target/nios2: take BQL around interrupt check
[qemu/ar7.git] / include / exec / ram_addr.h
blobcd432e73ae41631b605acbf3de85ad5a7e795257
1 /*
2 * Declarations for cpu physical memory functions
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or
10 * later. See the COPYING file in the top-level directory.
15 * This header is for use by exec.c and memory.c ONLY. Do not include it.
16 * The functions declared here will be removed soon.
19 #ifndef RAM_ADDR_H
20 #define RAM_ADDR_H
22 #ifndef CONFIG_USER_ONLY
23 #include "hw/xen/xen.h"
24 #include "exec/ramlist.h"
26 struct RAMBlock {
27 struct rcu_head rcu;
28 struct MemoryRegion *mr;
29 uint8_t *host;
30 ram_addr_t offset;
31 ram_addr_t used_length;
32 ram_addr_t max_length;
33 void (*resized)(const char*, uint64_t length, void *host);
34 uint32_t flags;
35 /* Protected by iothread lock. */
36 char idstr[256];
37 /* RCU-enabled, writes protected by the ramlist lock */
38 QLIST_ENTRY(RAMBlock) next;
39 QLIST_HEAD(, RAMBlockNotifier) ramblock_notifiers;
40 int fd;
41 size_t page_size;
44 static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset)
46 return (b && b->host && offset < b->used_length) ? true : false;
49 static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
51 assert(offset_in_ramblock(block, offset));
52 return (char *)block->host + offset;
55 long qemu_getrampagesize(void);
56 ram_addr_t last_ram_offset(void);
57 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
58 bool share, const char *mem_path,
59 Error **errp);
60 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
61 MemoryRegion *mr, Error **errp);
62 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp);
63 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
64 void (*resized)(const char*,
65 uint64_t length,
66 void *host),
67 MemoryRegion *mr, Error **errp);
68 void qemu_ram_free(RAMBlock *block);
70 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp);
72 #define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
73 #define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
75 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
76 ram_addr_t length,
77 unsigned client)
79 DirtyMemoryBlocks *blocks;
80 unsigned long end, page;
81 unsigned long idx, offset, base;
82 bool dirty = false;
84 assert(client < DIRTY_MEMORY_NUM);
86 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
87 page = start >> TARGET_PAGE_BITS;
89 rcu_read_lock();
91 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
93 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
94 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
95 base = page - offset;
96 while (page < end) {
97 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
98 unsigned long num = next - base;
99 unsigned long found = find_next_bit(blocks->blocks[idx], num, offset);
100 if (found < num) {
101 dirty = true;
102 break;
105 page = next;
106 idx++;
107 offset = 0;
108 base += DIRTY_MEMORY_BLOCK_SIZE;
111 rcu_read_unlock();
113 return dirty;
116 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
117 ram_addr_t length,
118 unsigned client)
120 DirtyMemoryBlocks *blocks;
121 unsigned long end, page;
122 unsigned long idx, offset, base;
123 bool dirty = true;
125 assert(client < DIRTY_MEMORY_NUM);
127 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
128 page = start >> TARGET_PAGE_BITS;
130 rcu_read_lock();
132 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
134 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
135 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
136 base = page - offset;
137 while (page < end) {
138 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
139 unsigned long num = next - base;
140 unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset);
141 if (found < num) {
142 dirty = false;
143 break;
146 page = next;
147 idx++;
148 offset = 0;
149 base += DIRTY_MEMORY_BLOCK_SIZE;
152 rcu_read_unlock();
154 return dirty;
157 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
158 unsigned client)
160 return cpu_physical_memory_get_dirty(addr, 1, client);
163 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
165 bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
166 bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
167 bool migration =
168 cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
169 return !(vga && code && migration);
172 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
173 ram_addr_t length,
174 uint8_t mask)
176 uint8_t ret = 0;
178 if (mask & (1 << DIRTY_MEMORY_VGA) &&
179 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
180 ret |= (1 << DIRTY_MEMORY_VGA);
182 if (mask & (1 << DIRTY_MEMORY_CODE) &&
183 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
184 ret |= (1 << DIRTY_MEMORY_CODE);
186 if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
187 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
188 ret |= (1 << DIRTY_MEMORY_MIGRATION);
190 return ret;
193 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
194 unsigned client)
196 unsigned long page, idx, offset;
197 DirtyMemoryBlocks *blocks;
199 assert(client < DIRTY_MEMORY_NUM);
201 page = addr >> TARGET_PAGE_BITS;
202 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
203 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
205 rcu_read_lock();
207 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
209 set_bit_atomic(offset, blocks->blocks[idx]);
211 rcu_read_unlock();
214 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
215 ram_addr_t length,
216 uint8_t mask)
218 DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
219 unsigned long end, page;
220 unsigned long idx, offset, base;
221 int i;
223 if (!mask && !xen_enabled()) {
224 return;
227 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
228 page = start >> TARGET_PAGE_BITS;
230 rcu_read_lock();
232 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
233 blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i]);
236 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
237 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
238 base = page - offset;
239 while (page < end) {
240 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
242 if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
243 bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
244 offset, next - page);
246 if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
247 bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
248 offset, next - page);
250 if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
251 bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
252 offset, next - page);
255 page = next;
256 idx++;
257 offset = 0;
258 base += DIRTY_MEMORY_BLOCK_SIZE;
261 rcu_read_unlock();
263 xen_modified_memory(start, length);
266 #if !defined(_WIN32)
267 static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
268 ram_addr_t start,
269 ram_addr_t pages)
271 unsigned long i, j;
272 unsigned long page_number, c;
273 hwaddr addr;
274 ram_addr_t ram_addr;
275 unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
276 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
277 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
279 /* start address is aligned at the start of a word? */
280 if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
281 (hpratio == 1)) {
282 unsigned long **blocks[DIRTY_MEMORY_NUM];
283 unsigned long idx;
284 unsigned long offset;
285 long k;
286 long nr = BITS_TO_LONGS(pages);
288 idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
289 offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
290 DIRTY_MEMORY_BLOCK_SIZE);
292 rcu_read_lock();
294 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
295 blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
298 for (k = 0; k < nr; k++) {
299 if (bitmap[k]) {
300 unsigned long temp = leul_to_cpu(bitmap[k]);
302 atomic_or(&blocks[DIRTY_MEMORY_MIGRATION][idx][offset], temp);
303 atomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
304 if (tcg_enabled()) {
305 atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], temp);
309 if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
310 offset = 0;
311 idx++;
315 rcu_read_unlock();
317 xen_modified_memory(start, pages << TARGET_PAGE_BITS);
318 } else {
319 uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
321 * bitmap-traveling is faster than memory-traveling (for addr...)
322 * especially when most of the memory is not dirty.
324 for (i = 0; i < len; i++) {
325 if (bitmap[i] != 0) {
326 c = leul_to_cpu(bitmap[i]);
327 do {
328 j = ctzl(c);
329 c &= ~(1ul << j);
330 page_number = (i * HOST_LONG_BITS + j) * hpratio;
331 addr = page_number * TARGET_PAGE_SIZE;
332 ram_addr = start + addr;
333 cpu_physical_memory_set_dirty_range(ram_addr,
334 TARGET_PAGE_SIZE * hpratio, clients);
335 } while (c != 0);
340 #endif /* not _WIN32 */
342 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
343 ram_addr_t length,
344 unsigned client);
346 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
347 ram_addr_t length)
349 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
350 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
351 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
355 static inline
356 uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest,
357 ram_addr_t start,
358 ram_addr_t length)
360 ram_addr_t addr;
361 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
362 uint64_t num_dirty = 0;
364 /* start address is aligned at the start of a word? */
365 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
366 int k;
367 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
368 unsigned long * const *src;
369 unsigned long idx = (page * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
370 unsigned long offset = BIT_WORD((page * BITS_PER_LONG) %
371 DIRTY_MEMORY_BLOCK_SIZE);
373 rcu_read_lock();
375 src = atomic_rcu_read(
376 &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
378 for (k = page; k < page + nr; k++) {
379 if (src[idx][offset]) {
380 unsigned long bits = atomic_xchg(&src[idx][offset], 0);
381 unsigned long new_dirty;
382 new_dirty = ~dest[k];
383 dest[k] |= bits;
384 new_dirty &= bits;
385 num_dirty += ctpopl(new_dirty);
388 if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
389 offset = 0;
390 idx++;
394 rcu_read_unlock();
395 } else {
396 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
397 if (cpu_physical_memory_test_and_clear_dirty(
398 start + addr,
399 TARGET_PAGE_SIZE,
400 DIRTY_MEMORY_MIGRATION)) {
401 long k = (start + addr) >> TARGET_PAGE_BITS;
402 if (!test_and_set_bit(k, dest)) {
403 num_dirty++;
409 return num_dirty;
412 void migration_bitmap_extend(ram_addr_t old, ram_addr_t new);
413 #endif
414 #endif