VERSION_2;
1614 return;
1615 case VIRT_GIC_VERSION_NOSEL:
1616 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1617 vms->gic_version = VIRT_GIC_VERSION_2;
1618 } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1620 * in case the host does not support v2 in-kernel emulation or
1621 * the end-user requested more than 8 VCPUs we now default
1622 * to v3. In any case defaulting to v2 would be broken.
1624 vms->gic_version = VIRT_GIC_VERSION_3;
1625 } else if (max_cpus > GIC_NCPU) {
1626 error_report("host only supports in-kernel GICv2 emulation "
1627 "but more than 8 vcpus are requested");
1628 exit(1);
1630 break;
1631 case VIRT_GIC_VERSION_2:
1632 case VIRT_GIC_VERSION_3:
1633 break;
1636 /* Check chosen version is effectively supported by the host */
1637 if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1638 !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1639 error_report("host does not support in-kernel GICv2 emulation");
1640 exit(1);
1641 } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1642 !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1643 error_report("host does not support in-kernel GICv3 emulation");
1644 exit(1);
1646 return;
1649 /* TCG mode */
1650 switch (vms->gic_version) {
1651 case VIRT_GIC_VERSION_NOSEL:
1652 vms->gic_version = VIRT_GIC_VERSION_2;
1653 break;
1654 case VIRT_GIC_VERSION_MAX:
1655 vms->gic_version = VIRT_GIC_VERSION_3;
1656 break;
1657 case VIRT_GIC_VERSION_HOST:
1658 error_report("gic-version=host requires KVM");
1659 exit(1);
1660 case VIRT_GIC_VERSION_2:
1661 case VIRT_GIC_VERSION_3:
1662 break;
1667 * virt_cpu_post_init() must be called after the CPUs have
1668 * been realized and the GIC has been created.
1670 static void virt_cpu_post_init(VirtMachineState *vms, int max_cpus,
1671 MemoryRegion *sysmem)
1673 bool aarch64, pmu, steal_time;
1674 CPUState *cpu;
1676 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1677 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1678 steal_time = object_property_get_bool(OBJECT(first_cpu),
1679 "kvm-steal-time", NULL);
1681 if (kvm_enabled()) {
1682 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1683 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1685 if (steal_time) {
1686 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1687 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1689 /* The memory region size must be a multiple of host page size. */
1690 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1692 if (pvtime_size > pvtime_reg_size) {
1693 error_report("pvtime requires a %" HWADDR_PRId
1694 " byte memory region for %d CPUs,"
1695 " but only %" HWADDR_PRId " has been reserved",
1696 pvtime_size, max_cpus, pvtime_reg_size);
1697 exit(1);
1700 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1701 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1704 CPU_FOREACH(cpu) {
1705 if (pmu) {
1706 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1707 if (kvm_irqchip_in_kernel()) {
1708 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1710 kvm_arm_pmu_init(cpu);
1712 if (steal_time) {
1713 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1714 cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1717 } else {
1718 if (aarch64 && vms->highmem) {
1719 int requested_pa_size = 64 - clz64(vms->highest_gpa);
1720 int pamax = arm_pamax(ARM_CPU(first_cpu));
1722 if (pamax < requested_pa_size) {
1723 error_report("VCPU supports less PA bits (%d) than "
1724 "requested by the memory map (%d)",
1725 pamax, requested_pa_size);
1726 exit(1);
1732 static void machvirt_init(MachineState *machine)
1734 VirtMachineState *vms = VIRT_MACHINE(machine);
1735 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1736 MachineClass *mc = MACHINE_GET_CLASS(machine);
1737 const CPUArchIdList *possible_cpus;
1738 MemoryRegion *sysmem = get_system_memory();
1739 MemoryRegion *secure_sysmem = NULL;
1740 MemoryRegion *tag_sysmem = NULL;
1741 MemoryRegion *secure_tag_sysmem = NULL;
1742 int n, virt_max_cpus;
1743 bool firmware_loaded;
1744 bool aarch64 = true;
1745 bool has_ged = !vmc->no_ged;
1746 unsigned int smp_cpus = machine->smp.cpus;
1747 unsigned int max_cpus = machine->smp.max_cpus;
1750 * In accelerated mode, the memory map is computed earlier in kvm_type()
1751 * to create a VM with the right number of IPA bits.
1753 if (!vms->memmap) {
1754 virt_set_memmap(vms);
1757 /* We can probe only here because during property set
1758 * KVM is not available yet
1760 finalize_gic_version(vms);
1762 if (!cpu_type_valid(machine->cpu_type)) {
1763 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1764 exit(1);
1767 if (vms->secure) {
1768 if (kvm_enabled()) {
1769 error_report("mach-virt: KVM does not support Security extensions");
1770 exit(1);
1774 * The Secure view of the world is the same as the NonSecure,
1775 * but with a few extra devices. Create it as a container region
1776 * containing the system memory at low priority; any secure-only
1777 * devices go in at higher priority and take precedence.
1779 secure_sysmem = g_new(MemoryRegion, 1);
1780 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1781 UINT64_MAX);
1782 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1785 firmware_loaded = virt_firmware_init(vms, sysmem,
1786 secure_sysmem ?: sysmem);
1788 /* If we have an EL3 boot ROM then the assumption is that it will
1789 * implement PSCI itself, so disable QEMU's internal implementation
1790 * so it doesn't get in the way. Instead of starting secondary
1791 * CPUs in PSCI powerdown state we will start them all running and
1792 * let the boot ROM sort them out.
1793 * The usual case is that we do use QEMU's PSCI implementation;
1794 * if the guest has EL2 then we will use SMC as the conduit,
1795 * and otherwise we will use HVC (for backwards compatibility and
1796 * because if we're using KVM then we must use HVC).
1798 if (vms->secure && firmware_loaded) {
1799 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1800 } else if (vms->virt) {
1801 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1802 } else {
1803 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1806 /* The maximum number of CPUs depends on the GIC version, or on how
1807 * many redistributors we can fit into the memory map.
1809 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1810 virt_max_cpus =
1811 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1812 virt_max_cpus +=
1813 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1814 } else {
1815 virt_max_cpus = GIC_NCPU;
1818 if (max_cpus > virt_max_cpus) {
1819 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1820 "supported by machine 'mach-virt' (%d)",
1821 max_cpus, virt_max_cpus);
1822 exit(1);
1825 vms->smp_cpus = smp_cpus;
1827 if (vms->virt && kvm_enabled()) {
1828 error_report("mach-virt: KVM does not support providing "
1829 "Virtualization extensions to the guest CPU");
1830 exit(1);
1833 if (vms->mte && kvm_enabled()) {
1834 error_report("mach-virt: KVM does not support providing "
1835 "MTE to the guest CPU");
1836 exit(1);
1839 create_fdt(vms);
1841 possible_cpus = mc->possible_cpu_arch_ids(machine);
1842 for (n = 0; n < possible_cpus->len; n++) {
1843 Object *cpuobj;
1844 CPUState *cs;
1846 if (n >= smp_cpus) {
1847 break;
1850 cpuobj = object_new(possible_cpus->cpus[n].type);
1851 object_property_set_int(cpuobj, "mp-affinity",
1852 possible_cpus->cpus[n].arch_id, NULL);
1854 cs = CPU(cpuobj);
1855 cs->cpu_index = n;
1857 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1858 &error_fatal);
1860 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1862 if (!vms->secure) {
1863 object_property_set_bool(cpuobj, "has_el3", false, NULL);
1866 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
1867 object_property_set_bool(cpuobj, "has_el2", false, NULL);
1870 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1871 object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit,
1872 NULL);
1874 /* Secondary CPUs start in PSCI powered-down state */
1875 if (n > 0) {
1876 object_property_set_bool(cpuobj, "start-powered-off", true,
1877 NULL);
1881 if (vmc->kvm_no_adjvtime &&
1882 object_property_find(cpuobj, "kvm-no-adjvtime")) {
1883 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
1886 if (vmc->no_kvm_steal_time &&
1887 object_property_find(cpuobj, "kvm-steal-time")) {
1888 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
1891 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
1892 object_property_set_bool(cpuobj, "pmu", false, NULL);
1895 if (object_property_find(cpuobj, "reset-cbar")) {
1896 object_property_set_int(cpuobj, "reset-cbar",
1897 vms->memmap[VIRT_CPUPERIPHS].base,
1898 &error_abort);
1901 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
1902 &error_abort);
1903 if (vms->secure) {
1904 object_property_set_link(cpuobj, "secure-memory",
1905 OBJECT(secure_sysmem), &error_abort);
1908 if (vms->mte) {
1909 /* Create the memory region only once, but link to all cpus. */
1910 if (!tag_sysmem) {
1912 * The property exists only if MemTag is supported.
1913 * If it is, we must allocate the ram to back that up.
1915 if (!object_property_find(cpuobj, "tag-memory")) {
1916 error_report("MTE requested, but not supported "
1917 "by the guest CPU");
1918 exit(1);
1921 tag_sysmem = g_new(MemoryRegion, 1);
1922 memory_region_init(tag_sysmem, OBJECT(machine),
1923 "tag-memory", UINT64_MAX / 32);
1925 if (vms->secure) {
1926 secure_tag_sysmem = g_new(MemoryRegion, 1);
1927 memory_region_init(secure_tag_sysmem, OBJECT(machine),
1928 "secure-tag-memory", UINT64_MAX / 32);
1930 /* As with ram, secure-tag takes precedence over tag. */
1931 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
1932 tag_sysmem, -1);
1936 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
1937 &error_abort);
1938 if (vms->secure) {
1939 object_property_set_link(cpuobj, "secure-tag-memory",
1940 OBJECT(secure_tag_sysmem),
1941 &error_abort);
1945 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
1946 object_unref(cpuobj);
1948 fdt_add_timer_nodes(vms);
1949 fdt_add_cpu_nodes(vms);
1951 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
1952 machine->ram);
1953 if (machine->device_memory) {
1954 memory_region_add_subregion(sysmem, machine->device_memory->base,
1955 &machine->device_memory->mr);
1958 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
1960 create_gic(vms);
1962 virt_cpu_post_init(vms, possible_cpus->len, sysmem);
1964 fdt_add_pmu_nodes(vms);
1966 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
1968 if (vms->secure) {
1969 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
1970 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1973 if (tag_sysmem) {
1974 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
1975 machine->ram_size, "mach-virt.tag");
1978 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1980 create_rtc(vms);
1982 create_pcie(vms);
1984 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
1985 vms->acpi_dev = create_acpi_ged(vms);
1986 } else {
1987 create_gpio(vms);
1990 /* connect powerdown request */
1991 vms->powerdown_notifier.notify = virt_powerdown_req;
1992 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
1994 /* Create mmio transports, so the user can create virtio backends
1995 * (which will be automatically plugged in to the transports). If
1996 * no backend is created the transport will just sit harmlessly idle.
1998 create_virtio_devices(vms);
2000 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2001 rom_set_fw(vms->fw_cfg);
2003 create_platform_bus(vms);
2005 if (machine->nvdimms_state->is_enabled) {
2006 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2007 .space_id = AML_AS_SYSTEM_MEMORY,
2008 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2009 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2012 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2013 arm_virt_nvdimm_acpi_dsmio,
2014 vms->fw_cfg, OBJECT(vms));
2017 vms->bootinfo.ram_size = machine->ram_size;
2018 vms->bootinfo.nb_cpus = smp_cpus;
2019 vms->bootinfo.board_id = -1;
2020 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2021 vms->bootinfo.get_dtb = machvirt_dtb;
2022 vms->bootinfo.skip_dtb_autoload = true;
2023 vms->bootinfo.firmware_loaded = firmware_loaded;
2024 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2026 vms->machine_done.notify = virt_machine_done;
2027 qemu_add_machine_init_done_notifier(&vms->machine_done);
2030 static bool virt_get_secure(Object *obj, Error **errp)
2032 VirtMachineState *vms = VIRT_MACHINE(obj);
2034 return vms->secure;
2037 static void virt_set_secure(Object *obj, bool value, Error **errp)
2039 VirtMachineState *vms = VIRT_MACHINE(obj);
2041 vms->secure = value;
2044 static bool virt_get_virt(Object *obj, Error **errp)
2046 VirtMachineState *vms = VIRT_MACHINE(obj);
2048 return vms->virt;
2051 static void virt_set_virt(Object *obj, bool value, Error **errp)
2053 VirtMachineState *vms = VIRT_MACHINE(obj);
2055 vms->virt = value;
2058 static bool virt_get_highmem(Object *obj, Error **errp)
2060 VirtMachineState *vms = VIRT_MACHINE(obj);
2062 return vms->highmem;
2065 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2067 VirtMachineState *vms = VIRT_MACHINE(obj);
2069 vms->highmem = value;
2072 static bool virt_get_its(Object *obj, Error **errp)
2074 VirtMachineState *vms = VIRT_MACHINE(obj);
2076 return vms->its;
2079 static void virt_set_its(Object *obj, bool value, Error **errp)
2081 VirtMachineState *vms = VIRT_MACHINE(obj);
2083 vms->its = value;
2086 bool virt_is_acpi_enabled(VirtMachineState *vms)
2088 if (vms->acpi == ON_OFF_AUTO_OFF) {
2089 return false;
2091 return true;
2094 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2095 void *opaque, Error **errp)
2097 VirtMachineState *vms = VIRT_MACHINE(obj);
2098 OnOffAuto acpi = vms->acpi;
2100 visit_type_OnOffAuto(v, name, &acpi, errp);
2103 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2104 void *opaque, Error **errp)
2106 VirtMachineState *vms = VIRT_MACHINE(obj);
2108 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2111 static bool virt_get_ras(Object *obj, Error **errp)
2113 VirtMachineState *vms = VIRT_MACHINE(obj);
2115 return vms->ras;
2118 static void virt_set_ras(Object *obj, bool value, Error **errp)
2120 VirtMachineState *vms = VIRT_MACHINE(obj);
2122 vms->ras = value;
2125 static bool virt_get_mte(Object *obj, Error **errp)
2127 VirtMachineState *vms = VIRT_MACHINE(obj);
2129 return vms->mte;
2132 static void virt_set_mte(Object *obj, bool value, Error **errp)
2134 VirtMachineState *vms = VIRT_MACHINE(obj);
2136 vms->mte = value;
2139 static char *virt_get_gic_version(Object *obj, Error **errp)
2141 VirtMachineState *vms = VIRT_MACHINE(obj);
2142 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
2144 return g_strdup(val);
2147 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2149 VirtMachineState *vms = VIRT_MACHINE(obj);
2151 if (!strcmp(value, "3")) {
2152 vms->gic_version = VIRT_GIC_VERSION_3;
2153 } else if (!strcmp(value, "2")) {
2154 vms->gic_version = VIRT_GIC_VERSION_2;
2155 } else if (!strcmp(value, "host")) {
2156 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2157 } else if (!strcmp(value, "max")) {
2158 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2159 } else {
2160 error_setg(errp, "Invalid gic-version value");
2161 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2165 static char *virt_get_iommu(Object *obj, Error **errp)
2167 VirtMachineState *vms = VIRT_MACHINE(obj);
2169 switch (vms->iommu) {
2170 case VIRT_IOMMU_NONE:
2171 return g_strdup("none");
2172 case VIRT_IOMMU_SMMUV3:
2173 return g_strdup("smmuv3");
2174 default:
2175 g_assert_not_reached();
2179 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2181 VirtMachineState *vms = VIRT_MACHINE(obj);
2183 if (!strcmp(value, "smmuv3")) {
2184 vms->iommu = VIRT_IOMMU_SMMUV3;
2185 } else if (!strcmp(value, "none")) {
2186 vms->iommu = VIRT_IOMMU_NONE;
2187 } else {
2188 error_setg(errp, "Invalid iommu value");
2189 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2193 static CpuInstanceProperties
2194 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2196 MachineClass *mc = MACHINE_GET_CLASS(ms);
2197 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2199 assert(cpu_index < possible_cpus->len);
2200 return possible_cpus->cpus[cpu_index].props;
2203 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2205 return idx % ms->numa_state->num_nodes;
2208 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2210 int n;
2211 unsigned int max_cpus = ms->smp.max_cpus;
2212 VirtMachineState *vms = VIRT_MACHINE(ms);
2214 if (ms->possible_cpus) {
2215 assert(ms->possible_cpus->len == max_cpus);
2216 return ms->possible_cpus;
2219 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2220 sizeof(CPUArchId) * max_cpus);
2221 ms->possible_cpus->len = max_cpus;
2222 for (n = 0; n < ms->possible_cpus->len; n++) {
2223 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2224 ms->possible_cpus->cpus[n].arch_id =
2225 virt_cpu_mp_affinity(vms, n);
2226 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2227 ms->possible_cpus->cpus[n].props.thread_id = n;
2229 return ms->possible_cpus;
2232 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2233 Error **errp)
2235 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2236 const MachineState *ms = MACHINE(hotplug_dev);
2237 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2239 if (!vms->acpi_dev) {
2240 error_setg(errp,
2241 "memory hotplug is not enabled: missing acpi-ged device");
2242 return;
2245 if (vms->mte) {
2246 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2247 return;
2250 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2251 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2252 return;
2255 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2258 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2259 DeviceState *dev, Error **errp)
2261 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2262 MachineState *ms = MACHINE(hotplug_dev);
2263 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2264 Error *local_err = NULL;
2266 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms), &local_err);
2267 if (local_err) {
2268 goto out;
2271 if (is_nvdimm) {
2272 nvdimm_plug(ms->nvdimms_state);
2275 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2276 dev, &error_abort);
2278 out:
2279 error_propagate(errp, local_err);
2282 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2283 DeviceState *dev, Error **errp)
2285 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2287 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2288 virt_memory_pre_plug(hotplug_dev, dev, errp);
2289 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2290 hwaddr db_start = 0, db_end = 0;
2291 char *resv_prop_str;
2293 switch (vms->msi_controller) {
2294 case VIRT_MSI_CTRL_NONE:
2295 return;
2296 case VIRT_MSI_CTRL_ITS:
2297 /* GITS_TRANSLATER page */
2298 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2299 db_end = base_memmap[VIRT_GIC_ITS].base +
2300 base_memmap[VIRT_GIC_ITS].size - 1;
2301 break;
2302 case VIRT_MSI_CTRL_GICV2M:
2303 /* MSI_SETSPI_NS page */
2304 db_start = base_memmap[VIRT_GIC_V2M].base;
2305 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2306 break;
2308 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2309 db_start, db_end,
2310 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2312 qdev_prop_set_uint32(dev, "len-reserved-regions", 1);
2313 qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str);
2314 g_free(resv_prop_str);
2318 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2319 DeviceState *dev, Error **errp)
2321 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2323 if (vms->platform_bus_dev) {
2324 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
2325 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2326 SYS_BUS_DEVICE(dev));
2329 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2330 virt_memory_plug(hotplug_dev, dev, errp);
2332 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2333 PCIDevice *pdev = PCI_DEVICE(dev);
2335 vms->iommu = VIRT_IOMMU_VIRTIO;
2336 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2337 create_virtio_iommu_dt_bindings(vms);
2341 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2342 DeviceState *dev, Error **errp)
2344 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2345 Error *local_err = NULL;
2347 if (!vms->acpi_dev) {
2348 error_setg(&local_err,
2349 "memory hotplug is not enabled: missing acpi-ged device");
2350 goto out;
2353 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2354 error_setg(&local_err,
2355 "nvdimm device hot unplug is not supported yet.");
2356 goto out;
2359 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2360 &local_err);
2361 out:
2362 error_propagate(errp, local_err);
2365 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2366 DeviceState *dev, Error **errp)
2368 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2369 Error *local_err = NULL;
2371 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2372 if (local_err) {
2373 goto out;
2376 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2377 qdev_unrealize(dev);
2379 out:
2380 error_propagate(errp, local_err);
2383 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2384 DeviceState *dev, Error **errp)
2386 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2387 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2388 } else {
2389 error_setg(errp, "device unplug request for unsupported device"
2390 " type: %s", object_get_typename(OBJECT(dev)));
2394 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2395 DeviceState *dev, Error **errp)
2397 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2398 virt_dimm_unplug(hotplug_dev, dev, errp);
2399 } else {
2400 error_setg(errp, "virt: device unplug for unsupported device"
2401 " type: %s", object_get_typename(OBJECT(dev)));
2405 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2406 DeviceState *dev)
2408 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) ||
2409 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
2410 return HOTPLUG_HANDLER(machine);
2412 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2413 VirtMachineState *vms = VIRT_MACHINE(machine);
2415 if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) {
2416 return HOTPLUG_HANDLER(machine);
2419 return NULL;
2423 * for arm64 kvm_type [7-0] encodes the requested number of bits
2424 * in the IPA address space
2426 static int virt_kvm_type(MachineState *ms, const char *type_str)
2428 VirtMachineState *vms = VIRT_MACHINE(ms);
2429 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
2430 int requested_pa_size;
2432 /* we freeze the memory map to compute the highest gpa */
2433 virt_set_memmap(vms);
2435 requested_pa_size = 64 - clz64(vms->highest_gpa);
2437 if (requested_pa_size > max_vm_pa_size) {
2438 error_report("-m and ,maxmem option values "
2439 "require an IPA range (%d bits) larger than "
2440 "the one supported by the host (%d bits)",
2441 requested_pa_size, max_vm_pa_size);
2442 exit(1);
2445 * By default we return 0 which corresponds to an implicit legacy
2446 * 40b IPA setting. Otherwise we return the actual requested PA
2447 * logsize
2449 return requested_pa_size > 40 ? requested_pa_size : 0;
2452 static void virt_machine_class_init(ObjectClass *oc, void *data)
2454 MachineClass *mc = MACHINE_CLASS(oc);
2455 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2457 mc->init = machvirt_init;
2458 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2459 * The value may be reduced later when we have more information about the
2460 * configuration of the particular instance.
2462 mc->max_cpus = 512;
2463 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2464 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2465 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2466 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2467 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2468 mc->block_default_type = IF_VIRTIO;
2469 mc->no_cdrom = 1;
2470 mc->pci_allow_0_address = true;
2471 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2472 mc->minimum_page_bits = 12;
2473 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2474 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2475 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2476 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2477 mc->kvm_type = virt_kvm_type;
2478 assert(!mc->get_hotplug_handler);
2479 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2480 hc->pre_plug = virt_machine_device_pre_plug_cb;
2481 hc->plug = virt_machine_device_plug_cb;
2482 hc->unplug_request = virt_machine_device_unplug_request_cb;
2483 hc->unplug = virt_machine_device_unplug_cb;
2484 mc->nvdimm_supported = true;
2485 mc->auto_enable_numa_with_memhp = true;
2486 mc->auto_enable_numa_with_memdev = true;
2487 mc->default_ram_id = "mach-virt.ram";
2489 object_class_property_add(oc, "acpi", "OnOffAuto",
2490 virt_get_acpi, virt_set_acpi,
2491 NULL, NULL);
2492 object_class_property_set_description(oc, "acpi",
2493 "Enable ACPI");
2496 static void virt_instance_init(Object *obj)
2498 VirtMachineState *vms = VIRT_MACHINE(obj);
2499 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2501 /* EL3 is disabled by default on virt: this makes us consistent
2502 * between KVM and TCG for this board, and it also allows us to
2503 * boot UEFI blobs which assume no TrustZone support.
2505 vms->secure = false;
2506 object_property_add_bool(obj, "secure", virt_get_secure,
2507 virt_set_secure);
2508 object_property_set_description(obj, "secure",
2509 "Set on/off to enable/disable the ARM "
2510 "Security Extensions (TrustZone)");
2512 /* EL2 is also disabled by default, for similar reasons */
2513 vms->virt = false;
2514 object_property_add_bool(obj, "virtualization", virt_get_virt,
2515 virt_set_virt);
2516 object_property_set_description(obj, "virtualization",
2517 "Set on/off to enable/disable emulating a "
2518 "guest CPU which implements the ARM "
2519 "Virtualization Extensions");
2521 /* High memory is enabled by default */
2522 vms->highmem = true;
2523 object_property_add_bool(obj, "highmem", virt_get_highmem,
2524 virt_set_highmem);
2525 object_property_set_description(obj, "highmem",
2526 "Set on/off to enable/disable using "
2527 "physical address space above 32 bits");
2528 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2529 object_property_add_str(obj, "gic-version", virt_get_gic_version,
2530 virt_set_gic_version);
2531 object_property_set_description(obj, "gic-version",
2532 "Set GIC version. "
2533 "Valid values are 2, 3, host and max");
2535 vms->highmem_ecam = !vmc->no_highmem_ecam;
2537 if (vmc->no_its) {
2538 vms->its = false;
2539 } else {
2540 /* Default allows ITS instantiation */
2541 vms->its = true;
2542 object_property_add_bool(obj, "its", virt_get_its,
2543 virt_set_its);
2544 object_property_set_description(obj, "its",
2545 "Set on/off to enable/disable "
2546 "ITS instantiation");
2549 /* Default disallows iommu instantiation */
2550 vms->iommu = VIRT_IOMMU_NONE;
2551 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu);
2552 object_property_set_description(obj, "iommu",
2553 "Set the IOMMU type. "
2554 "Valid values are none and smmuv3");
2556 /* Default disallows RAS instantiation */
2557 vms->ras = false;
2558 object_property_add_bool(obj, "ras", virt_get_ras,
2559 virt_set_ras);
2560 object_property_set_description(obj, "ras",
2561 "Set on/off to enable/disable reporting host memory errors "
2562 "to a KVM guest using ACPI and guest external abort exceptions");
2564 /* MTE is disabled by default. */
2565 vms->mte = false;
2566 object_property_add_bool(obj, "mte", virt_get_mte, virt_set_mte);
2567 object_property_set_description(obj, "mte",
2568 "Set on/off to enable/disable emulating a "
2569 "guest CPU which implements the ARM "
2570 "Memory Tagging Extension");
2572 vms->irqmap = a15irqmap;
2574 virt_flash_create(vms);
2577 static const TypeInfo virt_machine_info = {
2578 .name = TYPE_VIRT_MACHINE,
2579 .parent = TYPE_MACHINE,
2580 .abstract = true,
2581 .instance_size = sizeof(VirtMachineState),
2582 .class_size = sizeof(VirtMachineClass),
2583 .class_init = virt_machine_class_init,
2584 .instance_init = virt_instance_init,
2585 .interfaces = (InterfaceInfo[]) {
2586 { TYPE_HOTPLUG_HANDLER },
2591 static void machvirt_machine_init(void)
2593 type_register_static(&virt_machine_info);
2595 type_init(machvirt_machine_init);
2597 static void virt_machine_5_2_options(MachineClass *mc)
2600 DEFINE_VIRT_MACHINE_AS_LATEST(5, 2)
2602 static void virt_machine_5_1_options(MachineClass *mc)
2604 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2606 virt_machine_5_2_options(mc);
2607 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
2608 vmc->no_kvm_steal_time = true;
2610 DEFINE_VIRT_MACHINE(5, 1)
2612 static void virt_machine_5_0_options(MachineClass *mc)
2614 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2616 virt_machine_5_1_options(mc);
2617 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
2618 mc->numa_mem_supported = true;
2619 vmc->acpi_expose_flash = true;
2620 mc->auto_enable_numa_with_memdev = false;
2622 DEFINE_VIRT_MACHINE(5, 0)
2624 static void virt_machine_4_2_options(MachineClass *mc)
2626 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2628 virt_machine_5_0_options(mc);
2629 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
2630 vmc->kvm_no_adjvtime = true;
2632 DEFINE_VIRT_MACHINE(4, 2)
2634 static void virt_machine_4_1_options(MachineClass *mc)
2636 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2638 virt_machine_4_2_options(mc);
2639 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2640 vmc->no_ged = true;
2641 mc->auto_enable_numa_with_memhp = false;
2643 DEFINE_VIRT_MACHINE(4, 1)
2645 static void virt_machine_4_0_options(MachineClass *mc)
2647 virt_machine_4_1_options(mc);
2648 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2650 DEFINE_VIRT_MACHINE(4, 0)
2652 static void virt_machine_3_1_options(MachineClass *mc)
2654 virt_machine_4_0_options(mc);
2655 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2657 DEFINE_VIRT_MACHINE(3, 1)
2659 static void virt_machine_3_0_options(MachineClass *mc)
2661 virt_machine_3_1_options(mc);
2662 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2664 DEFINE_VIRT_MACHINE(3, 0)
2666 static void virt_machine_2_12_options(MachineClass *mc)
2668 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2670 virt_machine_3_0_options(mc);
2671 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2672 vmc->no_highmem_ecam = true;
2673 mc->max_cpus = 255;
2675 DEFINE_VIRT_MACHINE(2, 12)
2677 static void virt_machine_2_11_options(MachineClass *mc)
2679 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2681 virt_machine_2_12_options(mc);
2682 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2683 vmc->smbios_old_sys_ver = true;
2685 DEFINE_VIRT_MACHINE(2, 11)
2687 static void virt_machine_2_10_options(MachineClass *mc)
2689 virt_machine_2_11_options(mc);
2690 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2691 /* before 2.11 we never faulted accesses to bad addresses */
2692 mc->ignore_memory_transaction_failures = true;
2694 DEFINE_VIRT_MACHINE(2, 10)
2696 static void virt_machine_2_9_options(MachineClass *mc)
2698 virt_machine_2_10_options(mc);
2699 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2701 DEFINE_VIRT_MACHINE(2, 9)
2703 static void virt_machine_2_8_options(MachineClass *mc)
2705 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2707 virt_machine_2_9_options(mc);
2708 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2709 /* For 2.8 and earlier we falsely claimed in the DT that
2710 * our timers were edge-triggered, not level-triggered.
2712 vmc->claim_edge_triggered_timers = true;
2714 DEFINE_VIRT_MACHINE(2, 8)
2716 static void virt_machine_2_7_options(MachineClass *mc)
2718 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2720 virt_machine_2_8_options(mc);
2721 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2722 /* ITS was introduced with 2.8 */
2723 vmc->no_its = true;
2724 /* Stick with 1K pages for migration compatibility */
2725 mc->minimum_page_bits = 0;
2727 DEFINE_VIRT_MACHINE(2, 7)
2729 static void virt_machine_2_6_options(MachineClass *mc)
2731 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2733 virt_machine_2_7_options(mc);
2734 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2735 vmc->disallow_affinity_adjustment = true;
2736 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2737 vmc->no_pmu = true;
2739 DEFINE_VIRT_MACHINE(2, 6)