util: introduce qemu_open and qemu_create with error reporting
[qemu/ar7.git] / hw / intc / arm_gic.c
blobc60dc6b5e6e519e61b20dda66c7b50660b2a7773
1 /*
2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
21 #include "qemu/osdep.h"
22 #include "hw/irq.h"
23 #include "hw/sysbus.h"
24 #include "gic_internal.h"
25 #include "qapi/error.h"
26 #include "hw/core/cpu.h"
27 #include "qemu/log.h"
28 #include "qemu/module.h"
29 #include "trace.h"
30 #include "sysemu/kvm.h"
32 /* #define DEBUG_GIC */
34 #ifdef DEBUG_GIC
35 #define DEBUG_GIC_GATE 1
36 #else
37 #define DEBUG_GIC_GATE 0
38 #endif
40 #define DPRINTF(fmt, ...) do { \
41 if (DEBUG_GIC_GATE) { \
42 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
43 } \
44 } while (0)
46 static const uint8_t gic_id_11mpcore[] = {
47 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
50 static const uint8_t gic_id_gicv1[] = {
51 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
54 static const uint8_t gic_id_gicv2[] = {
55 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
58 static inline int gic_get_current_cpu(GICState *s)
60 if (s->num_cpu > 1) {
61 return current_cpu->cpu_index;
63 return 0;
66 static inline int gic_get_current_vcpu(GICState *s)
68 return gic_get_current_cpu(s) + GIC_NCPU;
71 /* Return true if this GIC config has interrupt groups, which is
72 * true if we're a GICv2, or a GICv1 with the security extensions.
74 static inline bool gic_has_groups(GICState *s)
76 return s->revision == 2 || s->security_extn;
79 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
81 return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
84 static inline void gic_get_best_irq(GICState *s, int cpu,
85 int *best_irq, int *best_prio, int *group)
87 int irq;
88 int cm = 1 << cpu;
90 *best_irq = 1023;
91 *best_prio = 0x100;
93 for (irq = 0; irq < s->num_irq; irq++) {
94 if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
95 (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
96 (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
97 if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
98 *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
99 *best_irq = irq;
104 if (*best_irq < 1023) {
105 *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
109 static inline void gic_get_best_virq(GICState *s, int cpu,
110 int *best_irq, int *best_prio, int *group)
112 int lr_idx = 0;
114 *best_irq = 1023;
115 *best_prio = 0x100;
117 for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
118 uint32_t lr_entry = s->h_lr[lr_idx][cpu];
119 int state = GICH_LR_STATE(lr_entry);
121 if (state == GICH_LR_STATE_PENDING) {
122 int prio = GICH_LR_PRIORITY(lr_entry);
124 if (prio < *best_prio) {
125 *best_prio = prio;
126 *best_irq = GICH_LR_VIRT_ID(lr_entry);
127 *group = GICH_LR_GROUP(lr_entry);
133 /* Return true if IRQ signaling is enabled for the given cpu and at least one
134 * of the given groups:
135 * - in the non-virt case, the distributor must be enabled for one of the
136 * given groups
137 * - in the virt case, the virtual interface must be enabled.
138 * - in all cases, the (v)CPU interface must be enabled for one of the given
139 * groups.
141 static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
142 int group_mask)
144 if (!virt && !(s->ctlr & group_mask)) {
145 return false;
148 if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
149 return false;
152 if (!(s->cpu_ctlr[cpu] & group_mask)) {
153 return false;
156 return true;
159 /* TODO: Many places that call this routine could be optimized. */
160 /* Update interrupt status after enabled or pending bits have been changed. */
161 static inline void gic_update_internal(GICState *s, bool virt)
163 int best_irq;
164 int best_prio;
165 int irq_level, fiq_level;
166 int cpu, cpu_iface;
167 int group = 0;
168 qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
169 qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
171 for (cpu = 0; cpu < s->num_cpu; cpu++) {
172 cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
174 s->current_pending[cpu_iface] = 1023;
175 if (!gic_irq_signaling_enabled(s, cpu, virt,
176 GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
177 qemu_irq_lower(irq_lines[cpu]);
178 qemu_irq_lower(fiq_lines[cpu]);
179 continue;
182 if (virt) {
183 gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
184 } else {
185 gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
188 if (best_irq != 1023) {
189 trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
190 best_irq, best_prio,
191 s->priority_mask[cpu_iface],
192 s->running_priority[cpu_iface]);
195 irq_level = fiq_level = 0;
197 if (best_prio < s->priority_mask[cpu_iface]) {
198 s->current_pending[cpu_iface] = best_irq;
199 if (best_prio < s->running_priority[cpu_iface]) {
200 if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
201 if (group == 0 &&
202 s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
203 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
204 best_irq, cpu_iface);
205 fiq_level = 1;
206 trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
207 fiq_level);
208 } else {
209 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
210 best_irq, cpu_iface);
211 irq_level = 1;
212 trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
213 irq_level);
219 qemu_set_irq(irq_lines[cpu], irq_level);
220 qemu_set_irq(fiq_lines[cpu], fiq_level);
224 static void gic_update(GICState *s)
226 gic_update_internal(s, false);
229 /* Return true if this LR is empty, i.e. the corresponding bit
230 * in ELRSR is set.
232 static inline bool gic_lr_entry_is_free(uint32_t entry)
234 return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
235 && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
238 /* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
239 * corrsponding bit in EISR is set.
241 static inline bool gic_lr_entry_is_eoi(uint32_t entry)
243 return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
244 && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
247 static inline void gic_extract_lr_info(GICState *s, int cpu,
248 int *num_eoi, int *num_valid, int *num_pending)
250 int lr_idx;
252 *num_eoi = 0;
253 *num_valid = 0;
254 *num_pending = 0;
256 for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
257 uint32_t *entry = &s->h_lr[lr_idx][cpu];
259 if (gic_lr_entry_is_eoi(*entry)) {
260 (*num_eoi)++;
263 if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
264 (*num_valid)++;
267 if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
268 (*num_pending)++;
273 static void gic_compute_misr(GICState *s, int cpu)
275 uint32_t value = 0;
276 int vcpu = cpu + GIC_NCPU;
278 int num_eoi, num_valid, num_pending;
280 gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
282 /* EOI */
283 if (num_eoi) {
284 value |= R_GICH_MISR_EOI_MASK;
287 /* U: true if only 0 or 1 LR entry is valid */
288 if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
289 value |= R_GICH_MISR_U_MASK;
292 /* LRENP: EOICount is not 0 */
293 if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
294 ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
295 value |= R_GICH_MISR_LRENP_MASK;
298 /* NP: no pending interrupts */
299 if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
300 value |= R_GICH_MISR_NP_MASK;
303 /* VGrp0E: group0 virq signaling enabled */
304 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
305 (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
306 value |= R_GICH_MISR_VGrp0E_MASK;
309 /* VGrp0D: group0 virq signaling disabled */
310 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
311 !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
312 value |= R_GICH_MISR_VGrp0D_MASK;
315 /* VGrp1E: group1 virq signaling enabled */
316 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
317 (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
318 value |= R_GICH_MISR_VGrp1E_MASK;
321 /* VGrp1D: group1 virq signaling disabled */
322 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
323 !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
324 value |= R_GICH_MISR_VGrp1D_MASK;
327 s->h_misr[cpu] = value;
330 static void gic_update_maintenance(GICState *s)
332 int cpu = 0;
333 int maint_level;
335 for (cpu = 0; cpu < s->num_cpu; cpu++) {
336 gic_compute_misr(s, cpu);
337 maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
339 trace_gic_update_maintenance_irq(cpu, maint_level);
340 qemu_set_irq(s->maintenance_irq[cpu], maint_level);
344 static void gic_update_virt(GICState *s)
346 gic_update_internal(s, true);
347 gic_update_maintenance(s);
350 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
351 int cm, int target)
353 if (level) {
354 GIC_DIST_SET_LEVEL(irq, cm);
355 if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
356 DPRINTF("Set %d pending mask %x\n", irq, target);
357 GIC_DIST_SET_PENDING(irq, target);
359 } else {
360 GIC_DIST_CLEAR_LEVEL(irq, cm);
364 static void gic_set_irq_generic(GICState *s, int irq, int level,
365 int cm, int target)
367 if (level) {
368 GIC_DIST_SET_LEVEL(irq, cm);
369 DPRINTF("Set %d pending mask %x\n", irq, target);
370 if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
371 GIC_DIST_SET_PENDING(irq, target);
373 } else {
374 GIC_DIST_CLEAR_LEVEL(irq, cm);
378 /* Process a change in an external IRQ input. */
379 static void gic_set_irq(void *opaque, int irq, int level)
381 /* Meaning of the 'irq' parameter:
382 * [0..N-1] : external interrupts
383 * [N..N+31] : PPI (internal) interrupts for CPU 0
384 * [N+32..N+63] : PPI (internal interrupts for CPU 1
385 * ...
387 GICState *s = (GICState *)opaque;
388 int cm, target;
389 if (irq < (s->num_irq - GIC_INTERNAL)) {
390 /* The first external input line is internal interrupt 32. */
391 cm = ALL_CPU_MASK;
392 irq += GIC_INTERNAL;
393 target = GIC_DIST_TARGET(irq);
394 } else {
395 int cpu;
396 irq -= (s->num_irq - GIC_INTERNAL);
397 cpu = irq / GIC_INTERNAL;
398 irq %= GIC_INTERNAL;
399 cm = 1 << cpu;
400 target = cm;
403 assert(irq >= GIC_NR_SGIS);
405 if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
406 return;
409 if (s->revision == REV_11MPCORE) {
410 gic_set_irq_11mpcore(s, irq, level, cm, target);
411 } else {
412 gic_set_irq_generic(s, irq, level, cm, target);
414 trace_gic_set_irq(irq, level, cm, target);
416 gic_update(s);
419 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
420 MemTxAttrs attrs)
422 uint16_t pending_irq = s->current_pending[cpu];
424 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
425 int group = gic_test_group(s, pending_irq, cpu);
427 /* On a GIC without the security extensions, reading this register
428 * behaves in the same way as a secure access to a GIC with them.
430 bool secure = !gic_cpu_ns_access(s, cpu, attrs);
432 if (group == 0 && !secure) {
433 /* Group0 interrupts hidden from Non-secure access */
434 return 1023;
436 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
437 /* Group1 interrupts only seen by Secure access if
438 * AckCtl bit set.
440 return 1022;
443 return pending_irq;
446 static int gic_get_group_priority(GICState *s, int cpu, int irq)
448 /* Return the group priority of the specified interrupt
449 * (which is the top bits of its priority, with the number
450 * of bits masked determined by the applicable binary point register).
452 int bpr;
453 uint32_t mask;
455 if (gic_has_groups(s) &&
456 !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
457 gic_test_group(s, irq, cpu)) {
458 bpr = s->abpr[cpu] - 1;
459 assert(bpr >= 0);
460 } else {
461 bpr = s->bpr[cpu];
464 /* a BPR of 0 means the group priority bits are [7:1];
465 * a BPR of 1 means they are [7:2], and so on down to
466 * a BPR of 7 meaning no group priority bits at all.
468 mask = ~0U << ((bpr & 7) + 1);
470 return gic_get_priority(s, irq, cpu) & mask;
473 static void gic_activate_irq(GICState *s, int cpu, int irq)
475 /* Set the appropriate Active Priority Register bit for this IRQ,
476 * and update the running priority.
478 int prio = gic_get_group_priority(s, cpu, irq);
479 int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
480 int preemption_level = prio >> (min_bpr + 1);
481 int regno = preemption_level / 32;
482 int bitno = preemption_level % 32;
483 uint32_t *papr = NULL;
485 if (gic_is_vcpu(cpu)) {
486 assert(regno == 0);
487 papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
488 } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
489 papr = &s->nsapr[regno][cpu];
490 } else {
491 papr = &s->apr[regno][cpu];
494 *papr |= (1 << bitno);
496 s->running_priority[cpu] = prio;
497 gic_set_active(s, irq, cpu);
500 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
502 /* Recalculate the current running priority for this CPU based
503 * on the set bits in the Active Priority Registers.
505 int i;
507 if (gic_is_vcpu(cpu)) {
508 uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
509 if (apr) {
510 return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
511 } else {
512 return 0x100;
516 for (i = 0; i < GIC_NR_APRS; i++) {
517 uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
518 if (!apr) {
519 continue;
521 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
523 return 0x100;
526 static void gic_drop_prio(GICState *s, int cpu, int group)
528 /* Drop the priority of the currently active interrupt in the
529 * specified group.
531 * Note that we can guarantee (because of the requirement to nest
532 * GICC_IAR reads [which activate an interrupt and raise priority]
533 * with GICC_EOIR writes [which drop the priority for the interrupt])
534 * that the interrupt we're being called for is the highest priority
535 * active interrupt, meaning that it has the lowest set bit in the
536 * APR registers.
538 * If the guest does not honour the ordering constraints then the
539 * behaviour of the GIC is UNPREDICTABLE, which for us means that
540 * the values of the APR registers might become incorrect and the
541 * running priority will be wrong, so interrupts that should preempt
542 * might not do so, and interrupts that should not preempt might do so.
544 if (gic_is_vcpu(cpu)) {
545 int rcpu = gic_get_vcpu_real_id(cpu);
547 if (s->h_apr[rcpu]) {
548 /* Clear lowest set bit */
549 s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
551 } else {
552 int i;
554 for (i = 0; i < GIC_NR_APRS; i++) {
555 uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
556 if (!*papr) {
557 continue;
559 /* Clear lowest set bit */
560 *papr &= *papr - 1;
561 break;
565 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
568 static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
570 int src;
571 uint32_t ret;
573 if (!gic_is_vcpu(cpu)) {
574 /* Lookup the source CPU for the SGI and clear this in the
575 * sgi_pending map. Return the src and clear the overall pending
576 * state on this CPU if the SGI is not pending from any CPUs.
578 assert(s->sgi_pending[irq][cpu] != 0);
579 src = ctz32(s->sgi_pending[irq][cpu]);
580 s->sgi_pending[irq][cpu] &= ~(1 << src);
581 if (s->sgi_pending[irq][cpu] == 0) {
582 gic_clear_pending(s, irq, cpu);
584 ret = irq | ((src & 0x7) << 10);
585 } else {
586 uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
587 src = GICH_LR_CPUID(*lr_entry);
589 gic_clear_pending(s, irq, cpu);
590 ret = irq | (src << 10);
593 return ret;
596 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
598 int ret, irq;
600 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
601 * for the case where this GIC supports grouping and the pending interrupt
602 * is in the wrong group.
604 irq = gic_get_current_pending_irq(s, cpu, attrs);
605 trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
606 gic_get_vcpu_real_id(cpu), irq);
608 if (irq >= GIC_MAXIRQ) {
609 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
610 return irq;
613 if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
614 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
615 return 1023;
618 gic_activate_irq(s, cpu, irq);
620 if (s->revision == REV_11MPCORE) {
621 /* Clear pending flags for both level and edge triggered interrupts.
622 * Level triggered IRQs will be reasserted once they become inactive.
624 gic_clear_pending(s, irq, cpu);
625 ret = irq;
626 } else {
627 if (irq < GIC_NR_SGIS) {
628 ret = gic_clear_pending_sgi(s, irq, cpu);
629 } else {
630 gic_clear_pending(s, irq, cpu);
631 ret = irq;
635 if (gic_is_vcpu(cpu)) {
636 gic_update_virt(s);
637 } else {
638 gic_update(s);
640 DPRINTF("ACK %d\n", irq);
641 return ret;
644 static uint32_t gic_fullprio_mask(GICState *s, int cpu)
647 * Return a mask word which clears the unimplemented priority
648 * bits from a priority value for an interrupt. (Not to be
649 * confused with the group priority, whose mask depends on BPR.)
651 int priBits;
653 if (gic_is_vcpu(cpu)) {
654 priBits = GIC_VIRT_MAX_GROUP_PRIO_BITS;
655 } else {
656 priBits = s->n_prio_bits;
658 return ~0U << (8 - priBits);
661 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
662 MemTxAttrs attrs)
664 if (s->security_extn && !attrs.secure) {
665 if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
666 return; /* Ignore Non-secure access of Group0 IRQ */
668 val = 0x80 | (val >> 1); /* Non-secure view */
671 val &= gic_fullprio_mask(s, cpu);
673 if (irq < GIC_INTERNAL) {
674 s->priority1[irq][cpu] = val;
675 } else {
676 s->priority2[(irq) - GIC_INTERNAL] = val;
680 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
681 MemTxAttrs attrs)
683 uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
685 if (s->security_extn && !attrs.secure) {
686 if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
687 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
689 prio = (prio << 1) & 0xff; /* Non-secure view */
691 return prio & gic_fullprio_mask(s, cpu);
694 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
695 MemTxAttrs attrs)
697 if (gic_cpu_ns_access(s, cpu, attrs)) {
698 if (s->priority_mask[cpu] & 0x80) {
699 /* Priority Mask in upper half */
700 pmask = 0x80 | (pmask >> 1);
701 } else {
702 /* Non-secure write ignored if priority mask is in lower half */
703 return;
706 s->priority_mask[cpu] = pmask & gic_fullprio_mask(s, cpu);
709 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
711 uint32_t pmask = s->priority_mask[cpu];
713 if (gic_cpu_ns_access(s, cpu, attrs)) {
714 if (pmask & 0x80) {
715 /* Priority Mask in upper half, return Non-secure view */
716 pmask = (pmask << 1) & 0xff;
717 } else {
718 /* Priority Mask in lower half, RAZ */
719 pmask = 0;
722 return pmask;
725 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
727 uint32_t ret = s->cpu_ctlr[cpu];
729 if (gic_cpu_ns_access(s, cpu, attrs)) {
730 /* Construct the NS banked view of GICC_CTLR from the correct
731 * bits of the S banked view. We don't need to move the bypass
732 * control bits because we don't implement that (IMPDEF) part
733 * of the GIC architecture.
735 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
737 return ret;
740 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
741 MemTxAttrs attrs)
743 uint32_t mask;
745 if (gic_cpu_ns_access(s, cpu, attrs)) {
746 /* The NS view can only write certain bits in the register;
747 * the rest are unchanged
749 mask = GICC_CTLR_EN_GRP1;
750 if (s->revision == 2) {
751 mask |= GICC_CTLR_EOIMODE_NS;
753 s->cpu_ctlr[cpu] &= ~mask;
754 s->cpu_ctlr[cpu] |= (value << 1) & mask;
755 } else {
756 if (s->revision == 2) {
757 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
758 } else {
759 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
761 s->cpu_ctlr[cpu] = value & mask;
763 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
764 "Group1 Interrupts %sabled\n", cpu,
765 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
766 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
769 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
771 if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
772 /* Idle priority */
773 return 0xff;
776 if (gic_cpu_ns_access(s, cpu, attrs)) {
777 if (s->running_priority[cpu] & 0x80) {
778 /* Running priority in upper half of range: return the Non-secure
779 * view of the priority.
781 return s->running_priority[cpu] << 1;
782 } else {
783 /* Running priority in lower half of range: RAZ */
784 return 0;
786 } else {
787 return s->running_priority[cpu];
791 /* Return true if we should split priority drop and interrupt deactivation,
792 * ie whether the relevant EOIMode bit is set.
794 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
796 if (s->revision != 2) {
797 /* Before GICv2 prio-drop and deactivate are not separable */
798 return false;
800 if (gic_cpu_ns_access(s, cpu, attrs)) {
801 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
803 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
806 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
808 int group;
810 if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
812 * This handles two cases:
813 * 1. If software writes the ID of a spurious interrupt [ie 1023]
814 * to the GICC_DIR, the GIC ignores that write.
815 * 2. If software writes the number of a non-existent interrupt
816 * this must be a subcase of "value written is not an active interrupt"
817 * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
818 * all IRQs potentially exist, so this limit does not apply.
820 return;
823 if (!gic_eoi_split(s, cpu, attrs)) {
824 /* This is UNPREDICTABLE; we choose to ignore it */
825 qemu_log_mask(LOG_GUEST_ERROR,
826 "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
827 return;
830 if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
831 /* This vIRQ does not have an LR entry which is either active or
832 * pending and active. Increment EOICount and ignore the write.
834 int rcpu = gic_get_vcpu_real_id(cpu);
835 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
837 /* Update the virtual interface in case a maintenance interrupt should
838 * be raised.
840 gic_update_virt(s);
841 return;
844 group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
846 if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
847 DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
848 return;
851 gic_clear_active(s, irq, cpu);
854 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
856 int cm = 1 << cpu;
857 int group;
859 DPRINTF("EOI %d\n", irq);
860 if (gic_is_vcpu(cpu)) {
861 /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
862 * running prio is < 0x100.
864 bool prio_drop = s->running_priority[cpu] < 0x100;
866 if (irq >= GIC_MAXIRQ) {
867 /* Ignore spurious interrupt */
868 return;
871 gic_drop_prio(s, cpu, 0);
873 if (!gic_eoi_split(s, cpu, attrs)) {
874 bool valid = gic_virq_is_valid(s, irq, cpu);
875 if (prio_drop && !valid) {
876 /* We are in a situation where:
877 * - V_CTRL.EOIMode is false (no EOI split),
878 * - The call to gic_drop_prio() cleared a bit in GICH_APR,
879 * - This vIRQ does not have an LR entry which is either
880 * active or pending and active.
881 * In that case, we must increment EOICount.
883 int rcpu = gic_get_vcpu_real_id(cpu);
884 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
885 } else if (valid) {
886 gic_clear_active(s, irq, cpu);
890 gic_update_virt(s);
891 return;
894 if (irq >= s->num_irq) {
895 /* This handles two cases:
896 * 1. If software writes the ID of a spurious interrupt [ie 1023]
897 * to the GICC_EOIR, the GIC ignores that write.
898 * 2. If software writes the number of a non-existent interrupt
899 * this must be a subcase of "value written does not match the last
900 * valid interrupt value read from the Interrupt Acknowledge
901 * register" and so this is UNPREDICTABLE. We choose to ignore it.
903 return;
905 if (s->running_priority[cpu] == 0x100) {
906 return; /* No active IRQ. */
909 if (s->revision == REV_11MPCORE) {
910 /* Mark level triggered interrupts as pending if they are still
911 raised. */
912 if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
913 && GIC_DIST_TEST_LEVEL(irq, cm)
914 && (GIC_DIST_TARGET(irq) & cm) != 0) {
915 DPRINTF("Set %d pending mask %x\n", irq, cm);
916 GIC_DIST_SET_PENDING(irq, cm);
920 group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
922 if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
923 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
924 return;
927 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
928 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
929 * i.e. go ahead and complete the irq anyway.
932 gic_drop_prio(s, cpu, group);
934 /* In GICv2 the guest can choose to split priority-drop and deactivate */
935 if (!gic_eoi_split(s, cpu, attrs)) {
936 gic_clear_active(s, irq, cpu);
938 gic_update(s);
941 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
943 GICState *s = (GICState *)opaque;
944 uint32_t res;
945 int irq;
946 int i;
947 int cpu;
948 int cm;
949 int mask;
951 cpu = gic_get_current_cpu(s);
952 cm = 1 << cpu;
953 if (offset < 0x100) {
954 if (offset == 0) { /* GICD_CTLR */
955 if (s->security_extn && !attrs.secure) {
956 /* The NS bank of this register is just an alias of the
957 * EnableGrp1 bit in the S bank version.
959 return extract32(s->ctlr, 1, 1);
960 } else {
961 return s->ctlr;
964 if (offset == 4)
965 /* Interrupt Controller Type Register */
966 return ((s->num_irq / 32) - 1)
967 | ((s->num_cpu - 1) << 5)
968 | (s->security_extn << 10);
969 if (offset < 0x08)
970 return 0;
971 if (offset >= 0x80) {
972 /* Interrupt Group Registers: these RAZ/WI if this is an NS
973 * access to a GIC with the security extensions, or if the GIC
974 * doesn't have groups at all.
976 res = 0;
977 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
978 /* Every byte offset holds 8 group status bits */
979 irq = (offset - 0x080) * 8;
980 if (irq >= s->num_irq) {
981 goto bad_reg;
983 for (i = 0; i < 8; i++) {
984 if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
985 res |= (1 << i);
989 return res;
991 goto bad_reg;
992 } else if (offset < 0x200) {
993 /* Interrupt Set/Clear Enable. */
994 if (offset < 0x180)
995 irq = (offset - 0x100) * 8;
996 else
997 irq = (offset - 0x180) * 8;
998 if (irq >= s->num_irq)
999 goto bad_reg;
1000 res = 0;
1001 for (i = 0; i < 8; i++) {
1002 if (s->security_extn && !attrs.secure &&
1003 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1004 continue; /* Ignore Non-secure access of Group0 IRQ */
1007 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1008 res |= (1 << i);
1011 } else if (offset < 0x300) {
1012 /* Interrupt Set/Clear Pending. */
1013 if (offset < 0x280)
1014 irq = (offset - 0x200) * 8;
1015 else
1016 irq = (offset - 0x280) * 8;
1017 if (irq >= s->num_irq)
1018 goto bad_reg;
1019 res = 0;
1020 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
1021 for (i = 0; i < 8; i++) {
1022 if (s->security_extn && !attrs.secure &&
1023 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1024 continue; /* Ignore Non-secure access of Group0 IRQ */
1027 if (gic_test_pending(s, irq + i, mask)) {
1028 res |= (1 << i);
1031 } else if (offset < 0x400) {
1032 /* Interrupt Set/Clear Active. */
1033 if (offset < 0x380) {
1034 irq = (offset - 0x300) * 8;
1035 } else if (s->revision == 2) {
1036 irq = (offset - 0x380) * 8;
1037 } else {
1038 goto bad_reg;
1041 if (irq >= s->num_irq)
1042 goto bad_reg;
1043 res = 0;
1044 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
1045 for (i = 0; i < 8; i++) {
1046 if (s->security_extn && !attrs.secure &&
1047 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1048 continue; /* Ignore Non-secure access of Group0 IRQ */
1051 if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
1052 res |= (1 << i);
1055 } else if (offset < 0x800) {
1056 /* Interrupt Priority. */
1057 irq = (offset - 0x400);
1058 if (irq >= s->num_irq)
1059 goto bad_reg;
1060 res = gic_dist_get_priority(s, cpu, irq, attrs);
1061 } else if (offset < 0xc00) {
1062 /* Interrupt CPU Target. */
1063 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
1064 /* For uniprocessor GICs these RAZ/WI */
1065 res = 0;
1066 } else {
1067 irq = (offset - 0x800);
1068 if (irq >= s->num_irq) {
1069 goto bad_reg;
1071 if (irq < 29 && s->revision == REV_11MPCORE) {
1072 res = 0;
1073 } else if (irq < GIC_INTERNAL) {
1074 res = cm;
1075 } else {
1076 res = GIC_DIST_TARGET(irq);
1079 } else if (offset < 0xf00) {
1080 /* Interrupt Configuration. */
1081 irq = (offset - 0xc00) * 4;
1082 if (irq >= s->num_irq)
1083 goto bad_reg;
1084 res = 0;
1085 for (i = 0; i < 4; i++) {
1086 if (s->security_extn && !attrs.secure &&
1087 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1088 continue; /* Ignore Non-secure access of Group0 IRQ */
1091 if (GIC_DIST_TEST_MODEL(irq + i)) {
1092 res |= (1 << (i * 2));
1094 if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1095 res |= (2 << (i * 2));
1098 } else if (offset < 0xf10) {
1099 goto bad_reg;
1100 } else if (offset < 0xf30) {
1101 if (s->revision == REV_11MPCORE) {
1102 goto bad_reg;
1105 if (offset < 0xf20) {
1106 /* GICD_CPENDSGIRn */
1107 irq = (offset - 0xf10);
1108 } else {
1109 irq = (offset - 0xf20);
1110 /* GICD_SPENDSGIRn */
1113 if (s->security_extn && !attrs.secure &&
1114 !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1115 res = 0; /* Ignore Non-secure access of Group0 IRQ */
1116 } else {
1117 res = s->sgi_pending[irq][cpu];
1119 } else if (offset < 0xfd0) {
1120 goto bad_reg;
1121 } else if (offset < 0x1000) {
1122 if (offset & 3) {
1123 res = 0;
1124 } else {
1125 switch (s->revision) {
1126 case REV_11MPCORE:
1127 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
1128 break;
1129 case 1:
1130 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
1131 break;
1132 case 2:
1133 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
1134 break;
1135 default:
1136 res = 0;
1139 } else {
1140 g_assert_not_reached();
1142 return res;
1143 bad_reg:
1144 qemu_log_mask(LOG_GUEST_ERROR,
1145 "gic_dist_readb: Bad offset %x\n", (int)offset);
1146 return 0;
1149 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
1150 unsigned size, MemTxAttrs attrs)
1152 switch (size) {
1153 case 1:
1154 *data = gic_dist_readb(opaque, offset, attrs);
1155 break;
1156 case 2:
1157 *data = gic_dist_readb(opaque, offset, attrs);
1158 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1159 break;
1160 case 4:
1161 *data = gic_dist_readb(opaque, offset, attrs);
1162 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1163 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
1164 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
1165 break;
1166 default:
1167 return MEMTX_ERROR;
1170 trace_gic_dist_read(offset, size, *data);
1171 return MEMTX_OK;
1174 static void gic_dist_writeb(void *opaque, hwaddr offset,
1175 uint32_t value, MemTxAttrs attrs)
1177 GICState *s = (GICState *)opaque;
1178 int irq;
1179 int i;
1180 int cpu;
1182 cpu = gic_get_current_cpu(s);
1183 if (offset < 0x100) {
1184 if (offset == 0) {
1185 if (s->security_extn && !attrs.secure) {
1186 /* NS version is just an alias of the S version's bit 1 */
1187 s->ctlr = deposit32(s->ctlr, 1, 1, value);
1188 } else if (gic_has_groups(s)) {
1189 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
1190 } else {
1191 s->ctlr = value & GICD_CTLR_EN_GRP0;
1193 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
1194 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
1195 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
1196 } else if (offset < 4) {
1197 /* ignored. */
1198 } else if (offset >= 0x80) {
1199 /* Interrupt Group Registers: RAZ/WI for NS access to secure
1200 * GIC, or for GICs without groups.
1202 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
1203 /* Every byte offset holds 8 group status bits */
1204 irq = (offset - 0x80) * 8;
1205 if (irq >= s->num_irq) {
1206 goto bad_reg;
1208 for (i = 0; i < 8; i++) {
1209 /* Group bits are banked for private interrupts */
1210 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1211 if (value & (1 << i)) {
1212 /* Group1 (Non-secure) */
1213 GIC_DIST_SET_GROUP(irq + i, cm);
1214 } else {
1215 /* Group0 (Secure) */
1216 GIC_DIST_CLEAR_GROUP(irq + i, cm);
1220 } else {
1221 goto bad_reg;
1223 } else if (offset < 0x180) {
1224 /* Interrupt Set Enable. */
1225 irq = (offset - 0x100) * 8;
1226 if (irq >= s->num_irq)
1227 goto bad_reg;
1228 if (irq < GIC_NR_SGIS) {
1229 value = 0xff;
1232 for (i = 0; i < 8; i++) {
1233 if (value & (1 << i)) {
1234 int mask =
1235 (irq < GIC_INTERNAL) ? (1 << cpu)
1236 : GIC_DIST_TARGET(irq + i);
1237 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1239 if (s->security_extn && !attrs.secure &&
1240 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1241 continue; /* Ignore Non-secure access of Group0 IRQ */
1244 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1245 DPRINTF("Enabled IRQ %d\n", irq + i);
1246 trace_gic_enable_irq(irq + i);
1248 GIC_DIST_SET_ENABLED(irq + i, cm);
1249 /* If a raised level triggered IRQ enabled then mark
1250 is as pending. */
1251 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1252 && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1253 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1254 GIC_DIST_SET_PENDING(irq + i, mask);
1258 } else if (offset < 0x200) {
1259 /* Interrupt Clear Enable. */
1260 irq = (offset - 0x180) * 8;
1261 if (irq >= s->num_irq)
1262 goto bad_reg;
1263 if (irq < GIC_NR_SGIS) {
1264 value = 0;
1267 for (i = 0; i < 8; i++) {
1268 if (value & (1 << i)) {
1269 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1271 if (s->security_extn && !attrs.secure &&
1272 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1273 continue; /* Ignore Non-secure access of Group0 IRQ */
1276 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1277 DPRINTF("Disabled IRQ %d\n", irq + i);
1278 trace_gic_disable_irq(irq + i);
1280 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1283 } else if (offset < 0x280) {
1284 /* Interrupt Set Pending. */
1285 irq = (offset - 0x200) * 8;
1286 if (irq >= s->num_irq)
1287 goto bad_reg;
1288 if (irq < GIC_NR_SGIS) {
1289 value = 0;
1292 for (i = 0; i < 8; i++) {
1293 if (value & (1 << i)) {
1294 if (s->security_extn && !attrs.secure &&
1295 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1296 continue; /* Ignore Non-secure access of Group0 IRQ */
1299 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1302 } else if (offset < 0x300) {
1303 /* Interrupt Clear Pending. */
1304 irq = (offset - 0x280) * 8;
1305 if (irq >= s->num_irq)
1306 goto bad_reg;
1307 if (irq < GIC_NR_SGIS) {
1308 value = 0;
1311 for (i = 0; i < 8; i++) {
1312 if (s->security_extn && !attrs.secure &&
1313 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1314 continue; /* Ignore Non-secure access of Group0 IRQ */
1317 /* ??? This currently clears the pending bit for all CPUs, even
1318 for per-CPU interrupts. It's unclear whether this is the
1319 corect behavior. */
1320 if (value & (1 << i)) {
1321 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1324 } else if (offset < 0x380) {
1325 /* Interrupt Set Active. */
1326 if (s->revision != 2) {
1327 goto bad_reg;
1330 irq = (offset - 0x300) * 8;
1331 if (irq >= s->num_irq) {
1332 goto bad_reg;
1335 /* This register is banked per-cpu for PPIs */
1336 int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1338 for (i = 0; i < 8; i++) {
1339 if (s->security_extn && !attrs.secure &&
1340 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1341 continue; /* Ignore Non-secure access of Group0 IRQ */
1344 if (value & (1 << i)) {
1345 GIC_DIST_SET_ACTIVE(irq + i, cm);
1348 } else if (offset < 0x400) {
1349 /* Interrupt Clear Active. */
1350 if (s->revision != 2) {
1351 goto bad_reg;
1354 irq = (offset - 0x380) * 8;
1355 if (irq >= s->num_irq) {
1356 goto bad_reg;
1359 /* This register is banked per-cpu for PPIs */
1360 int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1362 for (i = 0; i < 8; i++) {
1363 if (s->security_extn && !attrs.secure &&
1364 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1365 continue; /* Ignore Non-secure access of Group0 IRQ */
1368 if (value & (1 << i)) {
1369 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1372 } else if (offset < 0x800) {
1373 /* Interrupt Priority. */
1374 irq = (offset - 0x400);
1375 if (irq >= s->num_irq)
1376 goto bad_reg;
1377 gic_dist_set_priority(s, cpu, irq, value, attrs);
1378 } else if (offset < 0xc00) {
1379 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1380 * annoying exception of the 11MPCore's GIC.
1382 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1383 irq = (offset - 0x800);
1384 if (irq >= s->num_irq) {
1385 goto bad_reg;
1387 if (irq < 29 && s->revision == REV_11MPCORE) {
1388 value = 0;
1389 } else if (irq < GIC_INTERNAL) {
1390 value = ALL_CPU_MASK;
1392 s->irq_target[irq] = value & ALL_CPU_MASK;
1394 } else if (offset < 0xf00) {
1395 /* Interrupt Configuration. */
1396 irq = (offset - 0xc00) * 4;
1397 if (irq >= s->num_irq)
1398 goto bad_reg;
1399 if (irq < GIC_NR_SGIS)
1400 value |= 0xaa;
1401 for (i = 0; i < 4; i++) {
1402 if (s->security_extn && !attrs.secure &&
1403 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1404 continue; /* Ignore Non-secure access of Group0 IRQ */
1407 if (s->revision == REV_11MPCORE) {
1408 if (value & (1 << (i * 2))) {
1409 GIC_DIST_SET_MODEL(irq + i);
1410 } else {
1411 GIC_DIST_CLEAR_MODEL(irq + i);
1414 if (value & (2 << (i * 2))) {
1415 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1416 } else {
1417 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1420 } else if (offset < 0xf10) {
1421 /* 0xf00 is only handled for 32-bit writes. */
1422 goto bad_reg;
1423 } else if (offset < 0xf20) {
1424 /* GICD_CPENDSGIRn */
1425 if (s->revision == REV_11MPCORE) {
1426 goto bad_reg;
1428 irq = (offset - 0xf10);
1430 if (!s->security_extn || attrs.secure ||
1431 GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1432 s->sgi_pending[irq][cpu] &= ~value;
1433 if (s->sgi_pending[irq][cpu] == 0) {
1434 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1437 } else if (offset < 0xf30) {
1438 /* GICD_SPENDSGIRn */
1439 if (s->revision == REV_11MPCORE) {
1440 goto bad_reg;
1442 irq = (offset - 0xf20);
1444 if (!s->security_extn || attrs.secure ||
1445 GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1446 GIC_DIST_SET_PENDING(irq, 1 << cpu);
1447 s->sgi_pending[irq][cpu] |= value;
1449 } else {
1450 goto bad_reg;
1452 gic_update(s);
1453 return;
1454 bad_reg:
1455 qemu_log_mask(LOG_GUEST_ERROR,
1456 "gic_dist_writeb: Bad offset %x\n", (int)offset);
1459 static void gic_dist_writew(void *opaque, hwaddr offset,
1460 uint32_t value, MemTxAttrs attrs)
1462 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1463 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1466 static void gic_dist_writel(void *opaque, hwaddr offset,
1467 uint32_t value, MemTxAttrs attrs)
1469 GICState *s = (GICState *)opaque;
1470 if (offset == 0xf00) {
1471 int cpu;
1472 int irq;
1473 int mask;
1474 int target_cpu;
1476 cpu = gic_get_current_cpu(s);
1477 irq = value & 0x3ff;
1478 switch ((value >> 24) & 3) {
1479 case 0:
1480 mask = (value >> 16) & ALL_CPU_MASK;
1481 break;
1482 case 1:
1483 mask = ALL_CPU_MASK ^ (1 << cpu);
1484 break;
1485 case 2:
1486 mask = 1 << cpu;
1487 break;
1488 default:
1489 DPRINTF("Bad Soft Int target filter\n");
1490 mask = ALL_CPU_MASK;
1491 break;
1493 GIC_DIST_SET_PENDING(irq, mask);
1494 target_cpu = ctz32(mask);
1495 while (target_cpu < GIC_NCPU) {
1496 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1497 mask &= ~(1 << target_cpu);
1498 target_cpu = ctz32(mask);
1500 gic_update(s);
1501 return;
1503 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1504 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1507 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1508 unsigned size, MemTxAttrs attrs)
1510 trace_gic_dist_write(offset, size, data);
1512 switch (size) {
1513 case 1:
1514 gic_dist_writeb(opaque, offset, data, attrs);
1515 return MEMTX_OK;
1516 case 2:
1517 gic_dist_writew(opaque, offset, data, attrs);
1518 return MEMTX_OK;
1519 case 4:
1520 gic_dist_writel(opaque, offset, data, attrs);
1521 return MEMTX_OK;
1522 default:
1523 return MEMTX_ERROR;
1527 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1529 /* Return the Nonsecure view of GICC_APR<regno>. This is the
1530 * second half of GICC_NSAPR.
1532 switch (GIC_MIN_BPR) {
1533 case 0:
1534 if (regno < 2) {
1535 return s->nsapr[regno + 2][cpu];
1537 break;
1538 case 1:
1539 if (regno == 0) {
1540 return s->nsapr[regno + 1][cpu];
1542 break;
1543 case 2:
1544 if (regno == 0) {
1545 return extract32(s->nsapr[0][cpu], 16, 16);
1547 break;
1548 case 3:
1549 if (regno == 0) {
1550 return extract32(s->nsapr[0][cpu], 8, 8);
1552 break;
1553 default:
1554 g_assert_not_reached();
1556 return 0;
1559 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1560 uint32_t value)
1562 /* Write the Nonsecure view of GICC_APR<regno>. */
1563 switch (GIC_MIN_BPR) {
1564 case 0:
1565 if (regno < 2) {
1566 s->nsapr[regno + 2][cpu] = value;
1568 break;
1569 case 1:
1570 if (regno == 0) {
1571 s->nsapr[regno + 1][cpu] = value;
1573 break;
1574 case 2:
1575 if (regno == 0) {
1576 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1578 break;
1579 case 3:
1580 if (regno == 0) {
1581 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1583 break;
1584 default:
1585 g_assert_not_reached();
1589 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1590 uint64_t *data, MemTxAttrs attrs)
1592 switch (offset) {
1593 case 0x00: /* Control */
1594 *data = gic_get_cpu_control(s, cpu, attrs);
1595 break;
1596 case 0x04: /* Priority mask */
1597 *data = gic_get_priority_mask(s, cpu, attrs);
1598 break;
1599 case 0x08: /* Binary Point */
1600 if (gic_cpu_ns_access(s, cpu, attrs)) {
1601 if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1602 /* NS view of BPR when CBPR is 1 */
1603 *data = MIN(s->bpr[cpu] + 1, 7);
1604 } else {
1605 /* BPR is banked. Non-secure copy stored in ABPR. */
1606 *data = s->abpr[cpu];
1608 } else {
1609 *data = s->bpr[cpu];
1611 break;
1612 case 0x0c: /* Acknowledge */
1613 *data = gic_acknowledge_irq(s, cpu, attrs);
1614 break;
1615 case 0x14: /* Running Priority */
1616 *data = gic_get_running_priority(s, cpu, attrs);
1617 break;
1618 case 0x18: /* Highest Pending Interrupt */
1619 *data = gic_get_current_pending_irq(s, cpu, attrs);
1620 break;
1621 case 0x1c: /* Aliased Binary Point */
1622 /* GIC v2, no security: ABPR
1623 * GIC v1, no security: not implemented (RAZ/WI)
1624 * With security extensions, secure access: ABPR (alias of NS BPR)
1625 * With security extensions, nonsecure access: RAZ/WI
1627 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1628 *data = 0;
1629 } else {
1630 *data = s->abpr[cpu];
1632 break;
1633 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1635 int regno = (offset - 0xd0) / 4;
1636 int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1638 if (regno >= nr_aprs || s->revision != 2) {
1639 *data = 0;
1640 } else if (gic_is_vcpu(cpu)) {
1641 *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
1642 } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1643 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1644 *data = gic_apr_ns_view(s, regno, cpu);
1645 } else {
1646 *data = s->apr[regno][cpu];
1648 break;
1650 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1652 int regno = (offset - 0xe0) / 4;
1654 if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1655 gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
1656 *data = 0;
1657 } else {
1658 *data = s->nsapr[regno][cpu];
1660 break;
1662 default:
1663 qemu_log_mask(LOG_GUEST_ERROR,
1664 "gic_cpu_read: Bad offset %x\n", (int)offset);
1665 *data = 0;
1666 break;
1669 trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1670 gic_get_vcpu_real_id(cpu), offset, *data);
1671 return MEMTX_OK;
1674 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1675 uint32_t value, MemTxAttrs attrs)
1677 trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1678 gic_get_vcpu_real_id(cpu), offset, value);
1680 switch (offset) {
1681 case 0x00: /* Control */
1682 gic_set_cpu_control(s, cpu, value, attrs);
1683 break;
1684 case 0x04: /* Priority mask */
1685 gic_set_priority_mask(s, cpu, value, attrs);
1686 break;
1687 case 0x08: /* Binary Point */
1688 if (gic_cpu_ns_access(s, cpu, attrs)) {
1689 if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1690 /* WI when CBPR is 1 */
1691 return MEMTX_OK;
1692 } else {
1693 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1695 } else {
1696 int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1697 s->bpr[cpu] = MAX(value & 0x7, min_bpr);
1699 break;
1700 case 0x10: /* End Of Interrupt */
1701 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1702 return MEMTX_OK;
1703 case 0x1c: /* Aliased Binary Point */
1704 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1705 /* unimplemented, or NS access: RAZ/WI */
1706 return MEMTX_OK;
1707 } else {
1708 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1710 break;
1711 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1713 int regno = (offset - 0xd0) / 4;
1714 int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1716 if (regno >= nr_aprs || s->revision != 2) {
1717 return MEMTX_OK;
1719 if (gic_is_vcpu(cpu)) {
1720 s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1721 } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1722 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1723 gic_apr_write_ns_view(s, regno, cpu, value);
1724 } else {
1725 s->apr[regno][cpu] = value;
1727 break;
1729 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1731 int regno = (offset - 0xe0) / 4;
1733 if (regno >= GIC_NR_APRS || s->revision != 2) {
1734 return MEMTX_OK;
1736 if (gic_is_vcpu(cpu)) {
1737 return MEMTX_OK;
1739 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1740 return MEMTX_OK;
1742 s->nsapr[regno][cpu] = value;
1743 break;
1745 case 0x1000:
1746 /* GICC_DIR */
1747 gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1748 break;
1749 default:
1750 qemu_log_mask(LOG_GUEST_ERROR,
1751 "gic_cpu_write: Bad offset %x\n", (int)offset);
1752 return MEMTX_OK;
1755 if (gic_is_vcpu(cpu)) {
1756 gic_update_virt(s);
1757 } else {
1758 gic_update(s);
1761 return MEMTX_OK;
1764 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1765 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1766 unsigned size, MemTxAttrs attrs)
1768 GICState *s = (GICState *)opaque;
1769 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1772 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1773 uint64_t value, unsigned size,
1774 MemTxAttrs attrs)
1776 GICState *s = (GICState *)opaque;
1777 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1780 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1781 * These just decode the opaque pointer into GICState* + cpu id.
1783 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1784 unsigned size, MemTxAttrs attrs)
1786 GICState **backref = (GICState **)opaque;
1787 GICState *s = *backref;
1788 int id = (backref - s->backref);
1789 return gic_cpu_read(s, id, addr, data, attrs);
1792 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1793 uint64_t value, unsigned size,
1794 MemTxAttrs attrs)
1796 GICState **backref = (GICState **)opaque;
1797 GICState *s = *backref;
1798 int id = (backref - s->backref);
1799 return gic_cpu_write(s, id, addr, value, attrs);
1802 static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
1803 unsigned size, MemTxAttrs attrs)
1805 GICState *s = (GICState *)opaque;
1807 return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
1810 static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
1811 uint64_t value, unsigned size,
1812 MemTxAttrs attrs)
1814 GICState *s = (GICState *)opaque;
1816 return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
1819 static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
1821 int lr_idx;
1822 uint32_t ret = 0;
1824 for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1825 uint32_t *entry = &s->h_lr[lr_idx][cpu];
1826 ret = deposit32(ret, lr_idx - lr_start, 1,
1827 gic_lr_entry_is_eoi(*entry));
1830 return ret;
1833 static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
1835 int lr_idx;
1836 uint32_t ret = 0;
1838 for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1839 uint32_t *entry = &s->h_lr[lr_idx][cpu];
1840 ret = deposit32(ret, lr_idx - lr_start, 1,
1841 gic_lr_entry_is_free(*entry));
1844 return ret;
1847 static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
1849 int vcpu = gic_get_current_vcpu(s);
1850 uint32_t ctlr;
1851 uint32_t abpr;
1852 uint32_t bpr;
1853 uint32_t prio_mask;
1855 ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
1856 abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
1857 bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
1858 prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
1860 gic_set_cpu_control(s, vcpu, ctlr, attrs);
1861 s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
1862 s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
1863 gic_set_priority_mask(s, vcpu, prio_mask, attrs);
1866 static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
1867 uint64_t *data, MemTxAttrs attrs)
1869 GICState *s = ARM_GIC(opaque);
1870 int vcpu = cpu + GIC_NCPU;
1872 switch (addr) {
1873 case A_GICH_HCR: /* Hypervisor Control */
1874 *data = s->h_hcr[cpu];
1875 break;
1877 case A_GICH_VTR: /* VGIC Type */
1878 *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
1879 *data = FIELD_DP32(*data, GICH_VTR, PREbits,
1880 GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
1881 *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
1882 (7 - GIC_VIRT_MIN_BPR) - 1);
1883 break;
1885 case A_GICH_VMCR: /* Virtual Machine Control */
1886 *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
1887 extract32(s->cpu_ctlr[vcpu], 0, 10));
1888 *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
1889 *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
1890 *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
1891 extract32(s->priority_mask[vcpu], 3, 5));
1892 break;
1894 case A_GICH_MISR: /* Maintenance Interrupt Status */
1895 *data = s->h_misr[cpu];
1896 break;
1898 case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
1899 case A_GICH_EISR1:
1900 *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
1901 break;
1903 case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
1904 case A_GICH_ELRSR1:
1905 *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
1906 break;
1908 case A_GICH_APR: /* Active Priorities */
1909 *data = s->h_apr[cpu];
1910 break;
1912 case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1914 int lr_idx = (addr - A_GICH_LR0) / 4;
1916 if (lr_idx > s->num_lrs) {
1917 *data = 0;
1918 } else {
1919 *data = s->h_lr[lr_idx][cpu];
1921 break;
1924 default:
1925 qemu_log_mask(LOG_GUEST_ERROR,
1926 "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
1927 return MEMTX_OK;
1930 trace_gic_hyp_read(addr, *data);
1931 return MEMTX_OK;
1934 static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
1935 uint64_t value, MemTxAttrs attrs)
1937 GICState *s = ARM_GIC(opaque);
1938 int vcpu = cpu + GIC_NCPU;
1940 trace_gic_hyp_write(addr, value);
1942 switch (addr) {
1943 case A_GICH_HCR: /* Hypervisor Control */
1944 s->h_hcr[cpu] = value & GICH_HCR_MASK;
1945 break;
1947 case A_GICH_VMCR: /* Virtual Machine Control */
1948 gic_vmcr_write(s, value, attrs);
1949 break;
1951 case A_GICH_APR: /* Active Priorities */
1952 s->h_apr[cpu] = value;
1953 s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
1954 break;
1956 case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1958 int lr_idx = (addr - A_GICH_LR0) / 4;
1960 if (lr_idx > s->num_lrs) {
1961 return MEMTX_OK;
1964 s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
1965 trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
1966 break;
1969 default:
1970 qemu_log_mask(LOG_GUEST_ERROR,
1971 "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
1972 return MEMTX_OK;
1975 gic_update_virt(s);
1976 return MEMTX_OK;
1979 static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1980 unsigned size, MemTxAttrs attrs)
1982 GICState *s = (GICState *)opaque;
1984 return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
1987 static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
1988 uint64_t value, unsigned size,
1989 MemTxAttrs attrs)
1991 GICState *s = (GICState *)opaque;
1993 return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
1996 static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1997 unsigned size, MemTxAttrs attrs)
1999 GICState **backref = (GICState **)opaque;
2000 GICState *s = *backref;
2001 int id = (backref - s->backref);
2003 return gic_hyp_read(s, id, addr, data, attrs);
2006 static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
2007 uint64_t value, unsigned size,
2008 MemTxAttrs attrs)
2010 GICState **backref = (GICState **)opaque;
2011 GICState *s = *backref;
2012 int id = (backref - s->backref);
2014 return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
2018 static const MemoryRegionOps gic_ops[2] = {
2020 .read_with_attrs = gic_dist_read,
2021 .write_with_attrs = gic_dist_write,
2022 .endianness = DEVICE_NATIVE_ENDIAN,
2025 .read_with_attrs = gic_thiscpu_read,
2026 .write_with_attrs = gic_thiscpu_write,
2027 .endianness = DEVICE_NATIVE_ENDIAN,
2031 static const MemoryRegionOps gic_cpu_ops = {
2032 .read_with_attrs = gic_do_cpu_read,
2033 .write_with_attrs = gic_do_cpu_write,
2034 .endianness = DEVICE_NATIVE_ENDIAN,
2037 static const MemoryRegionOps gic_virt_ops[2] = {
2039 .read_with_attrs = gic_thiscpu_hyp_read,
2040 .write_with_attrs = gic_thiscpu_hyp_write,
2041 .endianness = DEVICE_NATIVE_ENDIAN,
2044 .read_with_attrs = gic_thisvcpu_read,
2045 .write_with_attrs = gic_thisvcpu_write,
2046 .endianness = DEVICE_NATIVE_ENDIAN,
2050 static const MemoryRegionOps gic_viface_ops = {
2051 .read_with_attrs = gic_do_hyp_read,
2052 .write_with_attrs = gic_do_hyp_write,
2053 .endianness = DEVICE_NATIVE_ENDIAN,
2056 static void arm_gic_realize(DeviceState *dev, Error **errp)
2058 /* Device instance realize function for the GIC sysbus device */
2059 int i;
2060 GICState *s = ARM_GIC(dev);
2061 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2062 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
2063 Error *local_err = NULL;
2065 agc->parent_realize(dev, &local_err);
2066 if (local_err) {
2067 error_propagate(errp, local_err);
2068 return;
2071 if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
2072 error_setg(errp, "KVM with user space irqchip only works when the "
2073 "host kernel supports KVM_CAP_ARM_USER_IRQ");
2074 return;
2077 if (s->n_prio_bits > GIC_MAX_PRIORITY_BITS ||
2078 (s->virt_extn ? s->n_prio_bits < GIC_VIRT_MAX_GROUP_PRIO_BITS :
2079 s->n_prio_bits < GIC_MIN_PRIORITY_BITS)) {
2080 error_setg(errp, "num-priority-bits cannot be greater than %d"
2081 " or less than %d", GIC_MAX_PRIORITY_BITS,
2082 s->virt_extn ? GIC_VIRT_MAX_GROUP_PRIO_BITS :
2083 GIC_MIN_PRIORITY_BITS);
2084 return;
2087 /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
2088 * enabled, virtualization extensions related interfaces (main virtual
2089 * interface (s->vifaceiomem[0]) and virtual CPU interface).
2091 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
2093 /* Extra core-specific regions for the CPU interfaces. This is
2094 * necessary for "franken-GIC" implementations, for example on
2095 * Exynos 4.
2096 * NB that the memory region size of 0x100 applies for the 11MPCore
2097 * and also cores following the GIC v1 spec (ie A9).
2098 * GIC v2 defines a larger memory region (0x1000) so this will need
2099 * to be extended when we implement A15.
2101 for (i = 0; i < s->num_cpu; i++) {
2102 s->backref[i] = s;
2103 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
2104 &s->backref[i], "gic_cpu", 0x100);
2105 sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
2108 /* Extra core-specific regions for virtual interfaces. This is required by
2109 * the GICv2 specification.
2111 if (s->virt_extn) {
2112 for (i = 0; i < s->num_cpu; i++) {
2113 memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
2114 &gic_viface_ops, &s->backref[i],
2115 "gic_viface", 0x200);
2116 sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
2122 static void arm_gic_class_init(ObjectClass *klass, void *data)
2124 DeviceClass *dc = DEVICE_CLASS(klass);
2125 ARMGICClass *agc = ARM_GIC_CLASS(klass);
2127 device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
2130 static const TypeInfo arm_gic_info = {
2131 .name = TYPE_ARM_GIC,
2132 .parent = TYPE_ARM_GIC_COMMON,
2133 .instance_size = sizeof(GICState),
2134 .class_init = arm_gic_class_init,
2135 .class_size = sizeof(ARMGICClass),
2138 static void arm_gic_register_types(void)
2140 type_register_static(&arm_gic_info);
2143 type_init(arm_gic_register_types)