ppc/pnv: Introduce PnvChipClass::xscom_core_base() method
[qemu/ar7.git] / target / arm / kvm32.c
blob32bf8d6757c4ffe056e95c5d7bbe0537cf62028d
1 /*
2 * ARM implementation of KVM hooks, 32 bit specific code.
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
14 #include <linux/kvm.h>
16 #include "qemu-common.h"
17 #include "cpu.h"
18 #include "qemu/timer.h"
19 #include "sysemu/kvm.h"
20 #include "kvm_arm.h"
21 #include "internals.h"
22 #include "qemu/log.h"
24 static inline void set_feature(uint64_t *features, int feature)
26 *features |= 1ULL << feature;
29 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
31 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
33 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32);
34 return ioctl(fd, KVM_GET_ONE_REG, &idreg);
37 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
39 /* Identify the feature bits corresponding to the host CPU, and
40 * fill out the ARMHostCPUClass fields accordingly. To do this
41 * we have to create a scratch VM, create a single CPU inside it,
42 * and then query that CPU for the relevant ID registers.
44 int err = 0, fdarray[3];
45 uint32_t midr, id_pfr0;
46 uint64_t features = 0;
48 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
49 * we know these will only support creating one kind of guest CPU,
50 * which is its preferred CPU type.
52 static const uint32_t cpus_to_try[] = {
53 QEMU_KVM_ARM_TARGET_CORTEX_A15,
54 QEMU_KVM_ARM_TARGET_NONE
57 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
58 * to use the preferred target
60 struct kvm_vcpu_init init = { .target = -1, };
62 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
63 return false;
66 ahcf->target = init.target;
68 /* This is not strictly blessed by the device tree binding docs yet,
69 * but in practice the kernel does not care about this string so
70 * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
72 ahcf->dtb_compatible = "arm,arm-v7";
74 err |= read_sys_reg32(fdarray[2], &midr, ARM_CP15_REG32(0, 0, 0, 0));
75 err |= read_sys_reg32(fdarray[2], &id_pfr0, ARM_CP15_REG32(0, 0, 1, 0));
77 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
78 ARM_CP15_REG32(0, 0, 2, 0));
79 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
80 ARM_CP15_REG32(0, 0, 2, 1));
81 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
82 ARM_CP15_REG32(0, 0, 2, 2));
83 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
84 ARM_CP15_REG32(0, 0, 2, 3));
85 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
86 ARM_CP15_REG32(0, 0, 2, 4));
87 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
88 ARM_CP15_REG32(0, 0, 2, 5));
89 if (read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
90 ARM_CP15_REG32(0, 0, 2, 7))) {
92 * Older kernels don't support reading ID_ISAR6. This register was
93 * only introduced in ARMv8, so we can assume that it is zero on a
94 * CPU that a kernel this old is running on.
96 ahcf->isar.id_isar6 = 0;
99 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
100 KVM_REG_ARM | KVM_REG_SIZE_U32 |
101 KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR0);
102 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
103 KVM_REG_ARM | KVM_REG_SIZE_U32 |
104 KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1);
106 * FIXME: There is not yet a way to read MVFR2.
107 * Fortunately there is not yet anything in there that affects migration.
110 kvm_arm_destroy_scratch_host_vcpu(fdarray);
112 if (err < 0) {
113 return false;
116 /* Now we've retrieved all the register information we can
117 * set the feature bits based on the ID register fields.
118 * We can assume any KVM supporting CPU is at least a v7
119 * with VFPv3, virtualization extensions, and the generic
120 * timers; this in turn implies most of the other feature
121 * bits, but a few must be tested.
123 set_feature(&features, ARM_FEATURE_V7VE);
124 set_feature(&features, ARM_FEATURE_VFP3);
125 set_feature(&features, ARM_FEATURE_GENERIC_TIMER);
127 if (extract32(id_pfr0, 12, 4) == 1) {
128 set_feature(&features, ARM_FEATURE_THUMB2EE);
130 if (extract32(ahcf->isar.mvfr1, 12, 4) == 1) {
131 set_feature(&features, ARM_FEATURE_NEON);
133 if (extract32(ahcf->isar.mvfr1, 28, 4) == 1) {
134 /* FMAC support implies VFPv4 */
135 set_feature(&features, ARM_FEATURE_VFP4);
138 ahcf->features = features;
140 return true;
143 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
145 /* Return true if the regidx is a register we should synchronize
146 * via the cpreg_tuples array (ie is not a core reg we sync by
147 * hand in kvm_arch_get/put_registers())
149 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
150 case KVM_REG_ARM_CORE:
151 case KVM_REG_ARM_VFP:
152 return false;
153 default:
154 return true;
158 typedef struct CPRegStateLevel {
159 uint64_t regidx;
160 int level;
161 } CPRegStateLevel;
163 /* All coprocessor registers not listed in the following table are assumed to
164 * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
165 * often, you must add it to this table with a state of either
166 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
168 static const CPRegStateLevel non_runtime_cpregs[] = {
169 { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
172 int kvm_arm_cpreg_level(uint64_t regidx)
174 int i;
176 for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
177 const CPRegStateLevel *l = &non_runtime_cpregs[i];
178 if (l->regidx == regidx) {
179 return l->level;
183 return KVM_PUT_RUNTIME_STATE;
186 #define ARM_CPU_ID_MPIDR 0, 0, 0, 5
188 int kvm_arch_init_vcpu(CPUState *cs)
190 int ret;
191 uint64_t v;
192 uint32_t mpidr;
193 struct kvm_one_reg r;
194 ARMCPU *cpu = ARM_CPU(cs);
196 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
197 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
198 return -EINVAL;
201 /* Determine init features for this CPU */
202 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
203 if (cpu->start_powered_off) {
204 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
206 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
207 cpu->psci_version = 2;
208 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
211 /* Do KVM_ARM_VCPU_INIT ioctl */
212 ret = kvm_arm_vcpu_init(cs);
213 if (ret) {
214 return ret;
217 /* Query the kernel to make sure it supports 32 VFP
218 * registers: QEMU's "cortex-a15" CPU is always a
219 * VFP-D32 core. The simplest way to do this is just
220 * to attempt to read register d31.
222 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
223 r.addr = (uintptr_t)(&v);
224 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
225 if (ret == -ENOENT) {
226 return -EINVAL;
230 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
231 * Currently KVM has its own idea about MPIDR assignment, so we
232 * override our defaults with what we get from KVM.
234 ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr);
235 if (ret) {
236 return ret;
238 cpu->mp_affinity = mpidr & ARM32_AFFINITY_MASK;
240 /* Check whether userspace can specify guest syndrome value */
241 kvm_arm_init_serror_injection(cs);
243 return kvm_arm_init_cpreg_list(cpu);
246 int kvm_arch_destroy_vcpu(CPUState *cs)
248 return 0;
251 typedef struct Reg {
252 uint64_t id;
253 int offset;
254 } Reg;
256 #define COREREG(KERNELNAME, QEMUFIELD) \
258 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
259 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
260 offsetof(CPUARMState, QEMUFIELD) \
263 #define VFPSYSREG(R) \
265 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
266 KVM_REG_ARM_VFP_##R, \
267 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
270 /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
271 #define COREREG64(KERNELNAME, QEMUFIELD) \
273 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
274 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
275 offsetoflow32(CPUARMState, QEMUFIELD) \
278 static const Reg regs[] = {
279 /* R0_usr .. R14_usr */
280 COREREG(usr_regs.uregs[0], regs[0]),
281 COREREG(usr_regs.uregs[1], regs[1]),
282 COREREG(usr_regs.uregs[2], regs[2]),
283 COREREG(usr_regs.uregs[3], regs[3]),
284 COREREG(usr_regs.uregs[4], regs[4]),
285 COREREG(usr_regs.uregs[5], regs[5]),
286 COREREG(usr_regs.uregs[6], regs[6]),
287 COREREG(usr_regs.uregs[7], regs[7]),
288 COREREG(usr_regs.uregs[8], usr_regs[0]),
289 COREREG(usr_regs.uregs[9], usr_regs[1]),
290 COREREG(usr_regs.uregs[10], usr_regs[2]),
291 COREREG(usr_regs.uregs[11], usr_regs[3]),
292 COREREG(usr_regs.uregs[12], usr_regs[4]),
293 COREREG(usr_regs.uregs[13], banked_r13[BANK_USRSYS]),
294 COREREG(usr_regs.uregs[14], banked_r14[BANK_USRSYS]),
295 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
296 COREREG(svc_regs[0], banked_r13[BANK_SVC]),
297 COREREG(svc_regs[1], banked_r14[BANK_SVC]),
298 COREREG64(svc_regs[2], banked_spsr[BANK_SVC]),
299 COREREG(abt_regs[0], banked_r13[BANK_ABT]),
300 COREREG(abt_regs[1], banked_r14[BANK_ABT]),
301 COREREG64(abt_regs[2], banked_spsr[BANK_ABT]),
302 COREREG(und_regs[0], banked_r13[BANK_UND]),
303 COREREG(und_regs[1], banked_r14[BANK_UND]),
304 COREREG64(und_regs[2], banked_spsr[BANK_UND]),
305 COREREG(irq_regs[0], banked_r13[BANK_IRQ]),
306 COREREG(irq_regs[1], banked_r14[BANK_IRQ]),
307 COREREG64(irq_regs[2], banked_spsr[BANK_IRQ]),
308 /* R8_fiq .. R14_fiq and SPSR_fiq */
309 COREREG(fiq_regs[0], fiq_regs[0]),
310 COREREG(fiq_regs[1], fiq_regs[1]),
311 COREREG(fiq_regs[2], fiq_regs[2]),
312 COREREG(fiq_regs[3], fiq_regs[3]),
313 COREREG(fiq_regs[4], fiq_regs[4]),
314 COREREG(fiq_regs[5], banked_r13[BANK_FIQ]),
315 COREREG(fiq_regs[6], banked_r14[BANK_FIQ]),
316 COREREG64(fiq_regs[7], banked_spsr[BANK_FIQ]),
317 /* R15 */
318 COREREG(usr_regs.uregs[15], regs[15]),
319 /* VFP system registers */
320 VFPSYSREG(FPSID),
321 VFPSYSREG(MVFR1),
322 VFPSYSREG(MVFR0),
323 VFPSYSREG(FPEXC),
324 VFPSYSREG(FPINST),
325 VFPSYSREG(FPINST2),
328 int kvm_arch_put_registers(CPUState *cs, int level)
330 ARMCPU *cpu = ARM_CPU(cs);
331 CPUARMState *env = &cpu->env;
332 struct kvm_one_reg r;
333 int mode, bn;
334 int ret, i;
335 uint32_t cpsr, fpscr;
337 /* Make sure the banked regs are properly set */
338 mode = env->uncached_cpsr & CPSR_M;
339 bn = bank_number(mode);
340 if (mode == ARM_CPU_MODE_FIQ) {
341 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
342 } else {
343 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
345 env->banked_r13[bn] = env->regs[13];
346 env->banked_spsr[bn] = env->spsr;
347 env->banked_r14[r14_bank_number(mode)] = env->regs[14];
349 /* Now we can safely copy stuff down to the kernel */
350 for (i = 0; i < ARRAY_SIZE(regs); i++) {
351 r.id = regs[i].id;
352 r.addr = (uintptr_t)(env) + regs[i].offset;
353 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
354 if (ret) {
355 return ret;
359 /* Special cases which aren't a single CPUARMState field */
360 cpsr = cpsr_read(env);
361 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
362 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
363 r.addr = (uintptr_t)(&cpsr);
364 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
365 if (ret) {
366 return ret;
369 /* VFP registers */
370 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
371 for (i = 0; i < 32; i++) {
372 r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
373 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
374 if (ret) {
375 return ret;
377 r.id++;
380 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
381 KVM_REG_ARM_VFP_FPSCR;
382 fpscr = vfp_get_fpscr(env);
383 r.addr = (uintptr_t)&fpscr;
384 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
385 if (ret) {
386 return ret;
389 ret = kvm_put_vcpu_events(cpu);
390 if (ret) {
391 return ret;
394 write_cpustate_to_list(cpu, true);
396 if (!write_list_to_kvmstate(cpu, level)) {
397 return EINVAL;
400 kvm_arm_sync_mpstate_to_kvm(cpu);
402 return ret;
405 int kvm_arch_get_registers(CPUState *cs)
407 ARMCPU *cpu = ARM_CPU(cs);
408 CPUARMState *env = &cpu->env;
409 struct kvm_one_reg r;
410 int mode, bn;
411 int ret, i;
412 uint32_t cpsr, fpscr;
414 for (i = 0; i < ARRAY_SIZE(regs); i++) {
415 r.id = regs[i].id;
416 r.addr = (uintptr_t)(env) + regs[i].offset;
417 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
418 if (ret) {
419 return ret;
423 /* Special cases which aren't a single CPUARMState field */
424 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
425 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
426 r.addr = (uintptr_t)(&cpsr);
427 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
428 if (ret) {
429 return ret;
431 cpsr_write(env, cpsr, 0xffffffff, CPSRWriteRaw);
433 /* Make sure the current mode regs are properly set */
434 mode = env->uncached_cpsr & CPSR_M;
435 bn = bank_number(mode);
436 if (mode == ARM_CPU_MODE_FIQ) {
437 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
438 } else {
439 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
441 env->regs[13] = env->banked_r13[bn];
442 env->spsr = env->banked_spsr[bn];
443 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
445 /* VFP registers */
446 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
447 for (i = 0; i < 32; i++) {
448 r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
449 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
450 if (ret) {
451 return ret;
453 r.id++;
456 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
457 KVM_REG_ARM_VFP_FPSCR;
458 r.addr = (uintptr_t)&fpscr;
459 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
460 if (ret) {
461 return ret;
463 vfp_set_fpscr(env, fpscr);
465 ret = kvm_get_vcpu_events(cpu);
466 if (ret) {
467 return ret;
470 if (!write_kvmstate_to_list(cpu)) {
471 return EINVAL;
473 /* Note that it's OK to have registers which aren't in CPUState,
474 * so we can ignore a failure return here.
476 write_list_to_cpustate(cpu);
478 kvm_arm_sync_mpstate_to_qemu(cpu);
480 return 0;
483 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
485 qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
486 return -EINVAL;
489 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
491 qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
492 return -EINVAL;
495 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
497 qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
498 return false;
501 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
502 target_ulong len, int type)
504 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
505 return -EINVAL;
508 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
509 target_ulong len, int type)
511 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
512 return -EINVAL;
515 void kvm_arch_remove_all_hw_breakpoints(void)
517 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
520 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
522 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
525 bool kvm_arm_hw_debug_active(CPUState *cs)
527 return false;
530 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
532 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
535 void kvm_arm_pmu_init(CPUState *cs)
537 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);