Merge tag 'v9.0.0-rc3'
[qemu/ar7.git] / linux-user / signal.c
blob05dc4afb524b38f3c99698d5bb64f0f36188e4a7
1 /*
2 * Emulation of Linux signals
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "gdbstub/user.h"
22 #include "hw/core/tcg-cpu-ops.h"
24 #include <sys/ucontext.h>
25 #include <sys/resource.h>
27 #include "qemu.h"
28 #include "user-internals.h"
29 #include "strace.h"
30 #include "loader.h"
31 #include "trace.h"
32 #include "signal-common.h"
33 #include "host-signal.h"
34 #include "user/safe-syscall.h"
35 #include "tcg/tcg.h"
37 /* target_siginfo_t must fit in gdbstub's siginfo save area. */
38 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH);
40 static struct target_sigaction sigact_table[TARGET_NSIG];
42 static void host_signal_handler(int host_signum, siginfo_t *info,
43 void *puc);
45 /* Fallback addresses into sigtramp page. */
46 abi_ulong default_sigreturn;
47 abi_ulong default_rt_sigreturn;
50 * System includes define _NSIG as SIGRTMAX + 1, but qemu (like the kernel)
51 * defines TARGET_NSIG as TARGET_SIGRTMAX and the first signal is 1.
52 * Signal number 0 is reserved for use as kill(pid, 0), to test whether
53 * a process exists without sending it a signal.
55 #ifdef __SIGRTMAX
56 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG);
57 #endif
58 static uint8_t host_to_target_signal_table[_NSIG] = {
59 #define MAKE_SIG_ENTRY(sig) [sig] = TARGET_##sig,
60 MAKE_SIGNAL_LIST
61 #undef MAKE_SIG_ENTRY
64 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1];
66 /* valid sig is between 1 and _NSIG - 1 */
67 int host_to_target_signal(int sig)
69 if (sig < 1) {
70 return sig;
72 if (sig >= _NSIG) {
73 return TARGET_NSIG + 1;
75 return host_to_target_signal_table[sig];
78 /* valid sig is between 1 and TARGET_NSIG */
79 int target_to_host_signal(int sig)
81 if (sig < 1) {
82 return sig;
84 if (sig > TARGET_NSIG) {
85 return _NSIG;
87 return target_to_host_signal_table[sig];
90 static inline void target_sigaddset(target_sigset_t *set, int signum)
92 signum--;
93 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
94 set->sig[signum / TARGET_NSIG_BPW] |= mask;
97 static inline int target_sigismember(const target_sigset_t *set, int signum)
99 signum--;
100 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
101 return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0);
104 void host_to_target_sigset_internal(target_sigset_t *d,
105 const sigset_t *s)
107 int host_sig, target_sig;
108 target_sigemptyset(d);
109 for (host_sig = 1; host_sig < _NSIG; host_sig++) {
110 target_sig = host_to_target_signal(host_sig);
111 if (target_sig < 1 || target_sig > TARGET_NSIG) {
112 continue;
114 if (sigismember(s, host_sig)) {
115 target_sigaddset(d, target_sig);
120 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
122 target_sigset_t d1;
123 int i;
125 host_to_target_sigset_internal(&d1, s);
126 for(i = 0;i < TARGET_NSIG_WORDS; i++)
127 d->sig[i] = tswapal(d1.sig[i]);
130 void target_to_host_sigset_internal(sigset_t *d,
131 const target_sigset_t *s)
133 int host_sig, target_sig;
134 sigemptyset(d);
135 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) {
136 host_sig = target_to_host_signal(target_sig);
137 if (host_sig < 1 || host_sig >= _NSIG) {
138 continue;
140 if (target_sigismember(s, target_sig)) {
141 sigaddset(d, host_sig);
146 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
148 target_sigset_t s1;
149 int i;
151 for(i = 0;i < TARGET_NSIG_WORDS; i++)
152 s1.sig[i] = tswapal(s->sig[i]);
153 target_to_host_sigset_internal(d, &s1);
156 void host_to_target_old_sigset(abi_ulong *old_sigset,
157 const sigset_t *sigset)
159 target_sigset_t d;
160 host_to_target_sigset(&d, sigset);
161 *old_sigset = d.sig[0];
164 void target_to_host_old_sigset(sigset_t *sigset,
165 const abi_ulong *old_sigset)
167 target_sigset_t d;
168 int i;
170 d.sig[0] = *old_sigset;
171 for(i = 1;i < TARGET_NSIG_WORDS; i++)
172 d.sig[i] = 0;
173 target_to_host_sigset(sigset, &d);
176 int block_signals(void)
178 TaskState *ts = get_task_state(thread_cpu);
179 sigset_t set;
181 /* It's OK to block everything including SIGSEGV, because we won't
182 * run any further guest code before unblocking signals in
183 * process_pending_signals().
185 sigfillset(&set);
186 sigprocmask(SIG_SETMASK, &set, 0);
188 return qatomic_xchg(&ts->signal_pending, 1);
191 /* Wrapper for sigprocmask function
192 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset
193 * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if
194 * a signal was already pending and the syscall must be restarted, or
195 * 0 on success.
196 * If set is NULL, this is guaranteed not to fail.
198 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
200 TaskState *ts = get_task_state(thread_cpu);
202 if (oldset) {
203 *oldset = ts->signal_mask;
206 if (set) {
207 int i;
209 if (block_signals()) {
210 return -QEMU_ERESTARTSYS;
213 switch (how) {
214 case SIG_BLOCK:
215 sigorset(&ts->signal_mask, &ts->signal_mask, set);
216 break;
217 case SIG_UNBLOCK:
218 for (i = 1; i <= NSIG; ++i) {
219 if (sigismember(set, i)) {
220 sigdelset(&ts->signal_mask, i);
223 break;
224 case SIG_SETMASK:
225 ts->signal_mask = *set;
226 break;
227 default:
228 g_assert_not_reached();
231 /* Silently ignore attempts to change blocking status of KILL or STOP */
232 sigdelset(&ts->signal_mask, SIGKILL);
233 sigdelset(&ts->signal_mask, SIGSTOP);
235 return 0;
238 /* Just set the guest's signal mask to the specified value; the
239 * caller is assumed to have called block_signals() already.
241 void set_sigmask(const sigset_t *set)
243 TaskState *ts = get_task_state(thread_cpu);
245 ts->signal_mask = *set;
248 /* sigaltstack management */
250 int on_sig_stack(unsigned long sp)
252 TaskState *ts = get_task_state(thread_cpu);
254 return (sp - ts->sigaltstack_used.ss_sp
255 < ts->sigaltstack_used.ss_size);
258 int sas_ss_flags(unsigned long sp)
260 TaskState *ts = get_task_state(thread_cpu);
262 return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE
263 : on_sig_stack(sp) ? SS_ONSTACK : 0);
266 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka)
269 * This is the X/Open sanctioned signal stack switching.
271 TaskState *ts = get_task_state(thread_cpu);
273 if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) {
274 return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
276 return sp;
279 void target_save_altstack(target_stack_t *uss, CPUArchState *env)
281 TaskState *ts = get_task_state(thread_cpu);
283 __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp);
284 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags);
285 __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size);
288 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env)
290 TaskState *ts = get_task_state(thread_cpu);
291 size_t minstacksize = TARGET_MINSIGSTKSZ;
292 target_stack_t ss;
294 #if defined(TARGET_PPC64)
295 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */
296 struct image_info *image = ts->info;
297 if (get_ppc64_abi(image) > 1) {
298 minstacksize = 4096;
300 #endif
302 __get_user(ss.ss_sp, &uss->ss_sp);
303 __get_user(ss.ss_size, &uss->ss_size);
304 __get_user(ss.ss_flags, &uss->ss_flags);
306 if (on_sig_stack(get_sp_from_cpustate(env))) {
307 return -TARGET_EPERM;
310 switch (ss.ss_flags) {
311 default:
312 return -TARGET_EINVAL;
314 case TARGET_SS_DISABLE:
315 ss.ss_size = 0;
316 ss.ss_sp = 0;
317 break;
319 case TARGET_SS_ONSTACK:
320 case 0:
321 if (ss.ss_size < minstacksize) {
322 return -TARGET_ENOMEM;
324 break;
327 ts->sigaltstack_used.ss_sp = ss.ss_sp;
328 ts->sigaltstack_used.ss_size = ss.ss_size;
329 return 0;
332 /* siginfo conversion */
334 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
335 const siginfo_t *info)
337 int sig = host_to_target_signal(info->si_signo);
338 int si_code = info->si_code;
339 int si_type;
340 tinfo->si_signo = sig;
341 tinfo->si_errno = 0;
342 tinfo->si_code = info->si_code;
344 /* This memset serves two purposes:
345 * (1) ensure we don't leak random junk to the guest later
346 * (2) placate false positives from gcc about fields
347 * being used uninitialized if it chooses to inline both this
348 * function and tswap_siginfo() into host_to_target_siginfo().
350 memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad));
352 /* This is awkward, because we have to use a combination of
353 * the si_code and si_signo to figure out which of the union's
354 * members are valid. (Within the host kernel it is always possible
355 * to tell, but the kernel carefully avoids giving userspace the
356 * high 16 bits of si_code, so we don't have the information to
357 * do this the easy way...) We therefore make our best guess,
358 * bearing in mind that a guest can spoof most of the si_codes
359 * via rt_sigqueueinfo() if it likes.
361 * Once we have made our guess, we record it in the top 16 bits of
362 * the si_code, so that tswap_siginfo() later can use it.
363 * tswap_siginfo() will strip these top bits out before writing
364 * si_code to the guest (sign-extending the lower bits).
367 switch (si_code) {
368 case SI_USER:
369 case SI_TKILL:
370 case SI_KERNEL:
371 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel.
372 * These are the only unspoofable si_code values.
374 tinfo->_sifields._kill._pid = info->si_pid;
375 tinfo->_sifields._kill._uid = info->si_uid;
376 si_type = QEMU_SI_KILL;
377 break;
378 default:
379 /* Everything else is spoofable. Make best guess based on signal */
380 switch (sig) {
381 case TARGET_SIGCHLD:
382 tinfo->_sifields._sigchld._pid = info->si_pid;
383 tinfo->_sifields._sigchld._uid = info->si_uid;
384 if (si_code == CLD_EXITED)
385 tinfo->_sifields._sigchld._status = info->si_status;
386 else
387 tinfo->_sifields._sigchld._status
388 = host_to_target_signal(info->si_status & 0x7f)
389 | (info->si_status & ~0x7f);
390 tinfo->_sifields._sigchld._utime = info->si_utime;
391 tinfo->_sifields._sigchld._stime = info->si_stime;
392 si_type = QEMU_SI_CHLD;
393 break;
394 case TARGET_SIGIO:
395 tinfo->_sifields._sigpoll._band = info->si_band;
396 tinfo->_sifields._sigpoll._fd = info->si_fd;
397 si_type = QEMU_SI_POLL;
398 break;
399 default:
400 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */
401 tinfo->_sifields._rt._pid = info->si_pid;
402 tinfo->_sifields._rt._uid = info->si_uid;
403 /* XXX: potential problem if 64 bit */
404 tinfo->_sifields._rt._sigval.sival_ptr
405 = (abi_ulong)(unsigned long)info->si_value.sival_ptr;
406 si_type = QEMU_SI_RT;
407 break;
409 break;
412 tinfo->si_code = deposit32(si_code, 16, 16, si_type);
415 static void tswap_siginfo(target_siginfo_t *tinfo,
416 const target_siginfo_t *info)
418 int si_type = extract32(info->si_code, 16, 16);
419 int si_code = sextract32(info->si_code, 0, 16);
421 __put_user(info->si_signo, &tinfo->si_signo);
422 __put_user(info->si_errno, &tinfo->si_errno);
423 __put_user(si_code, &tinfo->si_code);
425 /* We can use our internal marker of which fields in the structure
426 * are valid, rather than duplicating the guesswork of
427 * host_to_target_siginfo_noswap() here.
429 switch (si_type) {
430 case QEMU_SI_KILL:
431 __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid);
432 __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid);
433 break;
434 case QEMU_SI_TIMER:
435 __put_user(info->_sifields._timer._timer1,
436 &tinfo->_sifields._timer._timer1);
437 __put_user(info->_sifields._timer._timer2,
438 &tinfo->_sifields._timer._timer2);
439 break;
440 case QEMU_SI_POLL:
441 __put_user(info->_sifields._sigpoll._band,
442 &tinfo->_sifields._sigpoll._band);
443 __put_user(info->_sifields._sigpoll._fd,
444 &tinfo->_sifields._sigpoll._fd);
445 break;
446 case QEMU_SI_FAULT:
447 __put_user(info->_sifields._sigfault._addr,
448 &tinfo->_sifields._sigfault._addr);
449 break;
450 case QEMU_SI_CHLD:
451 __put_user(info->_sifields._sigchld._pid,
452 &tinfo->_sifields._sigchld._pid);
453 __put_user(info->_sifields._sigchld._uid,
454 &tinfo->_sifields._sigchld._uid);
455 __put_user(info->_sifields._sigchld._status,
456 &tinfo->_sifields._sigchld._status);
457 __put_user(info->_sifields._sigchld._utime,
458 &tinfo->_sifields._sigchld._utime);
459 __put_user(info->_sifields._sigchld._stime,
460 &tinfo->_sifields._sigchld._stime);
461 break;
462 case QEMU_SI_RT:
463 __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid);
464 __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid);
465 __put_user(info->_sifields._rt._sigval.sival_ptr,
466 &tinfo->_sifields._rt._sigval.sival_ptr);
467 break;
468 default:
469 g_assert_not_reached();
473 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
475 target_siginfo_t tgt_tmp;
476 host_to_target_siginfo_noswap(&tgt_tmp, info);
477 tswap_siginfo(tinfo, &tgt_tmp);
480 /* XXX: we support only POSIX RT signals are used. */
481 /* XXX: find a solution for 64 bit (additional malloced data is needed) */
482 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
484 /* This conversion is used only for the rt_sigqueueinfo syscall,
485 * and so we know that the _rt fields are the valid ones.
487 abi_ulong sival_ptr;
489 __get_user(info->si_signo, &tinfo->si_signo);
490 __get_user(info->si_errno, &tinfo->si_errno);
491 __get_user(info->si_code, &tinfo->si_code);
492 __get_user(info->si_pid, &tinfo->_sifields._rt._pid);
493 __get_user(info->si_uid, &tinfo->_sifields._rt._uid);
494 __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr);
495 info->si_value.sival_ptr = (void *)(long)sival_ptr;
498 /* returns 1 if given signal should dump core if not handled */
499 static int core_dump_signal(int sig)
501 switch (sig) {
502 case TARGET_SIGABRT:
503 case TARGET_SIGFPE:
504 case TARGET_SIGILL:
505 case TARGET_SIGQUIT:
506 case TARGET_SIGSEGV:
507 case TARGET_SIGTRAP:
508 case TARGET_SIGBUS:
509 return (1);
510 default:
511 return (0);
515 static void signal_table_init(void)
517 int hsig, tsig, count;
520 * Signals are supported starting from TARGET_SIGRTMIN and going up
521 * until we run out of host realtime signals. Glibc uses the lower 2
522 * RT signals and (hopefully) nobody uses the upper ones.
523 * This is why SIGRTMIN (34) is generally greater than __SIGRTMIN (32).
524 * To fix this properly we would need to do manual signal delivery
525 * multiplexed over a single host signal.
526 * Attempts for configure "missing" signals via sigaction will be
527 * silently ignored.
529 * Remap the target SIGABRT, so that we can distinguish host abort
530 * from guest abort. When the guest registers a signal handler or
531 * calls raise(SIGABRT), the host will raise SIG_RTn. If the guest
532 * arrives at dump_core_and_abort(), we will map back to host SIGABRT
533 * so that the parent (native or emulated) sees the correct signal.
534 * Finally, also map host to guest SIGABRT so that the emulated
535 * parent sees the correct mapping from wait status.
538 hsig = SIGRTMIN;
539 host_to_target_signal_table[SIGABRT] = 0;
540 host_to_target_signal_table[hsig++] = TARGET_SIGABRT;
542 for (tsig = TARGET_SIGRTMIN;
543 hsig <= SIGRTMAX && tsig <= TARGET_NSIG;
544 hsig++, tsig++) {
545 host_to_target_signal_table[hsig] = tsig;
548 /* Invert the mapping that has already been assigned. */
549 for (hsig = 1; hsig < _NSIG; hsig++) {
550 tsig = host_to_target_signal_table[hsig];
551 if (tsig) {
552 assert(target_to_host_signal_table[tsig] == 0);
553 target_to_host_signal_table[tsig] = hsig;
557 host_to_target_signal_table[SIGABRT] = TARGET_SIGABRT;
559 /* Map everything else out-of-bounds. */
560 for (hsig = 1; hsig < _NSIG; hsig++) {
561 if (host_to_target_signal_table[hsig] == 0) {
562 host_to_target_signal_table[hsig] = TARGET_NSIG + 1;
565 for (count = 0, tsig = 1; tsig <= TARGET_NSIG; tsig++) {
566 if (target_to_host_signal_table[tsig] == 0) {
567 target_to_host_signal_table[tsig] = _NSIG;
568 count++;
572 trace_signal_table_init(count);
575 void signal_init(void)
577 TaskState *ts = get_task_state(thread_cpu);
578 struct sigaction act, oact;
580 /* initialize signal conversion tables */
581 signal_table_init();
583 /* Set the signal mask from the host mask. */
584 sigprocmask(0, 0, &ts->signal_mask);
586 sigfillset(&act.sa_mask);
587 act.sa_flags = SA_SIGINFO;
588 act.sa_sigaction = host_signal_handler;
591 * A parent process may configure ignored signals, but all other
592 * signals are default. For any target signals that have no host
593 * mapping, set to ignore. For all core_dump_signal, install our
594 * host signal handler so that we may invoke dump_core_and_abort.
595 * This includes SIGSEGV and SIGBUS, which are also need our signal
596 * handler for paging and exceptions.
598 for (int tsig = 1; tsig <= TARGET_NSIG; tsig++) {
599 int hsig = target_to_host_signal(tsig);
600 abi_ptr thand = TARGET_SIG_IGN;
602 if (hsig >= _NSIG) {
603 continue;
606 /* As we force remap SIGABRT, cannot probe and install in one step. */
607 if (tsig == TARGET_SIGABRT) {
608 sigaction(SIGABRT, NULL, &oact);
609 sigaction(hsig, &act, NULL);
610 } else {
611 struct sigaction *iact = core_dump_signal(tsig) ? &act : NULL;
612 sigaction(hsig, iact, &oact);
615 if (oact.sa_sigaction != (void *)SIG_IGN) {
616 thand = TARGET_SIG_DFL;
618 sigact_table[tsig - 1]._sa_handler = thand;
622 /* Force a synchronously taken signal. The kernel force_sig() function
623 * also forces the signal to "not blocked, not ignored", but for QEMU
624 * that work is done in process_pending_signals().
626 void force_sig(int sig)
628 CPUState *cpu = thread_cpu;
629 target_siginfo_t info = {};
631 info.si_signo = sig;
632 info.si_errno = 0;
633 info.si_code = TARGET_SI_KERNEL;
634 info._sifields._kill._pid = 0;
635 info._sifields._kill._uid = 0;
636 queue_signal(cpu_env(cpu), info.si_signo, QEMU_SI_KILL, &info);
640 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
641 * 'force' part is handled in process_pending_signals().
643 void force_sig_fault(int sig, int code, abi_ulong addr)
645 CPUState *cpu = thread_cpu;
646 target_siginfo_t info = {};
648 info.si_signo = sig;
649 info.si_errno = 0;
650 info.si_code = code;
651 info._sifields._sigfault._addr = addr;
652 queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info);
655 /* Force a SIGSEGV if we couldn't write to memory trying to set
656 * up the signal frame. oldsig is the signal we were trying to handle
657 * at the point of failure.
659 #if !defined(TARGET_RISCV)
660 void force_sigsegv(int oldsig)
662 if (oldsig == SIGSEGV) {
663 /* Make sure we don't try to deliver the signal again; this will
664 * end up with handle_pending_signal() calling dump_core_and_abort().
666 sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL;
668 force_sig(TARGET_SIGSEGV);
670 #endif
672 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
673 MMUAccessType access_type, bool maperr, uintptr_t ra)
675 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
677 if (tcg_ops->record_sigsegv) {
678 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
681 force_sig_fault(TARGET_SIGSEGV,
682 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
683 addr);
684 cpu->exception_index = EXCP_INTERRUPT;
685 cpu_loop_exit_restore(cpu, ra);
688 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
689 MMUAccessType access_type, uintptr_t ra)
691 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
693 if (tcg_ops->record_sigbus) {
694 tcg_ops->record_sigbus(cpu, addr, access_type, ra);
697 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
698 cpu->exception_index = EXCP_INTERRUPT;
699 cpu_loop_exit_restore(cpu, ra);
702 /* abort execution with signal */
703 static G_NORETURN
704 void die_with_signal(int host_sig)
706 struct sigaction act = {
707 .sa_handler = SIG_DFL,
711 * The proper exit code for dying from an uncaught signal is -<signal>.
712 * The kernel doesn't allow exit() or _exit() to pass a negative value.
713 * To get the proper exit code we need to actually die from an uncaught
714 * signal. Here the default signal handler is installed, we send
715 * the signal and we wait for it to arrive.
717 sigfillset(&act.sa_mask);
718 sigaction(host_sig, &act, NULL);
720 kill(getpid(), host_sig);
722 /* Make sure the signal isn't masked (reusing the mask inside of act). */
723 sigdelset(&act.sa_mask, host_sig);
724 sigsuspend(&act.sa_mask);
726 /* unreachable */
727 _exit(EXIT_FAILURE);
730 static G_NORETURN
731 void dump_core_and_abort(CPUArchState *env, int target_sig)
733 CPUState *cpu = env_cpu(env);
734 TaskState *ts = get_task_state(cpu);
735 int host_sig, core_dumped = 0;
737 /* On exit, undo the remapping of SIGABRT. */
738 if (target_sig == TARGET_SIGABRT) {
739 host_sig = SIGABRT;
740 } else {
741 host_sig = target_to_host_signal(target_sig);
743 trace_user_dump_core_and_abort(env, target_sig, host_sig);
744 gdb_signalled(env, target_sig);
746 /* dump core if supported by target binary format */
747 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
748 stop_all_tasks();
749 core_dumped =
750 ((*ts->bprm->core_dump)(target_sig, env) == 0);
752 if (core_dumped) {
753 /* we already dumped the core of target process, we don't want
754 * a coredump of qemu itself */
755 struct rlimit nodump;
756 getrlimit(RLIMIT_CORE, &nodump);
757 nodump.rlim_cur=0;
758 setrlimit(RLIMIT_CORE, &nodump);
759 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n",
760 target_sig, strsignal(host_sig), "core dumped" );
763 preexit_cleanup(env, 128 + target_sig);
764 die_with_signal(host_sig);
767 /* queue a signal so that it will be send to the virtual CPU as soon
768 as possible */
769 void queue_signal(CPUArchState *env, int sig, int si_type,
770 target_siginfo_t *info)
772 CPUState *cpu = env_cpu(env);
773 TaskState *ts = get_task_state(cpu);
775 trace_user_queue_signal(env, sig);
777 info->si_code = deposit32(info->si_code, 16, 16, si_type);
779 ts->sync_signal.info = *info;
780 ts->sync_signal.pending = sig;
781 /* signal that a new signal is pending */
782 qatomic_set(&ts->signal_pending, 1);
786 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
787 static inline void rewind_if_in_safe_syscall(void *puc)
789 host_sigcontext *uc = (host_sigcontext *)puc;
790 uintptr_t pcreg = host_signal_pc(uc);
792 if (pcreg > (uintptr_t)safe_syscall_start
793 && pcreg < (uintptr_t)safe_syscall_end) {
794 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
798 static G_NORETURN
799 void die_from_signal(siginfo_t *info)
801 char sigbuf[4], codebuf[12];
802 const char *sig, *code = NULL;
804 switch (info->si_signo) {
805 case SIGSEGV:
806 sig = "SEGV";
807 switch (info->si_code) {
808 case SEGV_MAPERR:
809 code = "MAPERR";
810 break;
811 case SEGV_ACCERR:
812 code = "ACCERR";
813 break;
815 break;
816 case SIGBUS:
817 sig = "BUS";
818 switch (info->si_code) {
819 case BUS_ADRALN:
820 code = "ADRALN";
821 break;
822 case BUS_ADRERR:
823 code = "ADRERR";
824 break;
826 break;
827 case SIGILL:
828 sig = "ILL";
829 switch (info->si_code) {
830 case ILL_ILLOPC:
831 code = "ILLOPC";
832 break;
833 case ILL_ILLOPN:
834 code = "ILLOPN";
835 break;
836 case ILL_ILLADR:
837 code = "ILLADR";
838 break;
839 case ILL_PRVOPC:
840 code = "PRVOPC";
841 break;
842 case ILL_PRVREG:
843 code = "PRVREG";
844 break;
845 case ILL_COPROC:
846 code = "COPROC";
847 break;
849 break;
850 case SIGFPE:
851 sig = "FPE";
852 switch (info->si_code) {
853 case FPE_INTDIV:
854 code = "INTDIV";
855 break;
856 case FPE_INTOVF:
857 code = "INTOVF";
858 break;
860 break;
861 case SIGTRAP:
862 sig = "TRAP";
863 break;
864 default:
865 snprintf(sigbuf, sizeof(sigbuf), "%d", info->si_signo);
866 sig = sigbuf;
867 break;
869 if (code == NULL) {
870 snprintf(codebuf, sizeof(sigbuf), "%d", info->si_code);
871 code = codebuf;
874 error_report("QEMU internal SIG%s {code=%s, addr=%p}",
875 sig, code, info->si_addr);
876 die_with_signal(info->si_signo);
879 static void host_sigsegv_handler(CPUState *cpu, siginfo_t *info,
880 host_sigcontext *uc)
882 uintptr_t host_addr = (uintptr_t)info->si_addr;
884 * Convert forcefully to guest address space: addresses outside
885 * reserved_va are still valid to report via SEGV_MAPERR.
887 bool is_valid = h2g_valid(host_addr);
888 abi_ptr guest_addr = h2g_nocheck(host_addr);
889 uintptr_t pc = host_signal_pc(uc);
890 bool is_write = host_signal_write(info, uc);
891 MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
892 bool maperr;
894 /* If this was a write to a TB protected page, restart. */
895 if (is_write
896 && is_valid
897 && info->si_code == SEGV_ACCERR
898 && handle_sigsegv_accerr_write(cpu, host_signal_mask(uc),
899 pc, guest_addr)) {
900 return;
904 * If the access was not on behalf of the guest, within the executable
905 * mapping of the generated code buffer, then it is a host bug.
907 if (access_type != MMU_INST_FETCH
908 && !in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
909 die_from_signal(info);
912 maperr = true;
913 if (is_valid && info->si_code == SEGV_ACCERR) {
915 * With reserved_va, the whole address space is PROT_NONE,
916 * which means that we may get ACCERR when we want MAPERR.
918 if (page_get_flags(guest_addr) & PAGE_VALID) {
919 maperr = false;
920 } else {
921 info->si_code = SEGV_MAPERR;
925 sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
926 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
929 static uintptr_t host_sigbus_handler(CPUState *cpu, siginfo_t *info,
930 host_sigcontext *uc)
932 uintptr_t pc = host_signal_pc(uc);
933 bool is_write = host_signal_write(info, uc);
934 MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
937 * If the access was not on behalf of the guest, within the executable
938 * mapping of the generated code buffer, then it is a host bug.
940 if (!in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
941 die_from_signal(info);
944 if (info->si_code == BUS_ADRALN) {
945 uintptr_t host_addr = (uintptr_t)info->si_addr;
946 abi_ptr guest_addr = h2g_nocheck(host_addr);
948 sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
949 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
951 return pc;
954 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
956 CPUState *cpu = thread_cpu;
957 CPUArchState *env = cpu_env(cpu);
958 TaskState *ts = get_task_state(cpu);
959 target_siginfo_t tinfo;
960 host_sigcontext *uc = puc;
961 struct emulated_sigtable *k;
962 int guest_sig;
963 uintptr_t pc = 0;
964 bool sync_sig = false;
965 void *sigmask;
968 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
969 * handling wrt signal blocking and unwinding. Non-spoofed SIGILL,
970 * SIGFPE, SIGTRAP are always host bugs.
972 if (info->si_code > 0) {
973 switch (host_sig) {
974 case SIGSEGV:
975 /* Only returns on handle_sigsegv_accerr_write success. */
976 host_sigsegv_handler(cpu, info, uc);
977 return;
978 case SIGBUS:
979 pc = host_sigbus_handler(cpu, info, uc);
980 sync_sig = true;
981 break;
982 case SIGILL:
983 case SIGFPE:
984 case SIGTRAP:
985 die_from_signal(info);
989 /* get target signal number */
990 guest_sig = host_to_target_signal(host_sig);
991 if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
992 return;
994 trace_user_host_signal(env, host_sig, guest_sig);
996 host_to_target_siginfo_noswap(&tinfo, info);
997 k = &ts->sigtab[guest_sig - 1];
998 k->info = tinfo;
999 k->pending = guest_sig;
1000 ts->signal_pending = 1;
1003 * For synchronous signals, unwind the cpu state to the faulting
1004 * insn and then exit back to the main loop so that the signal
1005 * is delivered immediately.
1007 if (sync_sig) {
1008 cpu->exception_index = EXCP_INTERRUPT;
1009 cpu_loop_exit_restore(cpu, pc);
1012 rewind_if_in_safe_syscall(puc);
1015 * Block host signals until target signal handler entered. We
1016 * can't block SIGSEGV or SIGBUS while we're executing guest
1017 * code in case the guest code provokes one in the window between
1018 * now and it getting out to the main loop. Signals will be
1019 * unblocked again in process_pending_signals().
1021 * WARNING: we cannot use sigfillset() here because the sigmask
1022 * field is a kernel sigset_t, which is much smaller than the
1023 * libc sigset_t which sigfillset() operates on. Using sigfillset()
1024 * would write 0xff bytes off the end of the structure and trash
1025 * data on the struct.
1027 sigmask = host_signal_mask(uc);
1028 memset(sigmask, 0xff, SIGSET_T_SIZE);
1029 sigdelset(sigmask, SIGSEGV);
1030 sigdelset(sigmask, SIGBUS);
1032 /* interrupt the virtual CPU as soon as possible */
1033 cpu_exit(thread_cpu);
1036 /* do_sigaltstack() returns target values and errnos. */
1037 /* compare linux/kernel/signal.c:do_sigaltstack() */
1038 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr,
1039 CPUArchState *env)
1041 target_stack_t oss, *uoss = NULL;
1042 abi_long ret = -TARGET_EFAULT;
1044 if (uoss_addr) {
1045 /* Verify writability now, but do not alter user memory yet. */
1046 if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) {
1047 goto out;
1049 target_save_altstack(&oss, env);
1052 if (uss_addr) {
1053 target_stack_t *uss;
1055 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
1056 goto out;
1058 ret = target_restore_altstack(uss, env);
1059 if (ret) {
1060 goto out;
1064 if (uoss_addr) {
1065 memcpy(uoss, &oss, sizeof(oss));
1066 unlock_user_struct(uoss, uoss_addr, 1);
1067 uoss = NULL;
1069 ret = 0;
1071 out:
1072 if (uoss) {
1073 unlock_user_struct(uoss, uoss_addr, 0);
1075 return ret;
1078 /* do_sigaction() return target values and host errnos */
1079 int do_sigaction(int sig, const struct target_sigaction *act,
1080 struct target_sigaction *oact, abi_ulong ka_restorer)
1082 struct target_sigaction *k;
1083 int host_sig;
1084 int ret = 0;
1086 trace_signal_do_sigaction_guest(sig, TARGET_NSIG);
1088 if (sig < 1 || sig > TARGET_NSIG) {
1089 return -TARGET_EINVAL;
1092 if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) {
1093 return -TARGET_EINVAL;
1096 if (block_signals()) {
1097 return -QEMU_ERESTARTSYS;
1100 k = &sigact_table[sig - 1];
1101 if (oact) {
1102 __put_user(k->_sa_handler, &oact->_sa_handler);
1103 __put_user(k->sa_flags, &oact->sa_flags);
1104 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1105 __put_user(k->sa_restorer, &oact->sa_restorer);
1106 #endif
1107 /* Not swapped. */
1108 oact->sa_mask = k->sa_mask;
1110 if (act) {
1111 __get_user(k->_sa_handler, &act->_sa_handler);
1112 __get_user(k->sa_flags, &act->sa_flags);
1113 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1114 __get_user(k->sa_restorer, &act->sa_restorer);
1115 #endif
1116 #ifdef TARGET_ARCH_HAS_KA_RESTORER
1117 k->ka_restorer = ka_restorer;
1118 #endif
1119 /* To be swapped in target_to_host_sigset. */
1120 k->sa_mask = act->sa_mask;
1122 /* we update the host linux signal state */
1123 host_sig = target_to_host_signal(sig);
1124 trace_signal_do_sigaction_host(host_sig, TARGET_NSIG);
1125 if (host_sig > SIGRTMAX) {
1126 /* we don't have enough host signals to map all target signals */
1127 qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n",
1128 sig);
1130 * we don't return an error here because some programs try to
1131 * register an handler for all possible rt signals even if they
1132 * don't need it.
1133 * An error here can abort them whereas there can be no problem
1134 * to not have the signal available later.
1135 * This is the case for golang,
1136 * See https://github.com/golang/go/issues/33746
1137 * So we silently ignore the error.
1139 return 0;
1141 if (host_sig != SIGSEGV && host_sig != SIGBUS) {
1142 struct sigaction act1;
1144 sigfillset(&act1.sa_mask);
1145 act1.sa_flags = SA_SIGINFO;
1146 if (k->_sa_handler == TARGET_SIG_IGN) {
1148 * It is important to update the host kernel signal ignore
1149 * state to avoid getting unexpected interrupted syscalls.
1151 act1.sa_sigaction = (void *)SIG_IGN;
1152 } else if (k->_sa_handler == TARGET_SIG_DFL) {
1153 if (core_dump_signal(sig)) {
1154 act1.sa_sigaction = host_signal_handler;
1155 } else {
1156 act1.sa_sigaction = (void *)SIG_DFL;
1158 } else {
1159 act1.sa_sigaction = host_signal_handler;
1160 if (k->sa_flags & TARGET_SA_RESTART) {
1161 act1.sa_flags |= SA_RESTART;
1164 ret = sigaction(host_sig, &act1, NULL);
1167 return ret;
1170 static void handle_pending_signal(CPUArchState *cpu_env, int sig,
1171 struct emulated_sigtable *k)
1173 CPUState *cpu = env_cpu(cpu_env);
1174 abi_ulong handler;
1175 sigset_t set;
1176 target_siginfo_t unswapped;
1177 target_sigset_t target_old_set;
1178 struct target_sigaction *sa;
1179 TaskState *ts = get_task_state(cpu);
1181 trace_user_handle_signal(cpu_env, sig);
1182 /* dequeue signal */
1183 k->pending = 0;
1186 * Writes out siginfo values byteswapped, accordingly to the target.
1187 * It also cleans the si_type from si_code making it correct for
1188 * the target. We must hold on to the original unswapped copy for
1189 * strace below, because si_type is still required there.
1191 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
1192 unswapped = k->info;
1194 tswap_siginfo(&k->info, &k->info);
1196 sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info));
1197 if (!sig) {
1198 sa = NULL;
1199 handler = TARGET_SIG_IGN;
1200 } else {
1201 sa = &sigact_table[sig - 1];
1202 handler = sa->_sa_handler;
1205 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
1206 print_taken_signal(sig, &unswapped);
1209 if (handler == TARGET_SIG_DFL) {
1210 /* default handler : ignore some signal. The other are job control or fatal */
1211 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) {
1212 kill(getpid(),SIGSTOP);
1213 } else if (sig != TARGET_SIGCHLD &&
1214 sig != TARGET_SIGURG &&
1215 sig != TARGET_SIGWINCH &&
1216 sig != TARGET_SIGCONT) {
1217 dump_core_and_abort(cpu_env, sig);
1219 } else if (handler == TARGET_SIG_IGN) {
1220 /* ignore sig */
1221 } else if (handler == TARGET_SIG_ERR) {
1222 dump_core_and_abort(cpu_env, sig);
1223 } else {
1224 /* compute the blocked signals during the handler execution */
1225 sigset_t *blocked_set;
1227 target_to_host_sigset(&set, &sa->sa_mask);
1228 /* SA_NODEFER indicates that the current signal should not be
1229 blocked during the handler */
1230 if (!(sa->sa_flags & TARGET_SA_NODEFER))
1231 sigaddset(&set, target_to_host_signal(sig));
1233 /* save the previous blocked signal state to restore it at the
1234 end of the signal execution (see do_sigreturn) */
1235 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
1237 /* block signals in the handler */
1238 blocked_set = ts->in_sigsuspend ?
1239 &ts->sigsuspend_mask : &ts->signal_mask;
1240 sigorset(&ts->signal_mask, blocked_set, &set);
1241 ts->in_sigsuspend = 0;
1243 /* if the CPU is in VM86 mode, we restore the 32 bit values */
1244 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
1246 CPUX86State *env = cpu_env;
1247 if (env->eflags & VM_MASK)
1248 save_v86_state(env);
1250 #endif
1251 /* prepare the stack frame of the virtual CPU */
1252 #if defined(TARGET_ARCH_HAS_SETUP_FRAME)
1253 if (sa->sa_flags & TARGET_SA_SIGINFO) {
1254 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1255 } else {
1256 setup_frame(sig, sa, &target_old_set, cpu_env);
1258 #else
1259 /* These targets do not have traditional signals. */
1260 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1261 #endif
1262 if (sa->sa_flags & TARGET_SA_RESETHAND) {
1263 sa->_sa_handler = TARGET_SIG_DFL;
1268 void process_pending_signals(CPUArchState *cpu_env)
1270 CPUState *cpu = env_cpu(cpu_env);
1271 int sig;
1272 TaskState *ts = get_task_state(cpu);
1273 sigset_t set;
1274 sigset_t *blocked_set;
1276 while (qatomic_read(&ts->signal_pending)) {
1277 sigfillset(&set);
1278 sigprocmask(SIG_SETMASK, &set, 0);
1280 restart_scan:
1281 sig = ts->sync_signal.pending;
1282 if (sig) {
1283 /* Synchronous signals are forced,
1284 * see force_sig_info() and callers in Linux
1285 * Note that not all of our queue_signal() calls in QEMU correspond
1286 * to force_sig_info() calls in Linux (some are send_sig_info()).
1287 * However it seems like a kernel bug to me to allow the process
1288 * to block a synchronous signal since it could then just end up
1289 * looping round and round indefinitely.
1291 if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig])
1292 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
1293 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]);
1294 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
1297 handle_pending_signal(cpu_env, sig, &ts->sync_signal);
1300 for (sig = 1; sig <= TARGET_NSIG; sig++) {
1301 blocked_set = ts->in_sigsuspend ?
1302 &ts->sigsuspend_mask : &ts->signal_mask;
1304 if (ts->sigtab[sig - 1].pending &&
1305 (!sigismember(blocked_set,
1306 target_to_host_signal_table[sig]))) {
1307 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]);
1308 /* Restart scan from the beginning, as handle_pending_signal
1309 * might have resulted in a new synchronous signal (eg SIGSEGV).
1311 goto restart_scan;
1315 /* if no signal is pending, unblock signals and recheck (the act
1316 * of unblocking might cause us to take another host signal which
1317 * will set signal_pending again).
1319 qatomic_set(&ts->signal_pending, 0);
1320 ts->in_sigsuspend = 0;
1321 set = ts->signal_mask;
1322 sigdelset(&set, SIGSEGV);
1323 sigdelset(&set, SIGBUS);
1324 sigprocmask(SIG_SETMASK, &set, 0);
1326 ts->in_sigsuspend = 0;
1329 int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset,
1330 target_ulong sigsize)
1332 TaskState *ts = get_task_state(thread_cpu);
1333 sigset_t *host_set = &ts->sigsuspend_mask;
1334 target_sigset_t *target_sigset;
1336 if (sigsize != sizeof(*target_sigset)) {
1337 /* Like the kernel, we enforce correct size sigsets */
1338 return -TARGET_EINVAL;
1341 target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1);
1342 if (!target_sigset) {
1343 return -TARGET_EFAULT;
1345 target_to_host_sigset(host_set, target_sigset);
1346 unlock_user(target_sigset, sigset, 0);
1348 *pset = host_set;
1349 return 0;