ppc/pnv: Introduce PnvChipClass::xscom_core_base() method
[qemu/ar7.git] / block / block-copy.c
blob79798a1567b10d8b59b6bb045ca499026e00a018
1 /*
2 * block_copy API
4 * Copyright (C) 2013 Proxmox Server Solutions
5 * Copyright (c) 2019 Virtuozzo International GmbH.
7 * Authors:
8 * Dietmar Maurer (dietmar@proxmox.com)
9 * Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
17 #include "trace.h"
18 #include "qapi/error.h"
19 #include "block/block-copy.h"
20 #include "sysemu/block-backend.h"
21 #include "qemu/units.h"
23 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
24 #define BLOCK_COPY_MAX_BUFFER (1 * MiB)
25 #define BLOCK_COPY_MAX_MEM (128 * MiB)
27 static void coroutine_fn block_copy_wait_inflight_reqs(BlockCopyState *s,
28 int64_t start,
29 int64_t end)
31 BlockCopyInFlightReq *req;
32 bool waited;
34 do {
35 waited = false;
36 QLIST_FOREACH(req, &s->inflight_reqs, list) {
37 if (end > req->start_byte && start < req->end_byte) {
38 qemu_co_queue_wait(&req->wait_queue, NULL);
39 waited = true;
40 break;
43 } while (waited);
46 static void block_copy_inflight_req_begin(BlockCopyState *s,
47 BlockCopyInFlightReq *req,
48 int64_t start, int64_t end)
50 req->start_byte = start;
51 req->end_byte = end;
52 qemu_co_queue_init(&req->wait_queue);
53 QLIST_INSERT_HEAD(&s->inflight_reqs, req, list);
56 static void coroutine_fn block_copy_inflight_req_end(BlockCopyInFlightReq *req)
58 QLIST_REMOVE(req, list);
59 qemu_co_queue_restart_all(&req->wait_queue);
62 void block_copy_state_free(BlockCopyState *s)
64 if (!s) {
65 return;
68 bdrv_release_dirty_bitmap(s->copy_bitmap);
69 shres_destroy(s->mem);
70 g_free(s);
73 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
74 int64_t cluster_size,
75 BdrvRequestFlags write_flags, Error **errp)
77 BlockCopyState *s;
78 BdrvDirtyBitmap *copy_bitmap;
79 uint32_t max_transfer =
80 MIN_NON_ZERO(INT_MAX,
81 MIN_NON_ZERO(source->bs->bl.max_transfer,
82 target->bs->bl.max_transfer));
84 copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL,
85 errp);
86 if (!copy_bitmap) {
87 return NULL;
89 bdrv_disable_dirty_bitmap(copy_bitmap);
91 s = g_new(BlockCopyState, 1);
92 *s = (BlockCopyState) {
93 .source = source,
94 .target = target,
95 .copy_bitmap = copy_bitmap,
96 .cluster_size = cluster_size,
97 .len = bdrv_dirty_bitmap_size(copy_bitmap),
98 .write_flags = write_flags,
99 .mem = shres_create(BLOCK_COPY_MAX_MEM),
102 if (max_transfer < cluster_size) {
104 * copy_range does not respect max_transfer. We don't want to bother
105 * with requests smaller than block-copy cluster size, so fallback to
106 * buffered copying (read and write respect max_transfer on their
107 * behalf).
109 s->use_copy_range = false;
110 s->copy_size = cluster_size;
111 } else if (write_flags & BDRV_REQ_WRITE_COMPRESSED) {
112 /* Compression supports only cluster-size writes and no copy-range. */
113 s->use_copy_range = false;
114 s->copy_size = cluster_size;
115 } else {
117 * copy_range does not respect max_transfer (it's a TODO), so we factor
118 * that in here.
120 s->use_copy_range = true;
121 s->copy_size = MIN(MAX(cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
122 QEMU_ALIGN_DOWN(max_transfer, cluster_size));
125 QLIST_INIT(&s->inflight_reqs);
127 return s;
130 void block_copy_set_callbacks(
131 BlockCopyState *s,
132 ProgressBytesCallbackFunc progress_bytes_callback,
133 ProgressResetCallbackFunc progress_reset_callback,
134 void *progress_opaque)
136 s->progress_bytes_callback = progress_bytes_callback;
137 s->progress_reset_callback = progress_reset_callback;
138 s->progress_opaque = progress_opaque;
142 * block_copy_do_copy
144 * Do copy of cluser-aligned chunk. @end is allowed to exceed s->len only to
145 * cover last cluster when s->len is not aligned to clusters.
147 * No sync here: nor bitmap neighter intersecting requests handling, only copy.
149 * Returns 0 on success.
151 static int coroutine_fn block_copy_do_copy(BlockCopyState *s,
152 int64_t start, int64_t end,
153 bool *error_is_read)
155 int ret;
156 int nbytes = MIN(end, s->len) - start;
157 void *bounce_buffer = NULL;
159 assert(QEMU_IS_ALIGNED(start, s->cluster_size));
160 assert(QEMU_IS_ALIGNED(end, s->cluster_size));
161 assert(end < s->len || end == QEMU_ALIGN_UP(s->len, s->cluster_size));
163 if (s->use_copy_range) {
164 ret = bdrv_co_copy_range(s->source, start, s->target, start, nbytes,
165 0, s->write_flags);
166 if (ret < 0) {
167 trace_block_copy_copy_range_fail(s, start, ret);
168 s->use_copy_range = false;
169 s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
170 /* Fallback to read+write with allocated buffer */
171 } else {
172 goto out;
177 * In case of failed copy_range request above, we may proceed with buffered
178 * request larger than BLOCK_COPY_MAX_BUFFER. Still, further requests will
179 * be properly limited, so don't care too much.
182 bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
184 ret = bdrv_co_pread(s->source, start, nbytes, bounce_buffer, 0);
185 if (ret < 0) {
186 trace_block_copy_read_fail(s, start, ret);
187 if (error_is_read) {
188 *error_is_read = true;
190 goto out;
193 ret = bdrv_co_pwrite(s->target, start, nbytes, bounce_buffer,
194 s->write_flags);
195 if (ret < 0) {
196 trace_block_copy_write_fail(s, start, ret);
197 if (error_is_read) {
198 *error_is_read = false;
200 goto out;
203 out:
204 qemu_vfree(bounce_buffer);
206 return ret;
210 * Check if the cluster starting at offset is allocated or not.
211 * return via pnum the number of contiguous clusters sharing this allocation.
213 static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
214 int64_t *pnum)
216 BlockDriverState *bs = s->source->bs;
217 int64_t count, total_count = 0;
218 int64_t bytes = s->len - offset;
219 int ret;
221 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
223 while (true) {
224 ret = bdrv_is_allocated(bs, offset, bytes, &count);
225 if (ret < 0) {
226 return ret;
229 total_count += count;
231 if (ret || count == 0) {
233 * ret: partial segment(s) are considered allocated.
234 * otherwise: unallocated tail is treated as an entire segment.
236 *pnum = DIV_ROUND_UP(total_count, s->cluster_size);
237 return ret;
240 /* Unallocated segment(s) with uncertain following segment(s) */
241 if (total_count >= s->cluster_size) {
242 *pnum = total_count / s->cluster_size;
243 return 0;
246 offset += count;
247 bytes -= count;
252 * Reset bits in copy_bitmap starting at offset if they represent unallocated
253 * data in the image. May reset subsequent contiguous bits.
254 * @return 0 when the cluster at @offset was unallocated,
255 * 1 otherwise, and -ret on error.
257 int64_t block_copy_reset_unallocated(BlockCopyState *s,
258 int64_t offset, int64_t *count)
260 int ret;
261 int64_t clusters, bytes;
263 ret = block_copy_is_cluster_allocated(s, offset, &clusters);
264 if (ret < 0) {
265 return ret;
268 bytes = clusters * s->cluster_size;
270 if (!ret) {
271 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
272 s->progress_reset_callback(s->progress_opaque);
275 *count = bytes;
276 return ret;
279 int coroutine_fn block_copy(BlockCopyState *s,
280 int64_t start, uint64_t bytes,
281 bool *error_is_read)
283 int ret = 0;
284 int64_t end = bytes + start; /* bytes */
285 int64_t status_bytes;
286 BlockCopyInFlightReq req;
289 * block_copy() user is responsible for keeping source and target in same
290 * aio context
292 assert(bdrv_get_aio_context(s->source->bs) ==
293 bdrv_get_aio_context(s->target->bs));
295 assert(QEMU_IS_ALIGNED(start, s->cluster_size));
296 assert(QEMU_IS_ALIGNED(end, s->cluster_size));
298 block_copy_wait_inflight_reqs(s, start, bytes);
299 block_copy_inflight_req_begin(s, &req, start, end);
301 while (start < end) {
302 int64_t next_zero, chunk_end;
304 if (!bdrv_dirty_bitmap_get(s->copy_bitmap, start)) {
305 trace_block_copy_skip(s, start);
306 start += s->cluster_size;
307 continue; /* already copied */
310 chunk_end = MIN(end, start + s->copy_size);
312 next_zero = bdrv_dirty_bitmap_next_zero(s->copy_bitmap, start,
313 chunk_end - start);
314 if (next_zero >= 0) {
315 assert(next_zero > start); /* start is dirty */
316 assert(next_zero < chunk_end); /* no need to do MIN() */
317 chunk_end = next_zero;
320 if (s->skip_unallocated) {
321 ret = block_copy_reset_unallocated(s, start, &status_bytes);
322 if (ret == 0) {
323 trace_block_copy_skip_range(s, start, status_bytes);
324 start += status_bytes;
325 continue;
327 /* Clamp to known allocated region */
328 chunk_end = MIN(chunk_end, start + status_bytes);
331 trace_block_copy_process(s, start);
333 bdrv_reset_dirty_bitmap(s->copy_bitmap, start, chunk_end - start);
335 co_get_from_shres(s->mem, chunk_end - start);
336 ret = block_copy_do_copy(s, start, chunk_end, error_is_read);
337 co_put_to_shres(s->mem, chunk_end - start);
338 if (ret < 0) {
339 bdrv_set_dirty_bitmap(s->copy_bitmap, start, chunk_end - start);
340 break;
343 s->progress_bytes_callback(chunk_end - start, s->progress_opaque);
344 start = chunk_end;
345 ret = 0;
348 block_copy_inflight_req_end(&req);
350 return ret;