hw/i386/intel_iommu: Fix trivial endianness problems
[qemu/ar7.git] / hw / i386 / intel_iommu.c
blob13fcde8e916c9b2e546fecbe8335476267aca315
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
41 #include "trace.h"
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
49 /* pe operations */
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
54 * PCI bus number (or SID) is not reliable since the device is usaully
55 * initalized before guest can configure the PCI bridge
56 * (SECONDARY_BUS_NUMBER).
58 struct vtd_as_key {
59 PCIBus *bus;
60 uint8_t devfn;
61 uint32_t pasid;
64 struct vtd_iotlb_key {
65 uint64_t gfn;
66 uint32_t pasid;
67 uint16_t sid;
68 uint8_t level;
71 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
72 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
74 static void vtd_panic_require_caching_mode(void)
76 error_report("We need to set caching-mode=on for intel-iommu to enable "
77 "device assignment with IOMMU protection.");
78 exit(1);
81 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
82 uint64_t wmask, uint64_t w1cmask)
84 stq_le_p(&s->csr[addr], val);
85 stq_le_p(&s->wmask[addr], wmask);
86 stq_le_p(&s->w1cmask[addr], w1cmask);
89 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
91 stq_le_p(&s->womask[addr], mask);
94 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
95 uint32_t wmask, uint32_t w1cmask)
97 stl_le_p(&s->csr[addr], val);
98 stl_le_p(&s->wmask[addr], wmask);
99 stl_le_p(&s->w1cmask[addr], w1cmask);
102 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
104 stl_le_p(&s->womask[addr], mask);
107 /* "External" get/set operations */
108 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
110 uint64_t oldval = ldq_le_p(&s->csr[addr]);
111 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
112 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
113 stq_le_p(&s->csr[addr],
114 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
117 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
119 uint32_t oldval = ldl_le_p(&s->csr[addr]);
120 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
121 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
122 stl_le_p(&s->csr[addr],
123 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
126 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
128 uint64_t val = ldq_le_p(&s->csr[addr]);
129 uint64_t womask = ldq_le_p(&s->womask[addr]);
130 return val & ~womask;
133 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
135 uint32_t val = ldl_le_p(&s->csr[addr]);
136 uint32_t womask = ldl_le_p(&s->womask[addr]);
137 return val & ~womask;
140 /* "Internal" get/set operations */
141 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
143 return ldq_le_p(&s->csr[addr]);
146 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
148 return ldl_le_p(&s->csr[addr]);
151 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
153 stq_le_p(&s->csr[addr], val);
156 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
157 uint32_t clear, uint32_t mask)
159 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
160 stl_le_p(&s->csr[addr], new_val);
161 return new_val;
164 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
165 uint64_t clear, uint64_t mask)
167 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
168 stq_le_p(&s->csr[addr], new_val);
169 return new_val;
172 static inline void vtd_iommu_lock(IntelIOMMUState *s)
174 qemu_mutex_lock(&s->iommu_lock);
177 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
179 qemu_mutex_unlock(&s->iommu_lock);
182 static void vtd_update_scalable_state(IntelIOMMUState *s)
184 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
186 if (s->scalable_mode) {
187 s->root_scalable = val & VTD_RTADDR_SMT;
191 static void vtd_update_iq_dw(IntelIOMMUState *s)
193 uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
195 if (s->ecap & VTD_ECAP_SMTS &&
196 val & VTD_IQA_DW_MASK) {
197 s->iq_dw = true;
198 } else {
199 s->iq_dw = false;
203 /* Whether the address space needs to notify new mappings */
204 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
206 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
209 /* GHashTable functions */
210 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2)
212 const struct vtd_iotlb_key *key1 = v1;
213 const struct vtd_iotlb_key *key2 = v2;
215 return key1->sid == key2->sid &&
216 key1->pasid == key2->pasid &&
217 key1->level == key2->level &&
218 key1->gfn == key2->gfn;
221 static guint vtd_iotlb_hash(gconstpointer v)
223 const struct vtd_iotlb_key *key = v;
224 uint64_t hash64 = key->gfn | ((uint64_t)(key->sid) << VTD_IOTLB_SID_SHIFT) |
225 (uint64_t)(key->level - 1) << VTD_IOTLB_LVL_SHIFT |
226 (uint64_t)(key->pasid) << VTD_IOTLB_PASID_SHIFT;
228 return (guint)((hash64 >> 32) ^ (hash64 & 0xffffffffU));
231 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2)
233 const struct vtd_as_key *key1 = v1;
234 const struct vtd_as_key *key2 = v2;
236 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) &&
237 (key1->pasid == key2->pasid);
241 * Note that we use pointer to PCIBus as the key, so hashing/shifting
242 * based on the pointer value is intended. Note that we deal with
243 * collisions through vtd_as_equal().
245 static guint vtd_as_hash(gconstpointer v)
247 const struct vtd_as_key *key = v;
248 guint value = (guint)(uintptr_t)key->bus;
250 return (guint)(value << 8 | key->devfn);
253 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
254 gpointer user_data)
256 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
257 uint16_t domain_id = *(uint16_t *)user_data;
258 return entry->domain_id == domain_id;
261 /* The shift of an addr for a certain level of paging structure */
262 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
264 assert(level != 0);
265 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
268 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
270 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
273 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
274 gpointer user_data)
276 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
277 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
278 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
279 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
280 return (entry->domain_id == info->domain_id) &&
281 (((entry->gfn & info->mask) == gfn) ||
282 (entry->gfn == gfn_tlb));
285 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
286 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
288 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
290 VTDAddressSpace *vtd_as;
291 GHashTableIter as_it;
293 trace_vtd_context_cache_reset();
295 g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
297 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
298 vtd_as->context_cache_entry.context_cache_gen = 0;
300 s->context_cache_gen = 1;
303 /* Must be called with IOMMU lock held. */
304 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
306 assert(s->iotlb);
307 g_hash_table_remove_all(s->iotlb);
310 static void vtd_reset_iotlb(IntelIOMMUState *s)
312 vtd_iommu_lock(s);
313 vtd_reset_iotlb_locked(s);
314 vtd_iommu_unlock(s);
317 static void vtd_reset_caches(IntelIOMMUState *s)
319 vtd_iommu_lock(s);
320 vtd_reset_iotlb_locked(s);
321 vtd_reset_context_cache_locked(s);
322 vtd_iommu_unlock(s);
325 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
327 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
330 /* Must be called with IOMMU lock held */
331 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
332 uint32_t pasid, hwaddr addr)
334 struct vtd_iotlb_key key;
335 VTDIOTLBEntry *entry;
336 int level;
338 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
339 key.gfn = vtd_get_iotlb_gfn(addr, level);
340 key.level = level;
341 key.sid = source_id;
342 key.pasid = pasid;
343 entry = g_hash_table_lookup(s->iotlb, &key);
344 if (entry) {
345 goto out;
349 out:
350 return entry;
353 /* Must be with IOMMU lock held */
354 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
355 uint16_t domain_id, hwaddr addr, uint64_t slpte,
356 uint8_t access_flags, uint32_t level,
357 uint32_t pasid)
359 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
360 struct vtd_iotlb_key *key = g_malloc(sizeof(*key));
361 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
363 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
364 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
365 trace_vtd_iotlb_reset("iotlb exceeds size limit");
366 vtd_reset_iotlb_locked(s);
369 entry->gfn = gfn;
370 entry->domain_id = domain_id;
371 entry->slpte = slpte;
372 entry->access_flags = access_flags;
373 entry->mask = vtd_slpt_level_page_mask(level);
374 entry->pasid = pasid;
376 key->gfn = gfn;
377 key->sid = source_id;
378 key->level = level;
379 key->pasid = pasid;
381 g_hash_table_replace(s->iotlb, key, entry);
384 /* Given the reg addr of both the message data and address, generate an
385 * interrupt via MSI.
387 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
388 hwaddr mesg_data_reg)
390 MSIMessage msi;
392 assert(mesg_data_reg < DMAR_REG_SIZE);
393 assert(mesg_addr_reg < DMAR_REG_SIZE);
395 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
396 msi.data = vtd_get_long_raw(s, mesg_data_reg);
398 trace_vtd_irq_generate(msi.address, msi.data);
400 apic_get_class(NULL)->send_msi(&msi);
403 /* Generate a fault event to software via MSI if conditions are met.
404 * Notice that the value of FSTS_REG being passed to it should be the one
405 * before any update.
407 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
409 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
410 pre_fsts & VTD_FSTS_IQE) {
411 error_report_once("There are previous interrupt conditions "
412 "to be serviced by software, fault event "
413 "is not generated");
414 return;
416 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
417 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
418 error_report_once("Interrupt Mask set, irq is not generated");
419 } else {
420 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
421 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
425 /* Check if the Fault (F) field of the Fault Recording Register referenced by
426 * @index is Set.
428 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
430 /* Each reg is 128-bit */
431 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
432 addr += 8; /* Access the high 64-bit half */
434 assert(index < DMAR_FRCD_REG_NR);
436 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
439 /* Update the PPF field of Fault Status Register.
440 * Should be called whenever change the F field of any fault recording
441 * registers.
443 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
445 uint32_t i;
446 uint32_t ppf_mask = 0;
448 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
449 if (vtd_is_frcd_set(s, i)) {
450 ppf_mask = VTD_FSTS_PPF;
451 break;
454 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
455 trace_vtd_fsts_ppf(!!ppf_mask);
458 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
460 /* Each reg is 128-bit */
461 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
462 addr += 8; /* Access the high 64-bit half */
464 assert(index < DMAR_FRCD_REG_NR);
466 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
467 vtd_update_fsts_ppf(s);
470 /* Must not update F field now, should be done later */
471 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
472 uint16_t source_id, hwaddr addr,
473 VTDFaultReason fault, bool is_write,
474 bool is_pasid, uint32_t pasid)
476 uint64_t hi = 0, lo;
477 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
479 assert(index < DMAR_FRCD_REG_NR);
481 lo = VTD_FRCD_FI(addr);
482 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) |
483 VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid);
484 if (!is_write) {
485 hi |= VTD_FRCD_T;
487 vtd_set_quad_raw(s, frcd_reg_addr, lo);
488 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
490 trace_vtd_frr_new(index, hi, lo);
493 /* Try to collapse multiple pending faults from the same requester */
494 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
496 uint32_t i;
497 uint64_t frcd_reg;
498 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
500 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
501 frcd_reg = vtd_get_quad_raw(s, addr);
502 if ((frcd_reg & VTD_FRCD_F) &&
503 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
504 return true;
506 addr += 16; /* 128-bit for each */
508 return false;
511 /* Log and report an DMAR (address translation) fault to software */
512 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
513 hwaddr addr, VTDFaultReason fault,
514 bool is_write, bool is_pasid,
515 uint32_t pasid)
517 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
519 assert(fault < VTD_FR_MAX);
521 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
523 if (fsts_reg & VTD_FSTS_PFO) {
524 error_report_once("New fault is not recorded due to "
525 "Primary Fault Overflow");
526 return;
529 if (vtd_try_collapse_fault(s, source_id)) {
530 error_report_once("New fault is not recorded due to "
531 "compression of faults");
532 return;
535 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
536 error_report_once("Next Fault Recording Reg is used, "
537 "new fault is not recorded, set PFO field");
538 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
539 return;
542 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault,
543 is_write, is_pasid, pasid);
545 if (fsts_reg & VTD_FSTS_PPF) {
546 error_report_once("There are pending faults already, "
547 "fault event is not generated");
548 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
549 s->next_frcd_reg++;
550 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
551 s->next_frcd_reg = 0;
553 } else {
554 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
555 VTD_FSTS_FRI(s->next_frcd_reg));
556 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
557 s->next_frcd_reg++;
558 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
559 s->next_frcd_reg = 0;
561 /* This case actually cause the PPF to be Set.
562 * So generate fault event (interrupt).
564 vtd_generate_fault_event(s, fsts_reg);
568 /* Handle Invalidation Queue Errors of queued invalidation interface error
569 * conditions.
571 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
573 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
575 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
576 vtd_generate_fault_event(s, fsts_reg);
579 /* Set the IWC field and try to generate an invalidation completion interrupt */
580 static void vtd_generate_completion_event(IntelIOMMUState *s)
582 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
583 trace_vtd_inv_desc_wait_irq("One pending, skip current");
584 return;
586 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
587 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
588 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
589 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
590 "new event not generated");
591 return;
592 } else {
593 /* Generate the interrupt event */
594 trace_vtd_inv_desc_wait_irq("Generating complete event");
595 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
596 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
600 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
601 VTDRootEntry *re,
602 uint8_t devfn)
604 if (s->root_scalable && devfn > UINT8_MAX / 2) {
605 return re->hi & VTD_ROOT_ENTRY_P;
608 return re->lo & VTD_ROOT_ENTRY_P;
611 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
612 VTDRootEntry *re)
614 dma_addr_t addr;
616 addr = s->root + index * sizeof(*re);
617 if (dma_memory_read(&address_space_memory, addr,
618 re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
619 re->lo = 0;
620 return -VTD_FR_ROOT_TABLE_INV;
622 re->lo = le64_to_cpu(re->lo);
623 re->hi = le64_to_cpu(re->hi);
624 return 0;
627 static inline bool vtd_ce_present(VTDContextEntry *context)
629 return context->lo & VTD_CONTEXT_ENTRY_P;
632 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
633 VTDRootEntry *re,
634 uint8_t index,
635 VTDContextEntry *ce)
637 dma_addr_t addr, ce_size;
639 /* we have checked that root entry is present */
640 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
641 VTD_CTX_ENTRY_LEGACY_SIZE;
643 if (s->root_scalable && index > UINT8_MAX / 2) {
644 index = index & (~VTD_DEVFN_CHECK_MASK);
645 addr = re->hi & VTD_ROOT_ENTRY_CTP;
646 } else {
647 addr = re->lo & VTD_ROOT_ENTRY_CTP;
650 addr = addr + index * ce_size;
651 if (dma_memory_read(&address_space_memory, addr,
652 ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
653 return -VTD_FR_CONTEXT_TABLE_INV;
656 ce->lo = le64_to_cpu(ce->lo);
657 ce->hi = le64_to_cpu(ce->hi);
658 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
659 ce->val[2] = le64_to_cpu(ce->val[2]);
660 ce->val[3] = le64_to_cpu(ce->val[3]);
662 return 0;
665 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
667 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
670 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
672 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
675 /* Whether the pte indicates the address of the page frame */
676 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
678 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
681 /* Get the content of a spte located in @base_addr[@index] */
682 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
684 uint64_t slpte;
686 assert(index < VTD_SL_PT_ENTRY_NR);
688 if (dma_memory_read(&address_space_memory,
689 base_addr + index * sizeof(slpte),
690 &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) {
691 slpte = (uint64_t)-1;
692 return slpte;
694 slpte = le64_to_cpu(slpte);
695 return slpte;
698 /* Given an iova and the level of paging structure, return the offset
699 * of current level.
701 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
703 return (iova >> vtd_slpt_level_shift(level)) &
704 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
707 /* Check Capability Register to see if the @level of page-table is supported */
708 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
710 return VTD_CAP_SAGAW_MASK & s->cap &
711 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
714 /* Return true if check passed, otherwise false */
715 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
716 VTDPASIDEntry *pe)
718 switch (VTD_PE_GET_TYPE(pe)) {
719 case VTD_SM_PASID_ENTRY_FLT:
720 case VTD_SM_PASID_ENTRY_SLT:
721 case VTD_SM_PASID_ENTRY_NESTED:
722 break;
723 case VTD_SM_PASID_ENTRY_PT:
724 if (!x86_iommu->pt_supported) {
725 return false;
727 break;
728 default:
729 /* Unknown type */
730 return false;
732 return true;
735 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
737 return pdire->val & 1;
741 * Caller of this function should check present bit if wants
742 * to use pdir entry for further usage except for fpd bit check.
744 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
745 uint32_t pasid,
746 VTDPASIDDirEntry *pdire)
748 uint32_t index;
749 dma_addr_t addr, entry_size;
751 index = VTD_PASID_DIR_INDEX(pasid);
752 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
753 addr = pasid_dir_base + index * entry_size;
754 if (dma_memory_read(&address_space_memory, addr,
755 pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
756 return -VTD_FR_PASID_TABLE_INV;
759 pdire->val = le64_to_cpu(pdire->val);
761 return 0;
764 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
766 return pe->val[0] & VTD_PASID_ENTRY_P;
769 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
770 uint32_t pasid,
771 dma_addr_t addr,
772 VTDPASIDEntry *pe)
774 uint32_t index;
775 dma_addr_t entry_size;
776 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
778 index = VTD_PASID_TABLE_INDEX(pasid);
779 entry_size = VTD_PASID_ENTRY_SIZE;
780 addr = addr + index * entry_size;
781 if (dma_memory_read(&address_space_memory, addr,
782 pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
783 return -VTD_FR_PASID_TABLE_INV;
785 for (size_t i = 0; i < ARRAY_SIZE(pe->val); i++) {
786 pe->val[i] = le64_to_cpu(pe->val[i]);
789 /* Do translation type check */
790 if (!vtd_pe_type_check(x86_iommu, pe)) {
791 return -VTD_FR_PASID_TABLE_INV;
794 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
795 return -VTD_FR_PASID_TABLE_INV;
798 return 0;
802 * Caller of this function should check present bit if wants
803 * to use pasid entry for further usage except for fpd bit check.
805 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
806 uint32_t pasid,
807 VTDPASIDDirEntry *pdire,
808 VTDPASIDEntry *pe)
810 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
812 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
816 * This function gets a pasid entry from a specified pasid
817 * table (includes dir and leaf table) with a specified pasid.
818 * Sanity check should be done to ensure return a present
819 * pasid entry to caller.
821 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
822 dma_addr_t pasid_dir_base,
823 uint32_t pasid,
824 VTDPASIDEntry *pe)
826 int ret;
827 VTDPASIDDirEntry pdire;
829 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
830 pasid, &pdire);
831 if (ret) {
832 return ret;
835 if (!vtd_pdire_present(&pdire)) {
836 return -VTD_FR_PASID_TABLE_INV;
839 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
840 if (ret) {
841 return ret;
844 if (!vtd_pe_present(pe)) {
845 return -VTD_FR_PASID_TABLE_INV;
848 return 0;
851 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
852 VTDContextEntry *ce,
853 VTDPASIDEntry *pe,
854 uint32_t pasid)
856 dma_addr_t pasid_dir_base;
857 int ret = 0;
859 if (pasid == PCI_NO_PASID) {
860 pasid = VTD_CE_GET_RID2PASID(ce);
862 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
863 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
865 return ret;
868 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
869 VTDContextEntry *ce,
870 bool *pe_fpd_set,
871 uint32_t pasid)
873 int ret;
874 dma_addr_t pasid_dir_base;
875 VTDPASIDDirEntry pdire;
876 VTDPASIDEntry pe;
878 if (pasid == PCI_NO_PASID) {
879 pasid = VTD_CE_GET_RID2PASID(ce);
881 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
884 * No present bit check since fpd is meaningful even
885 * if the present bit is clear.
887 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
888 if (ret) {
889 return ret;
892 if (pdire.val & VTD_PASID_DIR_FPD) {
893 *pe_fpd_set = true;
894 return 0;
897 if (!vtd_pdire_present(&pdire)) {
898 return -VTD_FR_PASID_TABLE_INV;
902 * No present bit check since fpd is meaningful even
903 * if the present bit is clear.
905 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
906 if (ret) {
907 return ret;
910 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
911 *pe_fpd_set = true;
914 return 0;
917 /* Get the page-table level that hardware should use for the second-level
918 * page-table walk from the Address Width field of context-entry.
920 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
922 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
925 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
926 VTDContextEntry *ce,
927 uint32_t pasid)
929 VTDPASIDEntry pe;
931 if (s->root_scalable) {
932 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
933 return VTD_PE_GET_LEVEL(&pe);
936 return vtd_ce_get_level(ce);
939 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
941 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
944 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
945 VTDContextEntry *ce,
946 uint32_t pasid)
948 VTDPASIDEntry pe;
950 if (s->root_scalable) {
951 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
952 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
955 return vtd_ce_get_agaw(ce);
958 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
960 return ce->lo & VTD_CONTEXT_ENTRY_TT;
963 /* Only for Legacy Mode. Return true if check passed, otherwise false */
964 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
965 VTDContextEntry *ce)
967 switch (vtd_ce_get_type(ce)) {
968 case VTD_CONTEXT_TT_MULTI_LEVEL:
969 /* Always supported */
970 break;
971 case VTD_CONTEXT_TT_DEV_IOTLB:
972 if (!x86_iommu->dt_supported) {
973 error_report_once("%s: DT specified but not supported", __func__);
974 return false;
976 break;
977 case VTD_CONTEXT_TT_PASS_THROUGH:
978 if (!x86_iommu->pt_supported) {
979 error_report_once("%s: PT specified but not supported", __func__);
980 return false;
982 break;
983 default:
984 /* Unknown type */
985 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
986 vtd_ce_get_type(ce));
987 return false;
989 return true;
992 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
993 VTDContextEntry *ce, uint8_t aw,
994 uint32_t pasid)
996 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid);
997 return 1ULL << MIN(ce_agaw, aw);
1000 /* Return true if IOVA passes range check, otherwise false. */
1001 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
1002 uint64_t iova, VTDContextEntry *ce,
1003 uint8_t aw, uint32_t pasid)
1006 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
1007 * in CAP_REG and AW in context-entry.
1009 return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1));
1012 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
1013 VTDContextEntry *ce,
1014 uint32_t pasid)
1016 VTDPASIDEntry pe;
1018 if (s->root_scalable) {
1019 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1020 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
1023 return vtd_ce_get_slpt_base(ce);
1027 * Rsvd field masks for spte:
1028 * vtd_spte_rsvd 4k pages
1029 * vtd_spte_rsvd_large large pages
1031 static uint64_t vtd_spte_rsvd[5];
1032 static uint64_t vtd_spte_rsvd_large[5];
1034 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
1036 uint64_t rsvd_mask = vtd_spte_rsvd[level];
1038 if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
1039 (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
1040 /* large page */
1041 rsvd_mask = vtd_spte_rsvd_large[level];
1044 return slpte & rsvd_mask;
1047 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1048 * of the translation, can be used for deciding the size of large page.
1050 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1051 uint64_t iova, bool is_write,
1052 uint64_t *slptep, uint32_t *slpte_level,
1053 bool *reads, bool *writes, uint8_t aw_bits,
1054 uint32_t pasid)
1056 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1057 uint32_t level = vtd_get_iova_level(s, ce, pasid);
1058 uint32_t offset;
1059 uint64_t slpte;
1060 uint64_t access_right_check;
1061 uint64_t xlat, size;
1063 if (!vtd_iova_range_check(s, iova, ce, aw_bits, pasid)) {
1064 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ","
1065 "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
1066 return -VTD_FR_ADDR_BEYOND_MGAW;
1069 /* FIXME: what is the Atomics request here? */
1070 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1072 while (true) {
1073 offset = vtd_iova_level_offset(iova, level);
1074 slpte = vtd_get_slpte(addr, offset);
1076 if (slpte == (uint64_t)-1) {
1077 error_report_once("%s: detected read error on DMAR slpte "
1078 "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")",
1079 __func__, iova, pasid);
1080 if (level == vtd_get_iova_level(s, ce, pasid)) {
1081 /* Invalid programming of context-entry */
1082 return -VTD_FR_CONTEXT_ENTRY_INV;
1083 } else {
1084 return -VTD_FR_PAGING_ENTRY_INV;
1087 *reads = (*reads) && (slpte & VTD_SL_R);
1088 *writes = (*writes) && (slpte & VTD_SL_W);
1089 if (!(slpte & access_right_check)) {
1090 error_report_once("%s: detected slpte permission error "
1091 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1092 "slpte=0x%" PRIx64 ", write=%d, pasid=0x%"
1093 PRIx32 ")", __func__, iova, level,
1094 slpte, is_write, pasid);
1095 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1097 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1098 error_report_once("%s: detected splte reserve non-zero "
1099 "iova=0x%" PRIx64 ", level=0x%" PRIx32
1100 "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
1101 __func__, iova, level, slpte, pasid);
1102 return -VTD_FR_PAGING_ENTRY_RSVD;
1105 if (vtd_is_last_slpte(slpte, level)) {
1106 *slptep = slpte;
1107 *slpte_level = level;
1108 break;
1110 addr = vtd_get_slpte_addr(slpte, aw_bits);
1111 level--;
1114 xlat = vtd_get_slpte_addr(*slptep, aw_bits);
1115 size = ~vtd_slpt_level_page_mask(level) + 1;
1118 * From VT-d spec 3.14: Untranslated requests and translation
1119 * requests that result in an address in the interrupt range will be
1120 * blocked with condition code LGN.4 or SGN.8.
1122 if ((xlat > VTD_INTERRUPT_ADDR_LAST ||
1123 xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) {
1124 return 0;
1125 } else {
1126 error_report_once("%s: xlat address is in interrupt range "
1127 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1128 "slpte=0x%" PRIx64 ", write=%d, "
1129 "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", "
1130 "pasid=0x%" PRIx32 ")",
1131 __func__, iova, level, slpte, is_write,
1132 xlat, size, pasid);
1133 return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
1134 -VTD_FR_INTERRUPT_ADDR;
1138 typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
1141 * Constant information used during page walking
1143 * @hook_fn: hook func to be called when detected page
1144 * @private: private data to be passed into hook func
1145 * @notify_unmap: whether we should notify invalid entries
1146 * @as: VT-d address space of the device
1147 * @aw: maximum address width
1148 * @domain: domain ID of the page walk
1150 typedef struct {
1151 VTDAddressSpace *as;
1152 vtd_page_walk_hook hook_fn;
1153 void *private;
1154 bool notify_unmap;
1155 uint8_t aw;
1156 uint16_t domain_id;
1157 } vtd_page_walk_info;
1159 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1161 VTDAddressSpace *as = info->as;
1162 vtd_page_walk_hook hook_fn = info->hook_fn;
1163 void *private = info->private;
1164 IOMMUTLBEntry *entry = &event->entry;
1165 DMAMap target = {
1166 .iova = entry->iova,
1167 .size = entry->addr_mask,
1168 .translated_addr = entry->translated_addr,
1169 .perm = entry->perm,
1171 const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1173 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1174 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1175 return 0;
1178 assert(hook_fn);
1180 /* Update local IOVA mapped ranges */
1181 if (event->type == IOMMU_NOTIFIER_MAP) {
1182 if (mapped) {
1183 /* If it's exactly the same translation, skip */
1184 if (!memcmp(mapped, &target, sizeof(target))) {
1185 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1186 entry->translated_addr);
1187 return 0;
1188 } else {
1190 * Translation changed. Normally this should not
1191 * happen, but it can happen when with buggy guest
1192 * OSes. Note that there will be a small window that
1193 * we don't have map at all. But that's the best
1194 * effort we can do. The ideal way to emulate this is
1195 * atomically modify the PTE to follow what has
1196 * changed, but we can't. One example is that vfio
1197 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1198 * interface to modify a mapping (meanwhile it seems
1199 * meaningless to even provide one). Anyway, let's
1200 * mark this as a TODO in case one day we'll have
1201 * a better solution.
1203 IOMMUAccessFlags cache_perm = entry->perm;
1204 int ret;
1206 /* Emulate an UNMAP */
1207 event->type = IOMMU_NOTIFIER_UNMAP;
1208 entry->perm = IOMMU_NONE;
1209 trace_vtd_page_walk_one(info->domain_id,
1210 entry->iova,
1211 entry->translated_addr,
1212 entry->addr_mask,
1213 entry->perm);
1214 ret = hook_fn(event, private);
1215 if (ret) {
1216 return ret;
1218 /* Drop any existing mapping */
1219 iova_tree_remove(as->iova_tree, target);
1220 /* Recover the correct type */
1221 event->type = IOMMU_NOTIFIER_MAP;
1222 entry->perm = cache_perm;
1225 iova_tree_insert(as->iova_tree, &target);
1226 } else {
1227 if (!mapped) {
1228 /* Skip since we didn't map this range at all */
1229 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1230 return 0;
1232 iova_tree_remove(as->iova_tree, target);
1235 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1236 entry->translated_addr, entry->addr_mask,
1237 entry->perm);
1238 return hook_fn(event, private);
1242 * vtd_page_walk_level - walk over specific level for IOVA range
1244 * @addr: base GPA addr to start the walk
1245 * @start: IOVA range start address
1246 * @end: IOVA range end address (start <= addr < end)
1247 * @read: whether parent level has read permission
1248 * @write: whether parent level has write permission
1249 * @info: constant information for the page walk
1251 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1252 uint64_t end, uint32_t level, bool read,
1253 bool write, vtd_page_walk_info *info)
1255 bool read_cur, write_cur, entry_valid;
1256 uint32_t offset;
1257 uint64_t slpte;
1258 uint64_t subpage_size, subpage_mask;
1259 IOMMUTLBEvent event;
1260 uint64_t iova = start;
1261 uint64_t iova_next;
1262 int ret = 0;
1264 trace_vtd_page_walk_level(addr, level, start, end);
1266 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1267 subpage_mask = vtd_slpt_level_page_mask(level);
1269 while (iova < end) {
1270 iova_next = (iova & subpage_mask) + subpage_size;
1272 offset = vtd_iova_level_offset(iova, level);
1273 slpte = vtd_get_slpte(addr, offset);
1275 if (slpte == (uint64_t)-1) {
1276 trace_vtd_page_walk_skip_read(iova, iova_next);
1277 goto next;
1280 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1281 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1282 goto next;
1285 /* Permissions are stacked with parents' */
1286 read_cur = read && (slpte & VTD_SL_R);
1287 write_cur = write && (slpte & VTD_SL_W);
1290 * As long as we have either read/write permission, this is a
1291 * valid entry. The rule works for both page entries and page
1292 * table entries.
1294 entry_valid = read_cur | write_cur;
1296 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1298 * This is a valid PDE (or even bigger than PDE). We need
1299 * to walk one further level.
1301 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1302 iova, MIN(iova_next, end), level - 1,
1303 read_cur, write_cur, info);
1304 } else {
1306 * This means we are either:
1308 * (1) the real page entry (either 4K page, or huge page)
1309 * (2) the whole range is invalid
1311 * In either case, we send an IOTLB notification down.
1313 event.entry.target_as = &address_space_memory;
1314 event.entry.iova = iova & subpage_mask;
1315 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1316 event.entry.addr_mask = ~subpage_mask;
1317 /* NOTE: this is only meaningful if entry_valid == true */
1318 event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1319 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1320 IOMMU_NOTIFIER_UNMAP;
1321 ret = vtd_page_walk_one(&event, info);
1324 if (ret < 0) {
1325 return ret;
1328 next:
1329 iova = iova_next;
1332 return 0;
1336 * vtd_page_walk - walk specific IOVA range, and call the hook
1338 * @s: intel iommu state
1339 * @ce: context entry to walk upon
1340 * @start: IOVA address to start the walk
1341 * @end: IOVA range end address (start <= addr < end)
1342 * @info: page walking information struct
1344 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1345 uint64_t start, uint64_t end,
1346 vtd_page_walk_info *info,
1347 uint32_t pasid)
1349 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1350 uint32_t level = vtd_get_iova_level(s, ce, pasid);
1352 if (!vtd_iova_range_check(s, start, ce, info->aw, pasid)) {
1353 return -VTD_FR_ADDR_BEYOND_MGAW;
1356 if (!vtd_iova_range_check(s, end, ce, info->aw, pasid)) {
1357 /* Fix end so that it reaches the maximum */
1358 end = vtd_iova_limit(s, ce, info->aw, pasid);
1361 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1364 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1365 VTDRootEntry *re)
1367 /* Legacy Mode reserved bits check */
1368 if (!s->root_scalable &&
1369 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1370 goto rsvd_err;
1372 /* Scalable Mode reserved bits check */
1373 if (s->root_scalable &&
1374 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1375 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1376 goto rsvd_err;
1378 return 0;
1380 rsvd_err:
1381 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1382 ", lo=0x%"PRIx64,
1383 __func__, re->hi, re->lo);
1384 return -VTD_FR_ROOT_ENTRY_RSVD;
1387 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1388 VTDContextEntry *ce)
1390 if (!s->root_scalable &&
1391 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1392 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1393 error_report_once("%s: invalid context entry: hi=%"PRIx64
1394 ", lo=%"PRIx64" (reserved nonzero)",
1395 __func__, ce->hi, ce->lo);
1396 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1399 if (s->root_scalable &&
1400 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1401 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1402 ce->val[2] ||
1403 ce->val[3])) {
1404 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1405 ", val[2]=%"PRIx64
1406 ", val[1]=%"PRIx64
1407 ", val[0]=%"PRIx64" (reserved nonzero)",
1408 __func__, ce->val[3], ce->val[2],
1409 ce->val[1], ce->val[0]);
1410 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1413 return 0;
1416 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1417 VTDContextEntry *ce)
1419 VTDPASIDEntry pe;
1422 * Make sure in Scalable Mode, a present context entry
1423 * has valid rid2pasid setting, which includes valid
1424 * rid2pasid field and corresponding pasid entry setting
1426 return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID);
1429 /* Map a device to its corresponding domain (context-entry) */
1430 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1431 uint8_t devfn, VTDContextEntry *ce)
1433 VTDRootEntry re;
1434 int ret_fr;
1435 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1437 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1438 if (ret_fr) {
1439 return ret_fr;
1442 if (!vtd_root_entry_present(s, &re, devfn)) {
1443 /* Not error - it's okay we don't have root entry. */
1444 trace_vtd_re_not_present(bus_num);
1445 return -VTD_FR_ROOT_ENTRY_P;
1448 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1449 if (ret_fr) {
1450 return ret_fr;
1453 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1454 if (ret_fr) {
1455 return ret_fr;
1458 if (!vtd_ce_present(ce)) {
1459 /* Not error - it's okay we don't have context entry. */
1460 trace_vtd_ce_not_present(bus_num, devfn);
1461 return -VTD_FR_CONTEXT_ENTRY_P;
1464 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1465 if (ret_fr) {
1466 return ret_fr;
1469 /* Check if the programming of context-entry is valid */
1470 if (!s->root_scalable &&
1471 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1472 error_report_once("%s: invalid context entry: hi=%"PRIx64
1473 ", lo=%"PRIx64" (level %d not supported)",
1474 __func__, ce->hi, ce->lo,
1475 vtd_ce_get_level(ce));
1476 return -VTD_FR_CONTEXT_ENTRY_INV;
1479 if (!s->root_scalable) {
1480 /* Do translation type check */
1481 if (!vtd_ce_type_check(x86_iommu, ce)) {
1482 /* Errors dumped in vtd_ce_type_check() */
1483 return -VTD_FR_CONTEXT_ENTRY_INV;
1485 } else {
1487 * Check if the programming of context-entry.rid2pasid
1488 * and corresponding pasid setting is valid, and thus
1489 * avoids to check pasid entry fetching result in future
1490 * helper function calling.
1492 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1493 if (ret_fr) {
1494 return ret_fr;
1498 return 0;
1501 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
1502 void *private)
1504 memory_region_notify_iommu(private, 0, *event);
1505 return 0;
1508 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1509 VTDContextEntry *ce,
1510 uint32_t pasid)
1512 VTDPASIDEntry pe;
1514 if (s->root_scalable) {
1515 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1516 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1519 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1522 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1523 VTDContextEntry *ce,
1524 hwaddr addr, hwaddr size)
1526 IntelIOMMUState *s = vtd_as->iommu_state;
1527 vtd_page_walk_info info = {
1528 .hook_fn = vtd_sync_shadow_page_hook,
1529 .private = (void *)&vtd_as->iommu,
1530 .notify_unmap = true,
1531 .aw = s->aw_bits,
1532 .as = vtd_as,
1533 .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid),
1536 return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid);
1539 static int vtd_address_space_sync(VTDAddressSpace *vtd_as)
1541 int ret;
1542 VTDContextEntry ce;
1543 IOMMUNotifier *n;
1545 /* If no MAP notifier registered, we simply invalidate all the cache */
1546 if (!vtd_as_has_map_notifier(vtd_as)) {
1547 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1548 memory_region_unmap_iommu_notifier_range(n);
1550 return 0;
1553 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1554 pci_bus_num(vtd_as->bus),
1555 vtd_as->devfn, &ce);
1556 if (ret) {
1557 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1559 * It's a valid scenario to have a context entry that is
1560 * not present. For example, when a device is removed
1561 * from an existing domain then the context entry will be
1562 * zeroed by the guest before it was put into another
1563 * domain. When this happens, instead of synchronizing
1564 * the shadow pages we should invalidate all existing
1565 * mappings and notify the backends.
1567 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1568 vtd_address_space_unmap(vtd_as, n);
1570 ret = 0;
1572 return ret;
1575 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1579 * Check if specific device is configured to bypass address
1580 * translation for DMA requests. In Scalable Mode, bypass
1581 * 1st-level translation or 2nd-level translation, it depends
1582 * on PGTT setting.
1584 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce,
1585 uint32_t pasid)
1587 VTDPASIDEntry pe;
1588 int ret;
1590 if (s->root_scalable) {
1591 ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1592 if (ret) {
1594 * This error is guest triggerable. We should assumt PT
1595 * not enabled for safety.
1597 return false;
1599 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1602 return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1606 static bool vtd_as_pt_enabled(VTDAddressSpace *as)
1608 IntelIOMMUState *s;
1609 VTDContextEntry ce;
1611 assert(as);
1613 s = as->iommu_state;
1614 if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn,
1615 &ce)) {
1617 * Possibly failed to parse the context entry for some reason
1618 * (e.g., during init, or any guest configuration errors on
1619 * context entries). We should assume PT not enabled for
1620 * safety.
1622 return false;
1625 return vtd_dev_pt_enabled(s, &ce, as->pasid);
1628 /* Return whether the device is using IOMMU translation. */
1629 static bool vtd_switch_address_space(VTDAddressSpace *as)
1631 bool use_iommu, pt;
1632 /* Whether we need to take the BQL on our own */
1633 bool take_bql = !qemu_mutex_iothread_locked();
1635 assert(as);
1637 use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
1638 pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as);
1640 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1641 VTD_PCI_SLOT(as->devfn),
1642 VTD_PCI_FUNC(as->devfn),
1643 use_iommu);
1646 * It's possible that we reach here without BQL, e.g., when called
1647 * from vtd_pt_enable_fast_path(). However the memory APIs need
1648 * it. We'd better make sure we have had it already, or, take it.
1650 if (take_bql) {
1651 qemu_mutex_lock_iothread();
1654 /* Turn off first then on the other */
1655 if (use_iommu) {
1656 memory_region_set_enabled(&as->nodmar, false);
1657 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1659 * vt-d spec v3.4 3.14:
1661 * """
1662 * Requests-with-PASID with input address in range 0xFEEx_xxxx
1663 * are translated normally like any other request-with-PASID
1664 * through DMA-remapping hardware.
1665 * """
1667 * Need to disable ir for as with PASID.
1669 if (as->pasid != PCI_NO_PASID) {
1670 memory_region_set_enabled(&as->iommu_ir, false);
1671 } else {
1672 memory_region_set_enabled(&as->iommu_ir, true);
1674 } else {
1675 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1676 memory_region_set_enabled(&as->nodmar, true);
1680 * vtd-spec v3.4 3.14:
1682 * """
1683 * Requests-with-PASID with input address in range 0xFEEx_xxxx are
1684 * translated normally like any other request-with-PASID through
1685 * DMA-remapping hardware. However, if such a request is processed
1686 * using pass-through translation, it will be blocked as described
1687 * in the paragraph below.
1689 * Software must not program paging-structure entries to remap any
1690 * address to the interrupt address range. Untranslated requests
1691 * and translation requests that result in an address in the
1692 * interrupt range will be blocked with condition code LGN.4 or
1693 * SGN.8.
1694 * """
1696 * We enable per as memory region (iommu_ir_fault) for catching
1697 * the tranlsation for interrupt range through PASID + PT.
1699 if (pt && as->pasid != PCI_NO_PASID) {
1700 memory_region_set_enabled(&as->iommu_ir_fault, true);
1701 } else {
1702 memory_region_set_enabled(&as->iommu_ir_fault, false);
1705 if (take_bql) {
1706 qemu_mutex_unlock_iothread();
1709 return use_iommu;
1712 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1714 VTDAddressSpace *vtd_as;
1715 GHashTableIter iter;
1717 g_hash_table_iter_init(&iter, s->vtd_address_spaces);
1718 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) {
1719 vtd_switch_address_space(vtd_as);
1723 static const bool vtd_qualified_faults[] = {
1724 [VTD_FR_RESERVED] = false,
1725 [VTD_FR_ROOT_ENTRY_P] = false,
1726 [VTD_FR_CONTEXT_ENTRY_P] = true,
1727 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1728 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1729 [VTD_FR_WRITE] = true,
1730 [VTD_FR_READ] = true,
1731 [VTD_FR_PAGING_ENTRY_INV] = true,
1732 [VTD_FR_ROOT_TABLE_INV] = false,
1733 [VTD_FR_CONTEXT_TABLE_INV] = false,
1734 [VTD_FR_INTERRUPT_ADDR] = true,
1735 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1736 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1737 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1738 [VTD_FR_PASID_TABLE_INV] = false,
1739 [VTD_FR_SM_INTERRUPT_ADDR] = true,
1740 [VTD_FR_MAX] = false,
1743 /* To see if a fault condition is "qualified", which is reported to software
1744 * only if the FPD field in the context-entry used to process the faulting
1745 * request is 0.
1747 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1749 return vtd_qualified_faults[fault];
1752 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1754 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1757 static gboolean vtd_find_as_by_sid(gpointer key, gpointer value,
1758 gpointer user_data)
1760 struct vtd_as_key *as_key = (struct vtd_as_key *)key;
1761 uint16_t target_sid = *(uint16_t *)user_data;
1762 uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn);
1763 return sid == target_sid;
1766 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid)
1768 uint8_t bus_num = PCI_BUS_NUM(sid);
1769 VTDAddressSpace *vtd_as = s->vtd_as_cache[bus_num];
1771 if (vtd_as &&
1772 (sid == PCI_BUILD_BDF(pci_bus_num(vtd_as->bus), vtd_as->devfn))) {
1773 return vtd_as;
1776 vtd_as = g_hash_table_find(s->vtd_address_spaces, vtd_find_as_by_sid, &sid);
1777 s->vtd_as_cache[bus_num] = vtd_as;
1779 return vtd_as;
1782 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1784 VTDAddressSpace *vtd_as;
1785 bool success = false;
1787 vtd_as = vtd_get_as_by_sid(s, source_id);
1788 if (!vtd_as) {
1789 goto out;
1792 if (vtd_switch_address_space(vtd_as) == false) {
1793 /* We switched off IOMMU region successfully. */
1794 success = true;
1797 out:
1798 trace_vtd_pt_enable_fast_path(source_id, success);
1801 static void vtd_report_fault(IntelIOMMUState *s,
1802 int err, bool is_fpd_set,
1803 uint16_t source_id,
1804 hwaddr addr,
1805 bool is_write,
1806 bool is_pasid,
1807 uint32_t pasid)
1809 if (is_fpd_set && vtd_is_qualified_fault(err)) {
1810 trace_vtd_fault_disabled();
1811 } else {
1812 vtd_report_dmar_fault(s, source_id, addr, err, is_write,
1813 is_pasid, pasid);
1817 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1818 * translation.
1820 * Called from RCU critical section.
1822 * @bus_num: The bus number
1823 * @devfn: The devfn, which is the combined of device and function number
1824 * @is_write: The access is a write operation
1825 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1827 * Returns true if translation is successful, otherwise false.
1829 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1830 uint8_t devfn, hwaddr addr, bool is_write,
1831 IOMMUTLBEntry *entry)
1833 IntelIOMMUState *s = vtd_as->iommu_state;
1834 VTDContextEntry ce;
1835 uint8_t bus_num = pci_bus_num(bus);
1836 VTDContextCacheEntry *cc_entry;
1837 uint64_t slpte, page_mask;
1838 uint32_t level, pasid = vtd_as->pasid;
1839 uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn);
1840 int ret_fr;
1841 bool is_fpd_set = false;
1842 bool reads = true;
1843 bool writes = true;
1844 uint8_t access_flags;
1845 bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable;
1846 VTDIOTLBEntry *iotlb_entry;
1849 * We have standalone memory region for interrupt addresses, we
1850 * should never receive translation requests in this region.
1852 assert(!vtd_is_interrupt_addr(addr));
1854 vtd_iommu_lock(s);
1856 cc_entry = &vtd_as->context_cache_entry;
1858 /* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */
1859 if (!rid2pasid) {
1860 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1861 if (iotlb_entry) {
1862 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1863 iotlb_entry->domain_id);
1864 slpte = iotlb_entry->slpte;
1865 access_flags = iotlb_entry->access_flags;
1866 page_mask = iotlb_entry->mask;
1867 goto out;
1871 /* Try to fetch context-entry from cache first */
1872 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1873 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1874 cc_entry->context_entry.lo,
1875 cc_entry->context_cache_gen);
1876 ce = cc_entry->context_entry;
1877 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1878 if (!is_fpd_set && s->root_scalable) {
1879 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1880 if (ret_fr) {
1881 vtd_report_fault(s, -ret_fr, is_fpd_set,
1882 source_id, addr, is_write,
1883 false, 0);
1884 goto error;
1887 } else {
1888 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1889 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1890 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1891 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1893 if (ret_fr) {
1894 vtd_report_fault(s, -ret_fr, is_fpd_set,
1895 source_id, addr, is_write,
1896 false, 0);
1897 goto error;
1899 /* Update context-cache */
1900 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1901 cc_entry->context_cache_gen,
1902 s->context_cache_gen);
1903 cc_entry->context_entry = ce;
1904 cc_entry->context_cache_gen = s->context_cache_gen;
1907 if (rid2pasid) {
1908 pasid = VTD_CE_GET_RID2PASID(&ce);
1912 * We don't need to translate for pass-through context entries.
1913 * Also, let's ignore IOTLB caching as well for PT devices.
1915 if (vtd_dev_pt_enabled(s, &ce, pasid)) {
1916 entry->iova = addr & VTD_PAGE_MASK_4K;
1917 entry->translated_addr = entry->iova;
1918 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1919 entry->perm = IOMMU_RW;
1920 trace_vtd_translate_pt(source_id, entry->iova);
1923 * When this happens, it means firstly caching-mode is not
1924 * enabled, and this is the first passthrough translation for
1925 * the device. Let's enable the fast path for passthrough.
1927 * When passthrough is disabled again for the device, we can
1928 * capture it via the context entry invalidation, then the
1929 * IOMMU region can be swapped back.
1931 vtd_pt_enable_fast_path(s, source_id);
1932 vtd_iommu_unlock(s);
1933 return true;
1936 /* Try to fetch slpte form IOTLB for RID2PASID slow path */
1937 if (rid2pasid) {
1938 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1939 if (iotlb_entry) {
1940 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1941 iotlb_entry->domain_id);
1942 slpte = iotlb_entry->slpte;
1943 access_flags = iotlb_entry->access_flags;
1944 page_mask = iotlb_entry->mask;
1945 goto out;
1949 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1950 &reads, &writes, s->aw_bits, pasid);
1951 if (ret_fr) {
1952 vtd_report_fault(s, -ret_fr, is_fpd_set, source_id,
1953 addr, is_write, pasid != PCI_NO_PASID, pasid);
1954 goto error;
1957 page_mask = vtd_slpt_level_page_mask(level);
1958 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1959 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid),
1960 addr, slpte, access_flags, level, pasid);
1961 out:
1962 vtd_iommu_unlock(s);
1963 entry->iova = addr & page_mask;
1964 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1965 entry->addr_mask = ~page_mask;
1966 entry->perm = access_flags;
1967 return true;
1969 error:
1970 vtd_iommu_unlock(s);
1971 entry->iova = 0;
1972 entry->translated_addr = 0;
1973 entry->addr_mask = 0;
1974 entry->perm = IOMMU_NONE;
1975 return false;
1978 static void vtd_root_table_setup(IntelIOMMUState *s)
1980 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1981 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1983 vtd_update_scalable_state(s);
1985 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1988 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1989 uint32_t index, uint32_t mask)
1991 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1994 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1996 uint64_t value = 0;
1997 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1998 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1999 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
2000 s->intr_eime = value & VTD_IRTA_EIME;
2002 /* Notify global invalidation */
2003 vtd_iec_notify_all(s, true, 0, 0);
2005 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
2008 static void vtd_iommu_replay_all(IntelIOMMUState *s)
2010 VTDAddressSpace *vtd_as;
2012 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2013 vtd_address_space_sync(vtd_as);
2017 static void vtd_context_global_invalidate(IntelIOMMUState *s)
2019 trace_vtd_inv_desc_cc_global();
2020 /* Protects context cache */
2021 vtd_iommu_lock(s);
2022 s->context_cache_gen++;
2023 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
2024 vtd_reset_context_cache_locked(s);
2026 vtd_iommu_unlock(s);
2027 vtd_address_space_refresh_all(s);
2029 * From VT-d spec 6.5.2.1, a global context entry invalidation
2030 * should be followed by a IOTLB global invalidation, so we should
2031 * be safe even without this. Hoewever, let's replay the region as
2032 * well to be safer, and go back here when we need finer tunes for
2033 * VT-d emulation codes.
2035 vtd_iommu_replay_all(s);
2038 /* Do a context-cache device-selective invalidation.
2039 * @func_mask: FM field after shifting
2041 static void vtd_context_device_invalidate(IntelIOMMUState *s,
2042 uint16_t source_id,
2043 uint16_t func_mask)
2045 GHashTableIter as_it;
2046 uint16_t mask;
2047 VTDAddressSpace *vtd_as;
2048 uint8_t bus_n, devfn;
2050 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
2052 switch (func_mask & 3) {
2053 case 0:
2054 mask = 0; /* No bits in the SID field masked */
2055 break;
2056 case 1:
2057 mask = 4; /* Mask bit 2 in the SID field */
2058 break;
2059 case 2:
2060 mask = 6; /* Mask bit 2:1 in the SID field */
2061 break;
2062 case 3:
2063 mask = 7; /* Mask bit 2:0 in the SID field */
2064 break;
2065 default:
2066 g_assert_not_reached();
2068 mask = ~mask;
2070 bus_n = VTD_SID_TO_BUS(source_id);
2071 devfn = VTD_SID_TO_DEVFN(source_id);
2073 g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
2074 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
2075 if ((pci_bus_num(vtd_as->bus) == bus_n) &&
2076 (vtd_as->devfn & mask) == (devfn & mask)) {
2077 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn),
2078 VTD_PCI_FUNC(vtd_as->devfn));
2079 vtd_iommu_lock(s);
2080 vtd_as->context_cache_entry.context_cache_gen = 0;
2081 vtd_iommu_unlock(s);
2083 * Do switch address space when needed, in case if the
2084 * device passthrough bit is switched.
2086 vtd_switch_address_space(vtd_as);
2088 * So a device is moving out of (or moving into) a
2089 * domain, resync the shadow page table.
2090 * This won't bring bad even if we have no such
2091 * notifier registered - the IOMMU notification
2092 * framework will skip MAP notifications if that
2093 * happened.
2095 vtd_address_space_sync(vtd_as);
2100 /* Context-cache invalidation
2101 * Returns the Context Actual Invalidation Granularity.
2102 * @val: the content of the CCMD_REG
2104 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
2106 uint64_t caig;
2107 uint64_t type = val & VTD_CCMD_CIRG_MASK;
2109 switch (type) {
2110 case VTD_CCMD_DOMAIN_INVL:
2111 /* Fall through */
2112 case VTD_CCMD_GLOBAL_INVL:
2113 caig = VTD_CCMD_GLOBAL_INVL_A;
2114 vtd_context_global_invalidate(s);
2115 break;
2117 case VTD_CCMD_DEVICE_INVL:
2118 caig = VTD_CCMD_DEVICE_INVL_A;
2119 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
2120 break;
2122 default:
2123 error_report_once("%s: invalid context: 0x%" PRIx64,
2124 __func__, val);
2125 caig = 0;
2127 return caig;
2130 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
2132 trace_vtd_inv_desc_iotlb_global();
2133 vtd_reset_iotlb(s);
2134 vtd_iommu_replay_all(s);
2137 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
2139 VTDContextEntry ce;
2140 VTDAddressSpace *vtd_as;
2142 trace_vtd_inv_desc_iotlb_domain(domain_id);
2144 vtd_iommu_lock(s);
2145 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
2146 &domain_id);
2147 vtd_iommu_unlock(s);
2149 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2150 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2151 vtd_as->devfn, &ce) &&
2152 domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2153 vtd_address_space_sync(vtd_as);
2158 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
2159 uint16_t domain_id, hwaddr addr,
2160 uint8_t am, uint32_t pasid)
2162 VTDAddressSpace *vtd_as;
2163 VTDContextEntry ce;
2164 int ret;
2165 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
2167 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
2168 if (pasid != PCI_NO_PASID && pasid != vtd_as->pasid) {
2169 continue;
2171 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2172 vtd_as->devfn, &ce);
2173 if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2174 if (vtd_as_has_map_notifier(vtd_as)) {
2176 * As long as we have MAP notifications registered in
2177 * any of our IOMMU notifiers, we need to sync the
2178 * shadow page table.
2180 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2181 } else {
2183 * For UNMAP-only notifiers, we don't need to walk the
2184 * page tables. We just deliver the PSI down to
2185 * invalidate caches.
2187 IOMMUTLBEvent event = {
2188 .type = IOMMU_NOTIFIER_UNMAP,
2189 .entry = {
2190 .target_as = &address_space_memory,
2191 .iova = addr,
2192 .translated_addr = 0,
2193 .addr_mask = size - 1,
2194 .perm = IOMMU_NONE,
2197 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2203 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2204 hwaddr addr, uint8_t am)
2206 VTDIOTLBPageInvInfo info;
2208 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2210 assert(am <= VTD_MAMV);
2211 info.domain_id = domain_id;
2212 info.addr = addr;
2213 info.mask = ~((1 << am) - 1);
2214 vtd_iommu_lock(s);
2215 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2216 vtd_iommu_unlock(s);
2217 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID);
2220 /* Flush IOTLB
2221 * Returns the IOTLB Actual Invalidation Granularity.
2222 * @val: the content of the IOTLB_REG
2224 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2226 uint64_t iaig;
2227 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2228 uint16_t domain_id;
2229 hwaddr addr;
2230 uint8_t am;
2232 switch (type) {
2233 case VTD_TLB_GLOBAL_FLUSH:
2234 iaig = VTD_TLB_GLOBAL_FLUSH_A;
2235 vtd_iotlb_global_invalidate(s);
2236 break;
2238 case VTD_TLB_DSI_FLUSH:
2239 domain_id = VTD_TLB_DID(val);
2240 iaig = VTD_TLB_DSI_FLUSH_A;
2241 vtd_iotlb_domain_invalidate(s, domain_id);
2242 break;
2244 case VTD_TLB_PSI_FLUSH:
2245 domain_id = VTD_TLB_DID(val);
2246 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2247 am = VTD_IVA_AM(addr);
2248 addr = VTD_IVA_ADDR(addr);
2249 if (am > VTD_MAMV) {
2250 error_report_once("%s: address mask overflow: 0x%" PRIx64,
2251 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2252 iaig = 0;
2253 break;
2255 iaig = VTD_TLB_PSI_FLUSH_A;
2256 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2257 break;
2259 default:
2260 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2261 __func__, val);
2262 iaig = 0;
2264 return iaig;
2267 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2269 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2271 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2272 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2275 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2277 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2279 trace_vtd_inv_qi_enable(en);
2281 if (en) {
2282 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2283 /* 2^(x+8) entries */
2284 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2285 s->qi_enabled = true;
2286 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2287 /* Ok - report back to driver */
2288 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2290 if (s->iq_tail != 0) {
2292 * This is a spec violation but Windows guests are known to set up
2293 * Queued Invalidation this way so we allow the write and process
2294 * Invalidation Descriptors right away.
2296 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2297 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2298 vtd_fetch_inv_desc(s);
2301 } else {
2302 if (vtd_queued_inv_disable_check(s)) {
2303 /* disable Queued Invalidation */
2304 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2305 s->iq_head = 0;
2306 s->qi_enabled = false;
2307 /* Ok - report back to driver */
2308 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2309 } else {
2310 error_report_once("%s: detected improper state when disable QI "
2311 "(head=0x%x, tail=0x%x, last_type=%d)",
2312 __func__,
2313 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2318 /* Set Root Table Pointer */
2319 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2321 vtd_root_table_setup(s);
2322 /* Ok - report back to driver */
2323 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2324 vtd_reset_caches(s);
2325 vtd_address_space_refresh_all(s);
2328 /* Set Interrupt Remap Table Pointer */
2329 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2331 vtd_interrupt_remap_table_setup(s);
2332 /* Ok - report back to driver */
2333 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2336 /* Handle Translation Enable/Disable */
2337 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2339 if (s->dmar_enabled == en) {
2340 return;
2343 trace_vtd_dmar_enable(en);
2345 if (en) {
2346 s->dmar_enabled = true;
2347 /* Ok - report back to driver */
2348 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2349 } else {
2350 s->dmar_enabled = false;
2352 /* Clear the index of Fault Recording Register */
2353 s->next_frcd_reg = 0;
2354 /* Ok - report back to driver */
2355 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2358 vtd_reset_caches(s);
2359 vtd_address_space_refresh_all(s);
2362 /* Handle Interrupt Remap Enable/Disable */
2363 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2365 trace_vtd_ir_enable(en);
2367 if (en) {
2368 s->intr_enabled = true;
2369 /* Ok - report back to driver */
2370 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2371 } else {
2372 s->intr_enabled = false;
2373 /* Ok - report back to driver */
2374 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2378 /* Handle write to Global Command Register */
2379 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2381 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2382 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2383 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2384 uint32_t changed = status ^ val;
2386 trace_vtd_reg_write_gcmd(status, val);
2387 if ((changed & VTD_GCMD_TE) && s->dma_translation) {
2388 /* Translation enable/disable */
2389 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2391 if (val & VTD_GCMD_SRTP) {
2392 /* Set/update the root-table pointer */
2393 vtd_handle_gcmd_srtp(s);
2395 if (changed & VTD_GCMD_QIE) {
2396 /* Queued Invalidation Enable */
2397 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2399 if (val & VTD_GCMD_SIRTP) {
2400 /* Set/update the interrupt remapping root-table pointer */
2401 vtd_handle_gcmd_sirtp(s);
2403 if ((changed & VTD_GCMD_IRE) &&
2404 x86_iommu_ir_supported(x86_iommu)) {
2405 /* Interrupt remap enable/disable */
2406 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2410 /* Handle write to Context Command Register */
2411 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2413 uint64_t ret;
2414 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2416 /* Context-cache invalidation request */
2417 if (val & VTD_CCMD_ICC) {
2418 if (s->qi_enabled) {
2419 error_report_once("Queued Invalidation enabled, "
2420 "should not use register-based invalidation");
2421 return;
2423 ret = vtd_context_cache_invalidate(s, val);
2424 /* Invalidation completed. Change something to show */
2425 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2426 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2427 ret);
2431 /* Handle write to IOTLB Invalidation Register */
2432 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2434 uint64_t ret;
2435 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2437 /* IOTLB invalidation request */
2438 if (val & VTD_TLB_IVT) {
2439 if (s->qi_enabled) {
2440 error_report_once("Queued Invalidation enabled, "
2441 "should not use register-based invalidation");
2442 return;
2444 ret = vtd_iotlb_flush(s, val);
2445 /* Invalidation completed. Change something to show */
2446 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2447 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2448 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2452 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2453 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2454 VTDInvDesc *inv_desc)
2456 dma_addr_t base_addr = s->iq;
2457 uint32_t offset = s->iq_head;
2458 uint32_t dw = s->iq_dw ? 32 : 16;
2459 dma_addr_t addr = base_addr + offset * dw;
2461 if (dma_memory_read(&address_space_memory, addr,
2462 inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
2463 error_report_once("Read INV DESC failed.");
2464 return false;
2466 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2467 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2468 if (dw == 32) {
2469 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2470 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2472 return true;
2475 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2477 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2478 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2479 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2480 " (reserved nonzero)", __func__, inv_desc->hi,
2481 inv_desc->lo);
2482 return false;
2484 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2485 /* Status Write */
2486 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2487 VTD_INV_DESC_WAIT_DATA_SHIFT);
2489 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2491 /* FIXME: need to be masked with HAW? */
2492 dma_addr_t status_addr = inv_desc->hi;
2493 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2494 status_data = cpu_to_le32(status_data);
2495 if (dma_memory_write(&address_space_memory, status_addr,
2496 &status_data, sizeof(status_data),
2497 MEMTXATTRS_UNSPECIFIED)) {
2498 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2499 return false;
2501 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2502 /* Interrupt flag */
2503 vtd_generate_completion_event(s);
2504 } else {
2505 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2506 " (unknown type)", __func__, inv_desc->hi,
2507 inv_desc->lo);
2508 return false;
2510 return true;
2513 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2514 VTDInvDesc *inv_desc)
2516 uint16_t sid, fmask;
2518 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2519 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2520 " (reserved nonzero)", __func__, inv_desc->hi,
2521 inv_desc->lo);
2522 return false;
2524 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2525 case VTD_INV_DESC_CC_DOMAIN:
2526 trace_vtd_inv_desc_cc_domain(
2527 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2528 /* Fall through */
2529 case VTD_INV_DESC_CC_GLOBAL:
2530 vtd_context_global_invalidate(s);
2531 break;
2533 case VTD_INV_DESC_CC_DEVICE:
2534 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2535 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2536 vtd_context_device_invalidate(s, sid, fmask);
2537 break;
2539 default:
2540 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2541 " (invalid type)", __func__, inv_desc->hi,
2542 inv_desc->lo);
2543 return false;
2545 return true;
2548 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2550 uint16_t domain_id;
2551 uint8_t am;
2552 hwaddr addr;
2554 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2555 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2556 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2557 ", lo=0x%"PRIx64" (reserved bits unzero)",
2558 __func__, inv_desc->hi, inv_desc->lo);
2559 return false;
2562 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2563 case VTD_INV_DESC_IOTLB_GLOBAL:
2564 vtd_iotlb_global_invalidate(s);
2565 break;
2567 case VTD_INV_DESC_IOTLB_DOMAIN:
2568 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2569 vtd_iotlb_domain_invalidate(s, domain_id);
2570 break;
2572 case VTD_INV_DESC_IOTLB_PAGE:
2573 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2574 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2575 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2576 if (am > VTD_MAMV) {
2577 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2578 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2579 __func__, inv_desc->hi, inv_desc->lo,
2580 am, (unsigned)VTD_MAMV);
2581 return false;
2583 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2584 break;
2586 default:
2587 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2588 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2589 __func__, inv_desc->hi, inv_desc->lo,
2590 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2591 return false;
2593 return true;
2596 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2597 VTDInvDesc *inv_desc)
2599 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2600 inv_desc->iec.index,
2601 inv_desc->iec.index_mask);
2603 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2604 inv_desc->iec.index,
2605 inv_desc->iec.index_mask);
2606 return true;
2609 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2610 VTDInvDesc *inv_desc)
2612 VTDAddressSpace *vtd_dev_as;
2613 IOMMUTLBEvent event;
2614 hwaddr addr;
2615 uint64_t sz;
2616 uint16_t sid;
2617 bool size;
2619 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2620 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2621 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2623 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2624 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2625 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2626 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2627 inv_desc->hi, inv_desc->lo);
2628 return false;
2632 * Using sid is OK since the guest should have finished the
2633 * initialization of both the bus and device.
2635 vtd_dev_as = vtd_get_as_by_sid(s, sid);
2636 if (!vtd_dev_as) {
2637 goto done;
2640 /* According to ATS spec table 2.4:
2641 * S = 0, bits 15:12 = xxxx range size: 4K
2642 * S = 1, bits 15:12 = xxx0 range size: 8K
2643 * S = 1, bits 15:12 = xx01 range size: 16K
2644 * S = 1, bits 15:12 = x011 range size: 32K
2645 * S = 1, bits 15:12 = 0111 range size: 64K
2646 * ...
2648 if (size) {
2649 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2650 addr &= ~(sz - 1);
2651 } else {
2652 sz = VTD_PAGE_SIZE;
2655 event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2656 event.entry.target_as = &vtd_dev_as->as;
2657 event.entry.addr_mask = sz - 1;
2658 event.entry.iova = addr;
2659 event.entry.perm = IOMMU_NONE;
2660 event.entry.translated_addr = 0;
2661 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2663 done:
2664 return true;
2667 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2669 VTDInvDesc inv_desc;
2670 uint8_t desc_type;
2672 trace_vtd_inv_qi_head(s->iq_head);
2673 if (!vtd_get_inv_desc(s, &inv_desc)) {
2674 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2675 return false;
2678 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2679 /* FIXME: should update at first or at last? */
2680 s->iq_last_desc_type = desc_type;
2682 switch (desc_type) {
2683 case VTD_INV_DESC_CC:
2684 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2685 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2686 return false;
2688 break;
2690 case VTD_INV_DESC_IOTLB:
2691 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2692 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2693 return false;
2695 break;
2698 * TODO: the entity of below two cases will be implemented in future series.
2699 * To make guest (which integrates scalable mode support patch set in
2700 * iommu driver) work, just return true is enough so far.
2702 case VTD_INV_DESC_PC:
2703 break;
2705 case VTD_INV_DESC_PIOTLB:
2706 break;
2708 case VTD_INV_DESC_WAIT:
2709 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2710 if (!vtd_process_wait_desc(s, &inv_desc)) {
2711 return false;
2713 break;
2715 case VTD_INV_DESC_IEC:
2716 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2717 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2718 return false;
2720 break;
2722 case VTD_INV_DESC_DEVICE:
2723 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2724 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2725 return false;
2727 break;
2729 default:
2730 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2731 " (unknown type)", __func__, inv_desc.hi,
2732 inv_desc.lo);
2733 return false;
2735 s->iq_head++;
2736 if (s->iq_head == s->iq_size) {
2737 s->iq_head = 0;
2739 return true;
2742 /* Try to fetch and process more Invalidation Descriptors */
2743 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2745 int qi_shift;
2747 /* Refer to 10.4.23 of VT-d spec 3.0 */
2748 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2750 trace_vtd_inv_qi_fetch();
2752 if (s->iq_tail >= s->iq_size) {
2753 /* Detects an invalid Tail pointer */
2754 error_report_once("%s: detected invalid QI tail "
2755 "(tail=0x%x, size=0x%x)",
2756 __func__, s->iq_tail, s->iq_size);
2757 vtd_handle_inv_queue_error(s);
2758 return;
2760 while (s->iq_head != s->iq_tail) {
2761 if (!vtd_process_inv_desc(s)) {
2762 /* Invalidation Queue Errors */
2763 vtd_handle_inv_queue_error(s);
2764 break;
2766 /* Must update the IQH_REG in time */
2767 vtd_set_quad_raw(s, DMAR_IQH_REG,
2768 (((uint64_t)(s->iq_head)) << qi_shift) &
2769 VTD_IQH_QH_MASK);
2773 /* Handle write to Invalidation Queue Tail Register */
2774 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2776 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2778 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2779 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2780 __func__, val);
2781 return;
2783 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2784 trace_vtd_inv_qi_tail(s->iq_tail);
2786 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2787 /* Process Invalidation Queue here */
2788 vtd_fetch_inv_desc(s);
2792 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2794 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2795 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2796 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2798 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2799 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2800 trace_vtd_fsts_clear_ip();
2802 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2803 * Descriptors if there are any when Queued Invalidation is enabled?
2807 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2809 uint32_t fectl_reg;
2810 /* FIXME: when software clears the IM field, check the IP field. But do we
2811 * need to compare the old value and the new value to conclude that
2812 * software clears the IM field? Or just check if the IM field is zero?
2814 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2816 trace_vtd_reg_write_fectl(fectl_reg);
2818 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2819 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2820 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2824 static void vtd_handle_ics_write(IntelIOMMUState *s)
2826 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2827 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2829 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2830 trace_vtd_reg_ics_clear_ip();
2831 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2835 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2837 uint32_t iectl_reg;
2838 /* FIXME: when software clears the IM field, check the IP field. But do we
2839 * need to compare the old value and the new value to conclude that
2840 * software clears the IM field? Or just check if the IM field is zero?
2842 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2844 trace_vtd_reg_write_iectl(iectl_reg);
2846 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2847 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2848 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2852 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2854 IntelIOMMUState *s = opaque;
2855 uint64_t val;
2857 trace_vtd_reg_read(addr, size);
2859 if (addr + size > DMAR_REG_SIZE) {
2860 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2861 " size=0x%x", __func__, addr, size);
2862 return (uint64_t)-1;
2865 switch (addr) {
2866 /* Root Table Address Register, 64-bit */
2867 case DMAR_RTADDR_REG:
2868 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2869 if (size == 4) {
2870 val = val & ((1ULL << 32) - 1);
2872 break;
2874 case DMAR_RTADDR_REG_HI:
2875 assert(size == 4);
2876 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2877 break;
2879 /* Invalidation Queue Address Register, 64-bit */
2880 case DMAR_IQA_REG:
2881 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2882 if (size == 4) {
2883 val = val & ((1ULL << 32) - 1);
2885 break;
2887 case DMAR_IQA_REG_HI:
2888 assert(size == 4);
2889 val = s->iq >> 32;
2890 break;
2892 default:
2893 if (size == 4) {
2894 val = vtd_get_long(s, addr);
2895 } else {
2896 val = vtd_get_quad(s, addr);
2900 return val;
2903 static void vtd_mem_write(void *opaque, hwaddr addr,
2904 uint64_t val, unsigned size)
2906 IntelIOMMUState *s = opaque;
2908 trace_vtd_reg_write(addr, size, val);
2910 if (addr + size > DMAR_REG_SIZE) {
2911 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2912 " size=0x%x", __func__, addr, size);
2913 return;
2916 switch (addr) {
2917 /* Global Command Register, 32-bit */
2918 case DMAR_GCMD_REG:
2919 vtd_set_long(s, addr, val);
2920 vtd_handle_gcmd_write(s);
2921 break;
2923 /* Context Command Register, 64-bit */
2924 case DMAR_CCMD_REG:
2925 if (size == 4) {
2926 vtd_set_long(s, addr, val);
2927 } else {
2928 vtd_set_quad(s, addr, val);
2929 vtd_handle_ccmd_write(s);
2931 break;
2933 case DMAR_CCMD_REG_HI:
2934 assert(size == 4);
2935 vtd_set_long(s, addr, val);
2936 vtd_handle_ccmd_write(s);
2937 break;
2939 /* IOTLB Invalidation Register, 64-bit */
2940 case DMAR_IOTLB_REG:
2941 if (size == 4) {
2942 vtd_set_long(s, addr, val);
2943 } else {
2944 vtd_set_quad(s, addr, val);
2945 vtd_handle_iotlb_write(s);
2947 break;
2949 case DMAR_IOTLB_REG_HI:
2950 assert(size == 4);
2951 vtd_set_long(s, addr, val);
2952 vtd_handle_iotlb_write(s);
2953 break;
2955 /* Invalidate Address Register, 64-bit */
2956 case DMAR_IVA_REG:
2957 if (size == 4) {
2958 vtd_set_long(s, addr, val);
2959 } else {
2960 vtd_set_quad(s, addr, val);
2962 break;
2964 case DMAR_IVA_REG_HI:
2965 assert(size == 4);
2966 vtd_set_long(s, addr, val);
2967 break;
2969 /* Fault Status Register, 32-bit */
2970 case DMAR_FSTS_REG:
2971 assert(size == 4);
2972 vtd_set_long(s, addr, val);
2973 vtd_handle_fsts_write(s);
2974 break;
2976 /* Fault Event Control Register, 32-bit */
2977 case DMAR_FECTL_REG:
2978 assert(size == 4);
2979 vtd_set_long(s, addr, val);
2980 vtd_handle_fectl_write(s);
2981 break;
2983 /* Fault Event Data Register, 32-bit */
2984 case DMAR_FEDATA_REG:
2985 assert(size == 4);
2986 vtd_set_long(s, addr, val);
2987 break;
2989 /* Fault Event Address Register, 32-bit */
2990 case DMAR_FEADDR_REG:
2991 if (size == 4) {
2992 vtd_set_long(s, addr, val);
2993 } else {
2995 * While the register is 32-bit only, some guests (Xen...) write to
2996 * it with 64-bit.
2998 vtd_set_quad(s, addr, val);
3000 break;
3002 /* Fault Event Upper Address Register, 32-bit */
3003 case DMAR_FEUADDR_REG:
3004 assert(size == 4);
3005 vtd_set_long(s, addr, val);
3006 break;
3008 /* Protected Memory Enable Register, 32-bit */
3009 case DMAR_PMEN_REG:
3010 assert(size == 4);
3011 vtd_set_long(s, addr, val);
3012 break;
3014 /* Root Table Address Register, 64-bit */
3015 case DMAR_RTADDR_REG:
3016 if (size == 4) {
3017 vtd_set_long(s, addr, val);
3018 } else {
3019 vtd_set_quad(s, addr, val);
3021 break;
3023 case DMAR_RTADDR_REG_HI:
3024 assert(size == 4);
3025 vtd_set_long(s, addr, val);
3026 break;
3028 /* Invalidation Queue Tail Register, 64-bit */
3029 case DMAR_IQT_REG:
3030 if (size == 4) {
3031 vtd_set_long(s, addr, val);
3032 } else {
3033 vtd_set_quad(s, addr, val);
3035 vtd_handle_iqt_write(s);
3036 break;
3038 case DMAR_IQT_REG_HI:
3039 assert(size == 4);
3040 vtd_set_long(s, addr, val);
3041 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
3042 break;
3044 /* Invalidation Queue Address Register, 64-bit */
3045 case DMAR_IQA_REG:
3046 if (size == 4) {
3047 vtd_set_long(s, addr, val);
3048 } else {
3049 vtd_set_quad(s, addr, val);
3051 vtd_update_iq_dw(s);
3052 break;
3054 case DMAR_IQA_REG_HI:
3055 assert(size == 4);
3056 vtd_set_long(s, addr, val);
3057 break;
3059 /* Invalidation Completion Status Register, 32-bit */
3060 case DMAR_ICS_REG:
3061 assert(size == 4);
3062 vtd_set_long(s, addr, val);
3063 vtd_handle_ics_write(s);
3064 break;
3066 /* Invalidation Event Control Register, 32-bit */
3067 case DMAR_IECTL_REG:
3068 assert(size == 4);
3069 vtd_set_long(s, addr, val);
3070 vtd_handle_iectl_write(s);
3071 break;
3073 /* Invalidation Event Data Register, 32-bit */
3074 case DMAR_IEDATA_REG:
3075 assert(size == 4);
3076 vtd_set_long(s, addr, val);
3077 break;
3079 /* Invalidation Event Address Register, 32-bit */
3080 case DMAR_IEADDR_REG:
3081 assert(size == 4);
3082 vtd_set_long(s, addr, val);
3083 break;
3085 /* Invalidation Event Upper Address Register, 32-bit */
3086 case DMAR_IEUADDR_REG:
3087 assert(size == 4);
3088 vtd_set_long(s, addr, val);
3089 break;
3091 /* Fault Recording Registers, 128-bit */
3092 case DMAR_FRCD_REG_0_0:
3093 if (size == 4) {
3094 vtd_set_long(s, addr, val);
3095 } else {
3096 vtd_set_quad(s, addr, val);
3098 break;
3100 case DMAR_FRCD_REG_0_1:
3101 assert(size == 4);
3102 vtd_set_long(s, addr, val);
3103 break;
3105 case DMAR_FRCD_REG_0_2:
3106 if (size == 4) {
3107 vtd_set_long(s, addr, val);
3108 } else {
3109 vtd_set_quad(s, addr, val);
3110 /* May clear bit 127 (Fault), update PPF */
3111 vtd_update_fsts_ppf(s);
3113 break;
3115 case DMAR_FRCD_REG_0_3:
3116 assert(size == 4);
3117 vtd_set_long(s, addr, val);
3118 /* May clear bit 127 (Fault), update PPF */
3119 vtd_update_fsts_ppf(s);
3120 break;
3122 case DMAR_IRTA_REG:
3123 if (size == 4) {
3124 vtd_set_long(s, addr, val);
3125 } else {
3126 vtd_set_quad(s, addr, val);
3128 break;
3130 case DMAR_IRTA_REG_HI:
3131 assert(size == 4);
3132 vtd_set_long(s, addr, val);
3133 break;
3135 default:
3136 if (size == 4) {
3137 vtd_set_long(s, addr, val);
3138 } else {
3139 vtd_set_quad(s, addr, val);
3144 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
3145 IOMMUAccessFlags flag, int iommu_idx)
3147 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3148 IntelIOMMUState *s = vtd_as->iommu_state;
3149 IOMMUTLBEntry iotlb = {
3150 /* We'll fill in the rest later. */
3151 .target_as = &address_space_memory,
3153 bool success;
3155 if (likely(s->dmar_enabled)) {
3156 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
3157 addr, flag & IOMMU_WO, &iotlb);
3158 } else {
3159 /* DMAR disabled, passthrough, use 4k-page*/
3160 iotlb.iova = addr & VTD_PAGE_MASK_4K;
3161 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
3162 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
3163 iotlb.perm = IOMMU_RW;
3164 success = true;
3167 if (likely(success)) {
3168 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
3169 VTD_PCI_SLOT(vtd_as->devfn),
3170 VTD_PCI_FUNC(vtd_as->devfn),
3171 iotlb.iova, iotlb.translated_addr,
3172 iotlb.addr_mask);
3173 } else {
3174 error_report_once("%s: detected translation failure "
3175 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3176 __func__, pci_bus_num(vtd_as->bus),
3177 VTD_PCI_SLOT(vtd_as->devfn),
3178 VTD_PCI_FUNC(vtd_as->devfn),
3179 addr);
3182 return iotlb;
3185 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3186 IOMMUNotifierFlag old,
3187 IOMMUNotifierFlag new,
3188 Error **errp)
3190 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3191 IntelIOMMUState *s = vtd_as->iommu_state;
3192 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3194 /* TODO: add support for VFIO and vhost users */
3195 if (s->snoop_control) {
3196 error_setg_errno(errp, ENOTSUP,
3197 "Snoop Control with vhost or VFIO is not supported");
3198 return -ENOTSUP;
3200 if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) {
3201 error_setg_errno(errp, ENOTSUP,
3202 "device %02x.%02x.%x requires caching mode",
3203 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3204 PCI_FUNC(vtd_as->devfn));
3205 return -ENOTSUP;
3207 if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) {
3208 error_setg_errno(errp, ENOTSUP,
3209 "device %02x.%02x.%x requires device IOTLB mode",
3210 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3211 PCI_FUNC(vtd_as->devfn));
3212 return -ENOTSUP;
3215 /* Update per-address-space notifier flags */
3216 vtd_as->notifier_flags = new;
3218 if (old == IOMMU_NOTIFIER_NONE) {
3219 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3220 } else if (new == IOMMU_NOTIFIER_NONE) {
3221 QLIST_REMOVE(vtd_as, next);
3223 return 0;
3226 static int vtd_post_load(void *opaque, int version_id)
3228 IntelIOMMUState *iommu = opaque;
3231 * We don't need to migrate the root_scalable because we can
3232 * simply do the calculation after the loading is complete. We
3233 * can actually do similar things with root, dmar_enabled, etc.
3234 * however since we've had them already so we'd better keep them
3235 * for compatibility of migration.
3237 vtd_update_scalable_state(iommu);
3239 vtd_update_iq_dw(iommu);
3242 * Memory regions are dynamically turned on/off depending on
3243 * context entry configurations from the guest. After migration,
3244 * we need to make sure the memory regions are still correct.
3246 vtd_switch_address_space_all(iommu);
3248 return 0;
3251 static const VMStateDescription vtd_vmstate = {
3252 .name = "iommu-intel",
3253 .version_id = 1,
3254 .minimum_version_id = 1,
3255 .priority = MIG_PRI_IOMMU,
3256 .post_load = vtd_post_load,
3257 .fields = (VMStateField[]) {
3258 VMSTATE_UINT64(root, IntelIOMMUState),
3259 VMSTATE_UINT64(intr_root, IntelIOMMUState),
3260 VMSTATE_UINT64(iq, IntelIOMMUState),
3261 VMSTATE_UINT32(intr_size, IntelIOMMUState),
3262 VMSTATE_UINT16(iq_head, IntelIOMMUState),
3263 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3264 VMSTATE_UINT16(iq_size, IntelIOMMUState),
3265 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3266 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3267 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3268 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
3269 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3270 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3271 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3272 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3273 VMSTATE_END_OF_LIST()
3277 static const MemoryRegionOps vtd_mem_ops = {
3278 .read = vtd_mem_read,
3279 .write = vtd_mem_write,
3280 .endianness = DEVICE_LITTLE_ENDIAN,
3281 .impl = {
3282 .min_access_size = 4,
3283 .max_access_size = 8,
3285 .valid = {
3286 .min_access_size = 4,
3287 .max_access_size = 8,
3291 static Property vtd_properties[] = {
3292 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3293 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3294 ON_OFF_AUTO_AUTO),
3295 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3296 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3297 VTD_HOST_ADDRESS_WIDTH),
3298 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3299 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3300 DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
3301 DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false),
3302 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3303 DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
3304 DEFINE_PROP_END_OF_LIST(),
3307 /* Read IRTE entry with specific index */
3308 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3309 VTD_IR_TableEntry *entry, uint16_t sid)
3311 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3312 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3313 dma_addr_t addr = 0x00;
3314 uint16_t mask, source_id;
3315 uint8_t bus, bus_max, bus_min;
3317 if (index >= iommu->intr_size) {
3318 error_report_once("%s: index too large: ind=0x%x",
3319 __func__, index);
3320 return -VTD_FR_IR_INDEX_OVER;
3323 addr = iommu->intr_root + index * sizeof(*entry);
3324 if (dma_memory_read(&address_space_memory, addr,
3325 entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
3326 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3327 __func__, index, addr);
3328 return -VTD_FR_IR_ROOT_INVAL;
3331 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3332 le64_to_cpu(entry->data[0]));
3334 if (!entry->irte.present) {
3335 error_report_once("%s: detected non-present IRTE "
3336 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3337 __func__, index, le64_to_cpu(entry->data[1]),
3338 le64_to_cpu(entry->data[0]));
3339 return -VTD_FR_IR_ENTRY_P;
3342 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3343 entry->irte.__reserved_2) {
3344 error_report_once("%s: detected non-zero reserved IRTE "
3345 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3346 __func__, index, le64_to_cpu(entry->data[1]),
3347 le64_to_cpu(entry->data[0]));
3348 return -VTD_FR_IR_IRTE_RSVD;
3351 if (sid != X86_IOMMU_SID_INVALID) {
3352 /* Validate IRTE SID */
3353 source_id = le32_to_cpu(entry->irte.source_id);
3354 switch (entry->irte.sid_vtype) {
3355 case VTD_SVT_NONE:
3356 break;
3358 case VTD_SVT_ALL:
3359 mask = vtd_svt_mask[entry->irte.sid_q];
3360 if ((source_id & mask) != (sid & mask)) {
3361 error_report_once("%s: invalid IRTE SID "
3362 "(index=%u, sid=%u, source_id=%u)",
3363 __func__, index, sid, source_id);
3364 return -VTD_FR_IR_SID_ERR;
3366 break;
3368 case VTD_SVT_BUS:
3369 bus_max = source_id >> 8;
3370 bus_min = source_id & 0xff;
3371 bus = sid >> 8;
3372 if (bus > bus_max || bus < bus_min) {
3373 error_report_once("%s: invalid SVT_BUS "
3374 "(index=%u, bus=%u, min=%u, max=%u)",
3375 __func__, index, bus, bus_min, bus_max);
3376 return -VTD_FR_IR_SID_ERR;
3378 break;
3380 default:
3381 error_report_once("%s: detected invalid IRTE SVT "
3382 "(index=%u, type=%d)", __func__,
3383 index, entry->irte.sid_vtype);
3384 /* Take this as verification failure. */
3385 return -VTD_FR_IR_SID_ERR;
3389 return 0;
3392 /* Fetch IRQ information of specific IR index */
3393 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3394 X86IOMMUIrq *irq, uint16_t sid)
3396 VTD_IR_TableEntry irte = {};
3397 int ret = 0;
3399 ret = vtd_irte_get(iommu, index, &irte, sid);
3400 if (ret) {
3401 return ret;
3404 irq->trigger_mode = irte.irte.trigger_mode;
3405 irq->vector = irte.irte.vector;
3406 irq->delivery_mode = irte.irte.delivery_mode;
3407 irq->dest = le32_to_cpu(irte.irte.dest_id);
3408 if (!iommu->intr_eime) {
3409 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3410 #define VTD_IR_APIC_DEST_SHIFT (8)
3411 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3412 VTD_IR_APIC_DEST_SHIFT;
3414 irq->dest_mode = irte.irte.dest_mode;
3415 irq->redir_hint = irte.irte.redir_hint;
3417 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3418 irq->delivery_mode, irq->dest, irq->dest_mode);
3420 return 0;
3423 /* Interrupt remapping for MSI/MSI-X entry */
3424 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3425 MSIMessage *origin,
3426 MSIMessage *translated,
3427 uint16_t sid)
3429 int ret = 0;
3430 VTD_IR_MSIAddress addr;
3431 uint16_t index;
3432 X86IOMMUIrq irq = {};
3434 assert(origin && translated);
3436 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3438 if (!iommu || !iommu->intr_enabled) {
3439 memcpy(translated, origin, sizeof(*origin));
3440 goto out;
3443 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3444 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3445 "address=0x%" PRIx64, __func__, origin->address);
3446 return -VTD_FR_IR_REQ_RSVD;
3449 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3450 if (addr.addr.__head != 0xfee) {
3451 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3452 __func__, addr.data);
3453 return -VTD_FR_IR_REQ_RSVD;
3456 /* This is compatible mode. */
3457 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3458 memcpy(translated, origin, sizeof(*origin));
3459 goto out;
3462 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3464 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3465 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3467 if (addr.addr.sub_valid) {
3468 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3469 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3472 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3473 if (ret) {
3474 return ret;
3477 if (addr.addr.sub_valid) {
3478 trace_vtd_ir_remap_type("MSI");
3479 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3480 error_report_once("%s: invalid IR MSI "
3481 "(sid=%u, address=0x%" PRIx64
3482 ", data=0x%" PRIx32 ")",
3483 __func__, sid, origin->address, origin->data);
3484 return -VTD_FR_IR_REQ_RSVD;
3486 } else {
3487 uint8_t vector = origin->data & 0xff;
3488 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3490 trace_vtd_ir_remap_type("IOAPIC");
3491 /* IOAPIC entry vector should be aligned with IRTE vector
3492 * (see vt-d spec 5.1.5.1). */
3493 if (vector != irq.vector) {
3494 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3497 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3498 * (see vt-d spec 5.1.5.1). */
3499 if (trigger_mode != irq.trigger_mode) {
3500 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3501 irq.trigger_mode);
3506 * We'd better keep the last two bits, assuming that guest OS
3507 * might modify it. Keep it does not hurt after all.
3509 irq.msi_addr_last_bits = addr.addr.__not_care;
3511 /* Translate X86IOMMUIrq to MSI message */
3512 x86_iommu_irq_to_msi_message(&irq, translated);
3514 out:
3515 trace_vtd_ir_remap_msi(origin->address, origin->data,
3516 translated->address, translated->data);
3517 return 0;
3520 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3521 MSIMessage *dst, uint16_t sid)
3523 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3524 src, dst, sid);
3527 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3528 uint64_t *data, unsigned size,
3529 MemTxAttrs attrs)
3531 return MEMTX_OK;
3534 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3535 uint64_t value, unsigned size,
3536 MemTxAttrs attrs)
3538 int ret = 0;
3539 MSIMessage from = {}, to = {};
3540 uint16_t sid = X86_IOMMU_SID_INVALID;
3542 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3543 from.data = (uint32_t) value;
3545 if (!attrs.unspecified) {
3546 /* We have explicit Source ID */
3547 sid = attrs.requester_id;
3550 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3551 if (ret) {
3552 /* TODO: report error */
3553 /* Drop this interrupt */
3554 return MEMTX_ERROR;
3557 apic_get_class(NULL)->send_msi(&to);
3559 return MEMTX_OK;
3562 static const MemoryRegionOps vtd_mem_ir_ops = {
3563 .read_with_attrs = vtd_mem_ir_read,
3564 .write_with_attrs = vtd_mem_ir_write,
3565 .endianness = DEVICE_LITTLE_ENDIAN,
3566 .impl = {
3567 .min_access_size = 4,
3568 .max_access_size = 4,
3570 .valid = {
3571 .min_access_size = 4,
3572 .max_access_size = 4,
3576 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as,
3577 hwaddr addr, bool is_write)
3579 IntelIOMMUState *s = vtd_as->iommu_state;
3580 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3581 uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn);
3582 bool is_fpd_set = false;
3583 VTDContextEntry ce;
3585 assert(vtd_as->pasid != PCI_NO_PASID);
3587 /* Try out best to fetch FPD, we can't do anything more */
3588 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3589 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
3590 if (!is_fpd_set && s->root_scalable) {
3591 vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid);
3595 vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR,
3596 is_fpd_set, sid, addr, is_write,
3597 true, vtd_as->pasid);
3600 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr,
3601 uint64_t *data, unsigned size,
3602 MemTxAttrs attrs)
3604 vtd_report_ir_illegal_access(opaque, addr, false);
3606 return MEMTX_ERROR;
3609 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr,
3610 uint64_t value, unsigned size,
3611 MemTxAttrs attrs)
3613 vtd_report_ir_illegal_access(opaque, addr, true);
3615 return MEMTX_ERROR;
3618 static const MemoryRegionOps vtd_mem_ir_fault_ops = {
3619 .read_with_attrs = vtd_mem_ir_fault_read,
3620 .write_with_attrs = vtd_mem_ir_fault_write,
3621 .endianness = DEVICE_LITTLE_ENDIAN,
3622 .impl = {
3623 .min_access_size = 1,
3624 .max_access_size = 8,
3626 .valid = {
3627 .min_access_size = 1,
3628 .max_access_size = 8,
3632 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus,
3633 int devfn, unsigned int pasid)
3636 * We can't simply use sid here since the bus number might not be
3637 * initialized by the guest.
3639 struct vtd_as_key key = {
3640 .bus = bus,
3641 .devfn = devfn,
3642 .pasid = pasid,
3644 VTDAddressSpace *vtd_dev_as;
3645 char name[128];
3647 vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
3648 if (!vtd_dev_as) {
3649 struct vtd_as_key *new_key = g_malloc(sizeof(*new_key));
3651 new_key->bus = bus;
3652 new_key->devfn = devfn;
3653 new_key->pasid = pasid;
3655 if (pasid == PCI_NO_PASID) {
3656 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3657 PCI_FUNC(devfn));
3658 } else {
3659 snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn),
3660 PCI_FUNC(devfn), pasid);
3663 vtd_dev_as = g_new0(VTDAddressSpace, 1);
3665 vtd_dev_as->bus = bus;
3666 vtd_dev_as->devfn = (uint8_t)devfn;
3667 vtd_dev_as->pasid = pasid;
3668 vtd_dev_as->iommu_state = s;
3669 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3670 vtd_dev_as->iova_tree = iova_tree_new();
3672 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3673 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3676 * Build the DMAR-disabled container with aliases to the
3677 * shared MRs. Note that aliasing to a shared memory region
3678 * could help the memory API to detect same FlatViews so we
3679 * can have devices to share the same FlatView when DMAR is
3680 * disabled (either by not providing "intel_iommu=on" or with
3681 * "iommu=pt"). It will greatly reduce the total number of
3682 * FlatViews of the system hence VM runs faster.
3684 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3685 "vtd-nodmar", &s->mr_nodmar, 0,
3686 memory_region_size(&s->mr_nodmar));
3689 * Build the per-device DMAR-enabled container.
3691 * TODO: currently we have per-device IOMMU memory region only
3692 * because we have per-device IOMMU notifiers for devices. If
3693 * one day we can abstract the IOMMU notifiers out of the
3694 * memory regions then we can also share the same memory
3695 * region here just like what we've done above with the nodmar
3696 * region.
3698 strcat(name, "-dmar");
3699 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3700 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3701 name, UINT64_MAX);
3702 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3703 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3704 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3705 VTD_INTERRUPT_ADDR_FIRST,
3706 &vtd_dev_as->iommu_ir, 1);
3709 * This region is used for catching fault to access interrupt
3710 * range via passthrough + PASID. See also
3711 * vtd_switch_address_space(). We can't use alias since we
3712 * need to know the sid which is valid for MSI who uses
3713 * bus_master_as (see msi_send_message()).
3715 memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s),
3716 &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir",
3717 VTD_INTERRUPT_ADDR_SIZE);
3719 * Hook to root since when PT is enabled vtd_dev_as->iommu
3720 * will be disabled.
3722 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root),
3723 VTD_INTERRUPT_ADDR_FIRST,
3724 &vtd_dev_as->iommu_ir_fault, 2);
3727 * Hook both the containers under the root container, we
3728 * switch between DMAR & noDMAR by enable/disable
3729 * corresponding sub-containers
3731 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3732 MEMORY_REGION(&vtd_dev_as->iommu),
3734 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3735 &vtd_dev_as->nodmar, 0);
3737 vtd_switch_address_space(vtd_dev_as);
3739 g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as);
3741 return vtd_dev_as;
3744 /* Unmap the whole range in the notifier's scope. */
3745 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3747 hwaddr size, remain;
3748 hwaddr start = n->start;
3749 hwaddr end = n->end;
3750 IntelIOMMUState *s = as->iommu_state;
3751 DMAMap map;
3754 * Note: all the codes in this function has a assumption that IOVA
3755 * bits are no more than VTD_MGAW bits (which is restricted by
3756 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3759 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3761 * Don't need to unmap regions that is bigger than the whole
3762 * VT-d supported address space size
3764 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3767 assert(start <= end);
3768 size = remain = end - start + 1;
3770 while (remain >= VTD_PAGE_SIZE) {
3771 IOMMUTLBEvent event;
3772 uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3773 uint64_t size = mask + 1;
3775 assert(size);
3777 event.type = IOMMU_NOTIFIER_UNMAP;
3778 event.entry.iova = start;
3779 event.entry.addr_mask = mask;
3780 event.entry.target_as = &address_space_memory;
3781 event.entry.perm = IOMMU_NONE;
3782 /* This field is meaningless for unmap */
3783 event.entry.translated_addr = 0;
3785 memory_region_notify_iommu_one(n, &event);
3787 start += size;
3788 remain -= size;
3791 assert(!remain);
3793 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3794 VTD_PCI_SLOT(as->devfn),
3795 VTD_PCI_FUNC(as->devfn),
3796 n->start, size);
3798 map.iova = n->start;
3799 map.size = size - 1; /* Inclusive */
3800 iova_tree_remove(as->iova_tree, map);
3803 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3805 VTDAddressSpace *vtd_as;
3806 IOMMUNotifier *n;
3808 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3809 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3810 vtd_address_space_unmap(vtd_as, n);
3815 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3817 vtd_address_space_unmap_all(s);
3818 vtd_switch_address_space_all(s);
3821 static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
3823 memory_region_notify_iommu_one(private, event);
3824 return 0;
3827 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3829 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3830 IntelIOMMUState *s = vtd_as->iommu_state;
3831 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3832 VTDContextEntry ce;
3833 DMAMap map = { .iova = 0, .size = HWADDR_MAX };
3835 /* replay is protected by BQL, page walk will re-setup it safely */
3836 iova_tree_remove(vtd_as->iova_tree, map);
3838 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3839 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3840 "legacy mode",
3841 bus_n, PCI_SLOT(vtd_as->devfn),
3842 PCI_FUNC(vtd_as->devfn),
3843 vtd_get_domain_id(s, &ce, vtd_as->pasid),
3844 ce.hi, ce.lo);
3845 if (n->notifier_flags & IOMMU_NOTIFIER_MAP) {
3846 /* This is required only for MAP typed notifiers */
3847 vtd_page_walk_info info = {
3848 .hook_fn = vtd_replay_hook,
3849 .private = (void *)n,
3850 .notify_unmap = false,
3851 .aw = s->aw_bits,
3852 .as = vtd_as,
3853 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid),
3856 vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid);
3858 } else {
3859 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3860 PCI_FUNC(vtd_as->devfn));
3863 return;
3866 /* Do the initialization. It will also be called when reset, so pay
3867 * attention when adding new initialization stuff.
3869 static void vtd_init(IntelIOMMUState *s)
3871 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3873 memset(s->csr, 0, DMAR_REG_SIZE);
3874 memset(s->wmask, 0, DMAR_REG_SIZE);
3875 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3876 memset(s->womask, 0, DMAR_REG_SIZE);
3878 s->root = 0;
3879 s->root_scalable = false;
3880 s->dmar_enabled = false;
3881 s->intr_enabled = false;
3882 s->iq_head = 0;
3883 s->iq_tail = 0;
3884 s->iq = 0;
3885 s->iq_size = 0;
3886 s->qi_enabled = false;
3887 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3888 s->iq_dw = false;
3889 s->next_frcd_reg = 0;
3890 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3891 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3892 VTD_CAP_MGAW(s->aw_bits);
3893 if (s->dma_drain) {
3894 s->cap |= VTD_CAP_DRAIN;
3896 if (s->dma_translation) {
3897 if (s->aw_bits >= VTD_HOST_AW_39BIT) {
3898 s->cap |= VTD_CAP_SAGAW_39bit;
3900 if (s->aw_bits >= VTD_HOST_AW_48BIT) {
3901 s->cap |= VTD_CAP_SAGAW_48bit;
3904 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3907 * Rsvd field masks for spte
3909 vtd_spte_rsvd[0] = ~0ULL;
3910 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3911 x86_iommu->dt_supported);
3912 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3913 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3914 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3916 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3917 x86_iommu->dt_supported);
3918 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3919 x86_iommu->dt_supported);
3921 if (s->scalable_mode || s->snoop_control) {
3922 vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
3923 vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
3924 vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
3927 if (x86_iommu_ir_supported(x86_iommu)) {
3928 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3929 if (s->intr_eim == ON_OFF_AUTO_ON) {
3930 s->ecap |= VTD_ECAP_EIM;
3932 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3935 if (x86_iommu->dt_supported) {
3936 s->ecap |= VTD_ECAP_DT;
3939 if (x86_iommu->pt_supported) {
3940 s->ecap |= VTD_ECAP_PT;
3943 if (s->caching_mode) {
3944 s->cap |= VTD_CAP_CM;
3947 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3948 if (s->scalable_mode) {
3949 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3952 if (s->snoop_control) {
3953 s->ecap |= VTD_ECAP_SC;
3956 if (s->pasid) {
3957 s->ecap |= VTD_ECAP_PASID;
3960 vtd_reset_caches(s);
3962 /* Define registers with default values and bit semantics */
3963 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3964 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3965 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3966 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3967 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3968 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3969 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3970 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3971 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3973 /* Advanced Fault Logging not supported */
3974 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3975 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3976 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3977 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3979 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3980 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3982 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3984 /* Treated as RO for implementations that PLMR and PHMR fields reported
3985 * as Clear in the CAP_REG.
3986 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3988 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3990 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3991 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3992 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3993 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3994 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3995 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3996 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3997 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3998 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
4000 /* IOTLB registers */
4001 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
4002 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
4003 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
4005 /* Fault Recording Registers, 128-bit */
4006 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
4007 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
4010 * Interrupt remapping registers.
4012 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
4015 /* Should not reset address_spaces when reset because devices will still use
4016 * the address space they got at first (won't ask the bus again).
4018 static void vtd_reset(DeviceState *dev)
4020 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4022 vtd_init(s);
4023 vtd_address_space_refresh_all(s);
4026 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
4028 IntelIOMMUState *s = opaque;
4029 VTDAddressSpace *vtd_as;
4031 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
4033 vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID);
4034 return &vtd_as->as;
4037 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
4039 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4041 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
4042 error_setg(errp, "eim=on cannot be selected without intremap=on");
4043 return false;
4046 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
4047 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
4048 && x86_iommu_ir_supported(x86_iommu) ?
4049 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
4051 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
4052 if (!kvm_irqchip_is_split()) {
4053 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
4054 return false;
4056 if (!kvm_enable_x2apic()) {
4057 error_setg(errp, "eim=on requires support on the KVM side"
4058 "(X2APIC_API, first shipped in v4.7)");
4059 return false;
4063 /* Currently only address widths supported are 39 and 48 bits */
4064 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
4065 (s->aw_bits != VTD_HOST_AW_48BIT)) {
4066 error_setg(errp, "Supported values for aw-bits are: %d, %d",
4067 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
4068 return false;
4071 if (s->scalable_mode && !s->dma_drain) {
4072 error_setg(errp, "Need to set dma_drain for scalable mode");
4073 return false;
4076 if (s->pasid && !s->scalable_mode) {
4077 error_setg(errp, "Need to set scalable mode for PASID");
4078 return false;
4081 return true;
4084 static int vtd_machine_done_notify_one(Object *child, void *unused)
4086 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
4089 * We hard-coded here because vfio-pci is the only special case
4090 * here. Let's be more elegant in the future when we can, but so
4091 * far there seems to be no better way.
4093 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
4094 vtd_panic_require_caching_mode();
4097 return 0;
4100 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
4102 object_child_foreach_recursive(object_get_root(),
4103 vtd_machine_done_notify_one, NULL);
4106 static Notifier vtd_machine_done_notify = {
4107 .notify = vtd_machine_done_hook,
4110 static void vtd_realize(DeviceState *dev, Error **errp)
4112 MachineState *ms = MACHINE(qdev_get_machine());
4113 PCMachineState *pcms = PC_MACHINE(ms);
4114 X86MachineState *x86ms = X86_MACHINE(ms);
4115 PCIBus *bus = pcms->bus;
4116 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4117 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4119 if (s->pasid && x86_iommu->dt_supported) {
4121 * PASID-based-Device-TLB Invalidate Descriptor is not
4122 * implemented and it requires support from vhost layer which
4123 * needs to be implemented in the future.
4125 error_setg(errp, "PASID based device IOTLB is not supported");
4126 return;
4129 if (!vtd_decide_config(s, errp)) {
4130 return;
4133 QLIST_INIT(&s->vtd_as_with_notifiers);
4134 qemu_mutex_init(&s->iommu_lock);
4135 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
4136 "intel_iommu", DMAR_REG_SIZE);
4138 /* Create the shared memory regions by all devices */
4139 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
4140 UINT64_MAX);
4141 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
4142 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
4143 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
4144 "vtd-sys-alias", get_system_memory(), 0,
4145 memory_region_size(get_system_memory()));
4146 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
4147 &s->mr_sys_alias, 0);
4148 memory_region_add_subregion_overlap(&s->mr_nodmar,
4149 VTD_INTERRUPT_ADDR_FIRST,
4150 &s->mr_ir, 1);
4152 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
4153 /* No corresponding destroy */
4154 s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal,
4155 g_free, g_free);
4156 s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal,
4157 g_free, g_free);
4158 vtd_init(s);
4159 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
4160 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
4161 /* Pseudo address space under root PCI bus. */
4162 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
4163 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
4166 static void vtd_class_init(ObjectClass *klass, void *data)
4168 DeviceClass *dc = DEVICE_CLASS(klass);
4169 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
4171 dc->reset = vtd_reset;
4172 dc->vmsd = &vtd_vmstate;
4173 device_class_set_props(dc, vtd_properties);
4174 dc->hotpluggable = false;
4175 x86_class->realize = vtd_realize;
4176 x86_class->int_remap = vtd_int_remap;
4177 /* Supported by the pc-q35-* machine types */
4178 dc->user_creatable = true;
4179 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
4180 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
4183 static const TypeInfo vtd_info = {
4184 .name = TYPE_INTEL_IOMMU_DEVICE,
4185 .parent = TYPE_X86_IOMMU_DEVICE,
4186 .instance_size = sizeof(IntelIOMMUState),
4187 .class_init = vtd_class_init,
4190 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
4191 void *data)
4193 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
4195 imrc->translate = vtd_iommu_translate;
4196 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
4197 imrc->replay = vtd_iommu_replay;
4200 static const TypeInfo vtd_iommu_memory_region_info = {
4201 .parent = TYPE_IOMMU_MEMORY_REGION,
4202 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
4203 .class_init = vtd_iommu_memory_region_class_init,
4206 static void vtd_register_types(void)
4208 type_register_static(&vtd_info);
4209 type_register_static(&vtd_iommu_memory_region_info);
4212 type_init(vtd_register_types)