2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu/units.h"
33 #include "qapi/error.h"
34 #include "hw/sysbus.h"
35 #include "hw/arm/arm.h"
36 #include "hw/arm/primecell.h"
37 #include "hw/arm/virt.h"
38 #include "hw/vfio/vfio-calxeda-xgmac.h"
39 #include "hw/vfio/vfio-amd-xgbe.h"
40 #include "hw/display/ramfb.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/numa.h"
44 #include "sysemu/sysemu.h"
45 #include "sysemu/kvm.h"
46 #include "hw/loader.h"
47 #include "exec/address-spaces.h"
48 #include "qemu/bitops.h"
49 #include "qemu/error-report.h"
50 #include "hw/pci-host/gpex.h"
51 #include "hw/arm/sysbus-fdt.h"
52 #include "hw/platform-bus.h"
53 #include "hw/arm/fdt.h"
54 #include "hw/intc/arm_gic.h"
55 #include "hw/intc/arm_gicv3_common.h"
57 #include "hw/firmware/smbios.h"
58 #include "qapi/visitor.h"
59 #include "standard-headers/linux/input.h"
60 #include "hw/arm/smmuv3.h"
61 #include "hw/acpi/acpi.h"
62 #include "target/arm/internals.h"
64 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
65 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
68 MachineClass *mc = MACHINE_CLASS(oc); \
69 virt_machine_##major##_##minor##_options(mc); \
70 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
75 static const TypeInfo machvirt_##major##_##minor##_info = { \
76 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
77 .parent = TYPE_VIRT_MACHINE, \
78 .class_init = virt_##major##_##minor##_class_init, \
80 static void machvirt_machine_##major##_##minor##_init(void) \
82 type_register_static(&machvirt_##major##_##minor##_info); \
84 type_init(machvirt_machine_##major##_##minor##_init);
86 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
87 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
88 #define DEFINE_VIRT_MACHINE(major, minor) \
89 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
92 /* Number of external interrupt lines to configure the GIC with */
95 #define PLATFORM_BUS_NUM_IRQS 64
97 /* Legacy RAM limit in GB (< version 4.0) */
98 #define LEGACY_RAMLIMIT_GB 255
99 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
101 /* Addresses and sizes of our components.
102 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
103 * 128MB..256MB is used for miscellaneous device I/O.
104 * 256MB..1GB is reserved for possible future PCI support (ie where the
105 * PCI memory window will go if we add a PCI host controller).
106 * 1GB and up is RAM (which may happily spill over into the
107 * high memory region beyond 4GB).
108 * This represents a compromise between how much RAM can be given to
109 * a 32 bit VM and leaving space for expansion and in particular for PCI.
110 * Note that devices should generally be placed at multiples of 0x10000,
111 * to accommodate guests using 64K pages.
113 static const MemMapEntry base_memmap
[] = {
114 /* Space up to 0x8000000 is reserved for a boot ROM */
115 [VIRT_FLASH
] = { 0, 0x08000000 },
116 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
117 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
118 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
119 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
120 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
121 [VIRT_GIC_HYP
] = { 0x08030000, 0x00010000 },
122 [VIRT_GIC_VCPU
] = { 0x08040000, 0x00010000 },
123 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
124 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
125 /* This redistributor space allows up to 2*64kB*123 CPUs */
126 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
127 [VIRT_UART
] = { 0x09000000, 0x00001000 },
128 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
129 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
130 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
131 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
132 [VIRT_SMMU
] = { 0x09050000, 0x00020000 },
133 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
134 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
135 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
136 [VIRT_SECURE_MEM
] = { 0x0e000000, 0x01000000 },
137 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
138 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
139 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
140 /* Actual RAM size depends on initial RAM and device memory settings */
141 [VIRT_MEM
] = { GiB
, LEGACY_RAMLIMIT_BYTES
},
145 * Highmem IO Regions: This memory map is floating, located after the RAM.
146 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
147 * top of the RAM, so that its base get the same alignment as the size,
148 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
149 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
150 * Note the extended_memmap is sized so that it eventually also includes the
151 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
152 * index of base_memmap).
154 static MemMapEntry extended_memmap
[] = {
155 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
156 [VIRT_HIGH_GIC_REDIST2
] = { 0x0, 64 * MiB
},
157 [VIRT_HIGH_PCIE_ECAM
] = { 0x0, 256 * MiB
},
158 /* Second PCIe window */
159 [VIRT_HIGH_PCIE_MMIO
] = { 0x0, 512 * GiB
},
162 static const int a15irqmap
[] = {
165 [VIRT_PCIE
] = 3, /* ... to 6 */
167 [VIRT_SECURE_UART
] = 8,
168 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
169 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
170 [VIRT_SMMU
] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
171 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
174 static const char *valid_cpus
[] = {
175 ARM_CPU_TYPE_NAME("cortex-a15"),
176 ARM_CPU_TYPE_NAME("cortex-a53"),
177 ARM_CPU_TYPE_NAME("cortex-a57"),
178 ARM_CPU_TYPE_NAME("cortex-a72"),
179 ARM_CPU_TYPE_NAME("host"),
180 ARM_CPU_TYPE_NAME("max"),
183 static bool cpu_type_valid(const char *cpu
)
187 for (i
= 0; i
< ARRAY_SIZE(valid_cpus
); i
++) {
188 if (strcmp(cpu
, valid_cpus
[i
]) == 0) {
195 static void create_fdt(VirtMachineState
*vms
)
197 void *fdt
= create_device_tree(&vms
->fdt_size
);
200 error_report("create_device_tree() failed");
207 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
208 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
209 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
211 /* /chosen must exist for load_dtb to fill in necessary properties later */
212 qemu_fdt_add_subnode(fdt
, "/chosen");
214 /* Clock node, for the benefit of the UART. The kernel device tree
215 * binding documentation claims the PL011 node clock properties are
216 * optional but in practice if you omit them the kernel refuses to
217 * probe for the device.
219 vms
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
220 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
221 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
222 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
223 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
224 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
226 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vms
->clock_phandle
);
228 if (have_numa_distance
) {
229 int size
= nb_numa_nodes
* nb_numa_nodes
* 3 * sizeof(uint32_t);
230 uint32_t *matrix
= g_malloc0(size
);
233 for (i
= 0; i
< nb_numa_nodes
; i
++) {
234 for (j
= 0; j
< nb_numa_nodes
; j
++) {
235 idx
= (i
* nb_numa_nodes
+ j
) * 3;
236 matrix
[idx
+ 0] = cpu_to_be32(i
);
237 matrix
[idx
+ 1] = cpu_to_be32(j
);
238 matrix
[idx
+ 2] = cpu_to_be32(numa_info
[i
].distance
[j
]);
242 qemu_fdt_add_subnode(fdt
, "/distance-map");
243 qemu_fdt_setprop_string(fdt
, "/distance-map", "compatible",
244 "numa-distance-map-v1");
245 qemu_fdt_setprop(fdt
, "/distance-map", "distance-matrix",
251 static void fdt_add_timer_nodes(const VirtMachineState
*vms
)
253 /* On real hardware these interrupts are level-triggered.
254 * On KVM they were edge-triggered before host kernel version 4.4,
255 * and level-triggered afterwards.
256 * On emulated QEMU they are level-triggered.
258 * Getting the DTB info about them wrong is awkward for some
260 * pre-4.8 ignore the DT and leave the interrupt configured
261 * with whatever the GIC reset value (or the bootloader) left it at
262 * 4.8 before rc6 honour the incorrect data by programming it back
263 * into the GIC, causing problems
264 * 4.8rc6 and later ignore the DT and always write "level triggered"
267 * For backwards-compatibility, virt-2.8 and earlier will continue
268 * to say these are edge-triggered, but later machines will report
269 * the correct information.
272 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
273 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
275 if (vmc
->claim_edge_triggered_timers
) {
276 irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
279 if (vms
->gic_version
== 2) {
280 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
281 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
282 (1 << vms
->smp_cpus
) - 1);
285 qemu_fdt_add_subnode(vms
->fdt
, "/timer");
287 armcpu
= ARM_CPU(qemu_get_cpu(0));
288 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
289 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
290 qemu_fdt_setprop(vms
->fdt
, "/timer", "compatible",
291 compat
, sizeof(compat
));
293 qemu_fdt_setprop_string(vms
->fdt
, "/timer", "compatible",
296 qemu_fdt_setprop(vms
->fdt
, "/timer", "always-on", NULL
, 0);
297 qemu_fdt_setprop_cells(vms
->fdt
, "/timer", "interrupts",
298 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
299 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
300 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
301 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
304 static void fdt_add_cpu_nodes(const VirtMachineState
*vms
)
308 const MachineState
*ms
= MACHINE(vms
);
311 * From Documentation/devicetree/bindings/arm/cpus.txt
312 * On ARM v8 64-bit systems value should be set to 2,
313 * that corresponds to the MPIDR_EL1 register size.
314 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
315 * in the system, #address-cells can be set to 1, since
316 * MPIDR_EL1[63:32] bits are not used for CPUs
319 * Here we actually don't know whether our system is 32- or 64-bit one.
320 * The simplest way to go is to examine affinity IDs of all our CPUs. If
321 * at least one of them has Aff3 populated, we set #address-cells to 2.
323 for (cpu
= 0; cpu
< vms
->smp_cpus
; cpu
++) {
324 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
326 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
332 qemu_fdt_add_subnode(vms
->fdt
, "/cpus");
333 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#address-cells", addr_cells
);
334 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#size-cells", 0x0);
336 for (cpu
= vms
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
337 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
338 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
339 CPUState
*cs
= CPU(armcpu
);
341 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
342 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "cpu");
343 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
344 armcpu
->dtb_compatible
);
346 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
347 && vms
->smp_cpus
> 1) {
348 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
349 "enable-method", "psci");
352 if (addr_cells
== 2) {
353 qemu_fdt_setprop_u64(vms
->fdt
, nodename
, "reg",
354 armcpu
->mp_affinity
);
356 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "reg",
357 armcpu
->mp_affinity
);
360 if (ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.has_node_id
) {
361 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "numa-node-id",
362 ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.node_id
);
369 static void fdt_add_its_gic_node(VirtMachineState
*vms
)
373 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
374 nodename
= g_strdup_printf("/intc/its@%" PRIx64
,
375 vms
->memmap
[VIRT_GIC_ITS
].base
);
376 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
377 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
379 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
380 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
381 2, vms
->memmap
[VIRT_GIC_ITS
].base
,
382 2, vms
->memmap
[VIRT_GIC_ITS
].size
);
383 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
387 static void fdt_add_v2m_gic_node(VirtMachineState
*vms
)
391 nodename
= g_strdup_printf("/intc/v2m@%" PRIx64
,
392 vms
->memmap
[VIRT_GIC_V2M
].base
);
393 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
394 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
395 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
396 "arm,gic-v2m-frame");
397 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
398 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
399 2, vms
->memmap
[VIRT_GIC_V2M
].base
,
400 2, vms
->memmap
[VIRT_GIC_V2M
].size
);
401 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
405 static void fdt_add_gic_node(VirtMachineState
*vms
)
409 vms
->gic_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
410 qemu_fdt_setprop_cell(vms
->fdt
, "/", "interrupt-parent", vms
->gic_phandle
);
412 nodename
= g_strdup_printf("/intc@%" PRIx64
,
413 vms
->memmap
[VIRT_GIC_DIST
].base
);
414 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
415 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 3);
416 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-controller", NULL
, 0);
417 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 0x2);
418 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 0x2);
419 qemu_fdt_setprop(vms
->fdt
, nodename
, "ranges", NULL
, 0);
420 if (vms
->gic_version
== 3) {
421 int nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
423 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
426 qemu_fdt_setprop_cell(vms
->fdt
, nodename
,
427 "#redistributor-regions", nb_redist_regions
);
429 if (nb_redist_regions
== 1) {
430 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
431 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
432 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
433 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
434 2, vms
->memmap
[VIRT_GIC_REDIST
].size
);
436 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
437 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
438 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
439 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
440 2, vms
->memmap
[VIRT_GIC_REDIST
].size
,
441 2, vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].base
,
442 2, vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
);
446 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
447 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
448 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
451 /* 'cortex-a15-gic' means 'GIC v2' */
452 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
453 "arm,cortex-a15-gic");
455 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
456 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
457 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
458 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
459 2, vms
->memmap
[VIRT_GIC_CPU
].size
);
461 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
462 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
463 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
464 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
465 2, vms
->memmap
[VIRT_GIC_CPU
].size
,
466 2, vms
->memmap
[VIRT_GIC_HYP
].base
,
467 2, vms
->memmap
[VIRT_GIC_HYP
].size
,
468 2, vms
->memmap
[VIRT_GIC_VCPU
].base
,
469 2, vms
->memmap
[VIRT_GIC_VCPU
].size
);
470 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
471 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
472 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
476 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->gic_phandle
);
480 static void fdt_add_pmu_nodes(const VirtMachineState
*vms
)
484 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
487 armcpu
= ARM_CPU(cpu
);
488 if (!arm_feature(&armcpu
->env
, ARM_FEATURE_PMU
)) {
492 if (kvm_irqchip_in_kernel()) {
493 kvm_arm_pmu_set_irq(cpu
, PPI(VIRTUAL_PMU_IRQ
));
495 kvm_arm_pmu_init(cpu
);
499 if (vms
->gic_version
== 2) {
500 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
501 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
502 (1 << vms
->smp_cpus
) - 1);
505 armcpu
= ARM_CPU(qemu_get_cpu(0));
506 qemu_fdt_add_subnode(vms
->fdt
, "/pmu");
507 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
508 const char compat
[] = "arm,armv8-pmuv3";
509 qemu_fdt_setprop(vms
->fdt
, "/pmu", "compatible",
510 compat
, sizeof(compat
));
511 qemu_fdt_setprop_cells(vms
->fdt
, "/pmu", "interrupts",
512 GIC_FDT_IRQ_TYPE_PPI
, VIRTUAL_PMU_IRQ
, irqflags
);
516 static void create_its(VirtMachineState
*vms
, DeviceState
*gicdev
)
518 const char *itsclass
= its_class_name();
522 /* Do nothing if not supported */
526 dev
= qdev_create(NULL
, itsclass
);
528 object_property_set_link(OBJECT(dev
), OBJECT(gicdev
), "parent-gicv3",
530 qdev_init_nofail(dev
);
531 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_ITS
].base
);
533 fdt_add_its_gic_node(vms
);
536 static void create_v2m(VirtMachineState
*vms
, qemu_irq
*pic
)
539 int irq
= vms
->irqmap
[VIRT_GIC_V2M
];
542 dev
= qdev_create(NULL
, "arm-gicv2m");
543 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_V2M
].base
);
544 qdev_prop_set_uint32(dev
, "base-spi", irq
);
545 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
546 qdev_init_nofail(dev
);
548 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
549 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
552 fdt_add_v2m_gic_node(vms
);
555 static void create_gic(VirtMachineState
*vms
, qemu_irq
*pic
)
557 /* We create a standalone GIC */
559 SysBusDevice
*gicbusdev
;
561 int type
= vms
->gic_version
, i
;
562 uint32_t nb_redist_regions
= 0;
564 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
566 gicdev
= qdev_create(NULL
, gictype
);
567 qdev_prop_set_uint32(gicdev
, "revision", type
);
568 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
569 /* Note that the num-irq property counts both internal and external
570 * interrupts; there are always 32 of the former (mandated by GIC spec).
572 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
573 if (!kvm_irqchip_in_kernel()) {
574 qdev_prop_set_bit(gicdev
, "has-security-extensions", vms
->secure
);
578 uint32_t redist0_capacity
=
579 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
580 uint32_t redist0_count
= MIN(smp_cpus
, redist0_capacity
);
582 nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
584 qdev_prop_set_uint32(gicdev
, "len-redist-region-count",
586 qdev_prop_set_uint32(gicdev
, "redist-region-count[0]", redist0_count
);
588 if (nb_redist_regions
== 2) {
589 uint32_t redist1_capacity
=
590 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
592 qdev_prop_set_uint32(gicdev
, "redist-region-count[1]",
593 MIN(smp_cpus
- redist0_count
, redist1_capacity
));
596 if (!kvm_irqchip_in_kernel()) {
597 qdev_prop_set_bit(gicdev
, "has-virtualization-extensions",
601 qdev_init_nofail(gicdev
);
602 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
603 sysbus_mmio_map(gicbusdev
, 0, vms
->memmap
[VIRT_GIC_DIST
].base
);
605 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_REDIST
].base
);
606 if (nb_redist_regions
== 2) {
607 sysbus_mmio_map(gicbusdev
, 2,
608 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].base
);
611 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_CPU
].base
);
613 sysbus_mmio_map(gicbusdev
, 2, vms
->memmap
[VIRT_GIC_HYP
].base
);
614 sysbus_mmio_map(gicbusdev
, 3, vms
->memmap
[VIRT_GIC_VCPU
].base
);
618 /* Wire the outputs from each CPU's generic timer and the GICv3
619 * maintenance interrupt signal to the appropriate GIC PPI inputs,
620 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
622 for (i
= 0; i
< smp_cpus
; i
++) {
623 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
624 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
626 /* Mapping from the output timer irq lines from the CPU to the
627 * GIC PPI inputs we use for the virt board.
629 const int timer_irq
[] = {
630 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
631 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
632 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
633 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
636 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
637 qdev_connect_gpio_out(cpudev
, irq
,
638 qdev_get_gpio_in(gicdev
,
639 ppibase
+ timer_irq
[irq
]));
643 qemu_irq irq
= qdev_get_gpio_in(gicdev
,
644 ppibase
+ ARCH_GIC_MAINT_IRQ
);
645 qdev_connect_gpio_out_named(cpudev
, "gicv3-maintenance-interrupt",
647 } else if (vms
->virt
) {
648 qemu_irq irq
= qdev_get_gpio_in(gicdev
,
649 ppibase
+ ARCH_GIC_MAINT_IRQ
);
650 sysbus_connect_irq(gicbusdev
, i
+ 4 * smp_cpus
, irq
);
653 qdev_connect_gpio_out_named(cpudev
, "pmu-interrupt", 0,
654 qdev_get_gpio_in(gicdev
, ppibase
657 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
658 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
659 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
660 sysbus_connect_irq(gicbusdev
, i
+ 2 * smp_cpus
,
661 qdev_get_gpio_in(cpudev
, ARM_CPU_VIRQ
));
662 sysbus_connect_irq(gicbusdev
, i
+ 3 * smp_cpus
,
663 qdev_get_gpio_in(cpudev
, ARM_CPU_VFIQ
));
666 for (i
= 0; i
< NUM_IRQS
; i
++) {
667 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
670 fdt_add_gic_node(vms
);
672 if (type
== 3 && vms
->its
) {
673 create_its(vms
, gicdev
);
674 } else if (type
== 2) {
675 create_v2m(vms
, pic
);
679 static void create_uart(const VirtMachineState
*vms
, qemu_irq
*pic
, int uart
,
680 MemoryRegion
*mem
, Chardev
*chr
)
683 hwaddr base
= vms
->memmap
[uart
].base
;
684 hwaddr size
= vms
->memmap
[uart
].size
;
685 int irq
= vms
->irqmap
[uart
];
686 const char compat
[] = "arm,pl011\0arm,primecell";
687 const char clocknames
[] = "uartclk\0apb_pclk";
688 DeviceState
*dev
= qdev_create(NULL
, "pl011");
689 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
691 qdev_prop_set_chr(dev
, "chardev", chr
);
692 qdev_init_nofail(dev
);
693 memory_region_add_subregion(mem
, base
,
694 sysbus_mmio_get_region(s
, 0));
695 sysbus_connect_irq(s
, 0, pic
[irq
]);
697 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
698 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
699 /* Note that we can't use setprop_string because of the embedded NUL */
700 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible",
701 compat
, sizeof(compat
));
702 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
704 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
705 GIC_FDT_IRQ_TYPE_SPI
, irq
,
706 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
707 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "clocks",
708 vms
->clock_phandle
, vms
->clock_phandle
);
709 qemu_fdt_setprop(vms
->fdt
, nodename
, "clock-names",
710 clocknames
, sizeof(clocknames
));
712 if (uart
== VIRT_UART
) {
713 qemu_fdt_setprop_string(vms
->fdt
, "/chosen", "stdout-path", nodename
);
715 /* Mark as not usable by the normal world */
716 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
717 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
719 qemu_fdt_add_subnode(vms
->fdt
, "/secure-chosen");
720 qemu_fdt_setprop_string(vms
->fdt
, "/secure-chosen", "stdout-path",
727 static void create_rtc(const VirtMachineState
*vms
, qemu_irq
*pic
)
730 hwaddr base
= vms
->memmap
[VIRT_RTC
].base
;
731 hwaddr size
= vms
->memmap
[VIRT_RTC
].size
;
732 int irq
= vms
->irqmap
[VIRT_RTC
];
733 const char compat
[] = "arm,pl031\0arm,primecell";
735 sysbus_create_simple("pl031", base
, pic
[irq
]);
737 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
738 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
739 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
740 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
742 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
743 GIC_FDT_IRQ_TYPE_SPI
, irq
,
744 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
745 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
746 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
750 static DeviceState
*gpio_key_dev
;
751 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
753 /* use gpio Pin 3 for power button event */
754 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
757 static Notifier virt_system_powerdown_notifier
= {
758 .notify
= virt_powerdown_req
761 static void create_gpio(const VirtMachineState
*vms
, qemu_irq
*pic
)
764 DeviceState
*pl061_dev
;
765 hwaddr base
= vms
->memmap
[VIRT_GPIO
].base
;
766 hwaddr size
= vms
->memmap
[VIRT_GPIO
].size
;
767 int irq
= vms
->irqmap
[VIRT_GPIO
];
768 const char compat
[] = "arm,pl061\0arm,primecell";
770 pl061_dev
= sysbus_create_simple("pl061", base
, pic
[irq
]);
772 uint32_t phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
773 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
774 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
775 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
777 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
778 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#gpio-cells", 2);
779 qemu_fdt_setprop(vms
->fdt
, nodename
, "gpio-controller", NULL
, 0);
780 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
781 GIC_FDT_IRQ_TYPE_SPI
, irq
,
782 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
783 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
784 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
785 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", phandle
);
787 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
788 qdev_get_gpio_in(pl061_dev
, 3));
789 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys");
790 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys", "compatible", "gpio-keys");
791 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#size-cells", 0);
792 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#address-cells", 1);
794 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys/poweroff");
795 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys/poweroff",
796 "label", "GPIO Key Poweroff");
797 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys/poweroff", "linux,code",
799 qemu_fdt_setprop_cells(vms
->fdt
, "/gpio-keys/poweroff",
800 "gpios", phandle
, 3, 0);
802 /* connect powerdown request */
803 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier
);
808 static void create_virtio_devices(const VirtMachineState
*vms
, qemu_irq
*pic
)
811 hwaddr size
= vms
->memmap
[VIRT_MMIO
].size
;
813 /* We create the transports in forwards order. Since qbus_realize()
814 * prepends (not appends) new child buses, the incrementing loop below will
815 * create a list of virtio-mmio buses with decreasing base addresses.
817 * When a -device option is processed from the command line,
818 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
819 * order. The upshot is that -device options in increasing command line
820 * order are mapped to virtio-mmio buses with decreasing base addresses.
822 * When this code was originally written, that arrangement ensured that the
823 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
824 * the first -device on the command line. (The end-to-end order is a
825 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
826 * guest kernel's name-to-address assignment strategy.)
828 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
829 * the message, if not necessarily the code, of commit 70161ff336.
830 * Therefore the loop now establishes the inverse of the original intent.
832 * Unfortunately, we can't counteract the kernel change by reversing the
833 * loop; it would break existing command lines.
835 * In any case, the kernel makes no guarantee about the stability of
836 * enumeration order of virtio devices (as demonstrated by it changing
837 * between kernel versions). For reliable and stable identification
838 * of disks users must use UUIDs or similar mechanisms.
840 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
841 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
842 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
844 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
847 /* We add dtb nodes in reverse order so that they appear in the finished
848 * device tree lowest address first.
850 * Note that this mapping is independent of the loop above. The previous
851 * loop influences virtio device to virtio transport assignment, whereas
852 * this loop controls how virtio transports are laid out in the dtb.
854 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
856 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
857 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
859 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
860 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
861 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
862 "compatible", "virtio,mmio");
863 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
865 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
866 GIC_FDT_IRQ_TYPE_SPI
, irq
,
867 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
868 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
873 static void create_one_flash(const char *name
, hwaddr flashbase
,
874 hwaddr flashsize
, const char *file
,
875 MemoryRegion
*sysmem
)
877 /* Create and map a single flash device. We use the same
878 * parameters as the flash devices on the Versatile Express board.
880 DriveInfo
*dinfo
= drive_get_next(IF_PFLASH
);
881 DeviceState
*dev
= qdev_create(NULL
, "cfi.pflash01");
882 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
883 const uint64_t sectorlength
= 256 * 1024;
886 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
890 qdev_prop_set_uint32(dev
, "num-blocks", flashsize
/ sectorlength
);
891 qdev_prop_set_uint64(dev
, "sector-length", sectorlength
);
892 qdev_prop_set_uint8(dev
, "width", 4);
893 qdev_prop_set_uint8(dev
, "device-width", 2);
894 qdev_prop_set_bit(dev
, "big-endian", false);
895 qdev_prop_set_uint16(dev
, "id0", 0x89);
896 qdev_prop_set_uint16(dev
, "id1", 0x18);
897 qdev_prop_set_uint16(dev
, "id2", 0x00);
898 qdev_prop_set_uint16(dev
, "id3", 0x00);
899 qdev_prop_set_string(dev
, "name", name
);
900 qdev_init_nofail(dev
);
902 memory_region_add_subregion(sysmem
, flashbase
,
903 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0));
909 if (drive_get(IF_PFLASH
, 0, 0)) {
910 error_report("The contents of the first flash device may be "
911 "specified with -bios or with -drive if=pflash... "
912 "but you cannot use both options at once");
915 fn
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, file
);
917 error_report("Could not find ROM image '%s'", file
);
920 image_size
= load_image_mr(fn
, sysbus_mmio_get_region(sbd
, 0));
922 if (image_size
< 0) {
923 error_report("Could not load ROM image '%s'", file
);
929 static void create_flash(const VirtMachineState
*vms
,
930 MemoryRegion
*sysmem
,
931 MemoryRegion
*secure_sysmem
)
933 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
934 * Any file passed via -bios goes in the first of these.
935 * sysmem is the system memory space. secure_sysmem is the secure view
936 * of the system, and the first flash device should be made visible only
937 * there. The second flash device is visible to both secure and nonsecure.
938 * If sysmem == secure_sysmem this means there is no separate Secure
939 * address space and both flash devices are generally visible.
941 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
942 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
945 create_one_flash("virt.flash0", flashbase
, flashsize
,
946 bios_name
, secure_sysmem
);
947 create_one_flash("virt.flash1", flashbase
+ flashsize
, flashsize
,
950 if (sysmem
== secure_sysmem
) {
951 /* Report both flash devices as a single node in the DT */
952 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
953 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
954 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
955 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
956 2, flashbase
, 2, flashsize
,
957 2, flashbase
+ flashsize
, 2, flashsize
);
958 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
961 /* Report the devices as separate nodes so we can mark one as
962 * only visible to the secure world.
964 nodename
= g_strdup_printf("/secflash@%" PRIx64
, flashbase
);
965 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
966 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
967 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
968 2, flashbase
, 2, flashsize
);
969 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
970 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
971 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
974 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
975 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
976 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
977 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
978 2, flashbase
+ flashsize
, 2, flashsize
);
979 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
984 static FWCfgState
*create_fw_cfg(const VirtMachineState
*vms
, AddressSpace
*as
)
986 hwaddr base
= vms
->memmap
[VIRT_FW_CFG
].base
;
987 hwaddr size
= vms
->memmap
[VIRT_FW_CFG
].size
;
991 fw_cfg
= fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
992 fw_cfg_add_i16(fw_cfg
, FW_CFG_NB_CPUS
, (uint16_t)smp_cpus
);
994 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
995 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
996 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
997 "compatible", "qemu,fw-cfg-mmio");
998 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1000 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1005 static void create_pcie_irq_map(const VirtMachineState
*vms
,
1006 uint32_t gic_phandle
,
1007 int first_irq
, const char *nodename
)
1010 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
1011 uint32_t *irq_map
= full_irq_map
;
1013 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
1014 for (pin
= 0; pin
< 4; pin
++) {
1015 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
1016 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
1017 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
1021 devfn
<< 8, 0, 0, /* devfn */
1022 pin
+ 1, /* PCI pin */
1023 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
1025 /* Convert map to big endian */
1026 for (i
= 0; i
< 10; i
++) {
1027 irq_map
[i
] = cpu_to_be32(map
[i
]);
1033 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-map",
1034 full_irq_map
, sizeof(full_irq_map
));
1036 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupt-map-mask",
1037 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1041 static void create_smmu(const VirtMachineState
*vms
, qemu_irq
*pic
,
1045 const char compat
[] = "arm,smmu-v3";
1046 int irq
= vms
->irqmap
[VIRT_SMMU
];
1048 hwaddr base
= vms
->memmap
[VIRT_SMMU
].base
;
1049 hwaddr size
= vms
->memmap
[VIRT_SMMU
].size
;
1050 const char irq_names
[] = "eventq\0priq\0cmdq-sync\0gerror";
1053 if (vms
->iommu
!= VIRT_IOMMU_SMMUV3
|| !vms
->iommu_phandle
) {
1057 dev
= qdev_create(NULL
, "arm-smmuv3");
1059 object_property_set_link(OBJECT(dev
), OBJECT(bus
), "primary-bus",
1061 qdev_init_nofail(dev
);
1062 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, base
);
1063 for (i
= 0; i
< NUM_SMMU_IRQS
; i
++) {
1064 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
1067 node
= g_strdup_printf("/smmuv3@%" PRIx64
, base
);
1068 qemu_fdt_add_subnode(vms
->fdt
, node
);
1069 qemu_fdt_setprop(vms
->fdt
, node
, "compatible", compat
, sizeof(compat
));
1070 qemu_fdt_setprop_sized_cells(vms
->fdt
, node
, "reg", 2, base
, 2, size
);
1072 qemu_fdt_setprop_cells(vms
->fdt
, node
, "interrupts",
1073 GIC_FDT_IRQ_TYPE_SPI
, irq
, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1074 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1075 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1076 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
1078 qemu_fdt_setprop(vms
->fdt
, node
, "interrupt-names", irq_names
,
1081 qemu_fdt_setprop_cell(vms
->fdt
, node
, "clocks", vms
->clock_phandle
);
1082 qemu_fdt_setprop_string(vms
->fdt
, node
, "clock-names", "apb_pclk");
1083 qemu_fdt_setprop(vms
->fdt
, node
, "dma-coherent", NULL
, 0);
1085 qemu_fdt_setprop_cell(vms
->fdt
, node
, "#iommu-cells", 1);
1087 qemu_fdt_setprop_cell(vms
->fdt
, node
, "phandle", vms
->iommu_phandle
);
1091 static void create_pcie(VirtMachineState
*vms
, qemu_irq
*pic
)
1093 hwaddr base_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].base
;
1094 hwaddr size_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].size
;
1095 hwaddr base_mmio_high
= vms
->memmap
[VIRT_HIGH_PCIE_MMIO
].base
;
1096 hwaddr size_mmio_high
= vms
->memmap
[VIRT_HIGH_PCIE_MMIO
].size
;
1097 hwaddr base_pio
= vms
->memmap
[VIRT_PCIE_PIO
].base
;
1098 hwaddr size_pio
= vms
->memmap
[VIRT_PCIE_PIO
].size
;
1099 hwaddr base_ecam
, size_ecam
;
1100 hwaddr base
= base_mmio
;
1102 int irq
= vms
->irqmap
[VIRT_PCIE
];
1103 MemoryRegion
*mmio_alias
;
1104 MemoryRegion
*mmio_reg
;
1105 MemoryRegion
*ecam_alias
;
1106 MemoryRegion
*ecam_reg
;
1112 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
1113 qdev_init_nofail(dev
);
1115 ecam_id
= VIRT_ECAM_ID(vms
->highmem_ecam
);
1116 base_ecam
= vms
->memmap
[ecam_id
].base
;
1117 size_ecam
= vms
->memmap
[ecam_id
].size
;
1118 nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
1119 /* Map only the first size_ecam bytes of ECAM space */
1120 ecam_alias
= g_new0(MemoryRegion
, 1);
1121 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
1122 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
1123 ecam_reg
, 0, size_ecam
);
1124 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
1126 /* Map the MMIO window into system address space so as to expose
1127 * the section of PCI MMIO space which starts at the same base address
1128 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1131 mmio_alias
= g_new0(MemoryRegion
, 1);
1132 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
1133 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
1134 mmio_reg
, base_mmio
, size_mmio
);
1135 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
1138 /* Map high MMIO space */
1139 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
1141 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
1142 mmio_reg
, base_mmio_high
, size_mmio_high
);
1143 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
1147 /* Map IO port space */
1148 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
1150 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
1151 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
1152 gpex_set_irq_num(GPEX_HOST(dev
), i
, irq
+ i
);
1155 pci
= PCI_HOST_BRIDGE(dev
);
1157 for (i
= 0; i
< nb_nics
; i
++) {
1158 NICInfo
*nd
= &nd_table
[i
];
1161 nd
->model
= g_strdup("virtio");
1164 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
1168 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
1169 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1170 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1171 "compatible", "pci-host-ecam-generic");
1172 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "pci");
1173 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 3);
1174 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 2);
1175 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "linux,pci-domain", 0);
1176 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "bus-range", 0,
1178 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1180 if (vms
->msi_phandle
) {
1181 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "msi-parent",
1185 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1186 2, base_ecam
, 2, size_ecam
);
1189 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1190 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1191 2, base_pio
, 2, size_pio
,
1192 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1193 2, base_mmio
, 2, size_mmio
,
1194 1, FDT_PCI_RANGE_MMIO_64BIT
,
1196 2, base_mmio_high
, 2, size_mmio_high
);
1198 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1199 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1200 2, base_pio
, 2, size_pio
,
1201 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1202 2, base_mmio
, 2, size_mmio
);
1205 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 1);
1206 create_pcie_irq_map(vms
, vms
->gic_phandle
, irq
, nodename
);
1209 vms
->iommu_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
1211 create_smmu(vms
, pic
, pci
->bus
);
1213 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "iommu-map",
1214 0x0, vms
->iommu_phandle
, 0x0, 0x10000);
1220 static void create_platform_bus(VirtMachineState
*vms
, qemu_irq
*pic
)
1225 MemoryRegion
*sysmem
= get_system_memory();
1227 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
1228 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
1229 qdev_prop_set_uint32(dev
, "num_irqs", PLATFORM_BUS_NUM_IRQS
);
1230 qdev_prop_set_uint32(dev
, "mmio_size", vms
->memmap
[VIRT_PLATFORM_BUS
].size
);
1231 qdev_init_nofail(dev
);
1232 vms
->platform_bus_dev
= dev
;
1234 s
= SYS_BUS_DEVICE(dev
);
1235 for (i
= 0; i
< PLATFORM_BUS_NUM_IRQS
; i
++) {
1236 int irqn
= vms
->irqmap
[VIRT_PLATFORM_BUS
] + i
;
1237 sysbus_connect_irq(s
, i
, pic
[irqn
]);
1240 memory_region_add_subregion(sysmem
,
1241 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1242 sysbus_mmio_get_region(s
, 0));
1245 static void create_secure_ram(VirtMachineState
*vms
,
1246 MemoryRegion
*secure_sysmem
)
1248 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
1250 hwaddr base
= vms
->memmap
[VIRT_SECURE_MEM
].base
;
1251 hwaddr size
= vms
->memmap
[VIRT_SECURE_MEM
].size
;
1253 memory_region_init_ram(secram
, NULL
, "virt.secure-ram", size
,
1255 memory_region_add_subregion(secure_sysmem
, base
, secram
);
1257 nodename
= g_strdup_printf("/secram@%" PRIx64
, base
);
1258 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1259 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "memory");
1260 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg", 2, base
, 2, size
);
1261 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
1262 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
1267 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
1269 const VirtMachineState
*board
= container_of(binfo
, VirtMachineState
,
1272 *fdt_size
= board
->fdt_size
;
1276 static void virt_build_smbios(VirtMachineState
*vms
)
1278 MachineClass
*mc
= MACHINE_GET_CLASS(vms
);
1279 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1280 uint8_t *smbios_tables
, *smbios_anchor
;
1281 size_t smbios_tables_len
, smbios_anchor_len
;
1282 const char *product
= "QEMU Virtual Machine";
1288 if (kvm_enabled()) {
1289 product
= "KVM Virtual Machine";
1292 smbios_set_defaults("QEMU", product
,
1293 vmc
->smbios_old_sys_ver
? "1.0" : mc
->name
, false,
1294 true, SMBIOS_ENTRY_POINT_30
);
1296 smbios_get_tables(NULL
, 0, &smbios_tables
, &smbios_tables_len
,
1297 &smbios_anchor
, &smbios_anchor_len
);
1299 if (smbios_anchor
) {
1300 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-tables",
1301 smbios_tables
, smbios_tables_len
);
1302 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-anchor",
1303 smbios_anchor
, smbios_anchor_len
);
1308 void virt_machine_done(Notifier
*notifier
, void *data
)
1310 VirtMachineState
*vms
= container_of(notifier
, VirtMachineState
,
1312 ARMCPU
*cpu
= ARM_CPU(first_cpu
);
1313 struct arm_boot_info
*info
= &vms
->bootinfo
;
1314 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
1317 * If the user provided a dtb, we assume the dynamic sysbus nodes
1318 * already are integrated there. This corresponds to a use case where
1319 * the dynamic sysbus nodes are complex and their generation is not yet
1320 * supported. In that case the user can take charge of the guest dt
1321 * while qemu takes charge of the qom stuff.
1323 if (info
->dtb_filename
== NULL
) {
1324 platform_bus_add_all_fdt_nodes(vms
->fdt
, "/intc",
1325 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1326 vms
->memmap
[VIRT_PLATFORM_BUS
].size
,
1327 vms
->irqmap
[VIRT_PLATFORM_BUS
]);
1329 if (arm_load_dtb(info
->dtb_start
, info
, info
->dtb_limit
, as
) < 0) {
1333 virt_acpi_setup(vms
);
1334 virt_build_smbios(vms
);
1337 static uint64_t virt_cpu_mp_affinity(VirtMachineState
*vms
, int idx
)
1339 uint8_t clustersz
= ARM_DEFAULT_CPUS_PER_CLUSTER
;
1340 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1342 if (!vmc
->disallow_affinity_adjustment
) {
1343 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1344 * GIC's target-list limitations. 32-bit KVM hosts currently
1345 * always create clusters of 4 CPUs, but that is expected to
1346 * change when they gain support for gicv3. When KVM is enabled
1347 * it will override the changes we make here, therefore our
1348 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1349 * and to improve SGI efficiency.
1351 if (vms
->gic_version
== 3) {
1352 clustersz
= GICV3_TARGETLIST_BITS
;
1354 clustersz
= GIC_TARGETLIST_BITS
;
1357 return arm_cpu_mp_affinity(idx
, clustersz
);
1360 static void virt_set_memmap(VirtMachineState
*vms
)
1362 MachineState
*ms
= MACHINE(vms
);
1363 hwaddr base
, device_memory_base
, device_memory_size
;
1366 vms
->memmap
= extended_memmap
;
1368 for (i
= 0; i
< ARRAY_SIZE(base_memmap
); i
++) {
1369 vms
->memmap
[i
] = base_memmap
[i
];
1372 if (ms
->ram_slots
> ACPI_MAX_RAM_SLOTS
) {
1373 error_report("unsupported number of memory slots: %"PRIu64
,
1379 * We compute the base of the high IO region depending on the
1380 * amount of initial and device memory. The device memory start/size
1381 * is aligned on 1GiB. We never put the high IO region below 256GiB
1382 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1383 * The device region size assumes 1GiB page max alignment per slot.
1385 device_memory_base
=
1386 ROUND_UP(vms
->memmap
[VIRT_MEM
].base
+ ms
->ram_size
, GiB
);
1387 device_memory_size
= ms
->maxram_size
- ms
->ram_size
+ ms
->ram_slots
* GiB
;
1389 /* Base address of the high IO region */
1390 base
= device_memory_base
+ ROUND_UP(device_memory_size
, GiB
);
1391 if (base
< device_memory_base
) {
1392 error_report("maxmem/slots too huge");
1395 if (base
< vms
->memmap
[VIRT_MEM
].base
+ LEGACY_RAMLIMIT_BYTES
) {
1396 base
= vms
->memmap
[VIRT_MEM
].base
+ LEGACY_RAMLIMIT_BYTES
;
1399 for (i
= VIRT_LOWMEMMAP_LAST
; i
< ARRAY_SIZE(extended_memmap
); i
++) {
1400 hwaddr size
= extended_memmap
[i
].size
;
1402 base
= ROUND_UP(base
, size
);
1403 vms
->memmap
[i
].base
= base
;
1404 vms
->memmap
[i
].size
= size
;
1407 vms
->highest_gpa
= base
- 1;
1408 if (device_memory_size
> 0) {
1409 ms
->device_memory
= g_malloc0(sizeof(*ms
->device_memory
));
1410 ms
->device_memory
->base
= device_memory_base
;
1411 memory_region_init(&ms
->device_memory
->mr
, OBJECT(vms
),
1412 "device-memory", device_memory_size
);
1416 static void machvirt_init(MachineState
*machine
)
1418 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1419 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(machine
);
1420 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1421 const CPUArchIdList
*possible_cpus
;
1422 qemu_irq pic
[NUM_IRQS
];
1423 MemoryRegion
*sysmem
= get_system_memory();
1424 MemoryRegion
*secure_sysmem
= NULL
;
1425 int n
, virt_max_cpus
;
1426 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1427 bool firmware_loaded
= bios_name
|| drive_get(IF_PFLASH
, 0, 0);
1428 bool aarch64
= true;
1431 * In accelerated mode, the memory map is computed earlier in kvm_type()
1432 * to create a VM with the right number of IPA bits.
1435 virt_set_memmap(vms
);
1438 /* We can probe only here because during property set
1439 * KVM is not available yet
1441 if (vms
->gic_version
<= 0) {
1442 /* "host" or "max" */
1443 if (!kvm_enabled()) {
1444 if (vms
->gic_version
== 0) {
1445 error_report("gic-version=host requires KVM");
1448 /* "max": currently means 3 for TCG */
1449 vms
->gic_version
= 3;
1452 vms
->gic_version
= kvm_arm_vgic_probe();
1453 if (!vms
->gic_version
) {
1455 "Unable to determine GIC version supported by host");
1461 if (!cpu_type_valid(machine
->cpu_type
)) {
1462 error_report("mach-virt: CPU type %s not supported", machine
->cpu_type
);
1466 /* If we have an EL3 boot ROM then the assumption is that it will
1467 * implement PSCI itself, so disable QEMU's internal implementation
1468 * so it doesn't get in the way. Instead of starting secondary
1469 * CPUs in PSCI powerdown state we will start them all running and
1470 * let the boot ROM sort them out.
1471 * The usual case is that we do use QEMU's PSCI implementation;
1472 * if the guest has EL2 then we will use SMC as the conduit,
1473 * and otherwise we will use HVC (for backwards compatibility and
1474 * because if we're using KVM then we must use HVC).
1476 if (vms
->secure
&& firmware_loaded
) {
1477 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_DISABLED
;
1478 } else if (vms
->virt
) {
1479 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_SMC
;
1481 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_HVC
;
1484 /* The maximum number of CPUs depends on the GIC version, or on how
1485 * many redistributors we can fit into the memory map.
1487 if (vms
->gic_version
== 3) {
1489 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
1491 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
1493 virt_max_cpus
= GIC_NCPU
;
1496 if (max_cpus
> virt_max_cpus
) {
1497 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1498 "supported by machine 'mach-virt' (%d)",
1499 max_cpus
, virt_max_cpus
);
1503 vms
->smp_cpus
= smp_cpus
;
1505 if (vms
->virt
&& kvm_enabled()) {
1506 error_report("mach-virt: KVM does not support providing "
1507 "Virtualization extensions to the guest CPU");
1512 if (kvm_enabled()) {
1513 error_report("mach-virt: KVM does not support Security extensions");
1517 /* The Secure view of the world is the same as the NonSecure,
1518 * but with a few extra devices. Create it as a container region
1519 * containing the system memory at low priority; any secure-only
1520 * devices go in at higher priority and take precedence.
1522 secure_sysmem
= g_new(MemoryRegion
, 1);
1523 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1525 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1530 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
1531 for (n
= 0; n
< possible_cpus
->len
; n
++) {
1535 if (n
>= smp_cpus
) {
1539 cpuobj
= object_new(possible_cpus
->cpus
[n
].type
);
1540 object_property_set_int(cpuobj
, possible_cpus
->cpus
[n
].arch_id
,
1541 "mp-affinity", NULL
);
1546 numa_cpu_pre_plug(&possible_cpus
->cpus
[cs
->cpu_index
], DEVICE(cpuobj
),
1549 aarch64
&= object_property_get_bool(cpuobj
, "aarch64", NULL
);
1552 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
1555 if (!vms
->virt
&& object_property_find(cpuobj
, "has_el2", NULL
)) {
1556 object_property_set_bool(cpuobj
, false, "has_el2", NULL
);
1559 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
) {
1560 object_property_set_int(cpuobj
, vms
->psci_conduit
,
1561 "psci-conduit", NULL
);
1563 /* Secondary CPUs start in PSCI powered-down state */
1565 object_property_set_bool(cpuobj
, true,
1566 "start-powered-off", NULL
);
1570 if (vmc
->no_pmu
&& object_property_find(cpuobj
, "pmu", NULL
)) {
1571 object_property_set_bool(cpuobj
, false, "pmu", NULL
);
1574 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
1575 object_property_set_int(cpuobj
, vms
->memmap
[VIRT_CPUPERIPHS
].base
,
1576 "reset-cbar", &error_abort
);
1579 object_property_set_link(cpuobj
, OBJECT(sysmem
), "memory",
1582 object_property_set_link(cpuobj
, OBJECT(secure_sysmem
),
1583 "secure-memory", &error_abort
);
1586 object_property_set_bool(cpuobj
, true, "realized", &error_fatal
);
1587 object_unref(cpuobj
);
1589 fdt_add_timer_nodes(vms
);
1590 fdt_add_cpu_nodes(vms
);
1592 if (!kvm_enabled()) {
1593 ARMCPU
*cpu
= ARM_CPU(first_cpu
);
1594 bool aarch64
= object_property_get_bool(OBJECT(cpu
), "aarch64", NULL
);
1596 if (aarch64
&& vms
->highmem
) {
1597 int requested_pa_size
, pamax
= arm_pamax(cpu
);
1599 requested_pa_size
= 64 - clz64(vms
->highest_gpa
);
1600 if (pamax
< requested_pa_size
) {
1601 error_report("VCPU supports less PA bits (%d) than requested "
1602 "by the memory map (%d)", pamax
, requested_pa_size
);
1608 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
1610 memory_region_add_subregion(sysmem
, vms
->memmap
[VIRT_MEM
].base
, ram
);
1611 if (machine
->device_memory
) {
1612 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
1613 &machine
->device_memory
->mr
);
1616 create_flash(vms
, sysmem
, secure_sysmem
? secure_sysmem
: sysmem
);
1618 create_gic(vms
, pic
);
1620 fdt_add_pmu_nodes(vms
);
1622 create_uart(vms
, pic
, VIRT_UART
, sysmem
, serial_hd(0));
1625 create_secure_ram(vms
, secure_sysmem
);
1626 create_uart(vms
, pic
, VIRT_SECURE_UART
, secure_sysmem
, serial_hd(1));
1629 vms
->highmem_ecam
&= vms
->highmem
&& (!firmware_loaded
|| aarch64
);
1631 create_rtc(vms
, pic
);
1633 create_pcie(vms
, pic
);
1635 create_gpio(vms
, pic
);
1637 /* Create mmio transports, so the user can create virtio backends
1638 * (which will be automatically plugged in to the transports). If
1639 * no backend is created the transport will just sit harmlessly idle.
1641 create_virtio_devices(vms
, pic
);
1643 vms
->fw_cfg
= create_fw_cfg(vms
, &address_space_memory
);
1644 rom_set_fw(vms
->fw_cfg
);
1646 create_platform_bus(vms
, pic
);
1648 vms
->bootinfo
.ram_size
= machine
->ram_size
;
1649 vms
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
1650 vms
->bootinfo
.kernel_cmdline
= machine
->kernel_cmdline
;
1651 vms
->bootinfo
.initrd_filename
= machine
->initrd_filename
;
1652 vms
->bootinfo
.nb_cpus
= smp_cpus
;
1653 vms
->bootinfo
.board_id
= -1;
1654 vms
->bootinfo
.loader_start
= vms
->memmap
[VIRT_MEM
].base
;
1655 vms
->bootinfo
.get_dtb
= machvirt_dtb
;
1656 vms
->bootinfo
.skip_dtb_autoload
= true;
1657 vms
->bootinfo
.firmware_loaded
= firmware_loaded
;
1658 arm_load_kernel(ARM_CPU(first_cpu
), &vms
->bootinfo
);
1660 vms
->machine_done
.notify
= virt_machine_done
;
1661 qemu_add_machine_init_done_notifier(&vms
->machine_done
);
1664 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1666 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1671 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1673 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1675 vms
->secure
= value
;
1678 static bool virt_get_virt(Object
*obj
, Error
**errp
)
1680 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1685 static void virt_set_virt(Object
*obj
, bool value
, Error
**errp
)
1687 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1692 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
1694 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1696 return vms
->highmem
;
1699 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
1701 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1703 vms
->highmem
= value
;
1706 static bool virt_get_its(Object
*obj
, Error
**errp
)
1708 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1713 static void virt_set_its(Object
*obj
, bool value
, Error
**errp
)
1715 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1720 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
1722 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1723 const char *val
= vms
->gic_version
== 3 ? "3" : "2";
1725 return g_strdup(val
);
1728 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
1730 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1732 if (!strcmp(value
, "3")) {
1733 vms
->gic_version
= 3;
1734 } else if (!strcmp(value
, "2")) {
1735 vms
->gic_version
= 2;
1736 } else if (!strcmp(value
, "host")) {
1737 vms
->gic_version
= 0; /* Will probe later */
1738 } else if (!strcmp(value
, "max")) {
1739 vms
->gic_version
= -1; /* Will probe later */
1741 error_setg(errp
, "Invalid gic-version value");
1742 error_append_hint(errp
, "Valid values are 3, 2, host, max.\n");
1746 static char *virt_get_iommu(Object
*obj
, Error
**errp
)
1748 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1750 switch (vms
->iommu
) {
1751 case VIRT_IOMMU_NONE
:
1752 return g_strdup("none");
1753 case VIRT_IOMMU_SMMUV3
:
1754 return g_strdup("smmuv3");
1756 g_assert_not_reached();
1760 static void virt_set_iommu(Object
*obj
, const char *value
, Error
**errp
)
1762 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1764 if (!strcmp(value
, "smmuv3")) {
1765 vms
->iommu
= VIRT_IOMMU_SMMUV3
;
1766 } else if (!strcmp(value
, "none")) {
1767 vms
->iommu
= VIRT_IOMMU_NONE
;
1769 error_setg(errp
, "Invalid iommu value");
1770 error_append_hint(errp
, "Valid values are none, smmuv3.\n");
1774 static CpuInstanceProperties
1775 virt_cpu_index_to_props(MachineState
*ms
, unsigned cpu_index
)
1777 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1778 const CPUArchIdList
*possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
1780 assert(cpu_index
< possible_cpus
->len
);
1781 return possible_cpus
->cpus
[cpu_index
].props
;
1784 static int64_t virt_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
1786 return idx
% nb_numa_nodes
;
1789 static const CPUArchIdList
*virt_possible_cpu_arch_ids(MachineState
*ms
)
1792 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
1794 if (ms
->possible_cpus
) {
1795 assert(ms
->possible_cpus
->len
== max_cpus
);
1796 return ms
->possible_cpus
;
1799 ms
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
1800 sizeof(CPUArchId
) * max_cpus
);
1801 ms
->possible_cpus
->len
= max_cpus
;
1802 for (n
= 0; n
< ms
->possible_cpus
->len
; n
++) {
1803 ms
->possible_cpus
->cpus
[n
].type
= ms
->cpu_type
;
1804 ms
->possible_cpus
->cpus
[n
].arch_id
=
1805 virt_cpu_mp_affinity(vms
, n
);
1806 ms
->possible_cpus
->cpus
[n
].props
.has_thread_id
= true;
1807 ms
->possible_cpus
->cpus
[n
].props
.thread_id
= n
;
1809 return ms
->possible_cpus
;
1812 static void virt_machine_device_plug_cb(HotplugHandler
*hotplug_dev
,
1813 DeviceState
*dev
, Error
**errp
)
1815 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
1817 if (vms
->platform_bus_dev
) {
1818 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
)) {
1819 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms
->platform_bus_dev
),
1820 SYS_BUS_DEVICE(dev
));
1825 static HotplugHandler
*virt_machine_get_hotplug_handler(MachineState
*machine
,
1828 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
)) {
1829 return HOTPLUG_HANDLER(machine
);
1836 * for arm64 kvm_type [7-0] encodes the requested number of bits
1837 * in the IPA address space
1839 static int virt_kvm_type(MachineState
*ms
, const char *type_str
)
1841 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
1842 int max_vm_pa_size
= kvm_arm_get_max_vm_ipa_size(ms
);
1843 int requested_pa_size
;
1845 /* we freeze the memory map to compute the highest gpa */
1846 virt_set_memmap(vms
);
1848 requested_pa_size
= 64 - clz64(vms
->highest_gpa
);
1850 if (requested_pa_size
> max_vm_pa_size
) {
1851 error_report("-m and ,maxmem option values "
1852 "require an IPA range (%d bits) larger than "
1853 "the one supported by the host (%d bits)",
1854 requested_pa_size
, max_vm_pa_size
);
1858 * By default we return 0 which corresponds to an implicit legacy
1859 * 40b IPA setting. Otherwise we return the actual requested PA
1862 return requested_pa_size
> 40 ? requested_pa_size
: 0;
1865 static void virt_machine_class_init(ObjectClass
*oc
, void *data
)
1867 MachineClass
*mc
= MACHINE_CLASS(oc
);
1868 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
1870 mc
->init
= machvirt_init
;
1871 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1872 * The value may be reduced later when we have more information about the
1873 * configuration of the particular instance.
1876 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_CALXEDA_XGMAC
);
1877 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_AMD_XGBE
);
1878 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_RAMFB_DEVICE
);
1879 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_PLATFORM
);
1880 mc
->block_default_type
= IF_VIRTIO
;
1882 mc
->pci_allow_0_address
= true;
1883 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1884 mc
->minimum_page_bits
= 12;
1885 mc
->possible_cpu_arch_ids
= virt_possible_cpu_arch_ids
;
1886 mc
->cpu_index_to_instance_props
= virt_cpu_index_to_props
;
1887 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-a15");
1888 mc
->get_default_cpu_node_id
= virt_get_default_cpu_node_id
;
1889 mc
->kvm_type
= virt_kvm_type
;
1890 assert(!mc
->get_hotplug_handler
);
1891 mc
->get_hotplug_handler
= virt_machine_get_hotplug_handler
;
1892 hc
->plug
= virt_machine_device_plug_cb
;
1895 static void virt_instance_init(Object
*obj
)
1897 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1898 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1900 /* EL3 is disabled by default on virt: this makes us consistent
1901 * between KVM and TCG for this board, and it also allows us to
1902 * boot UEFI blobs which assume no TrustZone support.
1904 vms
->secure
= false;
1905 object_property_add_bool(obj
, "secure", virt_get_secure
,
1906 virt_set_secure
, NULL
);
1907 object_property_set_description(obj
, "secure",
1908 "Set on/off to enable/disable the ARM "
1909 "Security Extensions (TrustZone)",
1912 /* EL2 is also disabled by default, for similar reasons */
1914 object_property_add_bool(obj
, "virtualization", virt_get_virt
,
1915 virt_set_virt
, NULL
);
1916 object_property_set_description(obj
, "virtualization",
1917 "Set on/off to enable/disable emulating a "
1918 "guest CPU which implements the ARM "
1919 "Virtualization Extensions",
1922 /* High memory is enabled by default */
1923 vms
->highmem
= true;
1924 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
1925 virt_set_highmem
, NULL
);
1926 object_property_set_description(obj
, "highmem",
1927 "Set on/off to enable/disable using "
1928 "physical address space above 32 bits",
1930 /* Default GIC type is v2 */
1931 vms
->gic_version
= 2;
1932 object_property_add_str(obj
, "gic-version", virt_get_gic_version
,
1933 virt_set_gic_version
, NULL
);
1934 object_property_set_description(obj
, "gic-version",
1936 "Valid values are 2, 3 and host", NULL
);
1938 vms
->highmem_ecam
= !vmc
->no_highmem_ecam
;
1943 /* Default allows ITS instantiation */
1945 object_property_add_bool(obj
, "its", virt_get_its
,
1946 virt_set_its
, NULL
);
1947 object_property_set_description(obj
, "its",
1948 "Set on/off to enable/disable "
1949 "ITS instantiation",
1953 /* Default disallows iommu instantiation */
1954 vms
->iommu
= VIRT_IOMMU_NONE
;
1955 object_property_add_str(obj
, "iommu", virt_get_iommu
, virt_set_iommu
, NULL
);
1956 object_property_set_description(obj
, "iommu",
1957 "Set the IOMMU type. "
1958 "Valid values are none and smmuv3",
1961 vms
->irqmap
= a15irqmap
;
1964 static const TypeInfo virt_machine_info
= {
1965 .name
= TYPE_VIRT_MACHINE
,
1966 .parent
= TYPE_MACHINE
,
1968 .instance_size
= sizeof(VirtMachineState
),
1969 .class_size
= sizeof(VirtMachineClass
),
1970 .class_init
= virt_machine_class_init
,
1971 .instance_init
= virt_instance_init
,
1972 .interfaces
= (InterfaceInfo
[]) {
1973 { TYPE_HOTPLUG_HANDLER
},
1978 static void machvirt_machine_init(void)
1980 type_register_static(&virt_machine_info
);
1982 type_init(machvirt_machine_init
);
1984 static void virt_machine_4_0_options(MachineClass
*mc
)
1987 DEFINE_VIRT_MACHINE_AS_LATEST(4, 0)
1989 static void virt_machine_3_1_options(MachineClass
*mc
)
1991 virt_machine_4_0_options(mc
);
1992 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
1994 DEFINE_VIRT_MACHINE(3, 1)
1996 static void virt_machine_3_0_options(MachineClass
*mc
)
1998 virt_machine_3_1_options(mc
);
1999 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
2001 DEFINE_VIRT_MACHINE(3, 0)
2003 static void virt_machine_2_12_options(MachineClass
*mc
)
2005 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2007 virt_machine_3_0_options(mc
);
2008 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
2009 vmc
->no_highmem_ecam
= true;
2012 DEFINE_VIRT_MACHINE(2, 12)
2014 static void virt_machine_2_11_options(MachineClass
*mc
)
2016 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2018 virt_machine_2_12_options(mc
);
2019 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
2020 vmc
->smbios_old_sys_ver
= true;
2022 DEFINE_VIRT_MACHINE(2, 11)
2024 static void virt_machine_2_10_options(MachineClass
*mc
)
2026 virt_machine_2_11_options(mc
);
2027 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
2028 /* before 2.11 we never faulted accesses to bad addresses */
2029 mc
->ignore_memory_transaction_failures
= true;
2031 DEFINE_VIRT_MACHINE(2, 10)
2033 static void virt_machine_2_9_options(MachineClass
*mc
)
2035 virt_machine_2_10_options(mc
);
2036 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
2038 DEFINE_VIRT_MACHINE(2, 9)
2040 static void virt_machine_2_8_options(MachineClass
*mc
)
2042 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2044 virt_machine_2_9_options(mc
);
2045 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
2046 /* For 2.8 and earlier we falsely claimed in the DT that
2047 * our timers were edge-triggered, not level-triggered.
2049 vmc
->claim_edge_triggered_timers
= true;
2051 DEFINE_VIRT_MACHINE(2, 8)
2053 static void virt_machine_2_7_options(MachineClass
*mc
)
2055 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2057 virt_machine_2_8_options(mc
);
2058 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
2059 /* ITS was introduced with 2.8 */
2061 /* Stick with 1K pages for migration compatibility */
2062 mc
->minimum_page_bits
= 0;
2064 DEFINE_VIRT_MACHINE(2, 7)
2066 static void virt_machine_2_6_options(MachineClass
*mc
)
2068 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2070 virt_machine_2_7_options(mc
);
2071 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
2072 vmc
->disallow_affinity_adjustment
= true;
2073 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2076 DEFINE_VIRT_MACHINE(2, 6)