Merge tag 'v9.0.0-rc3'
[qemu/ar7.git] / include / exec / ram_addr.h
blobde45ba7bc9680870d45f0702cc58c7e4ed458a99
1 /*
2 * Declarations for cpu physical memory functions
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or
10 * later. See the COPYING file in the top-level directory.
15 * This header is for use by exec.c and memory.c ONLY. Do not include it.
16 * The functions declared here will be removed soon.
19 #ifndef RAM_ADDR_H
20 #define RAM_ADDR_H
22 #ifndef CONFIG_USER_ONLY
23 #include "cpu.h"
24 #include "sysemu/xen.h"
25 #include "sysemu/tcg.h"
26 #include "exec/ramlist.h"
27 #include "exec/ramblock.h"
28 #include "exec/exec-all.h"
30 extern uint64_t total_dirty_pages;
32 /**
33 * clear_bmap_size: calculate clear bitmap size
35 * @pages: number of guest pages
36 * @shift: guest page number shift
38 * Returns: number of bits for the clear bitmap
40 static inline long clear_bmap_size(uint64_t pages, uint8_t shift)
42 return DIV_ROUND_UP(pages, 1UL << shift);
45 /**
46 * clear_bmap_set: set clear bitmap for the page range. Must be with
47 * bitmap_mutex held.
49 * @rb: the ramblock to operate on
50 * @start: the start page number
51 * @size: number of pages to set in the bitmap
53 * Returns: None
55 static inline void clear_bmap_set(RAMBlock *rb, uint64_t start,
56 uint64_t npages)
58 uint8_t shift = rb->clear_bmap_shift;
60 bitmap_set(rb->clear_bmap, start >> shift, clear_bmap_size(npages, shift));
63 /**
64 * clear_bmap_test_and_clear: test clear bitmap for the page, clear if set.
65 * Must be with bitmap_mutex held.
67 * @rb: the ramblock to operate on
68 * @page: the page number to check
70 * Returns: true if the bit was set, false otherwise
72 static inline bool clear_bmap_test_and_clear(RAMBlock *rb, uint64_t page)
74 uint8_t shift = rb->clear_bmap_shift;
76 return bitmap_test_and_clear(rb->clear_bmap, page >> shift, 1);
79 static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset)
81 return (b && b->host && offset < b->used_length) ? true : false;
84 static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
86 assert(offset_in_ramblock(block, offset));
87 return (char *)block->host + offset;
90 static inline unsigned long int ramblock_recv_bitmap_offset(void *host_addr,
91 RAMBlock *rb)
93 uint64_t host_addr_offset =
94 (uint64_t)(uintptr_t)(host_addr - (void *)rb->host);
95 return host_addr_offset >> TARGET_PAGE_BITS;
98 bool ramblock_is_pmem(RAMBlock *rb);
100 long qemu_minrampagesize(void);
101 long qemu_maxrampagesize(void);
104 * qemu_ram_alloc_from_file,
105 * qemu_ram_alloc_from_fd: Allocate a ram block from the specified backing
106 * file or device
108 * Parameters:
109 * @size: the size in bytes of the ram block
110 * @mr: the memory region where the ram block is
111 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
112 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
113 * RAM_READONLY_FD
114 * @mem_path or @fd: specify the backing file or device
115 * @offset: Offset into target file
116 * @errp: pointer to Error*, to store an error if it happens
118 * Return:
119 * On success, return a pointer to the ram block.
120 * On failure, return NULL.
122 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
123 uint32_t ram_flags, const char *mem_path,
124 off_t offset, Error **errp);
125 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
126 uint32_t ram_flags, int fd, off_t offset,
127 Error **errp);
129 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
130 MemoryRegion *mr, Error **errp);
131 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, MemoryRegion *mr,
132 Error **errp);
133 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
134 void (*resized)(const char*,
135 uint64_t length,
136 void *host),
137 MemoryRegion *mr, Error **errp);
138 void qemu_ram_free(RAMBlock *block);
140 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp);
142 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length);
144 /* Clear whole block of mem */
145 static inline void qemu_ram_block_writeback(RAMBlock *block)
147 qemu_ram_msync(block, 0, block->used_length);
150 #define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
151 #define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
153 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
154 ram_addr_t length,
155 unsigned client)
157 DirtyMemoryBlocks *blocks;
158 unsigned long end, page;
159 unsigned long idx, offset, base;
160 bool dirty = false;
162 assert(client < DIRTY_MEMORY_NUM);
164 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
165 page = start >> TARGET_PAGE_BITS;
167 WITH_RCU_READ_LOCK_GUARD() {
168 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
170 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
171 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
172 base = page - offset;
173 while (page < end) {
174 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
175 unsigned long num = next - base;
176 unsigned long found = find_next_bit(blocks->blocks[idx],
177 num, offset);
178 if (found < num) {
179 dirty = true;
180 break;
183 page = next;
184 idx++;
185 offset = 0;
186 base += DIRTY_MEMORY_BLOCK_SIZE;
190 return dirty;
193 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
194 ram_addr_t length,
195 unsigned client)
197 DirtyMemoryBlocks *blocks;
198 unsigned long end, page;
199 unsigned long idx, offset, base;
200 bool dirty = true;
202 assert(client < DIRTY_MEMORY_NUM);
204 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
205 page = start >> TARGET_PAGE_BITS;
207 RCU_READ_LOCK_GUARD();
209 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
211 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
212 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
213 base = page - offset;
214 while (page < end) {
215 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
216 unsigned long num = next - base;
217 unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset);
218 if (found < num) {
219 dirty = false;
220 break;
223 page = next;
224 idx++;
225 offset = 0;
226 base += DIRTY_MEMORY_BLOCK_SIZE;
229 return dirty;
232 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
233 unsigned client)
235 return cpu_physical_memory_get_dirty(addr, 1, client);
238 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
240 bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
241 bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
242 bool migration =
243 cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
244 return !(vga && code && migration);
247 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
248 ram_addr_t length,
249 uint8_t mask)
251 uint8_t ret = 0;
253 if (mask & (1 << DIRTY_MEMORY_VGA) &&
254 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
255 ret |= (1 << DIRTY_MEMORY_VGA);
257 if (mask & (1 << DIRTY_MEMORY_CODE) &&
258 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
259 ret |= (1 << DIRTY_MEMORY_CODE);
261 if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
262 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
263 ret |= (1 << DIRTY_MEMORY_MIGRATION);
265 return ret;
268 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
269 unsigned client)
271 unsigned long page, idx, offset;
272 DirtyMemoryBlocks *blocks;
274 assert(client < DIRTY_MEMORY_NUM);
276 page = addr >> TARGET_PAGE_BITS;
277 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
278 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
280 RCU_READ_LOCK_GUARD();
282 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
284 set_bit_atomic(offset, blocks->blocks[idx]);
287 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
288 ram_addr_t length,
289 uint8_t mask)
291 DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
292 unsigned long end, page;
293 unsigned long idx, offset, base;
294 int i;
296 if (!mask && !xen_enabled()) {
297 return;
300 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
301 page = start >> TARGET_PAGE_BITS;
303 WITH_RCU_READ_LOCK_GUARD() {
304 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
305 blocks[i] = qatomic_rcu_read(&ram_list.dirty_memory[i]);
308 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
309 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
310 base = page - offset;
311 while (page < end) {
312 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
314 if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
315 bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
316 offset, next - page);
318 if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
319 bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
320 offset, next - page);
322 if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
323 bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
324 offset, next - page);
327 page = next;
328 idx++;
329 offset = 0;
330 base += DIRTY_MEMORY_BLOCK_SIZE;
334 xen_hvm_modified_memory(start, length);
337 #if !defined(_WIN32)
340 * Contrary to cpu_physical_memory_sync_dirty_bitmap() this function returns
341 * the number of dirty pages in @bitmap passed as argument. On the other hand,
342 * cpu_physical_memory_sync_dirty_bitmap() returns newly dirtied pages that
343 * weren't set in the global migration bitmap.
345 static inline
346 uint64_t cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
347 ram_addr_t start,
348 ram_addr_t pages)
350 unsigned long i, j;
351 unsigned long page_number, c, nbits;
352 hwaddr addr;
353 ram_addr_t ram_addr;
354 uint64_t num_dirty = 0;
355 unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
356 unsigned long hpratio = qemu_real_host_page_size() / TARGET_PAGE_SIZE;
357 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
359 /* start address is aligned at the start of a word? */
360 if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
361 (hpratio == 1)) {
362 unsigned long **blocks[DIRTY_MEMORY_NUM];
363 unsigned long idx;
364 unsigned long offset;
365 long k;
366 long nr = BITS_TO_LONGS(pages);
368 idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
369 offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
370 DIRTY_MEMORY_BLOCK_SIZE);
372 WITH_RCU_READ_LOCK_GUARD() {
373 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
374 blocks[i] =
375 qatomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
378 for (k = 0; k < nr; k++) {
379 if (bitmap[k]) {
380 unsigned long temp = leul_to_cpu(bitmap[k]);
382 nbits = ctpopl(temp);
383 qatomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
385 if (global_dirty_tracking) {
386 qatomic_or(
387 &blocks[DIRTY_MEMORY_MIGRATION][idx][offset],
388 temp);
389 if (unlikely(
390 global_dirty_tracking & GLOBAL_DIRTY_DIRTY_RATE)) {
391 total_dirty_pages += nbits;
395 num_dirty += nbits;
397 if (tcg_enabled()) {
398 qatomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset],
399 temp);
403 if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
404 offset = 0;
405 idx++;
410 xen_hvm_modified_memory(start, pages << TARGET_PAGE_BITS);
411 } else {
412 uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
414 if (!global_dirty_tracking) {
415 clients &= ~(1 << DIRTY_MEMORY_MIGRATION);
419 * bitmap-traveling is faster than memory-traveling (for addr...)
420 * especially when most of the memory is not dirty.
422 for (i = 0; i < len; i++) {
423 if (bitmap[i] != 0) {
424 c = leul_to_cpu(bitmap[i]);
425 nbits = ctpopl(c);
426 if (unlikely(global_dirty_tracking & GLOBAL_DIRTY_DIRTY_RATE)) {
427 total_dirty_pages += nbits;
429 num_dirty += nbits;
430 do {
431 j = ctzl(c);
432 c &= ~(1ul << j);
433 page_number = (i * HOST_LONG_BITS + j) * hpratio;
434 addr = page_number * TARGET_PAGE_SIZE;
435 ram_addr = start + addr;
436 cpu_physical_memory_set_dirty_range(ram_addr,
437 TARGET_PAGE_SIZE * hpratio, clients);
438 } while (c != 0);
443 return num_dirty;
445 #endif /* not _WIN32 */
447 static inline void cpu_physical_memory_dirty_bits_cleared(ram_addr_t start,
448 ram_addr_t length)
450 if (tcg_enabled()) {
451 tlb_reset_dirty_range_all(start, length);
455 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
456 ram_addr_t length,
457 unsigned client);
459 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
460 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client);
462 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
463 ram_addr_t start,
464 ram_addr_t length);
466 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
467 ram_addr_t length)
469 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
470 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
471 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
475 /* Called with RCU critical section */
476 static inline
477 uint64_t cpu_physical_memory_sync_dirty_bitmap(RAMBlock *rb,
478 ram_addr_t start,
479 ram_addr_t length)
481 ram_addr_t addr;
482 unsigned long word = BIT_WORD((start + rb->offset) >> TARGET_PAGE_BITS);
483 uint64_t num_dirty = 0;
484 unsigned long *dest = rb->bmap;
486 /* start address and length is aligned at the start of a word? */
487 if (((word * BITS_PER_LONG) << TARGET_PAGE_BITS) ==
488 (start + rb->offset) &&
489 !(length & ((BITS_PER_LONG << TARGET_PAGE_BITS) - 1))) {
490 int k;
491 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
492 unsigned long * const *src;
493 unsigned long idx = (word * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
494 unsigned long offset = BIT_WORD((word * BITS_PER_LONG) %
495 DIRTY_MEMORY_BLOCK_SIZE);
496 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
498 src = qatomic_rcu_read(
499 &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
501 for (k = page; k < page + nr; k++) {
502 if (src[idx][offset]) {
503 unsigned long bits = qatomic_xchg(&src[idx][offset], 0);
504 unsigned long new_dirty;
505 new_dirty = ~dest[k];
506 dest[k] |= bits;
507 new_dirty &= bits;
508 num_dirty += ctpopl(new_dirty);
511 if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
512 offset = 0;
513 idx++;
516 if (num_dirty) {
517 cpu_physical_memory_dirty_bits_cleared(start, length);
520 if (rb->clear_bmap) {
522 * Postpone the dirty bitmap clear to the point before we
523 * really send the pages, also we will split the clear
524 * dirty procedure into smaller chunks.
526 clear_bmap_set(rb, start >> TARGET_PAGE_BITS,
527 length >> TARGET_PAGE_BITS);
528 } else {
529 /* Slow path - still do that in a huge chunk */
530 memory_region_clear_dirty_bitmap(rb->mr, start, length);
532 } else {
533 ram_addr_t offset = rb->offset;
535 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
536 if (cpu_physical_memory_test_and_clear_dirty(
537 start + addr + offset,
538 TARGET_PAGE_SIZE,
539 DIRTY_MEMORY_MIGRATION)) {
540 long k = (start + addr) >> TARGET_PAGE_BITS;
541 if (!test_and_set_bit(k, dest)) {
542 num_dirty++;
548 return num_dirty;
550 #endif
551 #endif