alpha: convert "naked" qemu_log to tracepoint
[qemu/ar7.git] / hw / xtensa / xtfpga.c
blobc1bc5aef5320e5c1678428b26ddd8925882eabbd
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "sysemu/sysemu.h"
29 #include "hw/boards.h"
30 #include "hw/loader.h"
31 #include "elf.h"
32 #include "exec/memory.h"
33 #include "exec/address-spaces.h"
34 #include "hw/char/serial.h"
35 #include "net/net.h"
36 #include "hw/sysbus.h"
37 #include "hw/block/flash.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/char.h"
40 #include "sysemu/device_tree.h"
41 #include "qemu/error-report.h"
42 #include "bootparam.h"
44 typedef struct LxBoardDesc {
45 hwaddr flash_base;
46 size_t flash_size;
47 size_t flash_boot_base;
48 size_t flash_sector_size;
49 size_t sram_size;
50 } LxBoardDesc;
52 typedef struct Lx60FpgaState {
53 MemoryRegion iomem;
54 uint32_t leds;
55 uint32_t switches;
56 } Lx60FpgaState;
58 static void lx60_fpga_reset(void *opaque)
60 Lx60FpgaState *s = opaque;
62 s->leds = 0;
63 s->switches = 0;
66 static uint64_t lx60_fpga_read(void *opaque, hwaddr addr,
67 unsigned size)
69 Lx60FpgaState *s = opaque;
71 switch (addr) {
72 case 0x0: /*build date code*/
73 return 0x09272011;
75 case 0x4: /*processor clock frequency, Hz*/
76 return 10000000;
78 case 0x8: /*LEDs (off = 0, on = 1)*/
79 return s->leds;
81 case 0xc: /*DIP switches (off = 0, on = 1)*/
82 return s->switches;
84 return 0;
87 static void lx60_fpga_write(void *opaque, hwaddr addr,
88 uint64_t val, unsigned size)
90 Lx60FpgaState *s = opaque;
92 switch (addr) {
93 case 0x8: /*LEDs (off = 0, on = 1)*/
94 s->leds = val;
95 break;
97 case 0x10: /*board reset*/
98 if (val == 0xdead) {
99 qemu_system_reset_request();
101 break;
105 static const MemoryRegionOps lx60_fpga_ops = {
106 .read = lx60_fpga_read,
107 .write = lx60_fpga_write,
108 .endianness = DEVICE_NATIVE_ENDIAN,
111 static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space,
112 hwaddr base)
114 Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState));
116 memory_region_init_io(&s->iomem, NULL, &lx60_fpga_ops, s,
117 "lx60.fpga", 0x10000);
118 memory_region_add_subregion(address_space, base, &s->iomem);
119 lx60_fpga_reset(s);
120 qemu_register_reset(lx60_fpga_reset, s);
121 return s;
124 static void lx60_net_init(MemoryRegion *address_space,
125 hwaddr base,
126 hwaddr descriptors,
127 hwaddr buffers,
128 qemu_irq irq, NICInfo *nd)
130 DeviceState *dev;
131 SysBusDevice *s;
132 MemoryRegion *ram;
134 dev = qdev_create(NULL, "open_eth");
135 qdev_set_nic_properties(dev, nd);
136 qdev_init_nofail(dev);
138 s = SYS_BUS_DEVICE(dev);
139 sysbus_connect_irq(s, 0, irq);
140 memory_region_add_subregion(address_space, base,
141 sysbus_mmio_get_region(s, 0));
142 memory_region_add_subregion(address_space, descriptors,
143 sysbus_mmio_get_region(s, 1));
145 ram = g_malloc(sizeof(*ram));
146 memory_region_init_ram(ram, OBJECT(s), "open_eth.ram", 16384,
147 &error_fatal);
148 vmstate_register_ram_global(ram);
149 memory_region_add_subregion(address_space, buffers, ram);
152 static pflash_t *xtfpga_flash_init(MemoryRegion *address_space,
153 const LxBoardDesc *board,
154 DriveInfo *dinfo, int be)
156 SysBusDevice *s;
157 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
159 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
160 &error_abort);
161 qdev_prop_set_uint32(dev, "num-blocks",
162 board->flash_size / board->flash_sector_size);
163 qdev_prop_set_uint64(dev, "sector-length", board->flash_sector_size);
164 qdev_prop_set_uint8(dev, "width", 4);
165 qdev_prop_set_bit(dev, "big-endian", be);
166 qdev_prop_set_string(dev, "name", "lx60.io.flash");
167 qdev_init_nofail(dev);
168 s = SYS_BUS_DEVICE(dev);
169 memory_region_add_subregion(address_space, board->flash_base,
170 sysbus_mmio_get_region(s, 0));
171 return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01");
174 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
176 XtensaCPU *cpu = opaque;
178 return cpu_get_phys_page_debug(CPU(cpu), addr);
181 static void lx60_reset(void *opaque)
183 XtensaCPU *cpu = opaque;
185 cpu_reset(CPU(cpu));
188 static uint64_t lx60_io_read(void *opaque, hwaddr addr,
189 unsigned size)
191 return 0;
194 static void lx60_io_write(void *opaque, hwaddr addr,
195 uint64_t val, unsigned size)
199 static const MemoryRegionOps lx60_io_ops = {
200 .read = lx60_io_read,
201 .write = lx60_io_write,
202 .endianness = DEVICE_NATIVE_ENDIAN,
205 static void lx_init(const LxBoardDesc *board, MachineState *machine)
207 #ifdef TARGET_WORDS_BIGENDIAN
208 int be = 1;
209 #else
210 int be = 0;
211 #endif
212 MemoryRegion *system_memory = get_system_memory();
213 XtensaCPU *cpu = NULL;
214 CPUXtensaState *env = NULL;
215 MemoryRegion *ram, *rom, *system_io;
216 DriveInfo *dinfo;
217 pflash_t *flash = NULL;
218 QemuOpts *machine_opts = qemu_get_machine_opts();
219 const char *cpu_model = machine->cpu_model;
220 const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
221 const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
222 const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
223 const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
224 int n;
226 if (!cpu_model) {
227 cpu_model = XTENSA_DEFAULT_CPU_MODEL;
230 for (n = 0; n < smp_cpus; n++) {
231 cpu = cpu_xtensa_init(cpu_model);
232 if (cpu == NULL) {
233 error_report("unable to find CPU definition '%s'",
234 cpu_model);
235 exit(EXIT_FAILURE);
237 env = &cpu->env;
239 env->sregs[PRID] = n;
240 qemu_register_reset(lx60_reset, cpu);
241 /* Need MMU initialized prior to ELF loading,
242 * so that ELF gets loaded into virtual addresses
244 cpu_reset(CPU(cpu));
247 ram = g_malloc(sizeof(*ram));
248 memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size,
249 &error_fatal);
250 vmstate_register_ram_global(ram);
251 memory_region_add_subregion(system_memory, 0, ram);
253 system_io = g_malloc(sizeof(*system_io));
254 memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io",
255 224 * 1024 * 1024);
256 memory_region_add_subregion(system_memory, 0xf0000000, system_io);
257 lx60_fpga_init(system_io, 0x0d020000);
258 if (nd_table[0].used) {
259 lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
260 xtensa_get_extint(env, 1), nd_table);
263 if (!serial_hds[0]) {
264 serial_hds[0] = qemu_chr_new("serial0", "null", NULL);
267 serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
268 115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);
270 dinfo = drive_get(IF_PFLASH, 0, 0);
271 if (dinfo) {
272 flash = xtfpga_flash_init(system_io, board, dinfo, be);
275 /* Use presence of kernel file name as 'boot from SRAM' switch. */
276 if (kernel_filename) {
277 uint32_t entry_point = env->pc;
278 size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
279 uint32_t tagptr = 0xfe000000 + board->sram_size;
280 uint32_t cur_tagptr;
281 BpMemInfo memory_location = {
282 .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
283 .start = tswap32(0),
284 .end = tswap32(machine->ram_size),
286 uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
287 machine->ram_size : 0x08000000;
288 uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
290 rom = g_malloc(sizeof(*rom));
291 memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size,
292 &error_fatal);
293 vmstate_register_ram_global(rom);
294 memory_region_add_subregion(system_memory, 0xfe000000, rom);
296 if (kernel_cmdline) {
297 bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
299 if (dtb_filename) {
300 bp_size += get_tag_size(sizeof(uint32_t));
302 if (initrd_filename) {
303 bp_size += get_tag_size(sizeof(BpMemInfo));
306 /* Put kernel bootparameters to the end of that SRAM */
307 tagptr = (tagptr - bp_size) & ~0xff;
308 cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
309 cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
310 sizeof(memory_location), &memory_location);
312 if (kernel_cmdline) {
313 cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
314 strlen(kernel_cmdline) + 1, kernel_cmdline);
316 if (dtb_filename) {
317 int fdt_size;
318 void *fdt = load_device_tree(dtb_filename, &fdt_size);
319 uint32_t dtb_addr = tswap32(cur_lowmem);
321 if (!fdt) {
322 error_report("could not load DTB '%s'", dtb_filename);
323 exit(EXIT_FAILURE);
326 cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
327 cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
328 sizeof(dtb_addr), &dtb_addr);
329 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
331 if (initrd_filename) {
332 BpMemInfo initrd_location = { 0 };
333 int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
334 lowmem_end - cur_lowmem);
336 if (initrd_size < 0) {
337 initrd_size = load_image_targphys(initrd_filename,
338 cur_lowmem,
339 lowmem_end - cur_lowmem);
341 if (initrd_size < 0) {
342 error_report("could not load initrd '%s'", initrd_filename);
343 exit(EXIT_FAILURE);
345 initrd_location.start = tswap32(cur_lowmem);
346 initrd_location.end = tswap32(cur_lowmem + initrd_size);
347 cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
348 sizeof(initrd_location), &initrd_location);
349 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
351 cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
352 env->regs[2] = tagptr;
354 uint64_t elf_entry;
355 uint64_t elf_lowaddr;
356 int success = load_elf(kernel_filename, translate_phys_addr, cpu,
357 &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0);
358 if (success > 0) {
359 entry_point = elf_entry;
360 } else {
361 hwaddr ep;
362 int is_linux;
363 success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
364 translate_phys_addr, cpu);
365 if (success > 0 && is_linux) {
366 entry_point = ep;
367 } else {
368 error_report("could not load kernel '%s'",
369 kernel_filename);
370 exit(EXIT_FAILURE);
373 if (entry_point != env->pc) {
374 static const uint8_t jx_a0[] = {
375 #ifdef TARGET_WORDS_BIGENDIAN
376 0x0a, 0, 0,
377 #else
378 0xa0, 0, 0,
379 #endif
381 env->regs[0] = entry_point;
382 cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0));
384 } else {
385 if (flash) {
386 MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
387 MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
389 memory_region_init_alias(flash_io, NULL, "lx60.flash",
390 flash_mr, board->flash_boot_base,
391 board->flash_size - board->flash_boot_base < 0x02000000 ?
392 board->flash_size - board->flash_boot_base : 0x02000000);
393 memory_region_add_subregion(system_memory, 0xfe000000,
394 flash_io);
399 static void xtensa_lx60_init(MachineState *machine)
401 static const LxBoardDesc lx60_board = {
402 .flash_base = 0x08000000,
403 .flash_size = 0x00400000,
404 .flash_sector_size = 0x10000,
405 .sram_size = 0x20000,
407 lx_init(&lx60_board, machine);
410 static void xtensa_lx200_init(MachineState *machine)
412 static const LxBoardDesc lx200_board = {
413 .flash_base = 0x08000000,
414 .flash_size = 0x01000000,
415 .flash_sector_size = 0x20000,
416 .sram_size = 0x2000000,
418 lx_init(&lx200_board, machine);
421 static void xtensa_ml605_init(MachineState *machine)
423 static const LxBoardDesc ml605_board = {
424 .flash_base = 0x08000000,
425 .flash_size = 0x01000000,
426 .flash_sector_size = 0x20000,
427 .sram_size = 0x2000000,
429 lx_init(&ml605_board, machine);
432 static void xtensa_kc705_init(MachineState *machine)
434 static const LxBoardDesc kc705_board = {
435 .flash_base = 0x00000000,
436 .flash_size = 0x08000000,
437 .flash_boot_base = 0x06000000,
438 .flash_sector_size = 0x20000,
439 .sram_size = 0x2000000,
441 lx_init(&kc705_board, machine);
444 static void xtensa_lx60_class_init(ObjectClass *oc, void *data)
446 MachineClass *mc = MACHINE_CLASS(oc);
448 mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
449 mc->init = xtensa_lx60_init;
450 mc->max_cpus = 4;
453 static const TypeInfo xtensa_lx60_type = {
454 .name = MACHINE_TYPE_NAME("lx60"),
455 .parent = TYPE_MACHINE,
456 .class_init = xtensa_lx60_class_init,
459 static void xtensa_lx200_class_init(ObjectClass *oc, void *data)
461 MachineClass *mc = MACHINE_CLASS(oc);
463 mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
464 mc->init = xtensa_lx200_init;
465 mc->max_cpus = 4;
468 static const TypeInfo xtensa_lx200_type = {
469 .name = MACHINE_TYPE_NAME("lx200"),
470 .parent = TYPE_MACHINE,
471 .class_init = xtensa_lx200_class_init,
474 static void xtensa_ml605_class_init(ObjectClass *oc, void *data)
476 MachineClass *mc = MACHINE_CLASS(oc);
478 mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
479 mc->init = xtensa_ml605_init;
480 mc->max_cpus = 4;
483 static const TypeInfo xtensa_ml605_type = {
484 .name = MACHINE_TYPE_NAME("ml605"),
485 .parent = TYPE_MACHINE,
486 .class_init = xtensa_ml605_class_init,
489 static void xtensa_kc705_class_init(ObjectClass *oc, void *data)
491 MachineClass *mc = MACHINE_CLASS(oc);
493 mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
494 mc->init = xtensa_kc705_init;
495 mc->max_cpus = 4;
498 static const TypeInfo xtensa_kc705_type = {
499 .name = MACHINE_TYPE_NAME("kc705"),
500 .parent = TYPE_MACHINE,
501 .class_init = xtensa_kc705_class_init,
504 static void xtensa_lx_machines_init(void)
506 type_register_static(&xtensa_lx60_type);
507 type_register_static(&xtensa_lx200_type);
508 type_register_static(&xtensa_ml605_type);
509 type_register_static(&xtensa_kc705_type);
512 machine_init(xtensa_lx_machines_init)