hw/arm/virt: Rename 'vbi' variables to 'vms'
[qemu/ar7.git] / hw / arm / virt.c
blob54498ead233248720672727e3767fde5a407f90b
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/boards.h"
45 #include "hw/compat.h"
46 #include "hw/loader.h"
47 #include "exec/address-spaces.h"
48 #include "qemu/bitops.h"
49 #include "qemu/error-report.h"
50 #include "hw/pci-host/gpex.h"
51 #include "hw/arm/virt-acpi-build.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic.h"
56 #include "hw/intc/arm_gicv3_common.h"
57 #include "kvm_arm.h"
58 #include "hw/smbios/smbios.h"
59 #include "qapi/visitor.h"
60 #include "standard-headers/linux/input.h"
62 /* Number of external interrupt lines to configure the GIC with */
63 #define NUM_IRQS 256
65 #define PLATFORM_BUS_NUM_IRQS 64
67 static ARMPlatformBusSystemParams platform_bus_params;
69 typedef struct {
70 MachineClass parent;
71 bool disallow_affinity_adjustment;
72 bool no_its;
73 bool no_pmu;
74 } VirtMachineClass;
76 typedef struct {
77 MachineState parent;
78 bool secure;
79 bool highmem;
80 int32_t gic_version;
81 struct arm_boot_info bootinfo;
82 const MemMapEntry *memmap;
83 const int *irqmap;
84 int smp_cpus;
85 void *fdt;
86 int fdt_size;
87 uint32_t clock_phandle;
88 uint32_t gic_phandle;
89 uint32_t msi_phandle;
90 bool using_psci;
91 } VirtMachineState;
93 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
94 #define VIRT_MACHINE(obj) \
95 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
96 #define VIRT_MACHINE_GET_CLASS(obj) \
97 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
98 #define VIRT_MACHINE_CLASS(klass) \
99 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
102 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
103 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
104 void *data) \
106 MachineClass *mc = MACHINE_CLASS(oc); \
107 virt_machine_##major##_##minor##_options(mc); \
108 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
109 if (latest) { \
110 mc->alias = "virt"; \
113 static const TypeInfo machvirt_##major##_##minor##_info = { \
114 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
115 .parent = TYPE_VIRT_MACHINE, \
116 .instance_init = virt_##major##_##minor##_instance_init, \
117 .class_init = virt_##major##_##minor##_class_init, \
118 }; \
119 static void machvirt_machine_##major##_##minor##_init(void) \
121 type_register_static(&machvirt_##major##_##minor##_info); \
123 type_init(machvirt_machine_##major##_##minor##_init);
125 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
126 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
127 #define DEFINE_VIRT_MACHINE(major, minor) \
128 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
131 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
132 * RAM can go up to the 256GB mark, leaving 256GB of the physical
133 * address space unallocated and free for future use between 256G and 512G.
134 * If we need to provide more RAM to VMs in the future then we need to:
135 * * allocate a second bank of RAM starting at 2TB and working up
136 * * fix the DT and ACPI table generation code in QEMU to correctly
137 * report two split lumps of RAM to the guest
138 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
139 * (We don't want to fill all the way up to 512GB with RAM because
140 * we might want it for non-RAM purposes later. Conversely it seems
141 * reasonable to assume that anybody configuring a VM with a quarter
142 * of a terabyte of RAM will be doing it on a host with more than a
143 * terabyte of physical address space.)
145 #define RAMLIMIT_GB 255
146 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
148 /* Addresses and sizes of our components.
149 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
150 * 128MB..256MB is used for miscellaneous device I/O.
151 * 256MB..1GB is reserved for possible future PCI support (ie where the
152 * PCI memory window will go if we add a PCI host controller).
153 * 1GB and up is RAM (which may happily spill over into the
154 * high memory region beyond 4GB).
155 * This represents a compromise between how much RAM can be given to
156 * a 32 bit VM and leaving space for expansion and in particular for PCI.
157 * Note that devices should generally be placed at multiples of 0x10000,
158 * to accommodate guests using 64K pages.
160 static const MemMapEntry a15memmap[] = {
161 /* Space up to 0x8000000 is reserved for a boot ROM */
162 [VIRT_FLASH] = { 0, 0x08000000 },
163 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
164 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
165 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
166 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
167 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
168 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
169 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
170 /* This redistributor space allows up to 2*64kB*123 CPUs */
171 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
172 [VIRT_UART] = { 0x09000000, 0x00001000 },
173 [VIRT_RTC] = { 0x09010000, 0x00001000 },
174 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
175 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
176 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
177 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
178 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
179 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
180 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
181 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
182 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
183 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
184 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
185 /* Second PCIe window, 512GB wide at the 512GB boundary */
186 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
189 static const int a15irqmap[] = {
190 [VIRT_UART] = 1,
191 [VIRT_RTC] = 2,
192 [VIRT_PCIE] = 3, /* ... to 6 */
193 [VIRT_GPIO] = 7,
194 [VIRT_SECURE_UART] = 8,
195 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
196 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
197 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
200 static const char *valid_cpus[] = {
201 "cortex-a15",
202 "cortex-a53",
203 "cortex-a57",
204 "host",
205 NULL
208 static bool cpuname_valid(const char *cpu)
210 int i;
212 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
213 if (strcmp(cpu, valid_cpus[i]) == 0) {
214 return true;
217 return false;
220 static void create_fdt(VirtMachineState *vms)
222 void *fdt = create_device_tree(&vms->fdt_size);
224 if (!fdt) {
225 error_report("create_device_tree() failed");
226 exit(1);
229 vms->fdt = fdt;
231 /* Header */
232 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
233 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
234 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
237 * /chosen and /memory nodes must exist for load_dtb
238 * to fill in necessary properties later
240 qemu_fdt_add_subnode(fdt, "/chosen");
241 qemu_fdt_add_subnode(fdt, "/memory");
242 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
244 /* Clock node, for the benefit of the UART. The kernel device tree
245 * binding documentation claims the PL011 node clock properties are
246 * optional but in practice if you omit them the kernel refuses to
247 * probe for the device.
249 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
250 qemu_fdt_add_subnode(fdt, "/apb-pclk");
251 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
252 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
253 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
254 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
255 "clk24mhz");
256 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
260 static void fdt_add_psci_node(const VirtMachineState *vms)
262 uint32_t cpu_suspend_fn;
263 uint32_t cpu_off_fn;
264 uint32_t cpu_on_fn;
265 uint32_t migrate_fn;
266 void *fdt = vms->fdt;
267 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
269 if (!vms->using_psci) {
270 return;
273 qemu_fdt_add_subnode(fdt, "/psci");
274 if (armcpu->psci_version == 2) {
275 const char comp[] = "arm,psci-0.2\0arm,psci";
276 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
278 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
279 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
280 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
281 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
282 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
283 } else {
284 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
285 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
286 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
288 } else {
289 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
291 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
292 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
293 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
294 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
297 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
298 * to the instruction that should be used to invoke PSCI functions.
299 * However, the device tree binding uses 'method' instead, so that is
300 * what we should use here.
302 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
304 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
305 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
306 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
307 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
310 static void fdt_add_timer_nodes(const VirtMachineState *vms, int gictype)
312 /* Note that on A15 h/w these interrupts are level-triggered,
313 * but for the GIC implementation provided by both QEMU and KVM
314 * they are edge-triggered.
316 ARMCPU *armcpu;
317 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
319 if (gictype == 2) {
320 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
321 GIC_FDT_IRQ_PPI_CPU_WIDTH,
322 (1 << vms->smp_cpus) - 1);
325 qemu_fdt_add_subnode(vms->fdt, "/timer");
327 armcpu = ARM_CPU(qemu_get_cpu(0));
328 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
329 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
330 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
331 compat, sizeof(compat));
332 } else {
333 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
334 "arm,armv7-timer");
336 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
337 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
338 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
339 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
340 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
341 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
344 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
346 int cpu;
347 int addr_cells = 1;
348 unsigned int i;
351 * From Documentation/devicetree/bindings/arm/cpus.txt
352 * On ARM v8 64-bit systems value should be set to 2,
353 * that corresponds to the MPIDR_EL1 register size.
354 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
355 * in the system, #address-cells can be set to 1, since
356 * MPIDR_EL1[63:32] bits are not used for CPUs
357 * identification.
359 * Here we actually don't know whether our system is 32- or 64-bit one.
360 * The simplest way to go is to examine affinity IDs of all our CPUs. If
361 * at least one of them has Aff3 populated, we set #address-cells to 2.
363 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
364 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
366 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
367 addr_cells = 2;
368 break;
372 qemu_fdt_add_subnode(vms->fdt, "/cpus");
373 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
374 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
376 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
377 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
378 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
380 qemu_fdt_add_subnode(vms->fdt, nodename);
381 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
382 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
383 armcpu->dtb_compatible);
385 if (vms->using_psci && vms->smp_cpus > 1) {
386 qemu_fdt_setprop_string(vms->fdt, nodename,
387 "enable-method", "psci");
390 if (addr_cells == 2) {
391 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
392 armcpu->mp_affinity);
393 } else {
394 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
395 armcpu->mp_affinity);
398 i = numa_get_node_for_cpu(cpu);
399 if (i < nb_numa_nodes) {
400 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", i);
403 g_free(nodename);
407 static void fdt_add_its_gic_node(VirtMachineState *vms)
409 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
410 qemu_fdt_add_subnode(vms->fdt, "/intc/its");
411 qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
412 "arm,gic-v3-its");
413 qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
414 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
415 2, vms->memmap[VIRT_GIC_ITS].base,
416 2, vms->memmap[VIRT_GIC_ITS].size);
417 qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
420 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
422 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
423 qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
424 qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
425 "arm,gic-v2m-frame");
426 qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
427 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
428 2, vms->memmap[VIRT_GIC_V2M].base,
429 2, vms->memmap[VIRT_GIC_V2M].size);
430 qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
433 static void fdt_add_gic_node(VirtMachineState *vms, int type)
435 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
436 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
438 qemu_fdt_add_subnode(vms->fdt, "/intc");
439 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
440 qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
441 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
442 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
443 qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
444 if (type == 3) {
445 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
446 "arm,gic-v3");
447 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
448 2, vms->memmap[VIRT_GIC_DIST].base,
449 2, vms->memmap[VIRT_GIC_DIST].size,
450 2, vms->memmap[VIRT_GIC_REDIST].base,
451 2, vms->memmap[VIRT_GIC_REDIST].size);
452 } else {
453 /* 'cortex-a15-gic' means 'GIC v2' */
454 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
455 "arm,cortex-a15-gic");
456 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
457 2, vms->memmap[VIRT_GIC_DIST].base,
458 2, vms->memmap[VIRT_GIC_DIST].size,
459 2, vms->memmap[VIRT_GIC_CPU].base,
460 2, vms->memmap[VIRT_GIC_CPU].size);
463 qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
466 static void fdt_add_pmu_nodes(const VirtMachineState *vms, int gictype)
468 CPUState *cpu;
469 ARMCPU *armcpu;
470 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
472 CPU_FOREACH(cpu) {
473 armcpu = ARM_CPU(cpu);
474 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
475 !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
476 return;
480 if (gictype == 2) {
481 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
482 GIC_FDT_IRQ_PPI_CPU_WIDTH,
483 (1 << vms->smp_cpus) - 1);
486 armcpu = ARM_CPU(qemu_get_cpu(0));
487 qemu_fdt_add_subnode(vms->fdt, "/pmu");
488 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
489 const char compat[] = "arm,armv8-pmuv3";
490 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
491 compat, sizeof(compat));
492 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
493 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
497 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
499 const char *itsclass = its_class_name();
500 DeviceState *dev;
502 if (!itsclass) {
503 /* Do nothing if not supported */
504 return;
507 dev = qdev_create(NULL, itsclass);
509 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
510 &error_abort);
511 qdev_init_nofail(dev);
512 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
514 fdt_add_its_gic_node(vms);
517 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
519 int i;
520 int irq = vms->irqmap[VIRT_GIC_V2M];
521 DeviceState *dev;
523 dev = qdev_create(NULL, "arm-gicv2m");
524 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
525 qdev_prop_set_uint32(dev, "base-spi", irq);
526 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
527 qdev_init_nofail(dev);
529 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
530 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
533 fdt_add_v2m_gic_node(vms);
536 static void create_gic(VirtMachineState *vms, qemu_irq *pic, int type,
537 bool secure, bool no_its)
539 /* We create a standalone GIC */
540 DeviceState *gicdev;
541 SysBusDevice *gicbusdev;
542 const char *gictype;
543 int i;
545 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
547 gicdev = qdev_create(NULL, gictype);
548 qdev_prop_set_uint32(gicdev, "revision", type);
549 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
550 /* Note that the num-irq property counts both internal and external
551 * interrupts; there are always 32 of the former (mandated by GIC spec).
553 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
554 if (!kvm_irqchip_in_kernel()) {
555 qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
557 qdev_init_nofail(gicdev);
558 gicbusdev = SYS_BUS_DEVICE(gicdev);
559 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
560 if (type == 3) {
561 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
562 } else {
563 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
566 /* Wire the outputs from each CPU's generic timer to the
567 * appropriate GIC PPI inputs, and the GIC's IRQ output to
568 * the CPU's IRQ input.
570 for (i = 0; i < smp_cpus; i++) {
571 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
572 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
573 int irq;
574 /* Mapping from the output timer irq lines from the CPU to the
575 * GIC PPI inputs we use for the virt board.
577 const int timer_irq[] = {
578 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
579 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
580 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
581 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
584 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
585 qdev_connect_gpio_out(cpudev, irq,
586 qdev_get_gpio_in(gicdev,
587 ppibase + timer_irq[irq]));
590 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
591 sysbus_connect_irq(gicbusdev, i + smp_cpus,
592 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
595 for (i = 0; i < NUM_IRQS; i++) {
596 pic[i] = qdev_get_gpio_in(gicdev, i);
599 fdt_add_gic_node(vms, type);
601 if (type == 3 && !no_its) {
602 create_its(vms, gicdev);
603 } else if (type == 2) {
604 create_v2m(vms, pic);
608 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
609 MemoryRegion *mem, CharDriverState *chr)
611 char *nodename;
612 hwaddr base = vms->memmap[uart].base;
613 hwaddr size = vms->memmap[uart].size;
614 int irq = vms->irqmap[uart];
615 const char compat[] = "arm,pl011\0arm,primecell";
616 const char clocknames[] = "uartclk\0apb_pclk";
617 DeviceState *dev = qdev_create(NULL, "pl011");
618 SysBusDevice *s = SYS_BUS_DEVICE(dev);
620 qdev_prop_set_chr(dev, "chardev", chr);
621 qdev_init_nofail(dev);
622 memory_region_add_subregion(mem, base,
623 sysbus_mmio_get_region(s, 0));
624 sysbus_connect_irq(s, 0, pic[irq]);
626 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
627 qemu_fdt_add_subnode(vms->fdt, nodename);
628 /* Note that we can't use setprop_string because of the embedded NUL */
629 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
630 compat, sizeof(compat));
631 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
632 2, base, 2, size);
633 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
634 GIC_FDT_IRQ_TYPE_SPI, irq,
635 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
636 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
637 vms->clock_phandle, vms->clock_phandle);
638 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
639 clocknames, sizeof(clocknames));
641 if (uart == VIRT_UART) {
642 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
643 } else {
644 /* Mark as not usable by the normal world */
645 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
646 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
649 g_free(nodename);
652 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
654 char *nodename;
655 hwaddr base = vms->memmap[VIRT_RTC].base;
656 hwaddr size = vms->memmap[VIRT_RTC].size;
657 int irq = vms->irqmap[VIRT_RTC];
658 const char compat[] = "arm,pl031\0arm,primecell";
660 sysbus_create_simple("pl031", base, pic[irq]);
662 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
663 qemu_fdt_add_subnode(vms->fdt, nodename);
664 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
665 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
666 2, base, 2, size);
667 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
668 GIC_FDT_IRQ_TYPE_SPI, irq,
669 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
670 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
671 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
672 g_free(nodename);
675 static DeviceState *gpio_key_dev;
676 static void virt_powerdown_req(Notifier *n, void *opaque)
678 /* use gpio Pin 3 for power button event */
679 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
682 static Notifier virt_system_powerdown_notifier = {
683 .notify = virt_powerdown_req
686 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
688 char *nodename;
689 DeviceState *pl061_dev;
690 hwaddr base = vms->memmap[VIRT_GPIO].base;
691 hwaddr size = vms->memmap[VIRT_GPIO].size;
692 int irq = vms->irqmap[VIRT_GPIO];
693 const char compat[] = "arm,pl061\0arm,primecell";
695 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
697 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
698 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
699 qemu_fdt_add_subnode(vms->fdt, nodename);
700 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
701 2, base, 2, size);
702 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
703 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
704 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
705 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
706 GIC_FDT_IRQ_TYPE_SPI, irq,
707 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
708 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
709 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
710 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
712 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
713 qdev_get_gpio_in(pl061_dev, 3));
714 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
715 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
716 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
717 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
719 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
720 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
721 "label", "GPIO Key Poweroff");
722 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
723 KEY_POWER);
724 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
725 "gpios", phandle, 3, 0);
727 /* connect powerdown request */
728 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
730 g_free(nodename);
733 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
735 int i;
736 hwaddr size = vms->memmap[VIRT_MMIO].size;
738 /* We create the transports in forwards order. Since qbus_realize()
739 * prepends (not appends) new child buses, the incrementing loop below will
740 * create a list of virtio-mmio buses with decreasing base addresses.
742 * When a -device option is processed from the command line,
743 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
744 * order. The upshot is that -device options in increasing command line
745 * order are mapped to virtio-mmio buses with decreasing base addresses.
747 * When this code was originally written, that arrangement ensured that the
748 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
749 * the first -device on the command line. (The end-to-end order is a
750 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
751 * guest kernel's name-to-address assignment strategy.)
753 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
754 * the message, if not necessarily the code, of commit 70161ff336.
755 * Therefore the loop now establishes the inverse of the original intent.
757 * Unfortunately, we can't counteract the kernel change by reversing the
758 * loop; it would break existing command lines.
760 * In any case, the kernel makes no guarantee about the stability of
761 * enumeration order of virtio devices (as demonstrated by it changing
762 * between kernel versions). For reliable and stable identification
763 * of disks users must use UUIDs or similar mechanisms.
765 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
766 int irq = vms->irqmap[VIRT_MMIO] + i;
767 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
769 sysbus_create_simple("virtio-mmio", base, pic[irq]);
772 /* We add dtb nodes in reverse order so that they appear in the finished
773 * device tree lowest address first.
775 * Note that this mapping is independent of the loop above. The previous
776 * loop influences virtio device to virtio transport assignment, whereas
777 * this loop controls how virtio transports are laid out in the dtb.
779 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
780 char *nodename;
781 int irq = vms->irqmap[VIRT_MMIO] + i;
782 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
784 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
785 qemu_fdt_add_subnode(vms->fdt, nodename);
786 qemu_fdt_setprop_string(vms->fdt, nodename,
787 "compatible", "virtio,mmio");
788 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
789 2, base, 2, size);
790 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
791 GIC_FDT_IRQ_TYPE_SPI, irq,
792 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
793 g_free(nodename);
797 static void create_one_flash(const char *name, hwaddr flashbase,
798 hwaddr flashsize, const char *file,
799 MemoryRegion *sysmem)
801 /* Create and map a single flash device. We use the same
802 * parameters as the flash devices on the Versatile Express board.
804 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
805 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
806 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
807 const uint64_t sectorlength = 256 * 1024;
809 if (dinfo) {
810 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
811 &error_abort);
814 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
815 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
816 qdev_prop_set_uint8(dev, "width", 4);
817 qdev_prop_set_uint8(dev, "device-width", 2);
818 qdev_prop_set_bit(dev, "big-endian", false);
819 qdev_prop_set_uint16(dev, "id0", 0x89);
820 qdev_prop_set_uint16(dev, "id1", 0x18);
821 qdev_prop_set_uint16(dev, "id2", 0x00);
822 qdev_prop_set_uint16(dev, "id3", 0x00);
823 qdev_prop_set_string(dev, "name", name);
824 qdev_init_nofail(dev);
826 memory_region_add_subregion(sysmem, flashbase,
827 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
829 if (file) {
830 char *fn;
831 int image_size;
833 if (drive_get(IF_PFLASH, 0, 0)) {
834 error_report("The contents of the first flash device may be "
835 "specified with -bios or with -drive if=pflash... "
836 "but you cannot use both options at once");
837 exit(1);
839 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
840 if (!fn) {
841 error_report("Could not find ROM image '%s'", file);
842 exit(1);
844 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
845 g_free(fn);
846 if (image_size < 0) {
847 error_report("Could not load ROM image '%s'", file);
848 exit(1);
853 static void create_flash(const VirtMachineState *vms,
854 MemoryRegion *sysmem,
855 MemoryRegion *secure_sysmem)
857 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
858 * Any file passed via -bios goes in the first of these.
859 * sysmem is the system memory space. secure_sysmem is the secure view
860 * of the system, and the first flash device should be made visible only
861 * there. The second flash device is visible to both secure and nonsecure.
862 * If sysmem == secure_sysmem this means there is no separate Secure
863 * address space and both flash devices are generally visible.
865 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
866 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
867 char *nodename;
869 create_one_flash("virt.flash0", flashbase, flashsize,
870 bios_name, secure_sysmem);
871 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
872 NULL, sysmem);
874 if (sysmem == secure_sysmem) {
875 /* Report both flash devices as a single node in the DT */
876 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
877 qemu_fdt_add_subnode(vms->fdt, nodename);
878 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
879 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
880 2, flashbase, 2, flashsize,
881 2, flashbase + flashsize, 2, flashsize);
882 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
883 g_free(nodename);
884 } else {
885 /* Report the devices as separate nodes so we can mark one as
886 * only visible to the secure world.
888 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
889 qemu_fdt_add_subnode(vms->fdt, nodename);
890 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
891 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
892 2, flashbase, 2, flashsize);
893 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
894 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
895 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
896 g_free(nodename);
898 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
899 qemu_fdt_add_subnode(vms->fdt, nodename);
900 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
901 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
902 2, flashbase + flashsize, 2, flashsize);
903 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
904 g_free(nodename);
908 static void create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
910 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
911 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
912 FWCfgState *fw_cfg;
913 char *nodename;
915 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
916 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
918 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
919 qemu_fdt_add_subnode(vms->fdt, nodename);
920 qemu_fdt_setprop_string(vms->fdt, nodename,
921 "compatible", "qemu,fw-cfg-mmio");
922 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
923 2, base, 2, size);
924 g_free(nodename);
927 static void create_pcie_irq_map(const VirtMachineState *vms,
928 uint32_t gic_phandle,
929 int first_irq, const char *nodename)
931 int devfn, pin;
932 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
933 uint32_t *irq_map = full_irq_map;
935 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
936 for (pin = 0; pin < 4; pin++) {
937 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
938 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
939 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
940 int i;
942 uint32_t map[] = {
943 devfn << 8, 0, 0, /* devfn */
944 pin + 1, /* PCI pin */
945 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
947 /* Convert map to big endian */
948 for (i = 0; i < 10; i++) {
949 irq_map[i] = cpu_to_be32(map[i]);
951 irq_map += 10;
955 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
956 full_irq_map, sizeof(full_irq_map));
958 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
959 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
960 0x7 /* PCI irq */);
963 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic,
964 bool use_highmem)
966 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
967 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
968 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
969 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
970 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
971 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
972 hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
973 hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
974 hwaddr base = base_mmio;
975 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
976 int irq = vms->irqmap[VIRT_PCIE];
977 MemoryRegion *mmio_alias;
978 MemoryRegion *mmio_reg;
979 MemoryRegion *ecam_alias;
980 MemoryRegion *ecam_reg;
981 DeviceState *dev;
982 char *nodename;
983 int i;
984 PCIHostState *pci;
986 dev = qdev_create(NULL, TYPE_GPEX_HOST);
987 qdev_init_nofail(dev);
989 /* Map only the first size_ecam bytes of ECAM space */
990 ecam_alias = g_new0(MemoryRegion, 1);
991 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
992 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
993 ecam_reg, 0, size_ecam);
994 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
996 /* Map the MMIO window into system address space so as to expose
997 * the section of PCI MMIO space which starts at the same base address
998 * (ie 1:1 mapping for that part of PCI MMIO space visible through
999 * the window).
1001 mmio_alias = g_new0(MemoryRegion, 1);
1002 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1003 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1004 mmio_reg, base_mmio, size_mmio);
1005 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1007 if (use_highmem) {
1008 /* Map high MMIO space */
1009 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1011 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1012 mmio_reg, base_mmio_high, size_mmio_high);
1013 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1014 high_mmio_alias);
1017 /* Map IO port space */
1018 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1020 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1021 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1024 pci = PCI_HOST_BRIDGE(dev);
1025 if (pci->bus) {
1026 for (i = 0; i < nb_nics; i++) {
1027 NICInfo *nd = &nd_table[i];
1029 if (!nd->model) {
1030 nd->model = g_strdup("virtio");
1033 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1037 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1038 qemu_fdt_add_subnode(vms->fdt, nodename);
1039 qemu_fdt_setprop_string(vms->fdt, nodename,
1040 "compatible", "pci-host-ecam-generic");
1041 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1042 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1043 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1044 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1045 nr_pcie_buses - 1);
1046 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1048 if (vms->msi_phandle) {
1049 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1050 vms->msi_phandle);
1053 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1054 2, base_ecam, 2, size_ecam);
1056 if (use_highmem) {
1057 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1058 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1059 2, base_pio, 2, size_pio,
1060 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1061 2, base_mmio, 2, size_mmio,
1062 1, FDT_PCI_RANGE_MMIO_64BIT,
1063 2, base_mmio_high,
1064 2, base_mmio_high, 2, size_mmio_high);
1065 } else {
1066 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1067 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1068 2, base_pio, 2, size_pio,
1069 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1070 2, base_mmio, 2, size_mmio);
1073 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1074 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1076 g_free(nodename);
1079 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1081 DeviceState *dev;
1082 SysBusDevice *s;
1083 int i;
1084 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1085 MemoryRegion *sysmem = get_system_memory();
1087 platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1088 platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1089 platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1090 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1092 fdt_params->system_params = &platform_bus_params;
1093 fdt_params->binfo = &vms->bootinfo;
1094 fdt_params->intc = "/intc";
1096 * register a machine init done notifier that creates the device tree
1097 * nodes of the platform bus and its children dynamic sysbus devices
1099 arm_register_platform_bus_fdt_creator(fdt_params);
1101 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1102 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1103 qdev_prop_set_uint32(dev, "num_irqs",
1104 platform_bus_params.platform_bus_num_irqs);
1105 qdev_prop_set_uint32(dev, "mmio_size",
1106 platform_bus_params.platform_bus_size);
1107 qdev_init_nofail(dev);
1108 s = SYS_BUS_DEVICE(dev);
1110 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1111 int irqn = platform_bus_params.platform_bus_first_irq + i;
1112 sysbus_connect_irq(s, i, pic[irqn]);
1115 memory_region_add_subregion(sysmem,
1116 platform_bus_params.platform_bus_base,
1117 sysbus_mmio_get_region(s, 0));
1120 static void create_secure_ram(VirtMachineState *vms,
1121 MemoryRegion *secure_sysmem)
1123 MemoryRegion *secram = g_new(MemoryRegion, 1);
1124 char *nodename;
1125 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1126 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1128 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1129 vmstate_register_ram_global(secram);
1130 memory_region_add_subregion(secure_sysmem, base, secram);
1132 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1133 qemu_fdt_add_subnode(vms->fdt, nodename);
1134 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1135 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1136 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1137 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1139 g_free(nodename);
1142 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1144 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1145 bootinfo);
1147 *fdt_size = board->fdt_size;
1148 return board->fdt;
1151 static void virt_build_smbios(VirtGuestInfo *guest_info)
1153 FWCfgState *fw_cfg = guest_info->fw_cfg;
1154 uint8_t *smbios_tables, *smbios_anchor;
1155 size_t smbios_tables_len, smbios_anchor_len;
1156 const char *product = "QEMU Virtual Machine";
1158 if (!fw_cfg) {
1159 return;
1162 if (kvm_enabled()) {
1163 product = "KVM Virtual Machine";
1166 smbios_set_defaults("QEMU", product,
1167 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1169 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1170 &smbios_anchor, &smbios_anchor_len);
1172 if (smbios_anchor) {
1173 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
1174 smbios_tables, smbios_tables_len);
1175 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
1176 smbios_anchor, smbios_anchor_len);
1180 static
1181 void virt_guest_info_machine_done(Notifier *notifier, void *data)
1183 VirtGuestInfoState *guest_info_state = container_of(notifier,
1184 VirtGuestInfoState, machine_done);
1185 virt_acpi_setup(&guest_info_state->info);
1186 virt_build_smbios(&guest_info_state->info);
1189 static void machvirt_init(MachineState *machine)
1191 VirtMachineState *vms = VIRT_MACHINE(machine);
1192 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1193 qemu_irq pic[NUM_IRQS];
1194 MemoryRegion *sysmem = get_system_memory();
1195 MemoryRegion *secure_sysmem = NULL;
1196 int gic_version = vms->gic_version;
1197 int n, virt_max_cpus;
1198 MemoryRegion *ram = g_new(MemoryRegion, 1);
1199 const char *cpu_model = machine->cpu_model;
1200 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1201 VirtGuestInfo *guest_info = &guest_info_state->info;
1202 char **cpustr;
1203 ObjectClass *oc;
1204 const char *typename;
1205 CPUClass *cc;
1206 Error *err = NULL;
1207 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1208 uint8_t clustersz;
1210 if (!cpu_model) {
1211 cpu_model = "cortex-a15";
1214 /* We can probe only here because during property set
1215 * KVM is not available yet
1217 if (!gic_version) {
1218 if (!kvm_enabled()) {
1219 error_report("gic-version=host requires KVM");
1220 exit(1);
1223 gic_version = kvm_arm_vgic_probe();
1224 if (!gic_version) {
1225 error_report("Unable to determine GIC version supported by host");
1226 exit(1);
1230 /* Separate the actual CPU model name from any appended features */
1231 cpustr = g_strsplit(cpu_model, ",", 2);
1233 if (!cpuname_valid(cpustr[0])) {
1234 error_report("mach-virt: CPU %s not supported", cpustr[0]);
1235 exit(1);
1238 /* If we have an EL3 boot ROM then the assumption is that it will
1239 * implement PSCI itself, so disable QEMU's internal implementation
1240 * so it doesn't get in the way. Instead of starting secondary
1241 * CPUs in PSCI powerdown state we will start them all running and
1242 * let the boot ROM sort them out.
1243 * The usual case is that we do use QEMU's PSCI implementation.
1245 vms->using_psci = !(vms->secure && firmware_loaded);
1247 /* The maximum number of CPUs depends on the GIC version, or on how
1248 * many redistributors we can fit into the memory map.
1250 if (gic_version == 3) {
1251 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1252 clustersz = GICV3_TARGETLIST_BITS;
1253 } else {
1254 virt_max_cpus = GIC_NCPU;
1255 clustersz = GIC_TARGETLIST_BITS;
1258 if (max_cpus > virt_max_cpus) {
1259 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1260 "supported by machine 'mach-virt' (%d)",
1261 max_cpus, virt_max_cpus);
1262 exit(1);
1265 vms->smp_cpus = smp_cpus;
1267 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1268 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1269 exit(1);
1272 if (vms->secure) {
1273 if (kvm_enabled()) {
1274 error_report("mach-virt: KVM does not support Security extensions");
1275 exit(1);
1278 /* The Secure view of the world is the same as the NonSecure,
1279 * but with a few extra devices. Create it as a container region
1280 * containing the system memory at low priority; any secure-only
1281 * devices go in at higher priority and take precedence.
1283 secure_sysmem = g_new(MemoryRegion, 1);
1284 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1285 UINT64_MAX);
1286 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1289 create_fdt(vms);
1291 oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1292 if (!oc) {
1293 error_report("Unable to find CPU definition");
1294 exit(1);
1296 typename = object_class_get_name(oc);
1298 /* convert -smp CPU options specified by the user into global props */
1299 cc = CPU_CLASS(oc);
1300 cc->parse_features(typename, cpustr[1], &err);
1301 g_strfreev(cpustr);
1302 if (err) {
1303 error_report_err(err);
1304 exit(1);
1307 for (n = 0; n < smp_cpus; n++) {
1308 Object *cpuobj = object_new(typename);
1309 if (!vmc->disallow_affinity_adjustment) {
1310 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1311 * GIC's target-list limitations. 32-bit KVM hosts currently
1312 * always create clusters of 4 CPUs, but that is expected to
1313 * change when they gain support for gicv3. When KVM is enabled
1314 * it will override the changes we make here, therefore our
1315 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1316 * and to improve SGI efficiency.
1318 uint8_t aff1 = n / clustersz;
1319 uint8_t aff0 = n % clustersz;
1320 object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
1321 "mp-affinity", NULL);
1324 if (!vms->secure) {
1325 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1328 if (vms->using_psci) {
1329 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1330 "psci-conduit", NULL);
1332 /* Secondary CPUs start in PSCI powered-down state */
1333 if (n > 0) {
1334 object_property_set_bool(cpuobj, true,
1335 "start-powered-off", NULL);
1339 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1340 object_property_set_bool(cpuobj, false, "pmu", NULL);
1343 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1344 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1345 "reset-cbar", &error_abort);
1348 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1349 &error_abort);
1350 if (vms->secure) {
1351 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1352 "secure-memory", &error_abort);
1355 object_property_set_bool(cpuobj, true, "realized", NULL);
1357 fdt_add_timer_nodes(vms, gic_version);
1358 fdt_add_cpu_nodes(vms);
1359 fdt_add_psci_node(vms);
1361 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1362 machine->ram_size);
1363 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1365 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1367 create_gic(vms, pic, gic_version, vms->secure, vmc->no_its);
1369 fdt_add_pmu_nodes(vms, gic_version);
1371 create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1373 if (vms->secure) {
1374 create_secure_ram(vms, secure_sysmem);
1375 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1378 create_rtc(vms, pic);
1380 create_pcie(vms, pic, vms->highmem);
1382 create_gpio(vms, pic);
1384 /* Create mmio transports, so the user can create virtio backends
1385 * (which will be automatically plugged in to the transports). If
1386 * no backend is created the transport will just sit harmlessly idle.
1388 create_virtio_devices(vms, pic);
1390 create_fw_cfg(vms, &address_space_memory);
1391 rom_set_fw(fw_cfg_find());
1393 guest_info->smp_cpus = smp_cpus;
1394 guest_info->fw_cfg = fw_cfg_find();
1395 guest_info->memmap = vms->memmap;
1396 guest_info->irqmap = vms->irqmap;
1397 guest_info->use_highmem = vms->highmem;
1398 guest_info->gic_version = gic_version;
1399 guest_info->no_its = vmc->no_its;
1400 guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1401 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1403 vms->bootinfo.ram_size = machine->ram_size;
1404 vms->bootinfo.kernel_filename = machine->kernel_filename;
1405 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1406 vms->bootinfo.initrd_filename = machine->initrd_filename;
1407 vms->bootinfo.nb_cpus = smp_cpus;
1408 vms->bootinfo.board_id = -1;
1409 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1410 vms->bootinfo.get_dtb = machvirt_dtb;
1411 vms->bootinfo.firmware_loaded = firmware_loaded;
1412 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1415 * arm_load_kernel machine init done notifier registration must
1416 * happen before the platform_bus_create call. In this latter,
1417 * another notifier is registered which adds platform bus nodes.
1418 * Notifiers are executed in registration reverse order.
1420 create_platform_bus(vms, pic);
1423 static bool virt_get_secure(Object *obj, Error **errp)
1425 VirtMachineState *vms = VIRT_MACHINE(obj);
1427 return vms->secure;
1430 static void virt_set_secure(Object *obj, bool value, Error **errp)
1432 VirtMachineState *vms = VIRT_MACHINE(obj);
1434 vms->secure = value;
1437 static bool virt_get_highmem(Object *obj, Error **errp)
1439 VirtMachineState *vms = VIRT_MACHINE(obj);
1441 return vms->highmem;
1444 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1446 VirtMachineState *vms = VIRT_MACHINE(obj);
1448 vms->highmem = value;
1451 static char *virt_get_gic_version(Object *obj, Error **errp)
1453 VirtMachineState *vms = VIRT_MACHINE(obj);
1454 const char *val = vms->gic_version == 3 ? "3" : "2";
1456 return g_strdup(val);
1459 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1461 VirtMachineState *vms = VIRT_MACHINE(obj);
1463 if (!strcmp(value, "3")) {
1464 vms->gic_version = 3;
1465 } else if (!strcmp(value, "2")) {
1466 vms->gic_version = 2;
1467 } else if (!strcmp(value, "host")) {
1468 vms->gic_version = 0; /* Will probe later */
1469 } else {
1470 error_setg(errp, "Invalid gic-version value");
1471 error_append_hint(errp, "Valid values are 3, 2, host.\n");
1475 static void virt_machine_class_init(ObjectClass *oc, void *data)
1477 MachineClass *mc = MACHINE_CLASS(oc);
1479 mc->init = machvirt_init;
1480 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1481 * it later in machvirt_init, where we have more information about the
1482 * configuration of the particular instance.
1484 mc->max_cpus = 255;
1485 mc->has_dynamic_sysbus = true;
1486 mc->block_default_type = IF_VIRTIO;
1487 mc->no_cdrom = 1;
1488 mc->pci_allow_0_address = true;
1489 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1490 mc->minimum_page_bits = 12;
1493 static const TypeInfo virt_machine_info = {
1494 .name = TYPE_VIRT_MACHINE,
1495 .parent = TYPE_MACHINE,
1496 .abstract = true,
1497 .instance_size = sizeof(VirtMachineState),
1498 .class_size = sizeof(VirtMachineClass),
1499 .class_init = virt_machine_class_init,
1502 static void machvirt_machine_init(void)
1504 type_register_static(&virt_machine_info);
1506 type_init(machvirt_machine_init);
1508 static void virt_2_9_instance_init(Object *obj)
1510 VirtMachineState *vms = VIRT_MACHINE(obj);
1512 /* EL3 is disabled by default on virt: this makes us consistent
1513 * between KVM and TCG for this board, and it also allows us to
1514 * boot UEFI blobs which assume no TrustZone support.
1516 vms->secure = false;
1517 object_property_add_bool(obj, "secure", virt_get_secure,
1518 virt_set_secure, NULL);
1519 object_property_set_description(obj, "secure",
1520 "Set on/off to enable/disable the ARM "
1521 "Security Extensions (TrustZone)",
1522 NULL);
1524 /* High memory is enabled by default */
1525 vms->highmem = true;
1526 object_property_add_bool(obj, "highmem", virt_get_highmem,
1527 virt_set_highmem, NULL);
1528 object_property_set_description(obj, "highmem",
1529 "Set on/off to enable/disable using "
1530 "physical address space above 32 bits",
1531 NULL);
1532 /* Default GIC type is v2 */
1533 vms->gic_version = 2;
1534 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1535 virt_set_gic_version, NULL);
1536 object_property_set_description(obj, "gic-version",
1537 "Set GIC version. "
1538 "Valid values are 2, 3 and host", NULL);
1540 vms->memmap = a15memmap;
1541 vms->irqmap = a15irqmap;
1544 static void virt_machine_2_9_options(MachineClass *mc)
1547 DEFINE_VIRT_MACHINE_AS_LATEST(2, 9)
1549 #define VIRT_COMPAT_2_8 \
1550 HW_COMPAT_2_8
1552 static void virt_2_8_instance_init(Object *obj)
1554 virt_2_9_instance_init(obj);
1557 static void virt_machine_2_8_options(MachineClass *mc)
1559 virt_machine_2_9_options(mc);
1560 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1562 DEFINE_VIRT_MACHINE(2, 8)
1564 #define VIRT_COMPAT_2_7 \
1565 HW_COMPAT_2_7
1567 static void virt_2_7_instance_init(Object *obj)
1569 virt_2_8_instance_init(obj);
1572 static void virt_machine_2_7_options(MachineClass *mc)
1574 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1576 virt_machine_2_8_options(mc);
1577 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1578 /* ITS was introduced with 2.8 */
1579 vmc->no_its = true;
1580 /* Stick with 1K pages for migration compatibility */
1581 mc->minimum_page_bits = 0;
1583 DEFINE_VIRT_MACHINE(2, 7)
1585 #define VIRT_COMPAT_2_6 \
1586 HW_COMPAT_2_6
1588 static void virt_2_6_instance_init(Object *obj)
1590 virt_2_7_instance_init(obj);
1593 static void virt_machine_2_6_options(MachineClass *mc)
1595 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1597 virt_machine_2_7_options(mc);
1598 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1599 vmc->disallow_affinity_adjustment = true;
1600 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1601 vmc->no_pmu = true;
1603 DEFINE_VIRT_MACHINE(2, 6)