Merge tag 'v9.0.0-rc3'
[qemu/ar7.git] / hw / xtensa / xtfpga.c
blobf49e6591dc24aa6b88d1d61d1ee9f7918aad3f87
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "qapi/error.h"
31 #include "cpu.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/boards.h"
34 #include "hw/loader.h"
35 #include "hw/qdev-properties.h"
36 #include "elf.h"
37 #include "exec/memory.h"
38 #include "hw/char/serial.h"
39 #include "net/net.h"
40 #include "hw/sysbus.h"
41 #include "hw/block/flash.h"
42 #include "chardev/char.h"
43 #include "sysemu/device_tree.h"
44 #include "sysemu/reset.h"
45 #include "sysemu/runstate.h"
46 #include "qemu/error-report.h"
47 #include "qemu/option.h"
48 #include "bootparam.h"
49 #include "xtensa_memory.h"
50 #include "hw/xtensa/mx_pic.h"
51 #include "migration/vmstate.h"
53 typedef struct XtfpgaFlashDesc {
54 hwaddr base;
55 size_t size;
56 size_t boot_base;
57 size_t sector_size;
58 } XtfpgaFlashDesc;
60 typedef struct XtfpgaBoardDesc {
61 const XtfpgaFlashDesc *flash;
62 size_t sram_size;
63 const hwaddr *io;
64 } XtfpgaBoardDesc;
66 typedef struct XtfpgaFpgaState {
67 MemoryRegion iomem;
68 uint32_t freq;
69 uint32_t leds;
70 uint32_t switches;
71 } XtfpgaFpgaState;
73 static void xtfpga_fpga_reset(void *opaque)
75 XtfpgaFpgaState *s = opaque;
77 s->leds = 0;
78 s->switches = 0;
81 static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
82 unsigned size)
84 XtfpgaFpgaState *s = opaque;
86 switch (addr) {
87 case 0x0: /*build date code*/
88 return 0x09272011;
90 case 0x4: /*processor clock frequency, Hz*/
91 return s->freq;
93 case 0x8: /*LEDs (off = 0, on = 1)*/
94 return s->leds;
96 case 0xc: /*DIP switches (off = 0, on = 1)*/
97 return s->switches;
99 return 0;
102 static void xtfpga_fpga_write(void *opaque, hwaddr addr,
103 uint64_t val, unsigned size)
105 XtfpgaFpgaState *s = opaque;
107 switch (addr) {
108 case 0x8: /*LEDs (off = 0, on = 1)*/
109 s->leds = val;
110 break;
112 case 0x10: /*board reset*/
113 if (val == 0xdead) {
114 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
116 break;
120 static const MemoryRegionOps xtfpga_fpga_ops = {
121 .read = xtfpga_fpga_read,
122 .write = xtfpga_fpga_write,
123 .endianness = DEVICE_NATIVE_ENDIAN,
126 static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
127 hwaddr base, uint32_t freq)
129 XtfpgaFpgaState *s = g_new(XtfpgaFpgaState, 1);
131 memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
132 "xtfpga.fpga", 0x10000);
133 memory_region_add_subregion(address_space, base, &s->iomem);
134 s->freq = freq;
135 xtfpga_fpga_reset(s);
136 qemu_register_reset(xtfpga_fpga_reset, s);
137 return s;
140 static void xtfpga_net_init(MemoryRegion *address_space,
141 hwaddr base,
142 hwaddr descriptors,
143 hwaddr buffers,
144 qemu_irq irq)
146 DeviceState *dev;
147 SysBusDevice *s;
148 MemoryRegion *ram;
150 dev = qemu_create_nic_device("open_eth", true, NULL);
151 if (!dev) {
152 return;
155 s = SYS_BUS_DEVICE(dev);
156 sysbus_realize_and_unref(s, &error_fatal);
157 sysbus_connect_irq(s, 0, irq);
158 memory_region_add_subregion(address_space, base,
159 sysbus_mmio_get_region(s, 0));
160 memory_region_add_subregion(address_space, descriptors,
161 sysbus_mmio_get_region(s, 1));
163 ram = g_malloc(sizeof(*ram));
164 memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB,
165 &error_fatal);
166 vmstate_register_ram_global(ram);
167 memory_region_add_subregion(address_space, buffers, ram);
170 static PFlashCFI01 *xtfpga_flash_init(MemoryRegion *address_space,
171 const XtfpgaBoardDesc *board,
172 DriveInfo *dinfo, int be)
174 SysBusDevice *s;
175 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
177 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo));
178 qdev_prop_set_uint32(dev, "num-blocks",
179 board->flash->size / board->flash->sector_size);
180 qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
181 qdev_prop_set_uint8(dev, "width", 2);
182 qdev_prop_set_bit(dev, "big-endian", be);
183 qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
184 s = SYS_BUS_DEVICE(dev);
185 sysbus_realize_and_unref(s, &error_fatal);
186 memory_region_add_subregion(address_space, board->flash->base,
187 sysbus_mmio_get_region(s, 0));
188 return PFLASH_CFI01(dev);
191 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
193 XtensaCPU *cpu = opaque;
195 return cpu_get_phys_page_debug(CPU(cpu), addr);
198 static void xtfpga_reset(void *opaque)
200 XtensaCPU *cpu = opaque;
202 cpu_reset(CPU(cpu));
205 static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
206 unsigned size)
208 return 0;
211 static void xtfpga_io_write(void *opaque, hwaddr addr,
212 uint64_t val, unsigned size)
216 static const MemoryRegionOps xtfpga_io_ops = {
217 .read = xtfpga_io_read,
218 .write = xtfpga_io_write,
219 .endianness = DEVICE_NATIVE_ENDIAN,
222 static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
224 MemoryRegion *system_memory = get_system_memory();
225 XtensaCPU *cpu = NULL;
226 CPUXtensaState *env = NULL;
227 MemoryRegion *system_io;
228 XtensaMxPic *mx_pic = NULL;
229 qemu_irq *extints;
230 DriveInfo *dinfo;
231 PFlashCFI01 *flash = NULL;
232 const char *kernel_filename = machine->kernel_filename;
233 const char *kernel_cmdline = machine->kernel_cmdline;
234 const char *dtb_filename = machine->dtb;
235 const char *initrd_filename = machine->initrd_filename;
236 const unsigned system_io_size = 224 * MiB;
237 uint32_t freq = 10000000;
238 int n;
239 unsigned int smp_cpus = machine->smp.cpus;
241 if (smp_cpus > 1) {
242 mx_pic = xtensa_mx_pic_init(31);
243 qemu_register_reset(xtensa_mx_pic_reset, mx_pic);
245 for (n = 0; n < smp_cpus; n++) {
246 CPUXtensaState *cenv = NULL;
248 cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
249 cenv = &cpu->env;
250 if (!env) {
251 env = cenv;
252 freq = env->config->clock_freq_khz * 1000;
255 if (mx_pic) {
256 MemoryRegion *mx_eri;
258 mx_eri = xtensa_mx_pic_register_cpu(mx_pic,
259 xtensa_get_extints(cenv),
260 xtensa_get_runstall(cenv));
261 memory_region_add_subregion(xtensa_get_er_region(cenv),
262 0, mx_eri);
264 cenv->sregs[PRID] = n;
265 xtensa_select_static_vectors(cenv, n != 0);
266 qemu_register_reset(xtfpga_reset, cpu);
267 /* Need MMU initialized prior to ELF loading,
268 * so that ELF gets loaded into virtual addresses
270 cpu_reset(CPU(cpu));
272 if (smp_cpus > 1) {
273 extints = xtensa_mx_pic_get_extints(mx_pic);
274 } else {
275 extints = xtensa_get_extints(env);
278 if (env) {
279 XtensaMemory sysram = env->config->sysram;
281 sysram.location[0].size = machine->ram_size;
282 xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
283 system_memory);
284 xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
285 system_memory);
286 xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
287 system_memory);
288 xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
289 system_memory);
290 xtensa_create_memory_regions(&sysram, "xtensa.sysram",
291 system_memory);
294 system_io = g_malloc(sizeof(*system_io));
295 memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
296 system_io_size);
297 memory_region_add_subregion(system_memory, board->io[0], system_io);
298 if (board->io[1]) {
299 MemoryRegion *io = g_malloc(sizeof(*io));
301 memory_region_init_alias(io, NULL, "xtfpga.io.cached",
302 system_io, 0, system_io_size);
303 memory_region_add_subregion(system_memory, board->io[1], io);
305 xtfpga_fpga_init(system_io, 0x0d020000, freq);
306 xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000, extints[1]);
308 serial_mm_init(system_io, 0x0d050020, 2, extints[0],
309 115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
311 dinfo = drive_get(IF_PFLASH, 0, 0);
312 if (dinfo) {
313 flash = xtfpga_flash_init(system_io, board, dinfo, TARGET_BIG_ENDIAN);
316 /* Use presence of kernel file name as 'boot from SRAM' switch. */
317 if (kernel_filename) {
318 uint32_t entry_point = env->pc;
319 size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
320 uint32_t tagptr = env->config->sysrom.location[0].addr +
321 board->sram_size;
322 uint32_t cur_tagptr;
323 BpMemInfo memory_location = {
324 .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
325 .start = tswap32(env->config->sysram.location[0].addr),
326 .end = tswap32(env->config->sysram.location[0].addr +
327 machine->ram_size),
329 uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
330 machine->ram_size : 0x08000000;
331 uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
333 lowmem_end += env->config->sysram.location[0].addr;
334 cur_lowmem += env->config->sysram.location[0].addr;
336 xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
337 system_memory);
339 if (kernel_cmdline) {
340 bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
342 if (dtb_filename) {
343 bp_size += get_tag_size(sizeof(uint32_t));
345 if (initrd_filename) {
346 bp_size += get_tag_size(sizeof(BpMemInfo));
349 /* Put kernel bootparameters to the end of that SRAM */
350 tagptr = (tagptr - bp_size) & ~0xff;
351 cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
352 cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
353 sizeof(memory_location), &memory_location);
355 if (kernel_cmdline) {
356 cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
357 strlen(kernel_cmdline) + 1, kernel_cmdline);
359 #ifdef CONFIG_FDT
360 if (dtb_filename) {
361 int fdt_size;
362 void *fdt = load_device_tree(dtb_filename, &fdt_size);
363 uint32_t dtb_addr = tswap32(cur_lowmem);
365 if (!fdt) {
366 error_report("could not load DTB '%s'", dtb_filename);
367 exit(EXIT_FAILURE);
370 cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
371 cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
372 sizeof(dtb_addr), &dtb_addr);
373 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB);
374 g_free(fdt);
376 #else
377 if (dtb_filename) {
378 error_report("could not load DTB '%s': "
379 "FDT support is not configured in QEMU",
380 dtb_filename);
381 exit(EXIT_FAILURE);
383 #endif
384 if (initrd_filename) {
385 BpMemInfo initrd_location = { 0 };
386 int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
387 lowmem_end - cur_lowmem);
389 if (initrd_size < 0) {
390 initrd_size = load_image_targphys(initrd_filename,
391 cur_lowmem,
392 lowmem_end - cur_lowmem);
394 if (initrd_size < 0) {
395 error_report("could not load initrd '%s'", initrd_filename);
396 exit(EXIT_FAILURE);
398 initrd_location.start = tswap32(cur_lowmem);
399 initrd_location.end = tswap32(cur_lowmem + initrd_size);
400 cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
401 sizeof(initrd_location), &initrd_location);
402 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB);
404 cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
405 env->regs[2] = tagptr;
407 uint64_t elf_entry;
408 int success = load_elf(kernel_filename, NULL, translate_phys_addr, cpu,
409 &elf_entry, NULL, NULL, NULL, TARGET_BIG_ENDIAN,
410 EM_XTENSA, 0, 0);
411 if (success > 0) {
412 entry_point = elf_entry;
413 } else {
414 hwaddr ep;
415 int is_linux;
416 success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
417 translate_phys_addr, cpu);
418 if (success > 0 && is_linux) {
419 entry_point = ep;
420 } else {
421 error_report("could not load kernel '%s'",
422 kernel_filename);
423 exit(EXIT_FAILURE);
426 if (entry_point != env->pc) {
427 uint8_t boot[] = {
428 #if TARGET_BIG_ENDIAN
429 0x60, 0x00, 0x08, /* j 1f */
430 0x00, /* .literal_position */
431 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
432 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
433 /* 1: */
434 0x10, 0xff, 0xfe, /* l32r a0, entry_pc */
435 0x12, 0xff, 0xfe, /* l32r a2, entry_a2 */
436 0x0a, 0x00, 0x00, /* jx a0 */
437 #else
438 0x06, 0x02, 0x00, /* j 1f */
439 0x00, /* .literal_position */
440 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
441 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
442 /* 1: */
443 0x01, 0xfe, 0xff, /* l32r a0, entry_pc */
444 0x21, 0xfe, 0xff, /* l32r a2, entry_a2 */
445 0xa0, 0x00, 0x00, /* jx a0 */
446 #endif
448 uint32_t entry_pc = tswap32(entry_point);
449 uint32_t entry_a2 = tswap32(tagptr);
451 memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
452 memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
453 cpu_physical_memory_write(env->pc, boot, sizeof(boot));
455 } else {
456 if (flash) {
457 MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
458 MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
459 uint32_t size = env->config->sysrom.location[0].size;
461 if (board->flash->size - board->flash->boot_base < size) {
462 size = board->flash->size - board->flash->boot_base;
465 memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
466 flash_mr, board->flash->boot_base, size);
467 memory_region_add_subregion(system_memory,
468 env->config->sysrom.location[0].addr,
469 flash_io);
470 } else {
471 xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
472 system_memory);
477 #define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB)
479 static const hwaddr xtfpga_mmu_io[2] = {
480 0xf0000000,
483 static const hwaddr xtfpga_nommu_io[2] = {
484 0x90000000,
485 0x70000000,
488 static const XtfpgaFlashDesc lx60_flash = {
489 .base = 0x08000000,
490 .size = 0x00400000,
491 .sector_size = 0x10000,
494 static void xtfpga_lx60_init(MachineState *machine)
496 static const XtfpgaBoardDesc lx60_board = {
497 .flash = &lx60_flash,
498 .sram_size = 0x20000,
499 .io = xtfpga_mmu_io,
501 xtfpga_init(&lx60_board, machine);
504 static void xtfpga_lx60_nommu_init(MachineState *machine)
506 static const XtfpgaBoardDesc lx60_board = {
507 .flash = &lx60_flash,
508 .sram_size = 0x20000,
509 .io = xtfpga_nommu_io,
511 xtfpga_init(&lx60_board, machine);
514 static const XtfpgaFlashDesc lx200_flash = {
515 .base = 0x08000000,
516 .size = 0x01000000,
517 .sector_size = 0x20000,
520 static void xtfpga_lx200_init(MachineState *machine)
522 static const XtfpgaBoardDesc lx200_board = {
523 .flash = &lx200_flash,
524 .sram_size = 0x2000000,
525 .io = xtfpga_mmu_io,
527 xtfpga_init(&lx200_board, machine);
530 static void xtfpga_lx200_nommu_init(MachineState *machine)
532 static const XtfpgaBoardDesc lx200_board = {
533 .flash = &lx200_flash,
534 .sram_size = 0x2000000,
535 .io = xtfpga_nommu_io,
537 xtfpga_init(&lx200_board, machine);
540 static const XtfpgaFlashDesc ml605_flash = {
541 .base = 0x08000000,
542 .size = 0x01000000,
543 .sector_size = 0x20000,
546 static void xtfpga_ml605_init(MachineState *machine)
548 static const XtfpgaBoardDesc ml605_board = {
549 .flash = &ml605_flash,
550 .sram_size = 0x2000000,
551 .io = xtfpga_mmu_io,
553 xtfpga_init(&ml605_board, machine);
556 static void xtfpga_ml605_nommu_init(MachineState *machine)
558 static const XtfpgaBoardDesc ml605_board = {
559 .flash = &ml605_flash,
560 .sram_size = 0x2000000,
561 .io = xtfpga_nommu_io,
563 xtfpga_init(&ml605_board, machine);
566 static const XtfpgaFlashDesc kc705_flash = {
567 .base = 0x00000000,
568 .size = 0x08000000,
569 .boot_base = 0x06000000,
570 .sector_size = 0x20000,
573 static void xtfpga_kc705_init(MachineState *machine)
575 static const XtfpgaBoardDesc kc705_board = {
576 .flash = &kc705_flash,
577 .sram_size = 0x2000000,
578 .io = xtfpga_mmu_io,
580 xtfpga_init(&kc705_board, machine);
583 static void xtfpga_kc705_nommu_init(MachineState *machine)
585 static const XtfpgaBoardDesc kc705_board = {
586 .flash = &kc705_flash,
587 .sram_size = 0x2000000,
588 .io = xtfpga_nommu_io,
590 xtfpga_init(&kc705_board, machine);
593 static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
595 MachineClass *mc = MACHINE_CLASS(oc);
597 mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
598 mc->init = xtfpga_lx60_init;
599 mc->max_cpus = 32;
600 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
601 mc->default_ram_size = 64 * MiB;
604 static const TypeInfo xtfpga_lx60_type = {
605 .name = MACHINE_TYPE_NAME("lx60"),
606 .parent = TYPE_MACHINE,
607 .class_init = xtfpga_lx60_class_init,
610 static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
612 MachineClass *mc = MACHINE_CLASS(oc);
614 mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
615 mc->init = xtfpga_lx60_nommu_init;
616 mc->max_cpus = 32;
617 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
618 mc->default_ram_size = 64 * MiB;
621 static const TypeInfo xtfpga_lx60_nommu_type = {
622 .name = MACHINE_TYPE_NAME("lx60-nommu"),
623 .parent = TYPE_MACHINE,
624 .class_init = xtfpga_lx60_nommu_class_init,
627 static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
629 MachineClass *mc = MACHINE_CLASS(oc);
631 mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
632 mc->init = xtfpga_lx200_init;
633 mc->max_cpus = 32;
634 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
635 mc->default_ram_size = 96 * MiB;
638 static const TypeInfo xtfpga_lx200_type = {
639 .name = MACHINE_TYPE_NAME("lx200"),
640 .parent = TYPE_MACHINE,
641 .class_init = xtfpga_lx200_class_init,
644 static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
646 MachineClass *mc = MACHINE_CLASS(oc);
648 mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
649 mc->init = xtfpga_lx200_nommu_init;
650 mc->max_cpus = 32;
651 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
652 mc->default_ram_size = 96 * MiB;
655 static const TypeInfo xtfpga_lx200_nommu_type = {
656 .name = MACHINE_TYPE_NAME("lx200-nommu"),
657 .parent = TYPE_MACHINE,
658 .class_init = xtfpga_lx200_nommu_class_init,
661 static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
663 MachineClass *mc = MACHINE_CLASS(oc);
665 mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
666 mc->init = xtfpga_ml605_init;
667 mc->max_cpus = 32;
668 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
669 mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
672 static const TypeInfo xtfpga_ml605_type = {
673 .name = MACHINE_TYPE_NAME("ml605"),
674 .parent = TYPE_MACHINE,
675 .class_init = xtfpga_ml605_class_init,
678 static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
680 MachineClass *mc = MACHINE_CLASS(oc);
682 mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
683 mc->init = xtfpga_ml605_nommu_init;
684 mc->max_cpus = 32;
685 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
686 mc->default_ram_size = 256 * MiB;
689 static const TypeInfo xtfpga_ml605_nommu_type = {
690 .name = MACHINE_TYPE_NAME("ml605-nommu"),
691 .parent = TYPE_MACHINE,
692 .class_init = xtfpga_ml605_nommu_class_init,
695 static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
697 MachineClass *mc = MACHINE_CLASS(oc);
699 mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
700 mc->init = xtfpga_kc705_init;
701 mc->max_cpus = 32;
702 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
703 mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
706 static const TypeInfo xtfpga_kc705_type = {
707 .name = MACHINE_TYPE_NAME("kc705"),
708 .parent = TYPE_MACHINE,
709 .class_init = xtfpga_kc705_class_init,
712 static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
714 MachineClass *mc = MACHINE_CLASS(oc);
716 mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
717 mc->init = xtfpga_kc705_nommu_init;
718 mc->max_cpus = 32;
719 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
720 mc->default_ram_size = 256 * MiB;
723 static const TypeInfo xtfpga_kc705_nommu_type = {
724 .name = MACHINE_TYPE_NAME("kc705-nommu"),
725 .parent = TYPE_MACHINE,
726 .class_init = xtfpga_kc705_nommu_class_init,
729 static void xtfpga_machines_init(void)
731 type_register_static(&xtfpga_lx60_type);
732 type_register_static(&xtfpga_lx200_type);
733 type_register_static(&xtfpga_ml605_type);
734 type_register_static(&xtfpga_kc705_type);
735 type_register_static(&xtfpga_lx60_nommu_type);
736 type_register_static(&xtfpga_lx200_nommu_type);
737 type_register_static(&xtfpga_ml605_nommu_type);
738 type_register_static(&xtfpga_kc705_nommu_type);
741 type_init(xtfpga_machines_init)