s390x/tcg: Implement VECTOR FP CONVERT FROM FIXED 64-BIT
[qemu/ar7.git] / target / ppc / machine.c
blob25cdb9088bfde24ae1799b8f066d3faca6c7f9ff
1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
3 #include "cpu.h"
4 #include "exec/exec-all.h"
5 #include "hw/hw.h"
6 #include "hw/boards.h"
7 #include "sysemu/kvm.h"
8 #include "helper_regs.h"
9 #include "mmu-hash64.h"
10 #include "migration/cpu.h"
11 #include "qapi/error.h"
12 #include "kvm_ppc.h"
13 #include "exec/helper-proto.h"
15 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
17 PowerPCCPU *cpu = opaque;
18 CPUPPCState *env = &cpu->env;
19 unsigned int i, j;
20 target_ulong sdr1;
21 uint32_t fpscr, vscr;
22 #if defined(TARGET_PPC64)
23 int32_t slb_nr;
24 #endif
25 target_ulong xer;
27 for (i = 0; i < 32; i++) {
28 qemu_get_betls(f, &env->gpr[i]);
30 #if !defined(TARGET_PPC64)
31 for (i = 0; i < 32; i++) {
32 qemu_get_betls(f, &env->gprh[i]);
34 #endif
35 qemu_get_betls(f, &env->lr);
36 qemu_get_betls(f, &env->ctr);
37 for (i = 0; i < 8; i++) {
38 qemu_get_be32s(f, &env->crf[i]);
40 qemu_get_betls(f, &xer);
41 cpu_write_xer(env, xer);
42 qemu_get_betls(f, &env->reserve_addr);
43 qemu_get_betls(f, &env->msr);
44 for (i = 0; i < 4; i++) {
45 qemu_get_betls(f, &env->tgpr[i]);
47 for (i = 0; i < 32; i++) {
48 union {
49 float64 d;
50 uint64_t l;
51 } u;
52 u.l = qemu_get_be64(f);
53 *cpu_fpr_ptr(env, i) = u.d;
55 qemu_get_be32s(f, &fpscr);
56 env->fpscr = fpscr;
57 qemu_get_sbe32s(f, &env->access_type);
58 #if defined(TARGET_PPC64)
59 qemu_get_betls(f, &env->spr[SPR_ASR]);
60 qemu_get_sbe32s(f, &slb_nr);
61 #endif
62 qemu_get_betls(f, &sdr1);
63 for (i = 0; i < 32; i++) {
64 qemu_get_betls(f, &env->sr[i]);
66 for (i = 0; i < 2; i++) {
67 for (j = 0; j < 8; j++) {
68 qemu_get_betls(f, &env->DBAT[i][j]);
71 for (i = 0; i < 2; i++) {
72 for (j = 0; j < 8; j++) {
73 qemu_get_betls(f, &env->IBAT[i][j]);
76 qemu_get_sbe32s(f, &env->nb_tlb);
77 qemu_get_sbe32s(f, &env->tlb_per_way);
78 qemu_get_sbe32s(f, &env->nb_ways);
79 qemu_get_sbe32s(f, &env->last_way);
80 qemu_get_sbe32s(f, &env->id_tlbs);
81 qemu_get_sbe32s(f, &env->nb_pids);
82 if (env->tlb.tlb6) {
83 /* XXX assumes 6xx */
84 for (i = 0; i < env->nb_tlb; i++) {
85 qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
86 qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
87 qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
90 for (i = 0; i < 4; i++) {
91 qemu_get_betls(f, &env->pb[i]);
93 for (i = 0; i < 1024; i++) {
94 qemu_get_betls(f, &env->spr[i]);
96 if (!cpu->vhyp) {
97 ppc_store_sdr1(env, sdr1);
99 qemu_get_be32s(f, &vscr);
100 helper_mtvscr(env, vscr);
101 qemu_get_be64s(f, &env->spe_acc);
102 qemu_get_be32s(f, &env->spe_fscr);
103 qemu_get_betls(f, &env->msr_mask);
104 qemu_get_be32s(f, &env->flags);
105 qemu_get_sbe32s(f, &env->error_code);
106 qemu_get_be32s(f, &env->pending_interrupts);
107 qemu_get_be32s(f, &env->irq_input_state);
108 for (i = 0; i < POWERPC_EXCP_NB; i++) {
109 qemu_get_betls(f, &env->excp_vectors[i]);
111 qemu_get_betls(f, &env->excp_prefix);
112 qemu_get_betls(f, &env->ivor_mask);
113 qemu_get_betls(f, &env->ivpr_mask);
114 qemu_get_betls(f, &env->hreset_vector);
115 qemu_get_betls(f, &env->nip);
116 qemu_get_betls(f, &env->hflags);
117 qemu_get_betls(f, &env->hflags_nmsr);
118 qemu_get_sbe32(f); /* Discard unused mmu_idx */
119 qemu_get_sbe32(f); /* Discard unused power_mode */
121 /* Recompute mmu indices */
122 hreg_compute_mem_idx(env);
124 return 0;
127 static int get_avr(QEMUFile *f, void *pv, size_t size,
128 const VMStateField *field)
130 ppc_avr_t *v = pv;
132 v->u64[0] = qemu_get_be64(f);
133 v->u64[1] = qemu_get_be64(f);
135 return 0;
138 static int put_avr(QEMUFile *f, void *pv, size_t size,
139 const VMStateField *field, QJSON *vmdesc)
141 ppc_avr_t *v = pv;
143 qemu_put_be64(f, v->u64[0]);
144 qemu_put_be64(f, v->u64[1]);
145 return 0;
148 static const VMStateInfo vmstate_info_avr = {
149 .name = "avr",
150 .get = get_avr,
151 .put = put_avr,
154 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
155 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
157 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \
158 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
160 static int get_fpr(QEMUFile *f, void *pv, size_t size,
161 const VMStateField *field)
163 ppc_vsr_t *v = pv;
165 v->VsrD(0) = qemu_get_be64(f);
167 return 0;
170 static int put_fpr(QEMUFile *f, void *pv, size_t size,
171 const VMStateField *field, QJSON *vmdesc)
173 ppc_vsr_t *v = pv;
175 qemu_put_be64(f, v->VsrD(0));
176 return 0;
179 static const VMStateInfo vmstate_info_fpr = {
180 .name = "fpr",
181 .get = get_fpr,
182 .put = put_fpr,
185 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \
186 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
188 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \
189 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
191 static int get_vsr(QEMUFile *f, void *pv, size_t size,
192 const VMStateField *field)
194 ppc_vsr_t *v = pv;
196 v->VsrD(1) = qemu_get_be64(f);
198 return 0;
201 static int put_vsr(QEMUFile *f, void *pv, size_t size,
202 const VMStateField *field, QJSON *vmdesc)
204 ppc_vsr_t *v = pv;
206 qemu_put_be64(f, v->VsrD(1));
207 return 0;
210 static const VMStateInfo vmstate_info_vsr = {
211 .name = "vsr",
212 .get = get_vsr,
213 .put = put_vsr,
216 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \
217 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
219 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \
220 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
222 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
224 PowerPCCPU *cpu = opaque;
226 return cpu->pre_2_8_migration;
229 #if defined(TARGET_PPC64)
230 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
232 PowerPCCPU *cpu = opaque;
234 return cpu->pre_3_0_migration;
236 #endif
238 static int cpu_pre_save(void *opaque)
240 PowerPCCPU *cpu = opaque;
241 CPUPPCState *env = &cpu->env;
242 int i;
243 uint64_t insns_compat_mask =
244 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
245 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
246 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
247 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
248 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
249 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
250 | PPC_64B | PPC_64BX | PPC_ALTIVEC
251 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
252 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
253 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
254 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
255 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
256 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
257 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
259 env->spr[SPR_LR] = env->lr;
260 env->spr[SPR_CTR] = env->ctr;
261 env->spr[SPR_XER] = cpu_read_xer(env);
262 #if defined(TARGET_PPC64)
263 env->spr[SPR_CFAR] = env->cfar;
264 #endif
265 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
267 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
268 env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
269 env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
270 env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
271 env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
273 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
274 env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
275 env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
276 env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
277 env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
280 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
281 if (cpu->pre_2_8_migration) {
283 * Mask out bits that got added to msr_mask since the versions
284 * which stupidly included it in the migration stream.
286 target_ulong metamask = 0
287 #if defined(TARGET_PPC64)
288 | (1ULL << MSR_TS0)
289 | (1ULL << MSR_TS1)
290 #endif
292 cpu->mig_msr_mask = env->msr_mask & ~metamask;
293 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
295 * CPU models supported by old machines all have
296 * PPC_MEM_TLBIE, so we set it unconditionally to allow
297 * backward migration from a POWER9 host to a POWER8 host.
299 cpu->mig_insns_flags |= PPC_MEM_TLBIE;
300 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
301 cpu->mig_nb_BATs = env->nb_BATs;
303 if (cpu->pre_3_0_migration) {
304 if (cpu->hash64_opts) {
305 cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
309 return 0;
313 * Determine if a given PVR is a "close enough" match to the CPU
314 * object. For TCG and KVM PR it would probably be sufficient to
315 * require an exact PVR match. However for KVM HV the user is
316 * restricted to a PVR exactly matching the host CPU. The correct way
317 * to handle this is to put the guest into an architected
318 * compatibility mode. However, to allow a more forgiving transition
319 * and migration from before this was widely done, we allow migration
320 * between sufficiently similar PVRs, as determined by the CPU class's
321 * pvr_match() hook.
323 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
325 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
327 if (pvr == pcc->pvr) {
328 return true;
330 return pcc->pvr_match(pcc, pvr);
333 static int cpu_post_load(void *opaque, int version_id)
335 PowerPCCPU *cpu = opaque;
336 CPUPPCState *env = &cpu->env;
337 int i;
338 target_ulong msr;
341 * If we're operating in compat mode, we should be ok as long as
342 * the destination supports the same compatiblity mode.
344 * Otherwise, however, we require that the destination has exactly
345 * the same CPU model as the source.
348 #if defined(TARGET_PPC64)
349 if (cpu->compat_pvr) {
350 uint32_t compat_pvr = cpu->compat_pvr;
351 Error *local_err = NULL;
353 cpu->compat_pvr = 0;
354 ppc_set_compat(cpu, compat_pvr, &local_err);
355 if (local_err) {
356 error_report_err(local_err);
357 return -1;
359 } else
360 #endif
362 if (!pvr_match(cpu, env->spr[SPR_PVR])) {
363 return -1;
368 * If we're running with KVM HV, there is a chance that the guest
369 * is running with KVM HV and its kernel does not have the
370 * capability of dealing with a different PVR other than this
371 * exact host PVR in KVM_SET_SREGS. If that happens, the
372 * guest freezes after migration.
374 * The function kvmppc_pvr_workaround_required does this verification
375 * by first checking if the kernel has the cap, returning true immediately
376 * if that is the case. Otherwise, it checks if we're running in KVM PR.
377 * If the guest kernel does not have the cap and we're not running KVM-PR
378 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
379 * receive the PVR it expects as a workaround.
382 #if defined(CONFIG_KVM)
383 if (kvmppc_pvr_workaround_required(cpu)) {
384 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
386 #endif
388 env->lr = env->spr[SPR_LR];
389 env->ctr = env->spr[SPR_CTR];
390 cpu_write_xer(env, env->spr[SPR_XER]);
391 #if defined(TARGET_PPC64)
392 env->cfar = env->spr[SPR_CFAR];
393 #endif
394 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
396 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
397 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
398 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
399 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
400 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
402 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
403 env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
404 env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
405 env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
406 env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
409 if (!cpu->vhyp) {
410 ppc_store_sdr1(env, env->spr[SPR_SDR1]);
414 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
415 * before restoring
417 msr = env->msr;
418 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
419 ppc_store_msr(env, msr);
421 hreg_compute_mem_idx(env);
423 return 0;
426 static bool fpu_needed(void *opaque)
428 PowerPCCPU *cpu = opaque;
430 return cpu->env.insns_flags & PPC_FLOAT;
433 static const VMStateDescription vmstate_fpu = {
434 .name = "cpu/fpu",
435 .version_id = 1,
436 .minimum_version_id = 1,
437 .needed = fpu_needed,
438 .fields = (VMStateField[]) {
439 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
440 VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
441 VMSTATE_END_OF_LIST()
445 static bool altivec_needed(void *opaque)
447 PowerPCCPU *cpu = opaque;
449 return cpu->env.insns_flags & PPC_ALTIVEC;
452 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
453 const VMStateField *field)
455 PowerPCCPU *cpu = opaque;
456 helper_mtvscr(&cpu->env, qemu_get_be32(f));
457 return 0;
460 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
461 const VMStateField *field, QJSON *vmdesc)
463 PowerPCCPU *cpu = opaque;
464 qemu_put_be32(f, helper_mfvscr(&cpu->env));
465 return 0;
468 static const VMStateInfo vmstate_vscr = {
469 .name = "cpu/altivec/vscr",
470 .get = get_vscr,
471 .put = put_vscr,
474 static const VMStateDescription vmstate_altivec = {
475 .name = "cpu/altivec",
476 .version_id = 1,
477 .minimum_version_id = 1,
478 .needed = altivec_needed,
479 .fields = (VMStateField[]) {
480 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
482 * Save the architecture value of the vscr, not the internally
483 * expanded version. Since this architecture value does not
484 * exist in memory to be stored, this requires a but of hoop
485 * jumping. We want OFFSET=0 so that we effectively pass CPU
486 * to the helper functions.
489 .name = "vscr",
490 .version_id = 0,
491 .size = sizeof(uint32_t),
492 .info = &vmstate_vscr,
493 .flags = VMS_SINGLE,
494 .offset = 0
496 VMSTATE_END_OF_LIST()
500 static bool vsx_needed(void *opaque)
502 PowerPCCPU *cpu = opaque;
504 return cpu->env.insns_flags2 & PPC2_VSX;
507 static const VMStateDescription vmstate_vsx = {
508 .name = "cpu/vsx",
509 .version_id = 1,
510 .minimum_version_id = 1,
511 .needed = vsx_needed,
512 .fields = (VMStateField[]) {
513 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
514 VMSTATE_END_OF_LIST()
518 #ifdef TARGET_PPC64
519 /* Transactional memory state */
520 static bool tm_needed(void *opaque)
522 PowerPCCPU *cpu = opaque;
523 CPUPPCState *env = &cpu->env;
524 return msr_ts;
527 static const VMStateDescription vmstate_tm = {
528 .name = "cpu/tm",
529 .version_id = 1,
530 .minimum_version_id = 1,
531 .minimum_version_id_old = 1,
532 .needed = tm_needed,
533 .fields = (VMStateField []) {
534 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
535 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
536 VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
537 VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
538 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
539 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
540 VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
541 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
542 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
543 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
544 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
545 VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
546 VMSTATE_END_OF_LIST()
549 #endif
551 static bool sr_needed(void *opaque)
553 #ifdef TARGET_PPC64
554 PowerPCCPU *cpu = opaque;
556 return !(cpu->env.mmu_model & POWERPC_MMU_64);
557 #else
558 return true;
559 #endif
562 static const VMStateDescription vmstate_sr = {
563 .name = "cpu/sr",
564 .version_id = 1,
565 .minimum_version_id = 1,
566 .needed = sr_needed,
567 .fields = (VMStateField[]) {
568 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
569 VMSTATE_END_OF_LIST()
573 #ifdef TARGET_PPC64
574 static int get_slbe(QEMUFile *f, void *pv, size_t size,
575 const VMStateField *field)
577 ppc_slb_t *v = pv;
579 v->esid = qemu_get_be64(f);
580 v->vsid = qemu_get_be64(f);
582 return 0;
585 static int put_slbe(QEMUFile *f, void *pv, size_t size,
586 const VMStateField *field, QJSON *vmdesc)
588 ppc_slb_t *v = pv;
590 qemu_put_be64(f, v->esid);
591 qemu_put_be64(f, v->vsid);
592 return 0;
595 static const VMStateInfo vmstate_info_slbe = {
596 .name = "slbe",
597 .get = get_slbe,
598 .put = put_slbe,
601 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
602 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
604 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \
605 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
607 static bool slb_needed(void *opaque)
609 PowerPCCPU *cpu = opaque;
611 /* We don't support any of the old segment table based 64-bit CPUs */
612 return cpu->env.mmu_model & POWERPC_MMU_64;
615 static int slb_post_load(void *opaque, int version_id)
617 PowerPCCPU *cpu = opaque;
618 CPUPPCState *env = &cpu->env;
619 int i;
622 * We've pulled in the raw esid and vsid values from the migration
623 * stream, but we need to recompute the page size pointers
625 for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
626 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
627 /* Migration source had bad values in its SLB */
628 return -1;
632 return 0;
635 static const VMStateDescription vmstate_slb = {
636 .name = "cpu/slb",
637 .version_id = 1,
638 .minimum_version_id = 1,
639 .needed = slb_needed,
640 .post_load = slb_post_load,
641 .fields = (VMStateField[]) {
642 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
643 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
644 VMSTATE_END_OF_LIST()
647 #endif /* TARGET_PPC64 */
649 static const VMStateDescription vmstate_tlb6xx_entry = {
650 .name = "cpu/tlb6xx_entry",
651 .version_id = 1,
652 .minimum_version_id = 1,
653 .fields = (VMStateField[]) {
654 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
655 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
656 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
657 VMSTATE_END_OF_LIST()
661 static bool tlb6xx_needed(void *opaque)
663 PowerPCCPU *cpu = opaque;
664 CPUPPCState *env = &cpu->env;
666 return env->nb_tlb && (env->tlb_type == TLB_6XX);
669 static const VMStateDescription vmstate_tlb6xx = {
670 .name = "cpu/tlb6xx",
671 .version_id = 1,
672 .minimum_version_id = 1,
673 .needed = tlb6xx_needed,
674 .fields = (VMStateField[]) {
675 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
676 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
677 env.nb_tlb,
678 vmstate_tlb6xx_entry,
679 ppc6xx_tlb_t),
680 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
681 VMSTATE_END_OF_LIST()
685 static const VMStateDescription vmstate_tlbemb_entry = {
686 .name = "cpu/tlbemb_entry",
687 .version_id = 1,
688 .minimum_version_id = 1,
689 .fields = (VMStateField[]) {
690 VMSTATE_UINT64(RPN, ppcemb_tlb_t),
691 VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
692 VMSTATE_UINTTL(PID, ppcemb_tlb_t),
693 VMSTATE_UINTTL(size, ppcemb_tlb_t),
694 VMSTATE_UINT32(prot, ppcemb_tlb_t),
695 VMSTATE_UINT32(attr, ppcemb_tlb_t),
696 VMSTATE_END_OF_LIST()
700 static bool tlbemb_needed(void *opaque)
702 PowerPCCPU *cpu = opaque;
703 CPUPPCState *env = &cpu->env;
705 return env->nb_tlb && (env->tlb_type == TLB_EMB);
708 static bool pbr403_needed(void *opaque)
710 PowerPCCPU *cpu = opaque;
711 uint32_t pvr = cpu->env.spr[SPR_PVR];
713 return (pvr & 0xffff0000) == 0x00200000;
716 static const VMStateDescription vmstate_pbr403 = {
717 .name = "cpu/pbr403",
718 .version_id = 1,
719 .minimum_version_id = 1,
720 .needed = pbr403_needed,
721 .fields = (VMStateField[]) {
722 VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
723 VMSTATE_END_OF_LIST()
727 static const VMStateDescription vmstate_tlbemb = {
728 .name = "cpu/tlb6xx",
729 .version_id = 1,
730 .minimum_version_id = 1,
731 .needed = tlbemb_needed,
732 .fields = (VMStateField[]) {
733 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
734 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
735 env.nb_tlb,
736 vmstate_tlbemb_entry,
737 ppcemb_tlb_t),
738 /* 403 protection registers */
739 VMSTATE_END_OF_LIST()
741 .subsections = (const VMStateDescription*[]) {
742 &vmstate_pbr403,
743 NULL
747 static const VMStateDescription vmstate_tlbmas_entry = {
748 .name = "cpu/tlbmas_entry",
749 .version_id = 1,
750 .minimum_version_id = 1,
751 .fields = (VMStateField[]) {
752 VMSTATE_UINT32(mas8, ppcmas_tlb_t),
753 VMSTATE_UINT32(mas1, ppcmas_tlb_t),
754 VMSTATE_UINT64(mas2, ppcmas_tlb_t),
755 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
756 VMSTATE_END_OF_LIST()
760 static bool tlbmas_needed(void *opaque)
762 PowerPCCPU *cpu = opaque;
763 CPUPPCState *env = &cpu->env;
765 return env->nb_tlb && (env->tlb_type == TLB_MAS);
768 static const VMStateDescription vmstate_tlbmas = {
769 .name = "cpu/tlbmas",
770 .version_id = 1,
771 .minimum_version_id = 1,
772 .needed = tlbmas_needed,
773 .fields = (VMStateField[]) {
774 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
775 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
776 env.nb_tlb,
777 vmstate_tlbmas_entry,
778 ppcmas_tlb_t),
779 VMSTATE_END_OF_LIST()
783 static bool compat_needed(void *opaque)
785 PowerPCCPU *cpu = opaque;
787 assert(!(cpu->compat_pvr && !cpu->vhyp));
788 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
791 static const VMStateDescription vmstate_compat = {
792 .name = "cpu/compat",
793 .version_id = 1,
794 .minimum_version_id = 1,
795 .needed = compat_needed,
796 .fields = (VMStateField[]) {
797 VMSTATE_UINT32(compat_pvr, PowerPCCPU),
798 VMSTATE_END_OF_LIST()
802 const VMStateDescription vmstate_ppc_cpu = {
803 .name = "cpu",
804 .version_id = 5,
805 .minimum_version_id = 5,
806 .minimum_version_id_old = 4,
807 .load_state_old = cpu_load_old,
808 .pre_save = cpu_pre_save,
809 .post_load = cpu_post_load,
810 .fields = (VMStateField[]) {
811 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
813 /* User mode architected state */
814 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
815 #if !defined(TARGET_PPC64)
816 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
817 #endif
818 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
819 VMSTATE_UINTTL(env.nip, PowerPCCPU),
821 /* SPRs */
822 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
823 VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
825 /* Reservation */
826 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
828 /* Supervisor mode architected state */
829 VMSTATE_UINTTL(env.msr, PowerPCCPU),
831 /* Internal state */
832 VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
833 /* FIXME: access_type? */
835 /* Sanity checking */
836 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
837 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
838 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
839 cpu_pre_2_8_migration),
840 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
841 VMSTATE_END_OF_LIST()
843 .subsections = (const VMStateDescription*[]) {
844 &vmstate_fpu,
845 &vmstate_altivec,
846 &vmstate_vsx,
847 &vmstate_sr,
848 #ifdef TARGET_PPC64
849 &vmstate_tm,
850 &vmstate_slb,
851 #endif /* TARGET_PPC64 */
852 &vmstate_tlb6xx,
853 &vmstate_tlbemb,
854 &vmstate_tlbmas,
855 &vmstate_compat,
856 NULL