monitor: fix object_del for command-line-created objects
[qemu/ar7.git] / hw / intc / arm_gic.c
blobb305d9032a4ddc536502e417b0b8b313c93a38d7
1 /*
2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
29 /* #define DEBUG_GIC */
31 #ifdef DEBUG_GIC
32 #define DEBUG_GIC_GATE 1
33 #else
34 #define DEBUG_GIC_GATE 0
35 #endif
37 #define DPRINTF(fmt, ...) do { \
38 if (DEBUG_GIC_GATE) { \
39 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
40 } \
41 } while (0)
43 static const uint8_t gic_id_11mpcore[] = {
44 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
47 static const uint8_t gic_id_gicv1[] = {
48 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
51 static const uint8_t gic_id_gicv2[] = {
52 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
55 static inline int gic_get_current_cpu(GICState *s)
57 if (s->num_cpu > 1) {
58 return current_cpu->cpu_index;
60 return 0;
63 /* Return true if this GIC config has interrupt groups, which is
64 * true if we're a GICv2, or a GICv1 with the security extensions.
66 static inline bool gic_has_groups(GICState *s)
68 return s->revision == 2 || s->security_extn;
71 /* TODO: Many places that call this routine could be optimized. */
72 /* Update interrupt status after enabled or pending bits have been changed. */
73 void gic_update(GICState *s)
75 int best_irq;
76 int best_prio;
77 int irq;
78 int irq_level, fiq_level;
79 int cpu;
80 int cm;
82 for (cpu = 0; cpu < s->num_cpu; cpu++) {
83 cm = 1 << cpu;
84 s->current_pending[cpu] = 1023;
85 if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
86 || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
87 qemu_irq_lower(s->parent_irq[cpu]);
88 qemu_irq_lower(s->parent_fiq[cpu]);
89 continue;
91 best_prio = 0x100;
92 best_irq = 1023;
93 for (irq = 0; irq < s->num_irq; irq++) {
94 if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
95 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
96 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
97 best_prio = GIC_GET_PRIORITY(irq, cpu);
98 best_irq = irq;
103 if (best_irq != 1023) {
104 trace_gic_update_bestirq(cpu, best_irq, best_prio,
105 s->priority_mask[cpu], s->running_priority[cpu]);
108 irq_level = fiq_level = 0;
110 if (best_prio < s->priority_mask[cpu]) {
111 s->current_pending[cpu] = best_irq;
112 if (best_prio < s->running_priority[cpu]) {
113 int group = GIC_TEST_GROUP(best_irq, cm);
115 if (extract32(s->ctlr, group, 1) &&
116 extract32(s->cpu_ctlr[cpu], group, 1)) {
117 if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
118 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
119 best_irq, cpu);
120 fiq_level = 1;
121 trace_gic_update_set_irq(cpu, "fiq", fiq_level);
122 } else {
123 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
124 best_irq, cpu);
125 irq_level = 1;
126 trace_gic_update_set_irq(cpu, "irq", irq_level);
132 qemu_set_irq(s->parent_irq[cpu], irq_level);
133 qemu_set_irq(s->parent_fiq[cpu], fiq_level);
137 void gic_set_pending_private(GICState *s, int cpu, int irq)
139 int cm = 1 << cpu;
141 if (gic_test_pending(s, irq, cm)) {
142 return;
145 DPRINTF("Set %d pending cpu %d\n", irq, cpu);
146 GIC_SET_PENDING(irq, cm);
147 gic_update(s);
150 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
151 int cm, int target)
153 if (level) {
154 GIC_SET_LEVEL(irq, cm);
155 if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
156 DPRINTF("Set %d pending mask %x\n", irq, target);
157 GIC_SET_PENDING(irq, target);
159 } else {
160 GIC_CLEAR_LEVEL(irq, cm);
164 static void gic_set_irq_generic(GICState *s, int irq, int level,
165 int cm, int target)
167 if (level) {
168 GIC_SET_LEVEL(irq, cm);
169 DPRINTF("Set %d pending mask %x\n", irq, target);
170 if (GIC_TEST_EDGE_TRIGGER(irq)) {
171 GIC_SET_PENDING(irq, target);
173 } else {
174 GIC_CLEAR_LEVEL(irq, cm);
178 /* Process a change in an external IRQ input. */
179 static void gic_set_irq(void *opaque, int irq, int level)
181 /* Meaning of the 'irq' parameter:
182 * [0..N-1] : external interrupts
183 * [N..N+31] : PPI (internal) interrupts for CPU 0
184 * [N+32..N+63] : PPI (internal interrupts for CPU 1
185 * ...
187 GICState *s = (GICState *)opaque;
188 int cm, target;
189 if (irq < (s->num_irq - GIC_INTERNAL)) {
190 /* The first external input line is internal interrupt 32. */
191 cm = ALL_CPU_MASK;
192 irq += GIC_INTERNAL;
193 target = GIC_TARGET(irq);
194 } else {
195 int cpu;
196 irq -= (s->num_irq - GIC_INTERNAL);
197 cpu = irq / GIC_INTERNAL;
198 irq %= GIC_INTERNAL;
199 cm = 1 << cpu;
200 target = cm;
203 assert(irq >= GIC_NR_SGIS);
205 if (level == GIC_TEST_LEVEL(irq, cm)) {
206 return;
209 if (s->revision == REV_11MPCORE) {
210 gic_set_irq_11mpcore(s, irq, level, cm, target);
211 } else {
212 gic_set_irq_generic(s, irq, level, cm, target);
214 trace_gic_set_irq(irq, level, cm, target);
216 gic_update(s);
219 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
220 MemTxAttrs attrs)
222 uint16_t pending_irq = s->current_pending[cpu];
224 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
225 int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
226 /* On a GIC without the security extensions, reading this register
227 * behaves in the same way as a secure access to a GIC with them.
229 bool secure = !s->security_extn || attrs.secure;
231 if (group == 0 && !secure) {
232 /* Group0 interrupts hidden from Non-secure access */
233 return 1023;
235 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
236 /* Group1 interrupts only seen by Secure access if
237 * AckCtl bit set.
239 return 1022;
242 return pending_irq;
245 static int gic_get_group_priority(GICState *s, int cpu, int irq)
247 /* Return the group priority of the specified interrupt
248 * (which is the top bits of its priority, with the number
249 * of bits masked determined by the applicable binary point register).
251 int bpr;
252 uint32_t mask;
254 if (gic_has_groups(s) &&
255 !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
256 GIC_TEST_GROUP(irq, (1 << cpu))) {
257 bpr = s->abpr[cpu];
258 } else {
259 bpr = s->bpr[cpu];
262 /* a BPR of 0 means the group priority bits are [7:1];
263 * a BPR of 1 means they are [7:2], and so on down to
264 * a BPR of 7 meaning no group priority bits at all.
266 mask = ~0U << ((bpr & 7) + 1);
268 return GIC_GET_PRIORITY(irq, cpu) & mask;
271 static void gic_activate_irq(GICState *s, int cpu, int irq)
273 /* Set the appropriate Active Priority Register bit for this IRQ,
274 * and update the running priority.
276 int prio = gic_get_group_priority(s, cpu, irq);
277 int preemption_level = prio >> (GIC_MIN_BPR + 1);
278 int regno = preemption_level / 32;
279 int bitno = preemption_level % 32;
281 if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
282 s->nsapr[regno][cpu] |= (1 << bitno);
283 } else {
284 s->apr[regno][cpu] |= (1 << bitno);
287 s->running_priority[cpu] = prio;
288 GIC_SET_ACTIVE(irq, 1 << cpu);
291 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
293 /* Recalculate the current running priority for this CPU based
294 * on the set bits in the Active Priority Registers.
296 int i;
297 for (i = 0; i < GIC_NR_APRS; i++) {
298 uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
299 if (!apr) {
300 continue;
302 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
304 return 0x100;
307 static void gic_drop_prio(GICState *s, int cpu, int group)
309 /* Drop the priority of the currently active interrupt in the
310 * specified group.
312 * Note that we can guarantee (because of the requirement to nest
313 * GICC_IAR reads [which activate an interrupt and raise priority]
314 * with GICC_EOIR writes [which drop the priority for the interrupt])
315 * that the interrupt we're being called for is the highest priority
316 * active interrupt, meaning that it has the lowest set bit in the
317 * APR registers.
319 * If the guest does not honour the ordering constraints then the
320 * behaviour of the GIC is UNPREDICTABLE, which for us means that
321 * the values of the APR registers might become incorrect and the
322 * running priority will be wrong, so interrupts that should preempt
323 * might not do so, and interrupts that should not preempt might do so.
325 int i;
327 for (i = 0; i < GIC_NR_APRS; i++) {
328 uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
329 if (!*papr) {
330 continue;
332 /* Clear lowest set bit */
333 *papr &= *papr - 1;
334 break;
337 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
340 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
342 int ret, irq, src;
343 int cm = 1 << cpu;
345 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
346 * for the case where this GIC supports grouping and the pending interrupt
347 * is in the wrong group.
349 irq = gic_get_current_pending_irq(s, cpu, attrs);
350 trace_gic_acknowledge_irq(cpu, irq);
352 if (irq >= GIC_MAXIRQ) {
353 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
354 return irq;
357 if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
358 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
359 return 1023;
362 if (s->revision == REV_11MPCORE) {
363 /* Clear pending flags for both level and edge triggered interrupts.
364 * Level triggered IRQs will be reasserted once they become inactive.
366 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
367 ret = irq;
368 } else {
369 if (irq < GIC_NR_SGIS) {
370 /* Lookup the source CPU for the SGI and clear this in the
371 * sgi_pending map. Return the src and clear the overall pending
372 * state on this CPU if the SGI is not pending from any CPUs.
374 assert(s->sgi_pending[irq][cpu] != 0);
375 src = ctz32(s->sgi_pending[irq][cpu]);
376 s->sgi_pending[irq][cpu] &= ~(1 << src);
377 if (s->sgi_pending[irq][cpu] == 0) {
378 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
380 ret = irq | ((src & 0x7) << 10);
381 } else {
382 /* Clear pending state for both level and edge triggered
383 * interrupts. (level triggered interrupts with an active line
384 * remain pending, see gic_test_pending)
386 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
387 ret = irq;
391 gic_activate_irq(s, cpu, irq);
392 gic_update(s);
393 DPRINTF("ACK %d\n", irq);
394 return ret;
397 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
398 MemTxAttrs attrs)
400 if (s->security_extn && !attrs.secure) {
401 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
402 return; /* Ignore Non-secure access of Group0 IRQ */
404 val = 0x80 | (val >> 1); /* Non-secure view */
407 if (irq < GIC_INTERNAL) {
408 s->priority1[irq][cpu] = val;
409 } else {
410 s->priority2[(irq) - GIC_INTERNAL] = val;
414 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
415 MemTxAttrs attrs)
417 uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
419 if (s->security_extn && !attrs.secure) {
420 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
421 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
423 prio = (prio << 1) & 0xff; /* Non-secure view */
425 return prio;
428 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
429 MemTxAttrs attrs)
431 if (s->security_extn && !attrs.secure) {
432 if (s->priority_mask[cpu] & 0x80) {
433 /* Priority Mask in upper half */
434 pmask = 0x80 | (pmask >> 1);
435 } else {
436 /* Non-secure write ignored if priority mask is in lower half */
437 return;
440 s->priority_mask[cpu] = pmask;
443 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
445 uint32_t pmask = s->priority_mask[cpu];
447 if (s->security_extn && !attrs.secure) {
448 if (pmask & 0x80) {
449 /* Priority Mask in upper half, return Non-secure view */
450 pmask = (pmask << 1) & 0xff;
451 } else {
452 /* Priority Mask in lower half, RAZ */
453 pmask = 0;
456 return pmask;
459 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
461 uint32_t ret = s->cpu_ctlr[cpu];
463 if (s->security_extn && !attrs.secure) {
464 /* Construct the NS banked view of GICC_CTLR from the correct
465 * bits of the S banked view. We don't need to move the bypass
466 * control bits because we don't implement that (IMPDEF) part
467 * of the GIC architecture.
469 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
471 return ret;
474 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
475 MemTxAttrs attrs)
477 uint32_t mask;
479 if (s->security_extn && !attrs.secure) {
480 /* The NS view can only write certain bits in the register;
481 * the rest are unchanged
483 mask = GICC_CTLR_EN_GRP1;
484 if (s->revision == 2) {
485 mask |= GICC_CTLR_EOIMODE_NS;
487 s->cpu_ctlr[cpu] &= ~mask;
488 s->cpu_ctlr[cpu] |= (value << 1) & mask;
489 } else {
490 if (s->revision == 2) {
491 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
492 } else {
493 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
495 s->cpu_ctlr[cpu] = value & mask;
497 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
498 "Group1 Interrupts %sabled\n", cpu,
499 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
500 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
503 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
505 if (s->security_extn && !attrs.secure) {
506 if (s->running_priority[cpu] & 0x80) {
507 /* Running priority in upper half of range: return the Non-secure
508 * view of the priority.
510 return s->running_priority[cpu] << 1;
511 } else {
512 /* Running priority in lower half of range: RAZ */
513 return 0;
515 } else {
516 return s->running_priority[cpu];
520 /* Return true if we should split priority drop and interrupt deactivation,
521 * ie whether the relevant EOIMode bit is set.
523 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
525 if (s->revision != 2) {
526 /* Before GICv2 prio-drop and deactivate are not separable */
527 return false;
529 if (s->security_extn && !attrs.secure) {
530 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
532 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
535 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
537 int cm = 1 << cpu;
538 int group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
540 if (!gic_eoi_split(s, cpu, attrs)) {
541 /* This is UNPREDICTABLE; we choose to ignore it */
542 qemu_log_mask(LOG_GUEST_ERROR,
543 "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
544 return;
547 if (s->security_extn && !attrs.secure && !group) {
548 DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
549 return;
552 GIC_CLEAR_ACTIVE(irq, cm);
555 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
557 int cm = 1 << cpu;
558 int group;
560 DPRINTF("EOI %d\n", irq);
561 if (irq >= s->num_irq) {
562 /* This handles two cases:
563 * 1. If software writes the ID of a spurious interrupt [ie 1023]
564 * to the GICC_EOIR, the GIC ignores that write.
565 * 2. If software writes the number of a non-existent interrupt
566 * this must be a subcase of "value written does not match the last
567 * valid interrupt value read from the Interrupt Acknowledge
568 * register" and so this is UNPREDICTABLE. We choose to ignore it.
570 return;
572 if (s->running_priority[cpu] == 0x100) {
573 return; /* No active IRQ. */
576 if (s->revision == REV_11MPCORE) {
577 /* Mark level triggered interrupts as pending if they are still
578 raised. */
579 if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
580 && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
581 DPRINTF("Set %d pending mask %x\n", irq, cm);
582 GIC_SET_PENDING(irq, cm);
586 group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
588 if (s->security_extn && !attrs.secure && !group) {
589 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
590 return;
593 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
594 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
595 * i.e. go ahead and complete the irq anyway.
598 gic_drop_prio(s, cpu, group);
600 /* In GICv2 the guest can choose to split priority-drop and deactivate */
601 if (!gic_eoi_split(s, cpu, attrs)) {
602 GIC_CLEAR_ACTIVE(irq, cm);
604 gic_update(s);
607 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
609 GICState *s = (GICState *)opaque;
610 uint32_t res;
611 int irq;
612 int i;
613 int cpu;
614 int cm;
615 int mask;
617 cpu = gic_get_current_cpu(s);
618 cm = 1 << cpu;
619 if (offset < 0x100) {
620 if (offset == 0) { /* GICD_CTLR */
621 if (s->security_extn && !attrs.secure) {
622 /* The NS bank of this register is just an alias of the
623 * EnableGrp1 bit in the S bank version.
625 return extract32(s->ctlr, 1, 1);
626 } else {
627 return s->ctlr;
630 if (offset == 4)
631 /* Interrupt Controller Type Register */
632 return ((s->num_irq / 32) - 1)
633 | ((s->num_cpu - 1) << 5)
634 | (s->security_extn << 10);
635 if (offset < 0x08)
636 return 0;
637 if (offset >= 0x80) {
638 /* Interrupt Group Registers: these RAZ/WI if this is an NS
639 * access to a GIC with the security extensions, or if the GIC
640 * doesn't have groups at all.
642 res = 0;
643 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
644 /* Every byte offset holds 8 group status bits */
645 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
646 if (irq >= s->num_irq) {
647 goto bad_reg;
649 for (i = 0; i < 8; i++) {
650 if (GIC_TEST_GROUP(irq + i, cm)) {
651 res |= (1 << i);
655 return res;
657 goto bad_reg;
658 } else if (offset < 0x200) {
659 /* Interrupt Set/Clear Enable. */
660 if (offset < 0x180)
661 irq = (offset - 0x100) * 8;
662 else
663 irq = (offset - 0x180) * 8;
664 irq += GIC_BASE_IRQ;
665 if (irq >= s->num_irq)
666 goto bad_reg;
667 res = 0;
668 for (i = 0; i < 8; i++) {
669 if (s->security_extn && !attrs.secure &&
670 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
671 continue; /* Ignore Non-secure access of Group0 IRQ */
674 if (GIC_TEST_ENABLED(irq + i, cm)) {
675 res |= (1 << i);
678 } else if (offset < 0x300) {
679 /* Interrupt Set/Clear Pending. */
680 if (offset < 0x280)
681 irq = (offset - 0x200) * 8;
682 else
683 irq = (offset - 0x280) * 8;
684 irq += GIC_BASE_IRQ;
685 if (irq >= s->num_irq)
686 goto bad_reg;
687 res = 0;
688 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
689 for (i = 0; i < 8; i++) {
690 if (s->security_extn && !attrs.secure &&
691 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
692 continue; /* Ignore Non-secure access of Group0 IRQ */
695 if (gic_test_pending(s, irq + i, mask)) {
696 res |= (1 << i);
699 } else if (offset < 0x400) {
700 /* Interrupt Active. */
701 irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
702 if (irq >= s->num_irq)
703 goto bad_reg;
704 res = 0;
705 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
706 for (i = 0; i < 8; i++) {
707 if (s->security_extn && !attrs.secure &&
708 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
709 continue; /* Ignore Non-secure access of Group0 IRQ */
712 if (GIC_TEST_ACTIVE(irq + i, mask)) {
713 res |= (1 << i);
716 } else if (offset < 0x800) {
717 /* Interrupt Priority. */
718 irq = (offset - 0x400) + GIC_BASE_IRQ;
719 if (irq >= s->num_irq)
720 goto bad_reg;
721 res = gic_get_priority(s, cpu, irq, attrs);
722 } else if (offset < 0xc00) {
723 /* Interrupt CPU Target. */
724 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
725 /* For uniprocessor GICs these RAZ/WI */
726 res = 0;
727 } else {
728 irq = (offset - 0x800) + GIC_BASE_IRQ;
729 if (irq >= s->num_irq) {
730 goto bad_reg;
732 if (irq >= 29 && irq <= 31) {
733 res = cm;
734 } else {
735 res = GIC_TARGET(irq);
738 } else if (offset < 0xf00) {
739 /* Interrupt Configuration. */
740 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
741 if (irq >= s->num_irq)
742 goto bad_reg;
743 res = 0;
744 for (i = 0; i < 4; i++) {
745 if (s->security_extn && !attrs.secure &&
746 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
747 continue; /* Ignore Non-secure access of Group0 IRQ */
750 if (GIC_TEST_MODEL(irq + i))
751 res |= (1 << (i * 2));
752 if (GIC_TEST_EDGE_TRIGGER(irq + i))
753 res |= (2 << (i * 2));
755 } else if (offset < 0xf10) {
756 goto bad_reg;
757 } else if (offset < 0xf30) {
758 if (s->revision == REV_11MPCORE) {
759 goto bad_reg;
762 if (offset < 0xf20) {
763 /* GICD_CPENDSGIRn */
764 irq = (offset - 0xf10);
765 } else {
766 irq = (offset - 0xf20);
767 /* GICD_SPENDSGIRn */
770 if (s->security_extn && !attrs.secure &&
771 !GIC_TEST_GROUP(irq, 1 << cpu)) {
772 res = 0; /* Ignore Non-secure access of Group0 IRQ */
773 } else {
774 res = s->sgi_pending[irq][cpu];
776 } else if (offset < 0xfd0) {
777 goto bad_reg;
778 } else if (offset < 0x1000) {
779 if (offset & 3) {
780 res = 0;
781 } else {
782 switch (s->revision) {
783 case REV_11MPCORE:
784 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
785 break;
786 case 1:
787 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
788 break;
789 case 2:
790 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
791 break;
792 default:
793 res = 0;
796 } else {
797 g_assert_not_reached();
799 return res;
800 bad_reg:
801 qemu_log_mask(LOG_GUEST_ERROR,
802 "gic_dist_readb: Bad offset %x\n", (int)offset);
803 return 0;
806 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
807 unsigned size, MemTxAttrs attrs)
809 switch (size) {
810 case 1:
811 *data = gic_dist_readb(opaque, offset, attrs);
812 return MEMTX_OK;
813 case 2:
814 *data = gic_dist_readb(opaque, offset, attrs);
815 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
816 return MEMTX_OK;
817 case 4:
818 *data = gic_dist_readb(opaque, offset, attrs);
819 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
820 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
821 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
822 return MEMTX_OK;
823 default:
824 return MEMTX_ERROR;
828 static void gic_dist_writeb(void *opaque, hwaddr offset,
829 uint32_t value, MemTxAttrs attrs)
831 GICState *s = (GICState *)opaque;
832 int irq;
833 int i;
834 int cpu;
836 cpu = gic_get_current_cpu(s);
837 if (offset < 0x100) {
838 if (offset == 0) {
839 if (s->security_extn && !attrs.secure) {
840 /* NS version is just an alias of the S version's bit 1 */
841 s->ctlr = deposit32(s->ctlr, 1, 1, value);
842 } else if (gic_has_groups(s)) {
843 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
844 } else {
845 s->ctlr = value & GICD_CTLR_EN_GRP0;
847 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
848 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
849 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
850 } else if (offset < 4) {
851 /* ignored. */
852 } else if (offset >= 0x80) {
853 /* Interrupt Group Registers: RAZ/WI for NS access to secure
854 * GIC, or for GICs without groups.
856 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
857 /* Every byte offset holds 8 group status bits */
858 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
859 if (irq >= s->num_irq) {
860 goto bad_reg;
862 for (i = 0; i < 8; i++) {
863 /* Group bits are banked for private interrupts */
864 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
865 if (value & (1 << i)) {
866 /* Group1 (Non-secure) */
867 GIC_SET_GROUP(irq + i, cm);
868 } else {
869 /* Group0 (Secure) */
870 GIC_CLEAR_GROUP(irq + i, cm);
874 } else {
875 goto bad_reg;
877 } else if (offset < 0x180) {
878 /* Interrupt Set Enable. */
879 irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
880 if (irq >= s->num_irq)
881 goto bad_reg;
882 if (irq < GIC_NR_SGIS) {
883 value = 0xff;
886 for (i = 0; i < 8; i++) {
887 if (value & (1 << i)) {
888 int mask =
889 (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
890 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
892 if (s->security_extn && !attrs.secure &&
893 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
894 continue; /* Ignore Non-secure access of Group0 IRQ */
897 if (!GIC_TEST_ENABLED(irq + i, cm)) {
898 DPRINTF("Enabled IRQ %d\n", irq + i);
899 trace_gic_enable_irq(irq + i);
901 GIC_SET_ENABLED(irq + i, cm);
902 /* If a raised level triggered IRQ enabled then mark
903 is as pending. */
904 if (GIC_TEST_LEVEL(irq + i, mask)
905 && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
906 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
907 GIC_SET_PENDING(irq + i, mask);
911 } else if (offset < 0x200) {
912 /* Interrupt Clear Enable. */
913 irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
914 if (irq >= s->num_irq)
915 goto bad_reg;
916 if (irq < GIC_NR_SGIS) {
917 value = 0;
920 for (i = 0; i < 8; i++) {
921 if (value & (1 << i)) {
922 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
924 if (s->security_extn && !attrs.secure &&
925 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
926 continue; /* Ignore Non-secure access of Group0 IRQ */
929 if (GIC_TEST_ENABLED(irq + i, cm)) {
930 DPRINTF("Disabled IRQ %d\n", irq + i);
931 trace_gic_disable_irq(irq + i);
933 GIC_CLEAR_ENABLED(irq + i, cm);
936 } else if (offset < 0x280) {
937 /* Interrupt Set Pending. */
938 irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
939 if (irq >= s->num_irq)
940 goto bad_reg;
941 if (irq < GIC_NR_SGIS) {
942 value = 0;
945 for (i = 0; i < 8; i++) {
946 if (value & (1 << i)) {
947 if (s->security_extn && !attrs.secure &&
948 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
949 continue; /* Ignore Non-secure access of Group0 IRQ */
952 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
955 } else if (offset < 0x300) {
956 /* Interrupt Clear Pending. */
957 irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
958 if (irq >= s->num_irq)
959 goto bad_reg;
960 if (irq < GIC_NR_SGIS) {
961 value = 0;
964 for (i = 0; i < 8; i++) {
965 if (s->security_extn && !attrs.secure &&
966 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
967 continue; /* Ignore Non-secure access of Group0 IRQ */
970 /* ??? This currently clears the pending bit for all CPUs, even
971 for per-CPU interrupts. It's unclear whether this is the
972 corect behavior. */
973 if (value & (1 << i)) {
974 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
977 } else if (offset < 0x400) {
978 /* Interrupt Active. */
979 goto bad_reg;
980 } else if (offset < 0x800) {
981 /* Interrupt Priority. */
982 irq = (offset - 0x400) + GIC_BASE_IRQ;
983 if (irq >= s->num_irq)
984 goto bad_reg;
985 gic_set_priority(s, cpu, irq, value, attrs);
986 } else if (offset < 0xc00) {
987 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
988 * annoying exception of the 11MPCore's GIC.
990 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
991 irq = (offset - 0x800) + GIC_BASE_IRQ;
992 if (irq >= s->num_irq) {
993 goto bad_reg;
995 if (irq < 29) {
996 value = 0;
997 } else if (irq < GIC_INTERNAL) {
998 value = ALL_CPU_MASK;
1000 s->irq_target[irq] = value & ALL_CPU_MASK;
1002 } else if (offset < 0xf00) {
1003 /* Interrupt Configuration. */
1004 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
1005 if (irq >= s->num_irq)
1006 goto bad_reg;
1007 if (irq < GIC_NR_SGIS)
1008 value |= 0xaa;
1009 for (i = 0; i < 4; i++) {
1010 if (s->security_extn && !attrs.secure &&
1011 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
1012 continue; /* Ignore Non-secure access of Group0 IRQ */
1015 if (s->revision == REV_11MPCORE) {
1016 if (value & (1 << (i * 2))) {
1017 GIC_SET_MODEL(irq + i);
1018 } else {
1019 GIC_CLEAR_MODEL(irq + i);
1022 if (value & (2 << (i * 2))) {
1023 GIC_SET_EDGE_TRIGGER(irq + i);
1024 } else {
1025 GIC_CLEAR_EDGE_TRIGGER(irq + i);
1028 } else if (offset < 0xf10) {
1029 /* 0xf00 is only handled for 32-bit writes. */
1030 goto bad_reg;
1031 } else if (offset < 0xf20) {
1032 /* GICD_CPENDSGIRn */
1033 if (s->revision == REV_11MPCORE) {
1034 goto bad_reg;
1036 irq = (offset - 0xf10);
1038 if (!s->security_extn || attrs.secure ||
1039 GIC_TEST_GROUP(irq, 1 << cpu)) {
1040 s->sgi_pending[irq][cpu] &= ~value;
1041 if (s->sgi_pending[irq][cpu] == 0) {
1042 GIC_CLEAR_PENDING(irq, 1 << cpu);
1045 } else if (offset < 0xf30) {
1046 /* GICD_SPENDSGIRn */
1047 if (s->revision == REV_11MPCORE) {
1048 goto bad_reg;
1050 irq = (offset - 0xf20);
1052 if (!s->security_extn || attrs.secure ||
1053 GIC_TEST_GROUP(irq, 1 << cpu)) {
1054 GIC_SET_PENDING(irq, 1 << cpu);
1055 s->sgi_pending[irq][cpu] |= value;
1057 } else {
1058 goto bad_reg;
1060 gic_update(s);
1061 return;
1062 bad_reg:
1063 qemu_log_mask(LOG_GUEST_ERROR,
1064 "gic_dist_writeb: Bad offset %x\n", (int)offset);
1067 static void gic_dist_writew(void *opaque, hwaddr offset,
1068 uint32_t value, MemTxAttrs attrs)
1070 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1071 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1074 static void gic_dist_writel(void *opaque, hwaddr offset,
1075 uint32_t value, MemTxAttrs attrs)
1077 GICState *s = (GICState *)opaque;
1078 if (offset == 0xf00) {
1079 int cpu;
1080 int irq;
1081 int mask;
1082 int target_cpu;
1084 cpu = gic_get_current_cpu(s);
1085 irq = value & 0x3ff;
1086 switch ((value >> 24) & 3) {
1087 case 0:
1088 mask = (value >> 16) & ALL_CPU_MASK;
1089 break;
1090 case 1:
1091 mask = ALL_CPU_MASK ^ (1 << cpu);
1092 break;
1093 case 2:
1094 mask = 1 << cpu;
1095 break;
1096 default:
1097 DPRINTF("Bad Soft Int target filter\n");
1098 mask = ALL_CPU_MASK;
1099 break;
1101 GIC_SET_PENDING(irq, mask);
1102 target_cpu = ctz32(mask);
1103 while (target_cpu < GIC_NCPU) {
1104 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1105 mask &= ~(1 << target_cpu);
1106 target_cpu = ctz32(mask);
1108 gic_update(s);
1109 return;
1111 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1112 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1115 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1116 unsigned size, MemTxAttrs attrs)
1118 switch (size) {
1119 case 1:
1120 gic_dist_writeb(opaque, offset, data, attrs);
1121 return MEMTX_OK;
1122 case 2:
1123 gic_dist_writew(opaque, offset, data, attrs);
1124 return MEMTX_OK;
1125 case 4:
1126 gic_dist_writel(opaque, offset, data, attrs);
1127 return MEMTX_OK;
1128 default:
1129 return MEMTX_ERROR;
1133 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1135 /* Return the Nonsecure view of GICC_APR<regno>. This is the
1136 * second half of GICC_NSAPR.
1138 switch (GIC_MIN_BPR) {
1139 case 0:
1140 if (regno < 2) {
1141 return s->nsapr[regno + 2][cpu];
1143 break;
1144 case 1:
1145 if (regno == 0) {
1146 return s->nsapr[regno + 1][cpu];
1148 break;
1149 case 2:
1150 if (regno == 0) {
1151 return extract32(s->nsapr[0][cpu], 16, 16);
1153 break;
1154 case 3:
1155 if (regno == 0) {
1156 return extract32(s->nsapr[0][cpu], 8, 8);
1158 break;
1159 default:
1160 g_assert_not_reached();
1162 return 0;
1165 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1166 uint32_t value)
1168 /* Write the Nonsecure view of GICC_APR<regno>. */
1169 switch (GIC_MIN_BPR) {
1170 case 0:
1171 if (regno < 2) {
1172 s->nsapr[regno + 2][cpu] = value;
1174 break;
1175 case 1:
1176 if (regno == 0) {
1177 s->nsapr[regno + 1][cpu] = value;
1179 break;
1180 case 2:
1181 if (regno == 0) {
1182 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1184 break;
1185 case 3:
1186 if (regno == 0) {
1187 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1189 break;
1190 default:
1191 g_assert_not_reached();
1195 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1196 uint64_t *data, MemTxAttrs attrs)
1198 switch (offset) {
1199 case 0x00: /* Control */
1200 *data = gic_get_cpu_control(s, cpu, attrs);
1201 break;
1202 case 0x04: /* Priority mask */
1203 *data = gic_get_priority_mask(s, cpu, attrs);
1204 break;
1205 case 0x08: /* Binary Point */
1206 if (s->security_extn && !attrs.secure) {
1207 /* BPR is banked. Non-secure copy stored in ABPR. */
1208 *data = s->abpr[cpu];
1209 } else {
1210 *data = s->bpr[cpu];
1212 break;
1213 case 0x0c: /* Acknowledge */
1214 *data = gic_acknowledge_irq(s, cpu, attrs);
1215 break;
1216 case 0x14: /* Running Priority */
1217 *data = gic_get_running_priority(s, cpu, attrs);
1218 break;
1219 case 0x18: /* Highest Pending Interrupt */
1220 *data = gic_get_current_pending_irq(s, cpu, attrs);
1221 break;
1222 case 0x1c: /* Aliased Binary Point */
1223 /* GIC v2, no security: ABPR
1224 * GIC v1, no security: not implemented (RAZ/WI)
1225 * With security extensions, secure access: ABPR (alias of NS BPR)
1226 * With security extensions, nonsecure access: RAZ/WI
1228 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1229 *data = 0;
1230 } else {
1231 *data = s->abpr[cpu];
1233 break;
1234 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1236 int regno = (offset - 0xd0) / 4;
1238 if (regno >= GIC_NR_APRS || s->revision != 2) {
1239 *data = 0;
1240 } else if (s->security_extn && !attrs.secure) {
1241 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1242 *data = gic_apr_ns_view(s, regno, cpu);
1243 } else {
1244 *data = s->apr[regno][cpu];
1246 break;
1248 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1250 int regno = (offset - 0xe0) / 4;
1252 if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1253 (s->security_extn && !attrs.secure)) {
1254 *data = 0;
1255 } else {
1256 *data = s->nsapr[regno][cpu];
1258 break;
1260 default:
1261 qemu_log_mask(LOG_GUEST_ERROR,
1262 "gic_cpu_read: Bad offset %x\n", (int)offset);
1263 return MEMTX_ERROR;
1265 return MEMTX_OK;
1268 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1269 uint32_t value, MemTxAttrs attrs)
1271 switch (offset) {
1272 case 0x00: /* Control */
1273 gic_set_cpu_control(s, cpu, value, attrs);
1274 break;
1275 case 0x04: /* Priority mask */
1276 gic_set_priority_mask(s, cpu, value, attrs);
1277 break;
1278 case 0x08: /* Binary Point */
1279 if (s->security_extn && !attrs.secure) {
1280 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1281 } else {
1282 s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1284 break;
1285 case 0x10: /* End Of Interrupt */
1286 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1287 return MEMTX_OK;
1288 case 0x1c: /* Aliased Binary Point */
1289 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1290 /* unimplemented, or NS access: RAZ/WI */
1291 return MEMTX_OK;
1292 } else {
1293 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1295 break;
1296 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1298 int regno = (offset - 0xd0) / 4;
1300 if (regno >= GIC_NR_APRS || s->revision != 2) {
1301 return MEMTX_OK;
1303 if (s->security_extn && !attrs.secure) {
1304 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1305 gic_apr_write_ns_view(s, regno, cpu, value);
1306 } else {
1307 s->apr[regno][cpu] = value;
1309 break;
1311 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1313 int regno = (offset - 0xe0) / 4;
1315 if (regno >= GIC_NR_APRS || s->revision != 2) {
1316 return MEMTX_OK;
1318 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1319 return MEMTX_OK;
1321 s->nsapr[regno][cpu] = value;
1322 break;
1324 case 0x1000:
1325 /* GICC_DIR */
1326 gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1327 break;
1328 default:
1329 qemu_log_mask(LOG_GUEST_ERROR,
1330 "gic_cpu_write: Bad offset %x\n", (int)offset);
1331 return MEMTX_ERROR;
1333 gic_update(s);
1334 return MEMTX_OK;
1337 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1338 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1339 unsigned size, MemTxAttrs attrs)
1341 GICState *s = (GICState *)opaque;
1342 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1345 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1346 uint64_t value, unsigned size,
1347 MemTxAttrs attrs)
1349 GICState *s = (GICState *)opaque;
1350 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1353 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1354 * These just decode the opaque pointer into GICState* + cpu id.
1356 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1357 unsigned size, MemTxAttrs attrs)
1359 GICState **backref = (GICState **)opaque;
1360 GICState *s = *backref;
1361 int id = (backref - s->backref);
1362 return gic_cpu_read(s, id, addr, data, attrs);
1365 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1366 uint64_t value, unsigned size,
1367 MemTxAttrs attrs)
1369 GICState **backref = (GICState **)opaque;
1370 GICState *s = *backref;
1371 int id = (backref - s->backref);
1372 return gic_cpu_write(s, id, addr, value, attrs);
1375 static const MemoryRegionOps gic_ops[2] = {
1377 .read_with_attrs = gic_dist_read,
1378 .write_with_attrs = gic_dist_write,
1379 .endianness = DEVICE_NATIVE_ENDIAN,
1382 .read_with_attrs = gic_thiscpu_read,
1383 .write_with_attrs = gic_thiscpu_write,
1384 .endianness = DEVICE_NATIVE_ENDIAN,
1388 static const MemoryRegionOps gic_cpu_ops = {
1389 .read_with_attrs = gic_do_cpu_read,
1390 .write_with_attrs = gic_do_cpu_write,
1391 .endianness = DEVICE_NATIVE_ENDIAN,
1394 /* This function is used by nvic model */
1395 void gic_init_irqs_and_distributor(GICState *s)
1397 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1400 static void arm_gic_realize(DeviceState *dev, Error **errp)
1402 /* Device instance realize function for the GIC sysbus device */
1403 int i;
1404 GICState *s = ARM_GIC(dev);
1405 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1406 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1407 Error *local_err = NULL;
1409 agc->parent_realize(dev, &local_err);
1410 if (local_err) {
1411 error_propagate(errp, local_err);
1412 return;
1415 /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1416 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1418 /* Extra core-specific regions for the CPU interfaces. This is
1419 * necessary for "franken-GIC" implementations, for example on
1420 * Exynos 4.
1421 * NB that the memory region size of 0x100 applies for the 11MPCore
1422 * and also cores following the GIC v1 spec (ie A9).
1423 * GIC v2 defines a larger memory region (0x1000) so this will need
1424 * to be extended when we implement A15.
1426 for (i = 0; i < s->num_cpu; i++) {
1427 s->backref[i] = s;
1428 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1429 &s->backref[i], "gic_cpu", 0x100);
1430 sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1434 static void arm_gic_class_init(ObjectClass *klass, void *data)
1436 DeviceClass *dc = DEVICE_CLASS(klass);
1437 ARMGICClass *agc = ARM_GIC_CLASS(klass);
1439 agc->parent_realize = dc->realize;
1440 dc->realize = arm_gic_realize;
1443 static const TypeInfo arm_gic_info = {
1444 .name = TYPE_ARM_GIC,
1445 .parent = TYPE_ARM_GIC_COMMON,
1446 .instance_size = sizeof(GICState),
1447 .class_init = arm_gic_class_init,
1448 .class_size = sizeof(ARMGICClass),
1451 static void arm_gic_register_types(void)
1453 type_register_static(&arm_gic_info);
1456 type_init(arm_gic_register_types)