hw/display/xlnx_dp: Free FIFOs adding xlnx_dp_finalize()
[qemu/ar7.git] / hw / arm / virt.c
blobaa2bbd14e090449eb64cd4e700da84f0508637f3
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/datadir.h"
34 #include "qemu/units.h"
35 #include "qemu/option.h"
36 #include "monitor/qdev.h"
37 #include "qapi/error.h"
38 #include "hw/sysbus.h"
39 #include "hw/boards.h"
40 #include "hw/arm/boot.h"
41 #include "hw/arm/primecell.h"
42 #include "hw/arm/virt.h"
43 #include "hw/block/flash.h"
44 #include "hw/vfio/vfio-calxeda-xgmac.h"
45 #include "hw/vfio/vfio-amd-xgbe.h"
46 #include "hw/display/ramfb.h"
47 #include "net/net.h"
48 #include "sysemu/device_tree.h"
49 #include "sysemu/numa.h"
50 #include "sysemu/runstate.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/tpm.h"
53 #include "sysemu/kvm.h"
54 #include "hw/loader.h"
55 #include "exec/address-spaces.h"
56 #include "qemu/bitops.h"
57 #include "qemu/error-report.h"
58 #include "qemu/module.h"
59 #include "hw/pci-host/gpex.h"
60 #include "hw/virtio/virtio-pci.h"
61 #include "hw/arm/sysbus-fdt.h"
62 #include "hw/platform-bus.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/arm/fdt.h"
65 #include "hw/intc/arm_gic.h"
66 #include "hw/intc/arm_gicv3_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "standard-headers/linux/input.h"
73 #include "hw/arm/smmuv3.h"
74 #include "hw/acpi/acpi.h"
75 #include "target/arm/internals.h"
76 #include "hw/mem/pc-dimm.h"
77 #include "hw/mem/nvdimm.h"
78 #include "hw/acpi/generic_event_device.h"
79 #include "hw/virtio/virtio-iommu.h"
80 #include "hw/char/pl011.h"
81 #include "qemu/guest-random.h"
83 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
84 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
85 void *data) \
86 { \
87 MachineClass *mc = MACHINE_CLASS(oc); \
88 virt_machine_##major##_##minor##_options(mc); \
89 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
90 if (latest) { \
91 mc->alias = "virt"; \
92 } \
93 } \
94 static const TypeInfo machvirt_##major##_##minor##_info = { \
95 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
96 .parent = TYPE_VIRT_MACHINE, \
97 .class_init = virt_##major##_##minor##_class_init, \
98 }; \
99 static void machvirt_machine_##major##_##minor##_init(void) \
101 type_register_static(&machvirt_##major##_##minor##_info); \
103 type_init(machvirt_machine_##major##_##minor##_init);
105 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
106 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
107 #define DEFINE_VIRT_MACHINE(major, minor) \
108 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
111 /* Number of external interrupt lines to configure the GIC with */
112 #define NUM_IRQS 256
114 #define PLATFORM_BUS_NUM_IRQS 64
116 /* Legacy RAM limit in GB (< version 4.0) */
117 #define LEGACY_RAMLIMIT_GB 255
118 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
120 /* Addresses and sizes of our components.
121 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
122 * 128MB..256MB is used for miscellaneous device I/O.
123 * 256MB..1GB is reserved for possible future PCI support (ie where the
124 * PCI memory window will go if we add a PCI host controller).
125 * 1GB and up is RAM (which may happily spill over into the
126 * high memory region beyond 4GB).
127 * This represents a compromise between how much RAM can be given to
128 * a 32 bit VM and leaving space for expansion and in particular for PCI.
129 * Note that devices should generally be placed at multiples of 0x10000,
130 * to accommodate guests using 64K pages.
132 static const MemMapEntry base_memmap[] = {
133 /* Space up to 0x8000000 is reserved for a boot ROM */
134 [VIRT_FLASH] = { 0, 0x08000000 },
135 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
136 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
137 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
138 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
139 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
140 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
141 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
142 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
143 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
144 /* This redistributor space allows up to 2*64kB*123 CPUs */
145 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
146 [VIRT_UART] = { 0x09000000, 0x00001000 },
147 [VIRT_RTC] = { 0x09010000, 0x00001000 },
148 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
149 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
150 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
151 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
152 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
153 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
154 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
155 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
156 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
157 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
158 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
159 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
160 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
161 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
162 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
163 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
164 /* Actual RAM size depends on initial RAM and device memory settings */
165 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
169 * Highmem IO Regions: This memory map is floating, located after the RAM.
170 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
171 * top of the RAM, so that its base get the same alignment as the size,
172 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
173 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
174 * Note the extended_memmap is sized so that it eventually also includes the
175 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
176 * index of base_memmap).
178 static MemMapEntry extended_memmap[] = {
179 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
180 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
181 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
182 /* Second PCIe window */
183 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
186 static const int a15irqmap[] = {
187 [VIRT_UART] = 1,
188 [VIRT_RTC] = 2,
189 [VIRT_PCIE] = 3, /* ... to 6 */
190 [VIRT_GPIO] = 7,
191 [VIRT_SECURE_UART] = 8,
192 [VIRT_ACPI_GED] = 9,
193 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
194 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
195 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
196 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
199 static const char *valid_cpus[] = {
200 ARM_CPU_TYPE_NAME("cortex-a7"),
201 ARM_CPU_TYPE_NAME("cortex-a15"),
202 ARM_CPU_TYPE_NAME("cortex-a53"),
203 ARM_CPU_TYPE_NAME("cortex-a57"),
204 ARM_CPU_TYPE_NAME("cortex-a72"),
205 ARM_CPU_TYPE_NAME("host"),
206 ARM_CPU_TYPE_NAME("max"),
209 static bool cpu_type_valid(const char *cpu)
211 int i;
213 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
214 if (strcmp(cpu, valid_cpus[i]) == 0) {
215 return true;
218 return false;
221 static void create_kaslr_seed(MachineState *ms, const char *node)
223 uint64_t seed;
225 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
226 return;
228 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed);
231 static void create_fdt(VirtMachineState *vms)
233 MachineState *ms = MACHINE(vms);
234 int nb_numa_nodes = ms->numa_state->num_nodes;
235 void *fdt = create_device_tree(&vms->fdt_size);
237 if (!fdt) {
238 error_report("create_device_tree() failed");
239 exit(1);
242 ms->fdt = fdt;
244 /* Header */
245 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
246 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
247 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
249 /* /chosen must exist for load_dtb to fill in necessary properties later */
250 qemu_fdt_add_subnode(fdt, "/chosen");
251 create_kaslr_seed(ms, "/chosen");
253 if (vms->secure) {
254 qemu_fdt_add_subnode(fdt, "/secure-chosen");
255 create_kaslr_seed(ms, "/secure-chosen");
258 /* Clock node, for the benefit of the UART. The kernel device tree
259 * binding documentation claims the PL011 node clock properties are
260 * optional but in practice if you omit them the kernel refuses to
261 * probe for the device.
263 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
264 qemu_fdt_add_subnode(fdt, "/apb-pclk");
265 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
266 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
267 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
268 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
269 "clk24mhz");
270 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
272 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
273 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
274 uint32_t *matrix = g_malloc0(size);
275 int idx, i, j;
277 for (i = 0; i < nb_numa_nodes; i++) {
278 for (j = 0; j < nb_numa_nodes; j++) {
279 idx = (i * nb_numa_nodes + j) * 3;
280 matrix[idx + 0] = cpu_to_be32(i);
281 matrix[idx + 1] = cpu_to_be32(j);
282 matrix[idx + 2] =
283 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
287 qemu_fdt_add_subnode(fdt, "/distance-map");
288 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
289 "numa-distance-map-v1");
290 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
291 matrix, size);
292 g_free(matrix);
296 static void fdt_add_timer_nodes(const VirtMachineState *vms)
298 /* On real hardware these interrupts are level-triggered.
299 * On KVM they were edge-triggered before host kernel version 4.4,
300 * and level-triggered afterwards.
301 * On emulated QEMU they are level-triggered.
303 * Getting the DTB info about them wrong is awkward for some
304 * guest kernels:
305 * pre-4.8 ignore the DT and leave the interrupt configured
306 * with whatever the GIC reset value (or the bootloader) left it at
307 * 4.8 before rc6 honour the incorrect data by programming it back
308 * into the GIC, causing problems
309 * 4.8rc6 and later ignore the DT and always write "level triggered"
310 * into the GIC
312 * For backwards-compatibility, virt-2.8 and earlier will continue
313 * to say these are edge-triggered, but later machines will report
314 * the correct information.
316 ARMCPU *armcpu;
317 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
318 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
319 MachineState *ms = MACHINE(vms);
321 if (vmc->claim_edge_triggered_timers) {
322 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
325 if (vms->gic_version == VIRT_GIC_VERSION_2) {
326 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
327 GIC_FDT_IRQ_PPI_CPU_WIDTH,
328 (1 << MACHINE(vms)->smp.cpus) - 1);
331 qemu_fdt_add_subnode(ms->fdt, "/timer");
333 armcpu = ARM_CPU(qemu_get_cpu(0));
334 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
335 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
336 qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
337 compat, sizeof(compat));
338 } else {
339 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
340 "arm,armv7-timer");
342 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
343 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
344 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
345 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
346 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
347 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
350 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
352 int cpu;
353 int addr_cells = 1;
354 const MachineState *ms = MACHINE(vms);
355 int smp_cpus = ms->smp.cpus;
358 * From Documentation/devicetree/bindings/arm/cpus.txt
359 * On ARM v8 64-bit systems value should be set to 2,
360 * that corresponds to the MPIDR_EL1 register size.
361 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
362 * in the system, #address-cells can be set to 1, since
363 * MPIDR_EL1[63:32] bits are not used for CPUs
364 * identification.
366 * Here we actually don't know whether our system is 32- or 64-bit one.
367 * The simplest way to go is to examine affinity IDs of all our CPUs. If
368 * at least one of them has Aff3 populated, we set #address-cells to 2.
370 for (cpu = 0; cpu < smp_cpus; cpu++) {
371 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
373 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
374 addr_cells = 2;
375 break;
379 qemu_fdt_add_subnode(ms->fdt, "/cpus");
380 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
381 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
383 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
384 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
385 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
386 CPUState *cs = CPU(armcpu);
388 qemu_fdt_add_subnode(ms->fdt, nodename);
389 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
390 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
391 armcpu->dtb_compatible);
393 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
394 qemu_fdt_setprop_string(ms->fdt, nodename,
395 "enable-method", "psci");
398 if (addr_cells == 2) {
399 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
400 armcpu->mp_affinity);
401 } else {
402 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
403 armcpu->mp_affinity);
406 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
407 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
408 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
411 g_free(nodename);
415 static void fdt_add_its_gic_node(VirtMachineState *vms)
417 char *nodename;
418 MachineState *ms = MACHINE(vms);
420 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
421 nodename = g_strdup_printf("/intc/its@%" PRIx64,
422 vms->memmap[VIRT_GIC_ITS].base);
423 qemu_fdt_add_subnode(ms->fdt, nodename);
424 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
425 "arm,gic-v3-its");
426 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
427 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
428 2, vms->memmap[VIRT_GIC_ITS].base,
429 2, vms->memmap[VIRT_GIC_ITS].size);
430 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
431 g_free(nodename);
434 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
436 MachineState *ms = MACHINE(vms);
437 char *nodename;
439 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
440 vms->memmap[VIRT_GIC_V2M].base);
441 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
442 qemu_fdt_add_subnode(ms->fdt, nodename);
443 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
444 "arm,gic-v2m-frame");
445 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
446 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
447 2, vms->memmap[VIRT_GIC_V2M].base,
448 2, vms->memmap[VIRT_GIC_V2M].size);
449 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
450 g_free(nodename);
453 static void fdt_add_gic_node(VirtMachineState *vms)
455 MachineState *ms = MACHINE(vms);
456 char *nodename;
458 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
459 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
461 nodename = g_strdup_printf("/intc@%" PRIx64,
462 vms->memmap[VIRT_GIC_DIST].base);
463 qemu_fdt_add_subnode(ms->fdt, nodename);
464 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
465 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
466 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
467 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
468 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
469 if (vms->gic_version == VIRT_GIC_VERSION_3) {
470 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
472 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
473 "arm,gic-v3");
475 qemu_fdt_setprop_cell(ms->fdt, nodename,
476 "#redistributor-regions", nb_redist_regions);
478 if (nb_redist_regions == 1) {
479 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
480 2, vms->memmap[VIRT_GIC_DIST].base,
481 2, vms->memmap[VIRT_GIC_DIST].size,
482 2, vms->memmap[VIRT_GIC_REDIST].base,
483 2, vms->memmap[VIRT_GIC_REDIST].size);
484 } else {
485 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
486 2, vms->memmap[VIRT_GIC_DIST].base,
487 2, vms->memmap[VIRT_GIC_DIST].size,
488 2, vms->memmap[VIRT_GIC_REDIST].base,
489 2, vms->memmap[VIRT_GIC_REDIST].size,
490 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
491 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
494 if (vms->virt) {
495 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
496 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
497 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
499 } else {
500 /* 'cortex-a15-gic' means 'GIC v2' */
501 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
502 "arm,cortex-a15-gic");
503 if (!vms->virt) {
504 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
505 2, vms->memmap[VIRT_GIC_DIST].base,
506 2, vms->memmap[VIRT_GIC_DIST].size,
507 2, vms->memmap[VIRT_GIC_CPU].base,
508 2, vms->memmap[VIRT_GIC_CPU].size);
509 } else {
510 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
511 2, vms->memmap[VIRT_GIC_DIST].base,
512 2, vms->memmap[VIRT_GIC_DIST].size,
513 2, vms->memmap[VIRT_GIC_CPU].base,
514 2, vms->memmap[VIRT_GIC_CPU].size,
515 2, vms->memmap[VIRT_GIC_HYP].base,
516 2, vms->memmap[VIRT_GIC_HYP].size,
517 2, vms->memmap[VIRT_GIC_VCPU].base,
518 2, vms->memmap[VIRT_GIC_VCPU].size);
519 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
520 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
521 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
525 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
526 g_free(nodename);
529 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
531 ARMCPU *armcpu = ARM_CPU(first_cpu);
532 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
533 MachineState *ms = MACHINE(vms);
535 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
536 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
537 return;
540 if (vms->gic_version == VIRT_GIC_VERSION_2) {
541 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
542 GIC_FDT_IRQ_PPI_CPU_WIDTH,
543 (1 << MACHINE(vms)->smp.cpus) - 1);
546 qemu_fdt_add_subnode(ms->fdt, "/pmu");
547 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
548 const char compat[] = "arm,armv8-pmuv3";
549 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
550 compat, sizeof(compat));
551 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
552 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
556 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
558 DeviceState *dev;
559 MachineState *ms = MACHINE(vms);
560 int irq = vms->irqmap[VIRT_ACPI_GED];
561 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
563 if (ms->ram_slots) {
564 event |= ACPI_GED_MEM_HOTPLUG_EVT;
567 if (ms->nvdimms_state->is_enabled) {
568 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
571 dev = qdev_new(TYPE_ACPI_GED);
572 qdev_prop_set_uint32(dev, "ged-event", event);
574 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
575 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
576 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
578 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
580 return dev;
583 static void create_its(VirtMachineState *vms)
585 const char *itsclass = its_class_name();
586 DeviceState *dev;
588 if (!itsclass) {
589 /* Do nothing if not supported */
590 return;
593 dev = qdev_new(itsclass);
595 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
596 &error_abort);
597 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
598 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
600 fdt_add_its_gic_node(vms);
601 vms->msi_controller = VIRT_MSI_CTRL_ITS;
604 static void create_v2m(VirtMachineState *vms)
606 int i;
607 int irq = vms->irqmap[VIRT_GIC_V2M];
608 DeviceState *dev;
610 dev = qdev_new("arm-gicv2m");
611 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
612 qdev_prop_set_uint32(dev, "base-spi", irq);
613 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
614 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
616 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
617 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
618 qdev_get_gpio_in(vms->gic, irq + i));
621 fdt_add_v2m_gic_node(vms);
622 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
625 static void create_gic(VirtMachineState *vms)
627 MachineState *ms = MACHINE(vms);
628 /* We create a standalone GIC */
629 SysBusDevice *gicbusdev;
630 const char *gictype;
631 int type = vms->gic_version, i;
632 unsigned int smp_cpus = ms->smp.cpus;
633 uint32_t nb_redist_regions = 0;
635 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
637 vms->gic = qdev_new(gictype);
638 qdev_prop_set_uint32(vms->gic, "revision", type);
639 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
640 /* Note that the num-irq property counts both internal and external
641 * interrupts; there are always 32 of the former (mandated by GIC spec).
643 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
644 if (!kvm_irqchip_in_kernel()) {
645 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
648 if (type == 3) {
649 uint32_t redist0_capacity =
650 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
651 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
653 nb_redist_regions = virt_gicv3_redist_region_count(vms);
655 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
656 nb_redist_regions);
657 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
659 if (nb_redist_regions == 2) {
660 uint32_t redist1_capacity =
661 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
663 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
664 MIN(smp_cpus - redist0_count, redist1_capacity));
666 } else {
667 if (!kvm_irqchip_in_kernel()) {
668 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
669 vms->virt);
672 gicbusdev = SYS_BUS_DEVICE(vms->gic);
673 sysbus_realize_and_unref(gicbusdev, &error_fatal);
674 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
675 if (type == 3) {
676 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
677 if (nb_redist_regions == 2) {
678 sysbus_mmio_map(gicbusdev, 2,
679 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
681 } else {
682 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
683 if (vms->virt) {
684 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
685 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
689 /* Wire the outputs from each CPU's generic timer and the GICv3
690 * maintenance interrupt signal to the appropriate GIC PPI inputs,
691 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
693 for (i = 0; i < smp_cpus; i++) {
694 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
695 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
696 int irq;
697 /* Mapping from the output timer irq lines from the CPU to the
698 * GIC PPI inputs we use for the virt board.
700 const int timer_irq[] = {
701 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
702 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
703 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
704 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
707 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
708 qdev_connect_gpio_out(cpudev, irq,
709 qdev_get_gpio_in(vms->gic,
710 ppibase + timer_irq[irq]));
713 if (type == 3) {
714 qemu_irq irq = qdev_get_gpio_in(vms->gic,
715 ppibase + ARCH_GIC_MAINT_IRQ);
716 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
717 0, irq);
718 } else if (vms->virt) {
719 qemu_irq irq = qdev_get_gpio_in(vms->gic,
720 ppibase + ARCH_GIC_MAINT_IRQ);
721 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
724 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
725 qdev_get_gpio_in(vms->gic, ppibase
726 + VIRTUAL_PMU_IRQ));
728 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
729 sysbus_connect_irq(gicbusdev, i + smp_cpus,
730 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
731 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
732 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
733 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
734 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
737 fdt_add_gic_node(vms);
739 if (type == 3 && vms->its) {
740 create_its(vms);
741 } else if (type == 2) {
742 create_v2m(vms);
746 static void create_uart(const VirtMachineState *vms, int uart,
747 MemoryRegion *mem, Chardev *chr)
749 char *nodename;
750 hwaddr base = vms->memmap[uart].base;
751 hwaddr size = vms->memmap[uart].size;
752 int irq = vms->irqmap[uart];
753 const char compat[] = "arm,pl011\0arm,primecell";
754 const char clocknames[] = "uartclk\0apb_pclk";
755 DeviceState *dev = qdev_new(TYPE_PL011);
756 SysBusDevice *s = SYS_BUS_DEVICE(dev);
757 MachineState *ms = MACHINE(vms);
759 qdev_prop_set_chr(dev, "chardev", chr);
760 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
761 memory_region_add_subregion(mem, base,
762 sysbus_mmio_get_region(s, 0));
763 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
765 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
766 qemu_fdt_add_subnode(ms->fdt, nodename);
767 /* Note that we can't use setprop_string because of the embedded NUL */
768 qemu_fdt_setprop(ms->fdt, nodename, "compatible",
769 compat, sizeof(compat));
770 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
771 2, base, 2, size);
772 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
773 GIC_FDT_IRQ_TYPE_SPI, irq,
774 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
775 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
776 vms->clock_phandle, vms->clock_phandle);
777 qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
778 clocknames, sizeof(clocknames));
780 if (uart == VIRT_UART) {
781 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
782 } else {
783 /* Mark as not usable by the normal world */
784 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
785 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
787 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
788 nodename);
791 g_free(nodename);
794 static void create_rtc(const VirtMachineState *vms)
796 char *nodename;
797 hwaddr base = vms->memmap[VIRT_RTC].base;
798 hwaddr size = vms->memmap[VIRT_RTC].size;
799 int irq = vms->irqmap[VIRT_RTC];
800 const char compat[] = "arm,pl031\0arm,primecell";
801 MachineState *ms = MACHINE(vms);
803 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
805 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
806 qemu_fdt_add_subnode(ms->fdt, nodename);
807 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
808 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
809 2, base, 2, size);
810 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
811 GIC_FDT_IRQ_TYPE_SPI, irq,
812 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
813 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
814 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
815 g_free(nodename);
818 static DeviceState *gpio_key_dev;
819 static void virt_powerdown_req(Notifier *n, void *opaque)
821 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
823 if (s->acpi_dev) {
824 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
825 } else {
826 /* use gpio Pin 3 for power button event */
827 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
831 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
832 uint32_t phandle)
834 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
835 qdev_get_gpio_in(pl061_dev, 3));
837 qemu_fdt_add_subnode(fdt, "/gpio-keys");
838 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
839 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#size-cells", 0);
840 qemu_fdt_setprop_cell(fdt, "/gpio-keys", "#address-cells", 1);
842 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
843 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
844 "label", "GPIO Key Poweroff");
845 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
846 KEY_POWER);
847 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
848 "gpios", phandle, 3, 0);
851 #define SECURE_GPIO_POWEROFF 0
852 #define SECURE_GPIO_RESET 1
854 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
855 uint32_t phandle)
857 DeviceState *gpio_pwr_dev;
859 /* gpio-pwr */
860 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
862 /* connect secure pl061 to gpio-pwr */
863 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
864 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
865 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
866 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
868 qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
869 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
870 "gpio-poweroff");
871 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
872 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
873 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
874 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
875 "okay");
877 qemu_fdt_add_subnode(fdt, "/gpio-restart");
878 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
879 "gpio-restart");
880 qemu_fdt_setprop_cells(fdt, "/gpio-restart",
881 "gpios", phandle, SECURE_GPIO_RESET, 0);
882 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
883 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
884 "okay");
887 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
888 MemoryRegion *mem)
890 char *nodename;
891 DeviceState *pl061_dev;
892 hwaddr base = vms->memmap[gpio].base;
893 hwaddr size = vms->memmap[gpio].size;
894 int irq = vms->irqmap[gpio];
895 const char compat[] = "arm,pl061\0arm,primecell";
896 SysBusDevice *s;
897 MachineState *ms = MACHINE(vms);
899 pl061_dev = qdev_new("pl061");
900 s = SYS_BUS_DEVICE(pl061_dev);
901 sysbus_realize_and_unref(s, &error_fatal);
902 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
903 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
905 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
906 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
907 qemu_fdt_add_subnode(ms->fdt, nodename);
908 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
909 2, base, 2, size);
910 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
911 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
912 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
913 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
914 GIC_FDT_IRQ_TYPE_SPI, irq,
915 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
916 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
917 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
918 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
920 if (gpio != VIRT_GPIO) {
921 /* Mark as not usable by the normal world */
922 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
923 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
925 g_free(nodename);
927 /* Child gpio devices */
928 if (gpio == VIRT_GPIO) {
929 create_gpio_keys(ms->fdt, pl061_dev, phandle);
930 } else {
931 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
935 static void create_virtio_devices(const VirtMachineState *vms)
937 int i;
938 hwaddr size = vms->memmap[VIRT_MMIO].size;
939 MachineState *ms = MACHINE(vms);
941 /* We create the transports in forwards order. Since qbus_realize()
942 * prepends (not appends) new child buses, the incrementing loop below will
943 * create a list of virtio-mmio buses with decreasing base addresses.
945 * When a -device option is processed from the command line,
946 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
947 * order. The upshot is that -device options in increasing command line
948 * order are mapped to virtio-mmio buses with decreasing base addresses.
950 * When this code was originally written, that arrangement ensured that the
951 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
952 * the first -device on the command line. (The end-to-end order is a
953 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
954 * guest kernel's name-to-address assignment strategy.)
956 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
957 * the message, if not necessarily the code, of commit 70161ff336.
958 * Therefore the loop now establishes the inverse of the original intent.
960 * Unfortunately, we can't counteract the kernel change by reversing the
961 * loop; it would break existing command lines.
963 * In any case, the kernel makes no guarantee about the stability of
964 * enumeration order of virtio devices (as demonstrated by it changing
965 * between kernel versions). For reliable and stable identification
966 * of disks users must use UUIDs or similar mechanisms.
968 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
969 int irq = vms->irqmap[VIRT_MMIO] + i;
970 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
972 sysbus_create_simple("virtio-mmio", base,
973 qdev_get_gpio_in(vms->gic, irq));
976 /* We add dtb nodes in reverse order so that they appear in the finished
977 * device tree lowest address first.
979 * Note that this mapping is independent of the loop above. The previous
980 * loop influences virtio device to virtio transport assignment, whereas
981 * this loop controls how virtio transports are laid out in the dtb.
983 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
984 char *nodename;
985 int irq = vms->irqmap[VIRT_MMIO] + i;
986 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
988 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
989 qemu_fdt_add_subnode(ms->fdt, nodename);
990 qemu_fdt_setprop_string(ms->fdt, nodename,
991 "compatible", "virtio,mmio");
992 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
993 2, base, 2, size);
994 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
995 GIC_FDT_IRQ_TYPE_SPI, irq,
996 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
997 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
998 g_free(nodename);
1002 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1004 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1005 const char *name,
1006 const char *alias_prop_name)
1009 * Create a single flash device. We use the same parameters as
1010 * the flash devices on the Versatile Express board.
1012 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1014 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1015 qdev_prop_set_uint8(dev, "width", 4);
1016 qdev_prop_set_uint8(dev, "device-width", 2);
1017 qdev_prop_set_bit(dev, "big-endian", false);
1018 qdev_prop_set_uint16(dev, "id0", 0x89);
1019 qdev_prop_set_uint16(dev, "id1", 0x18);
1020 qdev_prop_set_uint16(dev, "id2", 0x00);
1021 qdev_prop_set_uint16(dev, "id3", 0x00);
1022 qdev_prop_set_string(dev, "name", name);
1023 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1024 object_property_add_alias(OBJECT(vms), alias_prop_name,
1025 OBJECT(dev), "drive");
1026 return PFLASH_CFI01(dev);
1029 static void virt_flash_create(VirtMachineState *vms)
1031 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1032 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1035 static void virt_flash_map1(PFlashCFI01 *flash,
1036 hwaddr base, hwaddr size,
1037 MemoryRegion *sysmem)
1039 DeviceState *dev = DEVICE(flash);
1041 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1042 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1043 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1044 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1046 memory_region_add_subregion(sysmem, base,
1047 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1048 0));
1051 static void virt_flash_map(VirtMachineState *vms,
1052 MemoryRegion *sysmem,
1053 MemoryRegion *secure_sysmem)
1056 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1057 * sysmem is the system memory space. secure_sysmem is the secure view
1058 * of the system, and the first flash device should be made visible only
1059 * there. The second flash device is visible to both secure and nonsecure.
1060 * If sysmem == secure_sysmem this means there is no separate Secure
1061 * address space and both flash devices are generally visible.
1063 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1064 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1066 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1067 secure_sysmem);
1068 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1069 sysmem);
1072 static void virt_flash_fdt(VirtMachineState *vms,
1073 MemoryRegion *sysmem,
1074 MemoryRegion *secure_sysmem)
1076 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1077 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1078 MachineState *ms = MACHINE(vms);
1079 char *nodename;
1081 if (sysmem == secure_sysmem) {
1082 /* Report both flash devices as a single node in the DT */
1083 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1084 qemu_fdt_add_subnode(ms->fdt, nodename);
1085 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1086 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1087 2, flashbase, 2, flashsize,
1088 2, flashbase + flashsize, 2, flashsize);
1089 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1090 g_free(nodename);
1091 } else {
1093 * Report the devices as separate nodes so we can mark one as
1094 * only visible to the secure world.
1096 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1097 qemu_fdt_add_subnode(ms->fdt, nodename);
1098 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1099 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1100 2, flashbase, 2, flashsize);
1101 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1102 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1103 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1104 g_free(nodename);
1106 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1107 qemu_fdt_add_subnode(ms->fdt, nodename);
1108 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1109 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1110 2, flashbase + flashsize, 2, flashsize);
1111 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1112 g_free(nodename);
1116 static bool virt_firmware_init(VirtMachineState *vms,
1117 MemoryRegion *sysmem,
1118 MemoryRegion *secure_sysmem)
1120 int i;
1121 const char *bios_name;
1122 BlockBackend *pflash_blk0;
1124 /* Map legacy -drive if=pflash to machine properties */
1125 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1126 pflash_cfi01_legacy_drive(vms->flash[i],
1127 drive_get(IF_PFLASH, 0, i));
1130 virt_flash_map(vms, sysmem, secure_sysmem);
1132 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1134 bios_name = MACHINE(vms)->firmware;
1135 if (bios_name) {
1136 char *fname;
1137 MemoryRegion *mr;
1138 int image_size;
1140 if (pflash_blk0) {
1141 error_report("The contents of the first flash device may be "
1142 "specified with -bios or with -drive if=pflash... "
1143 "but you cannot use both options at once");
1144 exit(1);
1147 /* Fall back to -bios */
1149 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1150 if (!fname) {
1151 error_report("Could not find ROM image '%s'", bios_name);
1152 exit(1);
1154 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1155 image_size = load_image_mr(fname, mr);
1156 g_free(fname);
1157 if (image_size < 0) {
1158 error_report("Could not load ROM image '%s'", bios_name);
1159 exit(1);
1163 return pflash_blk0 || bios_name;
1166 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1168 MachineState *ms = MACHINE(vms);
1169 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1170 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1171 FWCfgState *fw_cfg;
1172 char *nodename;
1174 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1175 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1177 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1178 qemu_fdt_add_subnode(ms->fdt, nodename);
1179 qemu_fdt_setprop_string(ms->fdt, nodename,
1180 "compatible", "qemu,fw-cfg-mmio");
1181 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1182 2, base, 2, size);
1183 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1184 g_free(nodename);
1185 return fw_cfg;
1188 static void create_pcie_irq_map(const MachineState *ms,
1189 uint32_t gic_phandle,
1190 int first_irq, const char *nodename)
1192 int devfn, pin;
1193 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1194 uint32_t *irq_map = full_irq_map;
1196 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1197 for (pin = 0; pin < 4; pin++) {
1198 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1199 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1200 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1201 int i;
1203 uint32_t map[] = {
1204 devfn << 8, 0, 0, /* devfn */
1205 pin + 1, /* PCI pin */
1206 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1208 /* Convert map to big endian */
1209 for (i = 0; i < 10; i++) {
1210 irq_map[i] = cpu_to_be32(map[i]);
1212 irq_map += 10;
1216 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1217 full_irq_map, sizeof(full_irq_map));
1219 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1220 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1221 0, 0,
1222 0x7 /* PCI irq */);
1225 static void create_smmu(const VirtMachineState *vms,
1226 PCIBus *bus)
1228 char *node;
1229 const char compat[] = "arm,smmu-v3";
1230 int irq = vms->irqmap[VIRT_SMMU];
1231 int i;
1232 hwaddr base = vms->memmap[VIRT_SMMU].base;
1233 hwaddr size = vms->memmap[VIRT_SMMU].size;
1234 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1235 DeviceState *dev;
1236 MachineState *ms = MACHINE(vms);
1238 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1239 return;
1242 dev = qdev_new("arm-smmuv3");
1244 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1245 &error_abort);
1246 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1247 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1248 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1249 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1250 qdev_get_gpio_in(vms->gic, irq + i));
1253 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1254 qemu_fdt_add_subnode(ms->fdt, node);
1255 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1256 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1258 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1259 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1260 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1261 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1262 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1264 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1265 sizeof(irq_names));
1267 qemu_fdt_setprop_cell(ms->fdt, node, "clocks", vms->clock_phandle);
1268 qemu_fdt_setprop_string(ms->fdt, node, "clock-names", "apb_pclk");
1269 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1271 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1273 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1274 g_free(node);
1277 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1279 const char compat[] = "virtio,pci-iommu";
1280 uint16_t bdf = vms->virtio_iommu_bdf;
1281 MachineState *ms = MACHINE(vms);
1282 char *node;
1284 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1286 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1287 qemu_fdt_add_subnode(ms->fdt, node);
1288 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1289 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1290 1, bdf << 8, 1, 0, 1, 0,
1291 1, 0, 1, 0);
1293 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1294 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1295 g_free(node);
1297 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1298 0x0, vms->iommu_phandle, 0x0, bdf,
1299 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1302 static void create_pcie(VirtMachineState *vms)
1304 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1305 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1306 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1307 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1308 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1309 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1310 hwaddr base_ecam, size_ecam;
1311 hwaddr base = base_mmio;
1312 int nr_pcie_buses;
1313 int irq = vms->irqmap[VIRT_PCIE];
1314 MemoryRegion *mmio_alias;
1315 MemoryRegion *mmio_reg;
1316 MemoryRegion *ecam_alias;
1317 MemoryRegion *ecam_reg;
1318 DeviceState *dev;
1319 char *nodename;
1320 int i, ecam_id;
1321 PCIHostState *pci;
1322 MachineState *ms = MACHINE(vms);
1324 dev = qdev_new(TYPE_GPEX_HOST);
1325 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1327 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1328 base_ecam = vms->memmap[ecam_id].base;
1329 size_ecam = vms->memmap[ecam_id].size;
1330 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1331 /* Map only the first size_ecam bytes of ECAM space */
1332 ecam_alias = g_new0(MemoryRegion, 1);
1333 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1334 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1335 ecam_reg, 0, size_ecam);
1336 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1338 /* Map the MMIO window into system address space so as to expose
1339 * the section of PCI MMIO space which starts at the same base address
1340 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1341 * the window).
1343 mmio_alias = g_new0(MemoryRegion, 1);
1344 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1345 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1346 mmio_reg, base_mmio, size_mmio);
1347 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1349 if (vms->highmem) {
1350 /* Map high MMIO space */
1351 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1353 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1354 mmio_reg, base_mmio_high, size_mmio_high);
1355 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1356 high_mmio_alias);
1359 /* Map IO port space */
1360 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1362 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1363 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1364 qdev_get_gpio_in(vms->gic, irq + i));
1365 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1368 pci = PCI_HOST_BRIDGE(dev);
1369 vms->bus = pci->bus;
1370 if (vms->bus) {
1371 for (i = 0; i < nb_nics; i++) {
1372 NICInfo *nd = &nd_table[i];
1374 if (!nd->model) {
1375 nd->model = g_strdup("virtio");
1378 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1382 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1383 qemu_fdt_add_subnode(ms->fdt, nodename);
1384 qemu_fdt_setprop_string(ms->fdt, nodename,
1385 "compatible", "pci-host-ecam-generic");
1386 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1387 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1388 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1389 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1390 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1391 nr_pcie_buses - 1);
1392 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1394 if (vms->msi_phandle) {
1395 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-parent",
1396 vms->msi_phandle);
1399 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1400 2, base_ecam, 2, size_ecam);
1402 if (vms->highmem) {
1403 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1404 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1405 2, base_pio, 2, size_pio,
1406 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1407 2, base_mmio, 2, size_mmio,
1408 1, FDT_PCI_RANGE_MMIO_64BIT,
1409 2, base_mmio_high,
1410 2, base_mmio_high, 2, size_mmio_high);
1411 } else {
1412 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1413 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1414 2, base_pio, 2, size_pio,
1415 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1416 2, base_mmio, 2, size_mmio);
1419 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1420 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1422 if (vms->iommu) {
1423 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1425 switch (vms->iommu) {
1426 case VIRT_IOMMU_SMMUV3:
1427 create_smmu(vms, vms->bus);
1428 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1429 0x0, vms->iommu_phandle, 0x0, 0x10000);
1430 break;
1431 default:
1432 g_assert_not_reached();
1437 static void create_platform_bus(VirtMachineState *vms)
1439 DeviceState *dev;
1440 SysBusDevice *s;
1441 int i;
1442 MemoryRegion *sysmem = get_system_memory();
1444 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1445 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1446 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1447 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1448 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1449 vms->platform_bus_dev = dev;
1451 s = SYS_BUS_DEVICE(dev);
1452 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1453 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1454 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1457 memory_region_add_subregion(sysmem,
1458 vms->memmap[VIRT_PLATFORM_BUS].base,
1459 sysbus_mmio_get_region(s, 0));
1462 static void create_tag_ram(MemoryRegion *tag_sysmem,
1463 hwaddr base, hwaddr size,
1464 const char *name)
1466 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1468 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1469 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1472 static void create_secure_ram(VirtMachineState *vms,
1473 MemoryRegion *secure_sysmem,
1474 MemoryRegion *secure_tag_sysmem)
1476 MemoryRegion *secram = g_new(MemoryRegion, 1);
1477 char *nodename;
1478 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1479 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1480 MachineState *ms = MACHINE(vms);
1482 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1483 &error_fatal);
1484 memory_region_add_subregion(secure_sysmem, base, secram);
1486 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1487 qemu_fdt_add_subnode(ms->fdt, nodename);
1488 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1489 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1490 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1491 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1493 if (secure_tag_sysmem) {
1494 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1497 g_free(nodename);
1500 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1502 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1503 bootinfo);
1504 MachineState *ms = MACHINE(board);
1507 *fdt_size = board->fdt_size;
1508 return ms->fdt;
1511 static void virt_build_smbios(VirtMachineState *vms)
1513 MachineClass *mc = MACHINE_GET_CLASS(vms);
1514 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1515 uint8_t *smbios_tables, *smbios_anchor;
1516 size_t smbios_tables_len, smbios_anchor_len;
1517 const char *product = "QEMU Virtual Machine";
1519 if (kvm_enabled()) {
1520 product = "KVM Virtual Machine";
1523 smbios_set_defaults("QEMU", product,
1524 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1525 true, SMBIOS_ENTRY_POINT_30);
1527 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1528 &smbios_anchor, &smbios_anchor_len);
1530 if (smbios_anchor) {
1531 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1532 smbios_tables, smbios_tables_len);
1533 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1534 smbios_anchor, smbios_anchor_len);
1538 static
1539 void virt_machine_done(Notifier *notifier, void *data)
1541 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1542 machine_done);
1543 MachineState *ms = MACHINE(vms);
1544 ARMCPU *cpu = ARM_CPU(first_cpu);
1545 struct arm_boot_info *info = &vms->bootinfo;
1546 AddressSpace *as = arm_boot_address_space(cpu, info);
1549 * If the user provided a dtb, we assume the dynamic sysbus nodes
1550 * already are integrated there. This corresponds to a use case where
1551 * the dynamic sysbus nodes are complex and their generation is not yet
1552 * supported. In that case the user can take charge of the guest dt
1553 * while qemu takes charge of the qom stuff.
1555 if (info->dtb_filename == NULL) {
1556 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1557 vms->memmap[VIRT_PLATFORM_BUS].base,
1558 vms->memmap[VIRT_PLATFORM_BUS].size,
1559 vms->irqmap[VIRT_PLATFORM_BUS]);
1561 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1562 exit(1);
1565 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1567 virt_acpi_setup(vms);
1568 virt_build_smbios(vms);
1571 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1573 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1574 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1576 if (!vmc->disallow_affinity_adjustment) {
1577 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1578 * GIC's target-list limitations. 32-bit KVM hosts currently
1579 * always create clusters of 4 CPUs, but that is expected to
1580 * change when they gain support for gicv3. When KVM is enabled
1581 * it will override the changes we make here, therefore our
1582 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1583 * and to improve SGI efficiency.
1585 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1586 clustersz = GICV3_TARGETLIST_BITS;
1587 } else {
1588 clustersz = GIC_TARGETLIST_BITS;
1591 return arm_cpu_mp_affinity(idx, clustersz);
1594 static void virt_set_memmap(VirtMachineState *vms)
1596 MachineState *ms = MACHINE(vms);
1597 hwaddr base, device_memory_base, device_memory_size;
1598 int i;
1600 vms->memmap = extended_memmap;
1602 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1603 vms->memmap[i] = base_memmap[i];
1606 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1607 error_report("unsupported number of memory slots: %"PRIu64,
1608 ms->ram_slots);
1609 exit(EXIT_FAILURE);
1613 * We compute the base of the high IO region depending on the
1614 * amount of initial and device memory. The device memory start/size
1615 * is aligned on 1GiB. We never put the high IO region below 256GiB
1616 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1617 * The device region size assumes 1GiB page max alignment per slot.
1619 device_memory_base =
1620 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1621 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1623 /* Base address of the high IO region */
1624 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1625 if (base < device_memory_base) {
1626 error_report("maxmem/slots too huge");
1627 exit(EXIT_FAILURE);
1629 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1630 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1633 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1634 hwaddr size = extended_memmap[i].size;
1636 base = ROUND_UP(base, size);
1637 vms->memmap[i].base = base;
1638 vms->memmap[i].size = size;
1639 base += size;
1641 vms->highest_gpa = base - 1;
1642 if (device_memory_size > 0) {
1643 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1644 ms->device_memory->base = device_memory_base;
1645 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1646 "device-memory", device_memory_size);
1651 * finalize_gic_version - Determines the final gic_version
1652 * according to the gic-version property
1654 * Default GIC type is v2
1656 static void finalize_gic_version(VirtMachineState *vms)
1658 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1660 if (kvm_enabled()) {
1661 int probe_bitmap;
1663 if (!kvm_irqchip_in_kernel()) {
1664 switch (vms->gic_version) {
1665 case VIRT_GIC_VERSION_HOST:
1666 warn_report(
1667 "gic-version=host not relevant with kernel-irqchip=off "
1668 "as only userspace GICv2 is supported. Using v2 ...");
1669 return;
1670 case VIRT_GIC_VERSION_MAX:
1671 case VIRT_GIC_VERSION_NOSEL:
1672 vms->gic_version = VIRT_GIC_VERSION_2;
1673 return;
1674 case VIRT_GIC_VERSION_2:
1675 return;
1676 case VIRT_GIC_VERSION_3:
1677 error_report(
1678 "gic-version=3 is not supported with kernel-irqchip=off");
1679 exit(1);
1683 probe_bitmap = kvm_arm_vgic_probe();
1684 if (!probe_bitmap) {
1685 error_report("Unable to determine GIC version supported by host");
1686 exit(1);
1689 switch (vms->gic_version) {
1690 case VIRT_GIC_VERSION_HOST:
1691 case VIRT_GIC_VERSION_MAX:
1692 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1693 vms->gic_version = VIRT_GIC_VERSION_3;
1694 } else {
1695 vms->gic_version = VIRT_GIC_VERSION_2;
1697 return;
1698 case VIRT_GIC_VERSION_NOSEL:
1699 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1700 vms->gic_version = VIRT_GIC_VERSION_2;
1701 } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1703 * in case the host does not support v2 in-kernel emulation or
1704 * the end-user requested more than 8 VCPUs we now default
1705 * to v3. In any case defaulting to v2 would be broken.
1707 vms->gic_version = VIRT_GIC_VERSION_3;
1708 } else if (max_cpus > GIC_NCPU) {
1709 error_report("host only supports in-kernel GICv2 emulation "
1710 "but more than 8 vcpus are requested");
1711 exit(1);
1713 break;
1714 case VIRT_GIC_VERSION_2:
1715 case VIRT_GIC_VERSION_3:
1716 break;
1719 /* Check chosen version is effectively supported by the host */
1720 if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1721 !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1722 error_report("host does not support in-kernel GICv2 emulation");
1723 exit(1);
1724 } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1725 !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1726 error_report("host does not support in-kernel GICv3 emulation");
1727 exit(1);
1729 return;
1732 /* TCG mode */
1733 switch (vms->gic_version) {
1734 case VIRT_GIC_VERSION_NOSEL:
1735 vms->gic_version = VIRT_GIC_VERSION_2;
1736 break;
1737 case VIRT_GIC_VERSION_MAX:
1738 vms->gic_version = VIRT_GIC_VERSION_3;
1739 break;
1740 case VIRT_GIC_VERSION_HOST:
1741 error_report("gic-version=host requires KVM");
1742 exit(1);
1743 case VIRT_GIC_VERSION_2:
1744 case VIRT_GIC_VERSION_3:
1745 break;
1750 * virt_cpu_post_init() must be called after the CPUs have
1751 * been realized and the GIC has been created.
1753 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1755 int max_cpus = MACHINE(vms)->smp.max_cpus;
1756 bool aarch64, pmu, steal_time;
1757 CPUState *cpu;
1759 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1760 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1761 steal_time = object_property_get_bool(OBJECT(first_cpu),
1762 "kvm-steal-time", NULL);
1764 if (kvm_enabled()) {
1765 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1766 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1768 if (steal_time) {
1769 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1770 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1772 /* The memory region size must be a multiple of host page size. */
1773 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1775 if (pvtime_size > pvtime_reg_size) {
1776 error_report("pvtime requires a %" HWADDR_PRId
1777 " byte memory region for %d CPUs,"
1778 " but only %" HWADDR_PRId " has been reserved",
1779 pvtime_size, max_cpus, pvtime_reg_size);
1780 exit(1);
1783 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1784 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1787 CPU_FOREACH(cpu) {
1788 if (pmu) {
1789 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1790 if (kvm_irqchip_in_kernel()) {
1791 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1793 kvm_arm_pmu_init(cpu);
1795 if (steal_time) {
1796 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1797 cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1800 } else {
1801 if (aarch64 && vms->highmem) {
1802 int requested_pa_size = 64 - clz64(vms->highest_gpa);
1803 int pamax = arm_pamax(ARM_CPU(first_cpu));
1805 if (pamax < requested_pa_size) {
1806 error_report("VCPU supports less PA bits (%d) than "
1807 "requested by the memory map (%d)",
1808 pamax, requested_pa_size);
1809 exit(1);
1815 static void machvirt_init(MachineState *machine)
1817 VirtMachineState *vms = VIRT_MACHINE(machine);
1818 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1819 MachineClass *mc = MACHINE_GET_CLASS(machine);
1820 const CPUArchIdList *possible_cpus;
1821 MemoryRegion *sysmem = get_system_memory();
1822 MemoryRegion *secure_sysmem = NULL;
1823 MemoryRegion *tag_sysmem = NULL;
1824 MemoryRegion *secure_tag_sysmem = NULL;
1825 int n, virt_max_cpus;
1826 bool firmware_loaded;
1827 bool aarch64 = true;
1828 bool has_ged = !vmc->no_ged;
1829 unsigned int smp_cpus = machine->smp.cpus;
1830 unsigned int max_cpus = machine->smp.max_cpus;
1833 * In accelerated mode, the memory map is computed earlier in kvm_type()
1834 * to create a VM with the right number of IPA bits.
1836 if (!vms->memmap) {
1837 virt_set_memmap(vms);
1840 /* We can probe only here because during property set
1841 * KVM is not available yet
1843 finalize_gic_version(vms);
1845 if (!cpu_type_valid(machine->cpu_type)) {
1846 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1847 exit(1);
1850 if (vms->secure) {
1851 if (kvm_enabled()) {
1852 error_report("mach-virt: KVM does not support Security extensions");
1853 exit(1);
1857 * The Secure view of the world is the same as the NonSecure,
1858 * but with a few extra devices. Create it as a container region
1859 * containing the system memory at low priority; any secure-only
1860 * devices go in at higher priority and take precedence.
1862 secure_sysmem = g_new(MemoryRegion, 1);
1863 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1864 UINT64_MAX);
1865 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1868 firmware_loaded = virt_firmware_init(vms, sysmem,
1869 secure_sysmem ?: sysmem);
1871 /* If we have an EL3 boot ROM then the assumption is that it will
1872 * implement PSCI itself, so disable QEMU's internal implementation
1873 * so it doesn't get in the way. Instead of starting secondary
1874 * CPUs in PSCI powerdown state we will start them all running and
1875 * let the boot ROM sort them out.
1876 * The usual case is that we do use QEMU's PSCI implementation;
1877 * if the guest has EL2 then we will use SMC as the conduit,
1878 * and otherwise we will use HVC (for backwards compatibility and
1879 * because if we're using KVM then we must use HVC).
1881 if (vms->secure && firmware_loaded) {
1882 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1883 } else if (vms->virt) {
1884 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1885 } else {
1886 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1889 /* The maximum number of CPUs depends on the GIC version, or on how
1890 * many redistributors we can fit into the memory map.
1892 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1893 virt_max_cpus =
1894 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1895 virt_max_cpus +=
1896 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1897 } else {
1898 virt_max_cpus = GIC_NCPU;
1901 if (max_cpus > virt_max_cpus) {
1902 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1903 "supported by machine 'mach-virt' (%d)",
1904 max_cpus, virt_max_cpus);
1905 exit(1);
1908 if (vms->virt && kvm_enabled()) {
1909 error_report("mach-virt: KVM does not support providing "
1910 "Virtualization extensions to the guest CPU");
1911 exit(1);
1914 if (vms->mte && kvm_enabled()) {
1915 error_report("mach-virt: KVM does not support providing "
1916 "MTE to the guest CPU");
1917 exit(1);
1920 create_fdt(vms);
1922 possible_cpus = mc->possible_cpu_arch_ids(machine);
1923 assert(possible_cpus->len == max_cpus);
1924 for (n = 0; n < possible_cpus->len; n++) {
1925 Object *cpuobj;
1926 CPUState *cs;
1928 if (n >= smp_cpus) {
1929 break;
1932 cpuobj = object_new(possible_cpus->cpus[n].type);
1933 object_property_set_int(cpuobj, "mp-affinity",
1934 possible_cpus->cpus[n].arch_id, NULL);
1936 cs = CPU(cpuobj);
1937 cs->cpu_index = n;
1939 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1940 &error_fatal);
1942 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1944 if (!vms->secure) {
1945 object_property_set_bool(cpuobj, "has_el3", false, NULL);
1948 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
1949 object_property_set_bool(cpuobj, "has_el2", false, NULL);
1952 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1953 object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit,
1954 NULL);
1956 /* Secondary CPUs start in PSCI powered-down state */
1957 if (n > 0) {
1958 object_property_set_bool(cpuobj, "start-powered-off", true,
1959 NULL);
1963 if (vmc->kvm_no_adjvtime &&
1964 object_property_find(cpuobj, "kvm-no-adjvtime")) {
1965 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
1968 if (vmc->no_kvm_steal_time &&
1969 object_property_find(cpuobj, "kvm-steal-time")) {
1970 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
1973 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
1974 object_property_set_bool(cpuobj, "pmu", false, NULL);
1977 if (object_property_find(cpuobj, "reset-cbar")) {
1978 object_property_set_int(cpuobj, "reset-cbar",
1979 vms->memmap[VIRT_CPUPERIPHS].base,
1980 &error_abort);
1983 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
1984 &error_abort);
1985 if (vms->secure) {
1986 object_property_set_link(cpuobj, "secure-memory",
1987 OBJECT(secure_sysmem), &error_abort);
1990 if (vms->mte) {
1991 /* Create the memory region only once, but link to all cpus. */
1992 if (!tag_sysmem) {
1994 * The property exists only if MemTag is supported.
1995 * If it is, we must allocate the ram to back that up.
1997 if (!object_property_find(cpuobj, "tag-memory")) {
1998 error_report("MTE requested, but not supported "
1999 "by the guest CPU");
2000 exit(1);
2003 tag_sysmem = g_new(MemoryRegion, 1);
2004 memory_region_init(tag_sysmem, OBJECT(machine),
2005 "tag-memory", UINT64_MAX / 32);
2007 if (vms->secure) {
2008 secure_tag_sysmem = g_new(MemoryRegion, 1);
2009 memory_region_init(secure_tag_sysmem, OBJECT(machine),
2010 "secure-tag-memory", UINT64_MAX / 32);
2012 /* As with ram, secure-tag takes precedence over tag. */
2013 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2014 tag_sysmem, -1);
2018 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2019 &error_abort);
2020 if (vms->secure) {
2021 object_property_set_link(cpuobj, "secure-tag-memory",
2022 OBJECT(secure_tag_sysmem),
2023 &error_abort);
2027 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2028 object_unref(cpuobj);
2030 fdt_add_timer_nodes(vms);
2031 fdt_add_cpu_nodes(vms);
2033 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2034 machine->ram);
2035 if (machine->device_memory) {
2036 memory_region_add_subregion(sysmem, machine->device_memory->base,
2037 &machine->device_memory->mr);
2040 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2042 create_gic(vms);
2044 virt_cpu_post_init(vms, sysmem);
2046 fdt_add_pmu_nodes(vms);
2048 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2050 if (vms->secure) {
2051 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2052 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2055 if (tag_sysmem) {
2056 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2057 machine->ram_size, "mach-virt.tag");
2060 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
2062 create_rtc(vms);
2064 create_pcie(vms);
2066 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2067 vms->acpi_dev = create_acpi_ged(vms);
2068 } else {
2069 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2072 if (vms->secure && !vmc->no_secure_gpio) {
2073 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2076 /* connect powerdown request */
2077 vms->powerdown_notifier.notify = virt_powerdown_req;
2078 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2080 /* Create mmio transports, so the user can create virtio backends
2081 * (which will be automatically plugged in to the transports). If
2082 * no backend is created the transport will just sit harmlessly idle.
2084 create_virtio_devices(vms);
2086 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2087 rom_set_fw(vms->fw_cfg);
2089 create_platform_bus(vms);
2091 if (machine->nvdimms_state->is_enabled) {
2092 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2093 .space_id = AML_AS_SYSTEM_MEMORY,
2094 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2095 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2098 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2099 arm_virt_nvdimm_acpi_dsmio,
2100 vms->fw_cfg, OBJECT(vms));
2103 vms->bootinfo.ram_size = machine->ram_size;
2104 vms->bootinfo.nb_cpus = smp_cpus;
2105 vms->bootinfo.board_id = -1;
2106 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2107 vms->bootinfo.get_dtb = machvirt_dtb;
2108 vms->bootinfo.skip_dtb_autoload = true;
2109 vms->bootinfo.firmware_loaded = firmware_loaded;
2110 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2112 vms->machine_done.notify = virt_machine_done;
2113 qemu_add_machine_init_done_notifier(&vms->machine_done);
2116 static bool virt_get_secure(Object *obj, Error **errp)
2118 VirtMachineState *vms = VIRT_MACHINE(obj);
2120 return vms->secure;
2123 static void virt_set_secure(Object *obj, bool value, Error **errp)
2125 VirtMachineState *vms = VIRT_MACHINE(obj);
2127 vms->secure = value;
2130 static bool virt_get_virt(Object *obj, Error **errp)
2132 VirtMachineState *vms = VIRT_MACHINE(obj);
2134 return vms->virt;
2137 static void virt_set_virt(Object *obj, bool value, Error **errp)
2139 VirtMachineState *vms = VIRT_MACHINE(obj);
2141 vms->virt = value;
2144 static bool virt_get_highmem(Object *obj, Error **errp)
2146 VirtMachineState *vms = VIRT_MACHINE(obj);
2148 return vms->highmem;
2151 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2153 VirtMachineState *vms = VIRT_MACHINE(obj);
2155 vms->highmem = value;
2158 static bool virt_get_its(Object *obj, Error **errp)
2160 VirtMachineState *vms = VIRT_MACHINE(obj);
2162 return vms->its;
2165 static void virt_set_its(Object *obj, bool value, Error **errp)
2167 VirtMachineState *vms = VIRT_MACHINE(obj);
2169 vms->its = value;
2172 static char *virt_get_oem_id(Object *obj, Error **errp)
2174 VirtMachineState *vms = VIRT_MACHINE(obj);
2176 return g_strdup(vms->oem_id);
2179 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2181 VirtMachineState *vms = VIRT_MACHINE(obj);
2182 size_t len = strlen(value);
2184 if (len > 6) {
2185 error_setg(errp,
2186 "User specified oem-id value is bigger than 6 bytes in size");
2187 return;
2190 strncpy(vms->oem_id, value, 6);
2193 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2195 VirtMachineState *vms = VIRT_MACHINE(obj);
2197 return g_strdup(vms->oem_table_id);
2200 static void virt_set_oem_table_id(Object *obj, const char *value,
2201 Error **errp)
2203 VirtMachineState *vms = VIRT_MACHINE(obj);
2204 size_t len = strlen(value);
2206 if (len > 8) {
2207 error_setg(errp,
2208 "User specified oem-table-id value is bigger than 8 bytes in size");
2209 return;
2211 strncpy(vms->oem_table_id, value, 8);
2215 bool virt_is_acpi_enabled(VirtMachineState *vms)
2217 if (vms->acpi == ON_OFF_AUTO_OFF) {
2218 return false;
2220 return true;
2223 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2224 void *opaque, Error **errp)
2226 VirtMachineState *vms = VIRT_MACHINE(obj);
2227 OnOffAuto acpi = vms->acpi;
2229 visit_type_OnOffAuto(v, name, &acpi, errp);
2232 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2233 void *opaque, Error **errp)
2235 VirtMachineState *vms = VIRT_MACHINE(obj);
2237 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2240 static bool virt_get_ras(Object *obj, Error **errp)
2242 VirtMachineState *vms = VIRT_MACHINE(obj);
2244 return vms->ras;
2247 static void virt_set_ras(Object *obj, bool value, Error **errp)
2249 VirtMachineState *vms = VIRT_MACHINE(obj);
2251 vms->ras = value;
2254 static bool virt_get_mte(Object *obj, Error **errp)
2256 VirtMachineState *vms = VIRT_MACHINE(obj);
2258 return vms->mte;
2261 static void virt_set_mte(Object *obj, bool value, Error **errp)
2263 VirtMachineState *vms = VIRT_MACHINE(obj);
2265 vms->mte = value;
2268 static char *virt_get_gic_version(Object *obj, Error **errp)
2270 VirtMachineState *vms = VIRT_MACHINE(obj);
2271 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
2273 return g_strdup(val);
2276 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2278 VirtMachineState *vms = VIRT_MACHINE(obj);
2280 if (!strcmp(value, "3")) {
2281 vms->gic_version = VIRT_GIC_VERSION_3;
2282 } else if (!strcmp(value, "2")) {
2283 vms->gic_version = VIRT_GIC_VERSION_2;
2284 } else if (!strcmp(value, "host")) {
2285 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2286 } else if (!strcmp(value, "max")) {
2287 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2288 } else {
2289 error_setg(errp, "Invalid gic-version value");
2290 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2294 static char *virt_get_iommu(Object *obj, Error **errp)
2296 VirtMachineState *vms = VIRT_MACHINE(obj);
2298 switch (vms->iommu) {
2299 case VIRT_IOMMU_NONE:
2300 return g_strdup("none");
2301 case VIRT_IOMMU_SMMUV3:
2302 return g_strdup("smmuv3");
2303 default:
2304 g_assert_not_reached();
2308 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2310 VirtMachineState *vms = VIRT_MACHINE(obj);
2312 if (!strcmp(value, "smmuv3")) {
2313 vms->iommu = VIRT_IOMMU_SMMUV3;
2314 } else if (!strcmp(value, "none")) {
2315 vms->iommu = VIRT_IOMMU_NONE;
2316 } else {
2317 error_setg(errp, "Invalid iommu value");
2318 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2322 static CpuInstanceProperties
2323 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2325 MachineClass *mc = MACHINE_GET_CLASS(ms);
2326 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2328 assert(cpu_index < possible_cpus->len);
2329 return possible_cpus->cpus[cpu_index].props;
2332 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2334 return idx % ms->numa_state->num_nodes;
2337 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2339 int n;
2340 unsigned int max_cpus = ms->smp.max_cpus;
2341 VirtMachineState *vms = VIRT_MACHINE(ms);
2343 if (ms->possible_cpus) {
2344 assert(ms->possible_cpus->len == max_cpus);
2345 return ms->possible_cpus;
2348 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2349 sizeof(CPUArchId) * max_cpus);
2350 ms->possible_cpus->len = max_cpus;
2351 for (n = 0; n < ms->possible_cpus->len; n++) {
2352 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2353 ms->possible_cpus->cpus[n].arch_id =
2354 virt_cpu_mp_affinity(vms, n);
2355 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2356 ms->possible_cpus->cpus[n].props.thread_id = n;
2358 return ms->possible_cpus;
2361 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2362 Error **errp)
2364 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2365 const MachineState *ms = MACHINE(hotplug_dev);
2366 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2368 if (!vms->acpi_dev) {
2369 error_setg(errp,
2370 "memory hotplug is not enabled: missing acpi-ged device");
2371 return;
2374 if (vms->mte) {
2375 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2376 return;
2379 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2380 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2381 return;
2384 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2387 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2388 DeviceState *dev, Error **errp)
2390 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2391 MachineState *ms = MACHINE(hotplug_dev);
2392 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2394 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2396 if (is_nvdimm) {
2397 nvdimm_plug(ms->nvdimms_state);
2400 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2401 dev, &error_abort);
2404 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2405 DeviceState *dev, Error **errp)
2407 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2409 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2410 virt_memory_pre_plug(hotplug_dev, dev, errp);
2411 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2412 hwaddr db_start = 0, db_end = 0;
2413 char *resv_prop_str;
2415 switch (vms->msi_controller) {
2416 case VIRT_MSI_CTRL_NONE:
2417 return;
2418 case VIRT_MSI_CTRL_ITS:
2419 /* GITS_TRANSLATER page */
2420 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2421 db_end = base_memmap[VIRT_GIC_ITS].base +
2422 base_memmap[VIRT_GIC_ITS].size - 1;
2423 break;
2424 case VIRT_MSI_CTRL_GICV2M:
2425 /* MSI_SETSPI_NS page */
2426 db_start = base_memmap[VIRT_GIC_V2M].base;
2427 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2428 break;
2430 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2431 db_start, db_end,
2432 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2434 qdev_prop_set_uint32(dev, "len-reserved-regions", 1);
2435 qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str);
2436 g_free(resv_prop_str);
2440 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2441 DeviceState *dev, Error **errp)
2443 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2445 if (vms->platform_bus_dev) {
2446 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
2447 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2448 SYS_BUS_DEVICE(dev));
2451 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2452 virt_memory_plug(hotplug_dev, dev, errp);
2454 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2455 PCIDevice *pdev = PCI_DEVICE(dev);
2457 vms->iommu = VIRT_IOMMU_VIRTIO;
2458 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2459 create_virtio_iommu_dt_bindings(vms);
2463 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2464 DeviceState *dev, Error **errp)
2466 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2467 Error *local_err = NULL;
2469 if (!vms->acpi_dev) {
2470 error_setg(&local_err,
2471 "memory hotplug is not enabled: missing acpi-ged device");
2472 goto out;
2475 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2476 error_setg(&local_err,
2477 "nvdimm device hot unplug is not supported yet.");
2478 goto out;
2481 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2482 &local_err);
2483 out:
2484 error_propagate(errp, local_err);
2487 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2488 DeviceState *dev, Error **errp)
2490 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2491 Error *local_err = NULL;
2493 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2494 if (local_err) {
2495 goto out;
2498 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2499 qdev_unrealize(dev);
2501 out:
2502 error_propagate(errp, local_err);
2505 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2506 DeviceState *dev, Error **errp)
2508 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2509 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2510 } else {
2511 error_setg(errp, "device unplug request for unsupported device"
2512 " type: %s", object_get_typename(OBJECT(dev)));
2516 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2517 DeviceState *dev, Error **errp)
2519 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2520 virt_dimm_unplug(hotplug_dev, dev, errp);
2521 } else {
2522 error_setg(errp, "virt: device unplug for unsupported device"
2523 " type: %s", object_get_typename(OBJECT(dev)));
2527 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2528 DeviceState *dev)
2530 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) ||
2531 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
2532 return HOTPLUG_HANDLER(machine);
2534 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2535 VirtMachineState *vms = VIRT_MACHINE(machine);
2537 if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) {
2538 return HOTPLUG_HANDLER(machine);
2541 return NULL;
2545 * for arm64 kvm_type [7-0] encodes the requested number of bits
2546 * in the IPA address space
2548 static int virt_kvm_type(MachineState *ms, const char *type_str)
2550 VirtMachineState *vms = VIRT_MACHINE(ms);
2551 int max_vm_pa_size, requested_pa_size;
2552 bool fixed_ipa;
2554 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2556 /* we freeze the memory map to compute the highest gpa */
2557 virt_set_memmap(vms);
2559 requested_pa_size = 64 - clz64(vms->highest_gpa);
2562 * KVM requires the IPA size to be at least 32 bits.
2564 if (requested_pa_size < 32) {
2565 requested_pa_size = 32;
2568 if (requested_pa_size > max_vm_pa_size) {
2569 error_report("-m and ,maxmem option values "
2570 "require an IPA range (%d bits) larger than "
2571 "the one supported by the host (%d bits)",
2572 requested_pa_size, max_vm_pa_size);
2573 exit(1);
2576 * We return the requested PA log size, unless KVM only supports
2577 * the implicit legacy 40b IPA setting, in which case the kvm_type
2578 * must be 0.
2580 return fixed_ipa ? 0 : requested_pa_size;
2583 static void virt_machine_class_init(ObjectClass *oc, void *data)
2585 MachineClass *mc = MACHINE_CLASS(oc);
2586 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2588 mc->init = machvirt_init;
2589 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2590 * The value may be reduced later when we have more information about the
2591 * configuration of the particular instance.
2593 mc->max_cpus = 512;
2594 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2595 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2596 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2597 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2598 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2599 mc->block_default_type = IF_VIRTIO;
2600 mc->no_cdrom = 1;
2601 mc->pci_allow_0_address = true;
2602 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2603 mc->minimum_page_bits = 12;
2604 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2605 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2606 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2607 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2608 mc->kvm_type = virt_kvm_type;
2609 assert(!mc->get_hotplug_handler);
2610 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2611 hc->pre_plug = virt_machine_device_pre_plug_cb;
2612 hc->plug = virt_machine_device_plug_cb;
2613 hc->unplug_request = virt_machine_device_unplug_request_cb;
2614 hc->unplug = virt_machine_device_unplug_cb;
2615 mc->nvdimm_supported = true;
2616 mc->auto_enable_numa_with_memhp = true;
2617 mc->auto_enable_numa_with_memdev = true;
2618 mc->default_ram_id = "mach-virt.ram";
2620 object_class_property_add(oc, "acpi", "OnOffAuto",
2621 virt_get_acpi, virt_set_acpi,
2622 NULL, NULL);
2623 object_class_property_set_description(oc, "acpi",
2624 "Enable ACPI");
2625 object_class_property_add_bool(oc, "secure", virt_get_secure,
2626 virt_set_secure);
2627 object_class_property_set_description(oc, "secure",
2628 "Set on/off to enable/disable the ARM "
2629 "Security Extensions (TrustZone)");
2631 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2632 virt_set_virt);
2633 object_class_property_set_description(oc, "virtualization",
2634 "Set on/off to enable/disable emulating a "
2635 "guest CPU which implements the ARM "
2636 "Virtualization Extensions");
2638 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2639 virt_set_highmem);
2640 object_class_property_set_description(oc, "highmem",
2641 "Set on/off to enable/disable using "
2642 "physical address space above 32 bits");
2644 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
2645 virt_set_gic_version);
2646 object_class_property_set_description(oc, "gic-version",
2647 "Set GIC version. "
2648 "Valid values are 2, 3, host and max");
2650 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
2651 object_class_property_set_description(oc, "iommu",
2652 "Set the IOMMU type. "
2653 "Valid values are none and smmuv3");
2655 object_class_property_add_bool(oc, "ras", virt_get_ras,
2656 virt_set_ras);
2657 object_class_property_set_description(oc, "ras",
2658 "Set on/off to enable/disable reporting host memory errors "
2659 "to a KVM guest using ACPI and guest external abort exceptions");
2661 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
2662 object_class_property_set_description(oc, "mte",
2663 "Set on/off to enable/disable emulating a "
2664 "guest CPU which implements the ARM "
2665 "Memory Tagging Extension");
2667 object_class_property_add_bool(oc, "its", virt_get_its,
2668 virt_set_its);
2669 object_class_property_set_description(oc, "its",
2670 "Set on/off to enable/disable "
2671 "ITS instantiation");
2673 object_class_property_add_str(oc, "oem-id",
2674 virt_get_oem_id,
2675 virt_set_oem_id);
2676 object_class_property_set_description(oc, "oem-id",
2677 "Override the default value of field OEMID "
2678 "in ACPI table header."
2679 "The string may be up to 6 bytes in size");
2682 object_class_property_add_str(oc, "oem-table-id",
2683 virt_get_oem_table_id,
2684 virt_set_oem_table_id);
2685 object_class_property_set_description(oc, "oem-table-id",
2686 "Override the default value of field OEM Table ID "
2687 "in ACPI table header."
2688 "The string may be up to 8 bytes in size");
2692 static void virt_instance_init(Object *obj)
2694 VirtMachineState *vms = VIRT_MACHINE(obj);
2695 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2697 /* EL3 is disabled by default on virt: this makes us consistent
2698 * between KVM and TCG for this board, and it also allows us to
2699 * boot UEFI blobs which assume no TrustZone support.
2701 vms->secure = false;
2703 /* EL2 is also disabled by default, for similar reasons */
2704 vms->virt = false;
2706 /* High memory is enabled by default */
2707 vms->highmem = true;
2708 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2710 vms->highmem_ecam = !vmc->no_highmem_ecam;
2712 if (vmc->no_its) {
2713 vms->its = false;
2714 } else {
2715 /* Default allows ITS instantiation */
2716 vms->its = true;
2719 /* Default disallows iommu instantiation */
2720 vms->iommu = VIRT_IOMMU_NONE;
2722 /* Default disallows RAS instantiation */
2723 vms->ras = false;
2725 /* MTE is disabled by default. */
2726 vms->mte = false;
2728 vms->irqmap = a15irqmap;
2730 virt_flash_create(vms);
2732 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
2733 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
2736 static const TypeInfo virt_machine_info = {
2737 .name = TYPE_VIRT_MACHINE,
2738 .parent = TYPE_MACHINE,
2739 .abstract = true,
2740 .instance_size = sizeof(VirtMachineState),
2741 .class_size = sizeof(VirtMachineClass),
2742 .class_init = virt_machine_class_init,
2743 .instance_init = virt_instance_init,
2744 .interfaces = (InterfaceInfo[]) {
2745 { TYPE_HOTPLUG_HANDLER },
2750 static void machvirt_machine_init(void)
2752 type_register_static(&virt_machine_info);
2754 type_init(machvirt_machine_init);
2756 static void virt_machine_6_0_options(MachineClass *mc)
2759 DEFINE_VIRT_MACHINE_AS_LATEST(6, 0)
2761 static void virt_machine_5_2_options(MachineClass *mc)
2763 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2765 virt_machine_6_0_options(mc);
2766 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
2767 vmc->no_secure_gpio = true;
2769 DEFINE_VIRT_MACHINE(5, 2)
2771 static void virt_machine_5_1_options(MachineClass *mc)
2773 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2775 virt_machine_5_2_options(mc);
2776 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
2777 vmc->no_kvm_steal_time = true;
2779 DEFINE_VIRT_MACHINE(5, 1)
2781 static void virt_machine_5_0_options(MachineClass *mc)
2783 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2785 virt_machine_5_1_options(mc);
2786 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
2787 mc->numa_mem_supported = true;
2788 vmc->acpi_expose_flash = true;
2789 mc->auto_enable_numa_with_memdev = false;
2791 DEFINE_VIRT_MACHINE(5, 0)
2793 static void virt_machine_4_2_options(MachineClass *mc)
2795 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2797 virt_machine_5_0_options(mc);
2798 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
2799 vmc->kvm_no_adjvtime = true;
2801 DEFINE_VIRT_MACHINE(4, 2)
2803 static void virt_machine_4_1_options(MachineClass *mc)
2805 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2807 virt_machine_4_2_options(mc);
2808 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2809 vmc->no_ged = true;
2810 mc->auto_enable_numa_with_memhp = false;
2812 DEFINE_VIRT_MACHINE(4, 1)
2814 static void virt_machine_4_0_options(MachineClass *mc)
2816 virt_machine_4_1_options(mc);
2817 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2819 DEFINE_VIRT_MACHINE(4, 0)
2821 static void virt_machine_3_1_options(MachineClass *mc)
2823 virt_machine_4_0_options(mc);
2824 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2826 DEFINE_VIRT_MACHINE(3, 1)
2828 static void virt_machine_3_0_options(MachineClass *mc)
2830 virt_machine_3_1_options(mc);
2831 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2833 DEFINE_VIRT_MACHINE(3, 0)
2835 static void virt_machine_2_12_options(MachineClass *mc)
2837 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2839 virt_machine_3_0_options(mc);
2840 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2841 vmc->no_highmem_ecam = true;
2842 mc->max_cpus = 255;
2844 DEFINE_VIRT_MACHINE(2, 12)
2846 static void virt_machine_2_11_options(MachineClass *mc)
2848 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2850 virt_machine_2_12_options(mc);
2851 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2852 vmc->smbios_old_sys_ver = true;
2854 DEFINE_VIRT_MACHINE(2, 11)
2856 static void virt_machine_2_10_options(MachineClass *mc)
2858 virt_machine_2_11_options(mc);
2859 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2860 /* before 2.11 we never faulted accesses to bad addresses */
2861 mc->ignore_memory_transaction_failures = true;
2863 DEFINE_VIRT_MACHINE(2, 10)
2865 static void virt_machine_2_9_options(MachineClass *mc)
2867 virt_machine_2_10_options(mc);
2868 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2870 DEFINE_VIRT_MACHINE(2, 9)
2872 static void virt_machine_2_8_options(MachineClass *mc)
2874 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2876 virt_machine_2_9_options(mc);
2877 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2878 /* For 2.8 and earlier we falsely claimed in the DT that
2879 * our timers were edge-triggered, not level-triggered.
2881 vmc->claim_edge_triggered_timers = true;
2883 DEFINE_VIRT_MACHINE(2, 8)
2885 static void virt_machine_2_7_options(MachineClass *mc)
2887 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2889 virt_machine_2_8_options(mc);
2890 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2891 /* ITS was introduced with 2.8 */
2892 vmc->no_its = true;
2893 /* Stick with 1K pages for migration compatibility */
2894 mc->minimum_page_bits = 0;
2896 DEFINE_VIRT_MACHINE(2, 7)
2898 static void virt_machine_2_6_options(MachineClass *mc)
2900 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2902 virt_machine_2_7_options(mc);
2903 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2904 vmc->disallow_affinity_adjustment = true;
2905 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2906 vmc->no_pmu = true;
2908 DEFINE_VIRT_MACHINE(2, 6)