2 * Emulation of Linux signals
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include <sys/ucontext.h>
22 #include <sys/resource.h>
26 #include "signal-common.h"
28 static struct target_sigaction sigact_table
[TARGET_NSIG
];
30 static void host_signal_handler(int host_signum
, siginfo_t
*info
,
35 * System includes define _NSIG as SIGRTMAX + 1,
36 * but qemu (like the kernel) defines TARGET_NSIG as TARGET_SIGRTMAX
37 * and the first signal is SIGHUP defined as 1
38 * Signal number 0 is reserved for use as kill(pid, 0), to test whether
39 * a process exists without sending it a signal.
41 QEMU_BUILD_BUG_ON(__SIGRTMAX
+ 1 != _NSIG
);
42 static uint8_t host_to_target_signal_table
[_NSIG
] = {
43 [SIGHUP
] = TARGET_SIGHUP
,
44 [SIGINT
] = TARGET_SIGINT
,
45 [SIGQUIT
] = TARGET_SIGQUIT
,
46 [SIGILL
] = TARGET_SIGILL
,
47 [SIGTRAP
] = TARGET_SIGTRAP
,
48 [SIGABRT
] = TARGET_SIGABRT
,
49 /* [SIGIOT] = TARGET_SIGIOT,*/
50 [SIGBUS
] = TARGET_SIGBUS
,
51 [SIGFPE
] = TARGET_SIGFPE
,
52 [SIGKILL
] = TARGET_SIGKILL
,
53 [SIGUSR1
] = TARGET_SIGUSR1
,
54 [SIGSEGV
] = TARGET_SIGSEGV
,
55 [SIGUSR2
] = TARGET_SIGUSR2
,
56 [SIGPIPE
] = TARGET_SIGPIPE
,
57 [SIGALRM
] = TARGET_SIGALRM
,
58 [SIGTERM
] = TARGET_SIGTERM
,
60 [SIGSTKFLT
] = TARGET_SIGSTKFLT
,
62 [SIGCHLD
] = TARGET_SIGCHLD
,
63 [SIGCONT
] = TARGET_SIGCONT
,
64 [SIGSTOP
] = TARGET_SIGSTOP
,
65 [SIGTSTP
] = TARGET_SIGTSTP
,
66 [SIGTTIN
] = TARGET_SIGTTIN
,
67 [SIGTTOU
] = TARGET_SIGTTOU
,
68 [SIGURG
] = TARGET_SIGURG
,
69 [SIGXCPU
] = TARGET_SIGXCPU
,
70 [SIGXFSZ
] = TARGET_SIGXFSZ
,
71 [SIGVTALRM
] = TARGET_SIGVTALRM
,
72 [SIGPROF
] = TARGET_SIGPROF
,
73 [SIGWINCH
] = TARGET_SIGWINCH
,
74 [SIGIO
] = TARGET_SIGIO
,
75 [SIGPWR
] = TARGET_SIGPWR
,
76 [SIGSYS
] = TARGET_SIGSYS
,
77 /* next signals stay the same */
80 static uint8_t target_to_host_signal_table
[TARGET_NSIG
+ 1];
82 /* valid sig is between 1 and _NSIG - 1 */
83 int host_to_target_signal(int sig
)
85 if (sig
< 1 || sig
>= _NSIG
) {
88 return host_to_target_signal_table
[sig
];
91 /* valid sig is between 1 and TARGET_NSIG */
92 int target_to_host_signal(int sig
)
94 if (sig
< 1 || sig
> TARGET_NSIG
) {
97 return target_to_host_signal_table
[sig
];
100 static inline void target_sigaddset(target_sigset_t
*set
, int signum
)
103 abi_ulong mask
= (abi_ulong
)1 << (signum
% TARGET_NSIG_BPW
);
104 set
->sig
[signum
/ TARGET_NSIG_BPW
] |= mask
;
107 static inline int target_sigismember(const target_sigset_t
*set
, int signum
)
110 abi_ulong mask
= (abi_ulong
)1 << (signum
% TARGET_NSIG_BPW
);
111 return ((set
->sig
[signum
/ TARGET_NSIG_BPW
] & mask
) != 0);
114 void host_to_target_sigset_internal(target_sigset_t
*d
,
117 int host_sig
, target_sig
;
118 target_sigemptyset(d
);
119 for (host_sig
= 1; host_sig
< _NSIG
; host_sig
++) {
120 target_sig
= host_to_target_signal(host_sig
);
121 if (target_sig
< 1 || target_sig
> TARGET_NSIG
) {
124 if (sigismember(s
, host_sig
)) {
125 target_sigaddset(d
, target_sig
);
130 void host_to_target_sigset(target_sigset_t
*d
, const sigset_t
*s
)
135 host_to_target_sigset_internal(&d1
, s
);
136 for(i
= 0;i
< TARGET_NSIG_WORDS
; i
++)
137 d
->sig
[i
] = tswapal(d1
.sig
[i
]);
140 void target_to_host_sigset_internal(sigset_t
*d
,
141 const target_sigset_t
*s
)
143 int host_sig
, target_sig
;
145 for (target_sig
= 1; target_sig
<= TARGET_NSIG
; target_sig
++) {
146 host_sig
= target_to_host_signal(target_sig
);
147 if (host_sig
< 1 || host_sig
>= _NSIG
) {
150 if (target_sigismember(s
, target_sig
)) {
151 sigaddset(d
, host_sig
);
156 void target_to_host_sigset(sigset_t
*d
, const target_sigset_t
*s
)
161 for(i
= 0;i
< TARGET_NSIG_WORDS
; i
++)
162 s1
.sig
[i
] = tswapal(s
->sig
[i
]);
163 target_to_host_sigset_internal(d
, &s1
);
166 void host_to_target_old_sigset(abi_ulong
*old_sigset
,
167 const sigset_t
*sigset
)
170 host_to_target_sigset(&d
, sigset
);
171 *old_sigset
= d
.sig
[0];
174 void target_to_host_old_sigset(sigset_t
*sigset
,
175 const abi_ulong
*old_sigset
)
180 d
.sig
[0] = *old_sigset
;
181 for(i
= 1;i
< TARGET_NSIG_WORDS
; i
++)
183 target_to_host_sigset(sigset
, &d
);
186 int block_signals(void)
188 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
191 /* It's OK to block everything including SIGSEGV, because we won't
192 * run any further guest code before unblocking signals in
193 * process_pending_signals().
196 sigprocmask(SIG_SETMASK
, &set
, 0);
198 return qatomic_xchg(&ts
->signal_pending
, 1);
201 /* Wrapper for sigprocmask function
202 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset
203 * are host signal set, not guest ones. Returns -TARGET_ERESTARTSYS if
204 * a signal was already pending and the syscall must be restarted, or
206 * If set is NULL, this is guaranteed not to fail.
208 int do_sigprocmask(int how
, const sigset_t
*set
, sigset_t
*oldset
)
210 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
213 *oldset
= ts
->signal_mask
;
219 if (block_signals()) {
220 return -TARGET_ERESTARTSYS
;
225 sigorset(&ts
->signal_mask
, &ts
->signal_mask
, set
);
228 for (i
= 1; i
<= NSIG
; ++i
) {
229 if (sigismember(set
, i
)) {
230 sigdelset(&ts
->signal_mask
, i
);
235 ts
->signal_mask
= *set
;
238 g_assert_not_reached();
241 /* Silently ignore attempts to change blocking status of KILL or STOP */
242 sigdelset(&ts
->signal_mask
, SIGKILL
);
243 sigdelset(&ts
->signal_mask
, SIGSTOP
);
248 #if !defined(TARGET_NIOS2)
249 /* Just set the guest's signal mask to the specified value; the
250 * caller is assumed to have called block_signals() already.
252 void set_sigmask(const sigset_t
*set
)
254 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
256 ts
->signal_mask
= *set
;
260 /* sigaltstack management */
262 int on_sig_stack(unsigned long sp
)
264 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
266 return (sp
- ts
->sigaltstack_used
.ss_sp
267 < ts
->sigaltstack_used
.ss_size
);
270 int sas_ss_flags(unsigned long sp
)
272 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
274 return (ts
->sigaltstack_used
.ss_size
== 0 ? SS_DISABLE
275 : on_sig_stack(sp
) ? SS_ONSTACK
: 0);
278 abi_ulong
target_sigsp(abi_ulong sp
, struct target_sigaction
*ka
)
281 * This is the X/Open sanctioned signal stack switching.
283 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
285 if ((ka
->sa_flags
& TARGET_SA_ONSTACK
) && !sas_ss_flags(sp
)) {
286 return ts
->sigaltstack_used
.ss_sp
+ ts
->sigaltstack_used
.ss_size
;
291 void target_save_altstack(target_stack_t
*uss
, CPUArchState
*env
)
293 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
295 __put_user(ts
->sigaltstack_used
.ss_sp
, &uss
->ss_sp
);
296 __put_user(sas_ss_flags(get_sp_from_cpustate(env
)), &uss
->ss_flags
);
297 __put_user(ts
->sigaltstack_used
.ss_size
, &uss
->ss_size
);
300 /* siginfo conversion */
302 static inline void host_to_target_siginfo_noswap(target_siginfo_t
*tinfo
,
303 const siginfo_t
*info
)
305 int sig
= host_to_target_signal(info
->si_signo
);
306 int si_code
= info
->si_code
;
308 tinfo
->si_signo
= sig
;
310 tinfo
->si_code
= info
->si_code
;
312 /* This memset serves two purposes:
313 * (1) ensure we don't leak random junk to the guest later
314 * (2) placate false positives from gcc about fields
315 * being used uninitialized if it chooses to inline both this
316 * function and tswap_siginfo() into host_to_target_siginfo().
318 memset(tinfo
->_sifields
._pad
, 0, sizeof(tinfo
->_sifields
._pad
));
320 /* This is awkward, because we have to use a combination of
321 * the si_code and si_signo to figure out which of the union's
322 * members are valid. (Within the host kernel it is always possible
323 * to tell, but the kernel carefully avoids giving userspace the
324 * high 16 bits of si_code, so we don't have the information to
325 * do this the easy way...) We therefore make our best guess,
326 * bearing in mind that a guest can spoof most of the si_codes
327 * via rt_sigqueueinfo() if it likes.
329 * Once we have made our guess, we record it in the top 16 bits of
330 * the si_code, so that tswap_siginfo() later can use it.
331 * tswap_siginfo() will strip these top bits out before writing
332 * si_code to the guest (sign-extending the lower bits).
339 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel.
340 * These are the only unspoofable si_code values.
342 tinfo
->_sifields
._kill
._pid
= info
->si_pid
;
343 tinfo
->_sifields
._kill
._uid
= info
->si_uid
;
344 si_type
= QEMU_SI_KILL
;
347 /* Everything else is spoofable. Make best guess based on signal */
350 tinfo
->_sifields
._sigchld
._pid
= info
->si_pid
;
351 tinfo
->_sifields
._sigchld
._uid
= info
->si_uid
;
352 tinfo
->_sifields
._sigchld
._status
= info
->si_status
;
353 tinfo
->_sifields
._sigchld
._utime
= info
->si_utime
;
354 tinfo
->_sifields
._sigchld
._stime
= info
->si_stime
;
355 si_type
= QEMU_SI_CHLD
;
358 tinfo
->_sifields
._sigpoll
._band
= info
->si_band
;
359 tinfo
->_sifields
._sigpoll
._fd
= info
->si_fd
;
360 si_type
= QEMU_SI_POLL
;
363 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */
364 tinfo
->_sifields
._rt
._pid
= info
->si_pid
;
365 tinfo
->_sifields
._rt
._uid
= info
->si_uid
;
366 /* XXX: potential problem if 64 bit */
367 tinfo
->_sifields
._rt
._sigval
.sival_ptr
368 = (abi_ulong
)(unsigned long)info
->si_value
.sival_ptr
;
369 si_type
= QEMU_SI_RT
;
375 tinfo
->si_code
= deposit32(si_code
, 16, 16, si_type
);
378 void tswap_siginfo(target_siginfo_t
*tinfo
,
379 const target_siginfo_t
*info
)
381 int si_type
= extract32(info
->si_code
, 16, 16);
382 int si_code
= sextract32(info
->si_code
, 0, 16);
384 __put_user(info
->si_signo
, &tinfo
->si_signo
);
385 __put_user(info
->si_errno
, &tinfo
->si_errno
);
386 __put_user(si_code
, &tinfo
->si_code
);
388 /* We can use our internal marker of which fields in the structure
389 * are valid, rather than duplicating the guesswork of
390 * host_to_target_siginfo_noswap() here.
394 __put_user(info
->_sifields
._kill
._pid
, &tinfo
->_sifields
._kill
._pid
);
395 __put_user(info
->_sifields
._kill
._uid
, &tinfo
->_sifields
._kill
._uid
);
398 __put_user(info
->_sifields
._timer
._timer1
,
399 &tinfo
->_sifields
._timer
._timer1
);
400 __put_user(info
->_sifields
._timer
._timer2
,
401 &tinfo
->_sifields
._timer
._timer2
);
404 __put_user(info
->_sifields
._sigpoll
._band
,
405 &tinfo
->_sifields
._sigpoll
._band
);
406 __put_user(info
->_sifields
._sigpoll
._fd
,
407 &tinfo
->_sifields
._sigpoll
._fd
);
410 __put_user(info
->_sifields
._sigfault
._addr
,
411 &tinfo
->_sifields
._sigfault
._addr
);
414 __put_user(info
->_sifields
._sigchld
._pid
,
415 &tinfo
->_sifields
._sigchld
._pid
);
416 __put_user(info
->_sifields
._sigchld
._uid
,
417 &tinfo
->_sifields
._sigchld
._uid
);
418 __put_user(info
->_sifields
._sigchld
._status
,
419 &tinfo
->_sifields
._sigchld
._status
);
420 __put_user(info
->_sifields
._sigchld
._utime
,
421 &tinfo
->_sifields
._sigchld
._utime
);
422 __put_user(info
->_sifields
._sigchld
._stime
,
423 &tinfo
->_sifields
._sigchld
._stime
);
426 __put_user(info
->_sifields
._rt
._pid
, &tinfo
->_sifields
._rt
._pid
);
427 __put_user(info
->_sifields
._rt
._uid
, &tinfo
->_sifields
._rt
._uid
);
428 __put_user(info
->_sifields
._rt
._sigval
.sival_ptr
,
429 &tinfo
->_sifields
._rt
._sigval
.sival_ptr
);
432 g_assert_not_reached();
436 void host_to_target_siginfo(target_siginfo_t
*tinfo
, const siginfo_t
*info
)
438 target_siginfo_t tgt_tmp
;
439 host_to_target_siginfo_noswap(&tgt_tmp
, info
);
440 tswap_siginfo(tinfo
, &tgt_tmp
);
443 /* XXX: we support only POSIX RT signals are used. */
444 /* XXX: find a solution for 64 bit (additional malloced data is needed) */
445 void target_to_host_siginfo(siginfo_t
*info
, const target_siginfo_t
*tinfo
)
447 /* This conversion is used only for the rt_sigqueueinfo syscall,
448 * and so we know that the _rt fields are the valid ones.
452 __get_user(info
->si_signo
, &tinfo
->si_signo
);
453 __get_user(info
->si_errno
, &tinfo
->si_errno
);
454 __get_user(info
->si_code
, &tinfo
->si_code
);
455 __get_user(info
->si_pid
, &tinfo
->_sifields
._rt
._pid
);
456 __get_user(info
->si_uid
, &tinfo
->_sifields
._rt
._uid
);
457 __get_user(sival_ptr
, &tinfo
->_sifields
._rt
._sigval
.sival_ptr
);
458 info
->si_value
.sival_ptr
= (void *)(long)sival_ptr
;
461 static int fatal_signal (int sig
)
466 case TARGET_SIGWINCH
:
467 /* Ignored by default. */
474 /* Job control signals. */
481 /* returns 1 if given signal should dump core if not handled */
482 static int core_dump_signal(int sig
)
498 static void signal_table_init(void)
500 int host_sig
, target_sig
, count
;
503 * Signals are supported starting from TARGET_SIGRTMIN and going up
504 * until we run out of host realtime signals.
505 * glibc at least uses only the lower 2 rt signals and probably
506 * nobody's using the upper ones.
507 * it's why SIGRTMIN (34) is generally greater than __SIGRTMIN (32)
508 * To fix this properly we need to do manual signal delivery multiplexed
509 * over a single host signal.
510 * Attempts for configure "missing" signals via sigaction will be
513 for (host_sig
= SIGRTMIN
; host_sig
<= SIGRTMAX
; host_sig
++) {
514 target_sig
= host_sig
- SIGRTMIN
+ TARGET_SIGRTMIN
;
515 if (target_sig
<= TARGET_NSIG
) {
516 host_to_target_signal_table
[host_sig
] = target_sig
;
520 /* generate signal conversion tables */
521 for (target_sig
= 1; target_sig
<= TARGET_NSIG
; target_sig
++) {
522 target_to_host_signal_table
[target_sig
] = _NSIG
; /* poison */
524 for (host_sig
= 1; host_sig
< _NSIG
; host_sig
++) {
525 if (host_to_target_signal_table
[host_sig
] == 0) {
526 host_to_target_signal_table
[host_sig
] = host_sig
;
528 target_sig
= host_to_target_signal_table
[host_sig
];
529 if (target_sig
<= TARGET_NSIG
) {
530 target_to_host_signal_table
[target_sig
] = host_sig
;
534 if (trace_event_get_state_backends(TRACE_SIGNAL_TABLE_INIT
)) {
535 for (target_sig
= 1, count
= 0; target_sig
<= TARGET_NSIG
; target_sig
++) {
536 if (target_to_host_signal_table
[target_sig
] == _NSIG
) {
540 trace_signal_table_init(count
);
544 void signal_init(void)
546 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
547 struct sigaction act
;
548 struct sigaction oact
;
552 /* initialize signal conversion tables */
555 /* Set the signal mask from the host mask. */
556 sigprocmask(0, 0, &ts
->signal_mask
);
558 sigfillset(&act
.sa_mask
);
559 act
.sa_flags
= SA_SIGINFO
;
560 act
.sa_sigaction
= host_signal_handler
;
561 for(i
= 1; i
<= TARGET_NSIG
; i
++) {
563 if (i
== TARGET_SIGPROF
) {
567 host_sig
= target_to_host_signal(i
);
568 sigaction(host_sig
, NULL
, &oact
);
569 if (oact
.sa_sigaction
== (void *)SIG_IGN
) {
570 sigact_table
[i
- 1]._sa_handler
= TARGET_SIG_IGN
;
571 } else if (oact
.sa_sigaction
== (void *)SIG_DFL
) {
572 sigact_table
[i
- 1]._sa_handler
= TARGET_SIG_DFL
;
574 /* If there's already a handler installed then something has
575 gone horribly wrong, so don't even try to handle that case. */
576 /* Install some handlers for our own use. We need at least
577 SIGSEGV and SIGBUS, to detect exceptions. We can not just
578 trap all signals because it affects syscall interrupt
579 behavior. But do trap all default-fatal signals. */
580 if (fatal_signal (i
))
581 sigaction(host_sig
, &act
, NULL
);
585 /* Force a synchronously taken signal. The kernel force_sig() function
586 * also forces the signal to "not blocked, not ignored", but for QEMU
587 * that work is done in process_pending_signals().
589 void force_sig(int sig
)
591 CPUState
*cpu
= thread_cpu
;
592 CPUArchState
*env
= cpu
->env_ptr
;
593 target_siginfo_t info
;
597 info
.si_code
= TARGET_SI_KERNEL
;
598 info
._sifields
._kill
._pid
= 0;
599 info
._sifields
._kill
._uid
= 0;
600 queue_signal(env
, info
.si_signo
, QEMU_SI_KILL
, &info
);
603 /* Force a SIGSEGV if we couldn't write to memory trying to set
604 * up the signal frame. oldsig is the signal we were trying to handle
605 * at the point of failure.
607 #if !defined(TARGET_RISCV)
608 void force_sigsegv(int oldsig
)
610 if (oldsig
== SIGSEGV
) {
611 /* Make sure we don't try to deliver the signal again; this will
612 * end up with handle_pending_signal() calling dump_core_and_abort().
614 sigact_table
[oldsig
- 1]._sa_handler
= TARGET_SIG_DFL
;
616 force_sig(TARGET_SIGSEGV
);
621 /* abort execution with signal */
622 static void QEMU_NORETURN
dump_core_and_abort(int target_sig
)
624 CPUState
*cpu
= thread_cpu
;
625 CPUArchState
*env
= cpu
->env_ptr
;
626 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
627 int host_sig
, core_dumped
= 0;
628 struct sigaction act
;
630 host_sig
= target_to_host_signal(target_sig
);
631 trace_user_force_sig(env
, target_sig
, host_sig
);
632 gdb_signalled(env
, target_sig
);
634 /* dump core if supported by target binary format */
635 if (core_dump_signal(target_sig
) && (ts
->bprm
->core_dump
!= NULL
)) {
638 ((*ts
->bprm
->core_dump
)(target_sig
, env
) == 0);
641 /* we already dumped the core of target process, we don't want
642 * a coredump of qemu itself */
643 struct rlimit nodump
;
644 getrlimit(RLIMIT_CORE
, &nodump
);
646 setrlimit(RLIMIT_CORE
, &nodump
);
647 (void) fprintf(stderr
, "qemu: uncaught target signal %d (%s) - %s\n",
648 target_sig
, strsignal(host_sig
), "core dumped" );
651 /* The proper exit code for dying from an uncaught signal is
652 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
653 * a negative value. To get the proper exit code we need to
654 * actually die from an uncaught signal. Here the default signal
655 * handler is installed, we send ourself a signal and we wait for
657 sigfillset(&act
.sa_mask
);
658 act
.sa_handler
= SIG_DFL
;
660 sigaction(host_sig
, &act
, NULL
);
662 /* For some reason raise(host_sig) doesn't send the signal when
663 * statically linked on x86-64. */
664 kill(getpid(), host_sig
);
666 /* Make sure the signal isn't masked (just reuse the mask inside
668 sigdelset(&act
.sa_mask
, host_sig
);
669 sigsuspend(&act
.sa_mask
);
675 /* queue a signal so that it will be send to the virtual CPU as soon
677 int queue_signal(CPUArchState
*env
, int sig
, int si_type
,
678 target_siginfo_t
*info
)
680 CPUState
*cpu
= env_cpu(env
);
681 TaskState
*ts
= cpu
->opaque
;
683 trace_user_queue_signal(env
, sig
);
685 info
->si_code
= deposit32(info
->si_code
, 16, 16, si_type
);
687 ts
->sync_signal
.info
= *info
;
688 ts
->sync_signal
.pending
= sig
;
689 /* signal that a new signal is pending */
690 qatomic_set(&ts
->signal_pending
, 1);
691 return 1; /* indicates that the signal was queued */
694 #ifndef HAVE_SAFE_SYSCALL
695 static inline void rewind_if_in_safe_syscall(void *puc
)
697 /* Default version: never rewind */
701 static void host_signal_handler(int host_signum
, siginfo_t
*info
,
704 CPUArchState
*env
= thread_cpu
->env_ptr
;
705 CPUState
*cpu
= env_cpu(env
);
706 TaskState
*ts
= cpu
->opaque
;
709 target_siginfo_t tinfo
;
710 ucontext_t
*uc
= puc
;
711 struct emulated_sigtable
*k
;
713 /* the CPU emulator uses some host signals to detect exceptions,
714 we forward to it some signals */
715 if ((host_signum
== SIGSEGV
|| host_signum
== SIGBUS
)
716 && info
->si_code
> 0) {
717 if (cpu_signal_handler(host_signum
, info
, puc
))
721 /* get target signal number */
722 sig
= host_to_target_signal(host_signum
);
723 if (sig
< 1 || sig
> TARGET_NSIG
)
725 trace_user_host_signal(env
, host_signum
, sig
);
727 rewind_if_in_safe_syscall(puc
);
729 host_to_target_siginfo_noswap(&tinfo
, info
);
730 k
= &ts
->sigtab
[sig
- 1];
733 ts
->signal_pending
= 1;
735 /* Block host signals until target signal handler entered. We
736 * can't block SIGSEGV or SIGBUS while we're executing guest
737 * code in case the guest code provokes one in the window between
738 * now and it getting out to the main loop. Signals will be
739 * unblocked again in process_pending_signals().
741 * WARNING: we cannot use sigfillset() here because the uc_sigmask
742 * field is a kernel sigset_t, which is much smaller than the
743 * libc sigset_t which sigfillset() operates on. Using sigfillset()
744 * would write 0xff bytes off the end of the structure and trash
745 * data on the struct.
746 * We can't use sizeof(uc->uc_sigmask) either, because the libc
747 * headers define the struct field with the wrong (too large) type.
749 memset(&uc
->uc_sigmask
, 0xff, SIGSET_T_SIZE
);
750 sigdelset(&uc
->uc_sigmask
, SIGSEGV
);
751 sigdelset(&uc
->uc_sigmask
, SIGBUS
);
753 /* interrupt the virtual CPU as soon as possible */
754 cpu_exit(thread_cpu
);
757 /* do_sigaltstack() returns target values and errnos. */
758 /* compare linux/kernel/signal.c:do_sigaltstack() */
759 abi_long
do_sigaltstack(abi_ulong uss_addr
, abi_ulong uoss_addr
, abi_ulong sp
)
762 struct target_sigaltstack oss
;
763 TaskState
*ts
= (TaskState
*)thread_cpu
->opaque
;
765 /* XXX: test errors */
768 __put_user(ts
->sigaltstack_used
.ss_sp
, &oss
.ss_sp
);
769 __put_user(ts
->sigaltstack_used
.ss_size
, &oss
.ss_size
);
770 __put_user(sas_ss_flags(sp
), &oss
.ss_flags
);
775 struct target_sigaltstack
*uss
;
776 struct target_sigaltstack ss
;
777 size_t minstacksize
= TARGET_MINSIGSTKSZ
;
779 #if defined(TARGET_PPC64)
780 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */
781 struct image_info
*image
= ((TaskState
*)thread_cpu
->opaque
)->info
;
782 if (get_ppc64_abi(image
) > 1) {
787 ret
= -TARGET_EFAULT
;
788 if (!lock_user_struct(VERIFY_READ
, uss
, uss_addr
, 1)) {
791 __get_user(ss
.ss_sp
, &uss
->ss_sp
);
792 __get_user(ss
.ss_size
, &uss
->ss_size
);
793 __get_user(ss
.ss_flags
, &uss
->ss_flags
);
794 unlock_user_struct(uss
, uss_addr
, 0);
797 if (on_sig_stack(sp
))
800 ret
= -TARGET_EINVAL
;
801 if (ss
.ss_flags
!= TARGET_SS_DISABLE
802 && ss
.ss_flags
!= TARGET_SS_ONSTACK
806 if (ss
.ss_flags
== TARGET_SS_DISABLE
) {
810 ret
= -TARGET_ENOMEM
;
811 if (ss
.ss_size
< minstacksize
) {
816 ts
->sigaltstack_used
.ss_sp
= ss
.ss_sp
;
817 ts
->sigaltstack_used
.ss_size
= ss
.ss_size
;
821 ret
= -TARGET_EFAULT
;
822 if (copy_to_user(uoss_addr
, &oss
, sizeof(oss
)))
831 /* do_sigaction() return target values and host errnos */
832 int do_sigaction(int sig
, const struct target_sigaction
*act
,
833 struct target_sigaction
*oact
)
835 struct target_sigaction
*k
;
836 struct sigaction act1
;
840 trace_signal_do_sigaction_guest(sig
, TARGET_NSIG
);
842 if (sig
< 1 || sig
> TARGET_NSIG
|| sig
== TARGET_SIGKILL
|| sig
== TARGET_SIGSTOP
) {
843 return -TARGET_EINVAL
;
846 if (block_signals()) {
847 return -TARGET_ERESTARTSYS
;
850 k
= &sigact_table
[sig
- 1];
852 __put_user(k
->_sa_handler
, &oact
->_sa_handler
);
853 __put_user(k
->sa_flags
, &oact
->sa_flags
);
854 #ifdef TARGET_ARCH_HAS_SA_RESTORER
855 __put_user(k
->sa_restorer
, &oact
->sa_restorer
);
858 oact
->sa_mask
= k
->sa_mask
;
861 /* FIXME: This is not threadsafe. */
862 __get_user(k
->_sa_handler
, &act
->_sa_handler
);
863 __get_user(k
->sa_flags
, &act
->sa_flags
);
864 #ifdef TARGET_ARCH_HAS_SA_RESTORER
865 __get_user(k
->sa_restorer
, &act
->sa_restorer
);
867 /* To be swapped in target_to_host_sigset. */
868 k
->sa_mask
= act
->sa_mask
;
870 /* we update the host linux signal state */
871 host_sig
= target_to_host_signal(sig
);
872 trace_signal_do_sigaction_host(host_sig
, TARGET_NSIG
);
873 if (host_sig
> SIGRTMAX
) {
874 /* we don't have enough host signals to map all target signals */
875 qemu_log_mask(LOG_UNIMP
, "Unsupported target signal #%d, ignored\n",
878 * we don't return an error here because some programs try to
879 * register an handler for all possible rt signals even if they
881 * An error here can abort them whereas there can be no problem
882 * to not have the signal available later.
883 * This is the case for golang,
884 * See https://github.com/golang/go/issues/33746
885 * So we silently ignore the error.
889 if (host_sig
!= SIGSEGV
&& host_sig
!= SIGBUS
) {
890 sigfillset(&act1
.sa_mask
);
891 act1
.sa_flags
= SA_SIGINFO
;
892 if (k
->sa_flags
& TARGET_SA_RESTART
)
893 act1
.sa_flags
|= SA_RESTART
;
894 /* NOTE: it is important to update the host kernel signal
895 ignore state to avoid getting unexpected interrupted
897 if (k
->_sa_handler
== TARGET_SIG_IGN
) {
898 act1
.sa_sigaction
= (void *)SIG_IGN
;
899 } else if (k
->_sa_handler
== TARGET_SIG_DFL
) {
900 if (fatal_signal (sig
))
901 act1
.sa_sigaction
= host_signal_handler
;
903 act1
.sa_sigaction
= (void *)SIG_DFL
;
905 act1
.sa_sigaction
= host_signal_handler
;
907 ret
= sigaction(host_sig
, &act1
, NULL
);
913 static void handle_pending_signal(CPUArchState
*cpu_env
, int sig
,
914 struct emulated_sigtable
*k
)
916 CPUState
*cpu
= env_cpu(cpu_env
);
919 target_sigset_t target_old_set
;
920 struct target_sigaction
*sa
;
921 TaskState
*ts
= cpu
->opaque
;
923 trace_user_handle_signal(cpu_env
, sig
);
927 sig
= gdb_handlesig(cpu
, sig
);
930 handler
= TARGET_SIG_IGN
;
932 sa
= &sigact_table
[sig
- 1];
933 handler
= sa
->_sa_handler
;
936 if (unlikely(qemu_loglevel_mask(LOG_STRACE
))) {
937 print_taken_signal(sig
, &k
->info
);
940 if (handler
== TARGET_SIG_DFL
) {
941 /* default handler : ignore some signal. The other are job control or fatal */
942 if (sig
== TARGET_SIGTSTP
|| sig
== TARGET_SIGTTIN
|| sig
== TARGET_SIGTTOU
) {
943 kill(getpid(),SIGSTOP
);
944 } else if (sig
!= TARGET_SIGCHLD
&&
945 sig
!= TARGET_SIGURG
&&
946 sig
!= TARGET_SIGWINCH
&&
947 sig
!= TARGET_SIGCONT
) {
948 dump_core_and_abort(sig
);
950 } else if (handler
== TARGET_SIG_IGN
) {
952 } else if (handler
== TARGET_SIG_ERR
) {
953 dump_core_and_abort(sig
);
955 /* compute the blocked signals during the handler execution */
956 sigset_t
*blocked_set
;
958 target_to_host_sigset(&set
, &sa
->sa_mask
);
959 /* SA_NODEFER indicates that the current signal should not be
960 blocked during the handler */
961 if (!(sa
->sa_flags
& TARGET_SA_NODEFER
))
962 sigaddset(&set
, target_to_host_signal(sig
));
964 /* save the previous blocked signal state to restore it at the
965 end of the signal execution (see do_sigreturn) */
966 host_to_target_sigset_internal(&target_old_set
, &ts
->signal_mask
);
968 /* block signals in the handler */
969 blocked_set
= ts
->in_sigsuspend
?
970 &ts
->sigsuspend_mask
: &ts
->signal_mask
;
971 sigorset(&ts
->signal_mask
, blocked_set
, &set
);
972 ts
->in_sigsuspend
= 0;
974 /* if the CPU is in VM86 mode, we restore the 32 bit values */
975 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
977 CPUX86State
*env
= cpu_env
;
978 if (env
->eflags
& VM_MASK
)
982 /* prepare the stack frame of the virtual CPU */
983 #if defined(TARGET_ARCH_HAS_SETUP_FRAME)
984 if (sa
->sa_flags
& TARGET_SA_SIGINFO
) {
985 setup_rt_frame(sig
, sa
, &k
->info
, &target_old_set
, cpu_env
);
987 setup_frame(sig
, sa
, &target_old_set
, cpu_env
);
990 /* These targets do not have traditional signals. */
991 setup_rt_frame(sig
, sa
, &k
->info
, &target_old_set
, cpu_env
);
993 if (sa
->sa_flags
& TARGET_SA_RESETHAND
) {
994 sa
->_sa_handler
= TARGET_SIG_DFL
;
999 void process_pending_signals(CPUArchState
*cpu_env
)
1001 CPUState
*cpu
= env_cpu(cpu_env
);
1003 TaskState
*ts
= cpu
->opaque
;
1005 sigset_t
*blocked_set
;
1007 while (qatomic_read(&ts
->signal_pending
)) {
1008 /* FIXME: This is not threadsafe. */
1010 sigprocmask(SIG_SETMASK
, &set
, 0);
1013 sig
= ts
->sync_signal
.pending
;
1015 /* Synchronous signals are forced,
1016 * see force_sig_info() and callers in Linux
1017 * Note that not all of our queue_signal() calls in QEMU correspond
1018 * to force_sig_info() calls in Linux (some are send_sig_info()).
1019 * However it seems like a kernel bug to me to allow the process
1020 * to block a synchronous signal since it could then just end up
1021 * looping round and round indefinitely.
1023 if (sigismember(&ts
->signal_mask
, target_to_host_signal_table
[sig
])
1024 || sigact_table
[sig
- 1]._sa_handler
== TARGET_SIG_IGN
) {
1025 sigdelset(&ts
->signal_mask
, target_to_host_signal_table
[sig
]);
1026 sigact_table
[sig
- 1]._sa_handler
= TARGET_SIG_DFL
;
1029 handle_pending_signal(cpu_env
, sig
, &ts
->sync_signal
);
1032 for (sig
= 1; sig
<= TARGET_NSIG
; sig
++) {
1033 blocked_set
= ts
->in_sigsuspend
?
1034 &ts
->sigsuspend_mask
: &ts
->signal_mask
;
1036 if (ts
->sigtab
[sig
- 1].pending
&&
1037 (!sigismember(blocked_set
,
1038 target_to_host_signal_table
[sig
]))) {
1039 handle_pending_signal(cpu_env
, sig
, &ts
->sigtab
[sig
- 1]);
1040 /* Restart scan from the beginning, as handle_pending_signal
1041 * might have resulted in a new synchronous signal (eg SIGSEGV).
1047 /* if no signal is pending, unblock signals and recheck (the act
1048 * of unblocking might cause us to take another host signal which
1049 * will set signal_pending again).
1051 qatomic_set(&ts
->signal_pending
, 0);
1052 ts
->in_sigsuspend
= 0;
1053 set
= ts
->signal_mask
;
1054 sigdelset(&set
, SIGSEGV
);
1055 sigdelset(&set
, SIGBUS
);
1056 sigprocmask(SIG_SETMASK
, &set
, 0);
1058 ts
->in_sigsuspend
= 0;