s390x/tcg: Implement MULTIPLY SINGLE (MSC, MSGC, MSGRKC, MSRKC)
[qemu/ar7.git] / hw / arm / sbsa-ref.c
blob9c3a893bedfd394bddba0f9e9d86792647814a06
1 /*
2 * ARM SBSA Reference Platform emulation
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/units.h"
25 #include "sysemu/device_tree.h"
26 #include "sysemu/numa.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/sysemu.h"
29 #include "exec/address-spaces.h"
30 #include "exec/hwaddr.h"
31 #include "kvm_arm.h"
32 #include "hw/arm/boot.h"
33 #include "hw/block/flash.h"
34 #include "hw/boards.h"
35 #include "hw/ide/internal.h"
36 #include "hw/ide/ahci_internal.h"
37 #include "hw/intc/arm_gicv3_common.h"
38 #include "hw/loader.h"
39 #include "hw/pci-host/gpex.h"
40 #include "hw/qdev-properties.h"
41 #include "hw/usb.h"
42 #include "hw/char/pl011.h"
43 #include "net/net.h"
44 #include "qom/object.h"
46 #define RAMLIMIT_GB 8192
47 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
49 #define NUM_IRQS 256
50 #define NUM_SMMU_IRQS 4
51 #define NUM_SATA_PORTS 6
53 #define VIRTUAL_PMU_IRQ 7
54 #define ARCH_GIC_MAINT_IRQ 9
55 #define ARCH_TIMER_VIRT_IRQ 11
56 #define ARCH_TIMER_S_EL1_IRQ 13
57 #define ARCH_TIMER_NS_EL1_IRQ 14
58 #define ARCH_TIMER_NS_EL2_IRQ 10
60 enum {
61 SBSA_FLASH,
62 SBSA_MEM,
63 SBSA_CPUPERIPHS,
64 SBSA_GIC_DIST,
65 SBSA_GIC_REDIST,
66 SBSA_SECURE_EC,
67 SBSA_SMMU,
68 SBSA_UART,
69 SBSA_RTC,
70 SBSA_PCIE,
71 SBSA_PCIE_MMIO,
72 SBSA_PCIE_MMIO_HIGH,
73 SBSA_PCIE_PIO,
74 SBSA_PCIE_ECAM,
75 SBSA_GPIO,
76 SBSA_SECURE_UART,
77 SBSA_SECURE_UART_MM,
78 SBSA_SECURE_MEM,
79 SBSA_AHCI,
80 SBSA_EHCI,
83 struct SBSAMachineState {
84 MachineState parent;
85 struct arm_boot_info bootinfo;
86 int smp_cpus;
87 void *fdt;
88 int fdt_size;
89 int psci_conduit;
90 DeviceState *gic;
91 PFlashCFI01 *flash[2];
94 #define TYPE_SBSA_MACHINE MACHINE_TYPE_NAME("sbsa-ref")
95 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
97 static const MemMapEntry sbsa_ref_memmap[] = {
98 /* 512M boot ROM */
99 [SBSA_FLASH] = { 0, 0x20000000 },
100 /* 512M secure memory */
101 [SBSA_SECURE_MEM] = { 0x20000000, 0x20000000 },
102 /* Space reserved for CPU peripheral devices */
103 [SBSA_CPUPERIPHS] = { 0x40000000, 0x00040000 },
104 [SBSA_GIC_DIST] = { 0x40060000, 0x00010000 },
105 [SBSA_GIC_REDIST] = { 0x40080000, 0x04000000 },
106 [SBSA_SECURE_EC] = { 0x50000000, 0x00001000 },
107 [SBSA_UART] = { 0x60000000, 0x00001000 },
108 [SBSA_RTC] = { 0x60010000, 0x00001000 },
109 [SBSA_GPIO] = { 0x60020000, 0x00001000 },
110 [SBSA_SECURE_UART] = { 0x60030000, 0x00001000 },
111 [SBSA_SECURE_UART_MM] = { 0x60040000, 0x00001000 },
112 [SBSA_SMMU] = { 0x60050000, 0x00020000 },
113 /* Space here reserved for more SMMUs */
114 [SBSA_AHCI] = { 0x60100000, 0x00010000 },
115 [SBSA_EHCI] = { 0x60110000, 0x00010000 },
116 /* Space here reserved for other devices */
117 [SBSA_PCIE_PIO] = { 0x7fff0000, 0x00010000 },
118 /* 32-bit address PCIE MMIO space */
119 [SBSA_PCIE_MMIO] = { 0x80000000, 0x70000000 },
120 /* 256M PCIE ECAM space */
121 [SBSA_PCIE_ECAM] = { 0xf0000000, 0x10000000 },
122 /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
123 [SBSA_PCIE_MMIO_HIGH] = { 0x100000000ULL, 0xFF00000000ULL },
124 [SBSA_MEM] = { 0x10000000000ULL, RAMLIMIT_BYTES },
127 static const int sbsa_ref_irqmap[] = {
128 [SBSA_UART] = 1,
129 [SBSA_RTC] = 2,
130 [SBSA_PCIE] = 3, /* ... to 6 */
131 [SBSA_GPIO] = 7,
132 [SBSA_SECURE_UART] = 8,
133 [SBSA_SECURE_UART_MM] = 9,
134 [SBSA_AHCI] = 10,
135 [SBSA_EHCI] = 11,
138 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
140 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
141 return arm_cpu_mp_affinity(idx, clustersz);
145 * Firmware on this machine only uses ACPI table to load OS, these limited
146 * device tree nodes are just to let firmware know the info which varies from
147 * command line parameters, so it is not necessary to be fully compatible
148 * with the kernel CPU and NUMA binding rules.
150 static void create_fdt(SBSAMachineState *sms)
152 void *fdt = create_device_tree(&sms->fdt_size);
153 const MachineState *ms = MACHINE(sms);
154 int nb_numa_nodes = ms->numa_state->num_nodes;
155 int cpu;
157 if (!fdt) {
158 error_report("create_device_tree() failed");
159 exit(1);
162 sms->fdt = fdt;
164 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
165 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
166 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
168 if (ms->numa_state->have_numa_distance) {
169 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
170 uint32_t *matrix = g_malloc0(size);
171 int idx, i, j;
173 for (i = 0; i < nb_numa_nodes; i++) {
174 for (j = 0; j < nb_numa_nodes; j++) {
175 idx = (i * nb_numa_nodes + j) * 3;
176 matrix[idx + 0] = cpu_to_be32(i);
177 matrix[idx + 1] = cpu_to_be32(j);
178 matrix[idx + 2] =
179 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
183 qemu_fdt_add_subnode(fdt, "/distance-map");
184 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
185 matrix, size);
186 g_free(matrix);
190 * From Documentation/devicetree/bindings/arm/cpus.yaml
191 * On ARM v8 64-bit systems this property is required
192 * and matches the MPIDR_EL1 register affinity bits.
194 * * If cpus node's #address-cells property is set to 2
196 * The first reg cell bits [7:0] must be set to
197 * bits [39:32] of MPIDR_EL1.
199 * The second reg cell bits [23:0] must be set to
200 * bits [23:0] of MPIDR_EL1.
202 qemu_fdt_add_subnode(sms->fdt, "/cpus");
203 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
204 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
206 for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
207 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
208 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
209 CPUState *cs = CPU(armcpu);
210 uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
212 qemu_fdt_add_subnode(sms->fdt, nodename);
213 qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
215 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
216 qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
217 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
220 g_free(nodename);
224 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
226 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
227 const char *name,
228 const char *alias_prop_name)
231 * Create a single flash device. We use the same parameters as
232 * the flash devices on the Versatile Express board.
234 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
236 qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
237 qdev_prop_set_uint8(dev, "width", 4);
238 qdev_prop_set_uint8(dev, "device-width", 2);
239 qdev_prop_set_bit(dev, "big-endian", false);
240 qdev_prop_set_uint16(dev, "id0", 0x89);
241 qdev_prop_set_uint16(dev, "id1", 0x18);
242 qdev_prop_set_uint16(dev, "id2", 0x00);
243 qdev_prop_set_uint16(dev, "id3", 0x00);
244 qdev_prop_set_string(dev, "name", name);
245 object_property_add_child(OBJECT(sms), name, OBJECT(dev));
246 object_property_add_alias(OBJECT(sms), alias_prop_name,
247 OBJECT(dev), "drive");
248 return PFLASH_CFI01(dev);
251 static void sbsa_flash_create(SBSAMachineState *sms)
253 sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
254 sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
257 static void sbsa_flash_map1(PFlashCFI01 *flash,
258 hwaddr base, hwaddr size,
259 MemoryRegion *sysmem)
261 DeviceState *dev = DEVICE(flash);
263 assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
264 assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
265 qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
266 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
268 memory_region_add_subregion(sysmem, base,
269 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
270 0));
273 static void sbsa_flash_map(SBSAMachineState *sms,
274 MemoryRegion *sysmem,
275 MemoryRegion *secure_sysmem)
278 * Map two flash devices to fill the SBSA_FLASH space in the memmap.
279 * sysmem is the system memory space. secure_sysmem is the secure view
280 * of the system, and the first flash device should be made visible only
281 * there. The second flash device is visible to both secure and nonsecure.
283 hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
284 hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
286 sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
287 secure_sysmem);
288 sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
289 sysmem);
292 static bool sbsa_firmware_init(SBSAMachineState *sms,
293 MemoryRegion *sysmem,
294 MemoryRegion *secure_sysmem)
296 int i;
297 BlockBackend *pflash_blk0;
299 /* Map legacy -drive if=pflash to machine properties */
300 for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
301 pflash_cfi01_legacy_drive(sms->flash[i],
302 drive_get(IF_PFLASH, 0, i));
305 sbsa_flash_map(sms, sysmem, secure_sysmem);
307 pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
309 if (bios_name) {
310 char *fname;
311 MemoryRegion *mr;
312 int image_size;
314 if (pflash_blk0) {
315 error_report("The contents of the first flash device may be "
316 "specified with -bios or with -drive if=pflash... "
317 "but you cannot use both options at once");
318 exit(1);
321 /* Fall back to -bios */
323 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
324 if (!fname) {
325 error_report("Could not find ROM image '%s'", bios_name);
326 exit(1);
328 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
329 image_size = load_image_mr(fname, mr);
330 g_free(fname);
331 if (image_size < 0) {
332 error_report("Could not load ROM image '%s'", bios_name);
333 exit(1);
337 return pflash_blk0 || bios_name;
340 static void create_secure_ram(SBSAMachineState *sms,
341 MemoryRegion *secure_sysmem)
343 MemoryRegion *secram = g_new(MemoryRegion, 1);
344 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
345 hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
347 memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
348 &error_fatal);
349 memory_region_add_subregion(secure_sysmem, base, secram);
352 static void create_gic(SBSAMachineState *sms)
354 unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
355 SysBusDevice *gicbusdev;
356 const char *gictype;
357 uint32_t redist0_capacity, redist0_count;
358 int i;
360 gictype = gicv3_class_name();
362 sms->gic = qdev_new(gictype);
363 qdev_prop_set_uint32(sms->gic, "revision", 3);
364 qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
366 * Note that the num-irq property counts both internal and external
367 * interrupts; there are always 32 of the former (mandated by GIC spec).
369 qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
370 qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
372 redist0_capacity =
373 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
374 redist0_count = MIN(smp_cpus, redist0_capacity);
376 qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1);
377 qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count);
379 gicbusdev = SYS_BUS_DEVICE(sms->gic);
380 sysbus_realize_and_unref(gicbusdev, &error_fatal);
381 sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
382 sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
385 * Wire the outputs from each CPU's generic timer and the GICv3
386 * maintenance interrupt signal to the appropriate GIC PPI inputs,
387 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
389 for (i = 0; i < smp_cpus; i++) {
390 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
391 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
392 int irq;
394 * Mapping from the output timer irq lines from the CPU to the
395 * GIC PPI inputs used for this board.
397 const int timer_irq[] = {
398 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
399 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
400 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
401 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
404 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
405 qdev_connect_gpio_out(cpudev, irq,
406 qdev_get_gpio_in(sms->gic,
407 ppibase + timer_irq[irq]));
410 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
411 qdev_get_gpio_in(sms->gic, ppibase
412 + ARCH_GIC_MAINT_IRQ));
413 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
414 qdev_get_gpio_in(sms->gic, ppibase
415 + VIRTUAL_PMU_IRQ));
417 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
418 sysbus_connect_irq(gicbusdev, i + smp_cpus,
419 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
420 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
421 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
422 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
423 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
427 static void create_uart(const SBSAMachineState *sms, int uart,
428 MemoryRegion *mem, Chardev *chr)
430 hwaddr base = sbsa_ref_memmap[uart].base;
431 int irq = sbsa_ref_irqmap[uart];
432 DeviceState *dev = qdev_new(TYPE_PL011);
433 SysBusDevice *s = SYS_BUS_DEVICE(dev);
435 qdev_prop_set_chr(dev, "chardev", chr);
436 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
437 memory_region_add_subregion(mem, base,
438 sysbus_mmio_get_region(s, 0));
439 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
442 static void create_rtc(const SBSAMachineState *sms)
444 hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
445 int irq = sbsa_ref_irqmap[SBSA_RTC];
447 sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
450 static DeviceState *gpio_key_dev;
451 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
453 /* use gpio Pin 3 for power button event */
454 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
457 static Notifier sbsa_ref_powerdown_notifier = {
458 .notify = sbsa_ref_powerdown_req
461 static void create_gpio(const SBSAMachineState *sms)
463 DeviceState *pl061_dev;
464 hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
465 int irq = sbsa_ref_irqmap[SBSA_GPIO];
467 pl061_dev = sysbus_create_simple("pl061", base,
468 qdev_get_gpio_in(sms->gic, irq));
470 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
471 qdev_get_gpio_in(pl061_dev, 3));
473 /* connect powerdown request */
474 qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
477 static void create_ahci(const SBSAMachineState *sms)
479 hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
480 int irq = sbsa_ref_irqmap[SBSA_AHCI];
481 DeviceState *dev;
482 DriveInfo *hd[NUM_SATA_PORTS];
483 SysbusAHCIState *sysahci;
484 AHCIState *ahci;
485 int i;
487 dev = qdev_new("sysbus-ahci");
488 qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
489 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
490 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
491 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
493 sysahci = SYSBUS_AHCI(dev);
494 ahci = &sysahci->ahci;
495 ide_drive_get(hd, ARRAY_SIZE(hd));
496 for (i = 0; i < ahci->ports; i++) {
497 if (hd[i] == NULL) {
498 continue;
500 ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
504 static void create_ehci(const SBSAMachineState *sms)
506 hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
507 int irq = sbsa_ref_irqmap[SBSA_EHCI];
509 sysbus_create_simple("platform-ehci-usb", base,
510 qdev_get_gpio_in(sms->gic, irq));
513 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
515 hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
516 int irq = sbsa_ref_irqmap[SBSA_SMMU];
517 DeviceState *dev;
518 int i;
520 dev = qdev_new("arm-smmuv3");
522 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
523 &error_abort);
524 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
525 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
526 for (i = 0; i < NUM_SMMU_IRQS; i++) {
527 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
528 qdev_get_gpio_in(sms->gic, irq + 1));
532 static void create_pcie(SBSAMachineState *sms)
534 hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
535 hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
536 hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
537 hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
538 hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
539 hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
540 hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
541 int irq = sbsa_ref_irqmap[SBSA_PCIE];
542 MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
543 MemoryRegion *ecam_alias, *ecam_reg;
544 DeviceState *dev;
545 PCIHostState *pci;
546 int i;
548 dev = qdev_new(TYPE_GPEX_HOST);
549 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
551 /* Map ECAM space */
552 ecam_alias = g_new0(MemoryRegion, 1);
553 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
554 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
555 ecam_reg, 0, size_ecam);
556 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
558 /* Map the MMIO space */
559 mmio_alias = g_new0(MemoryRegion, 1);
560 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
561 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
562 mmio_reg, base_mmio, size_mmio);
563 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
565 /* Map the MMIO_HIGH space */
566 mmio_alias_high = g_new0(MemoryRegion, 1);
567 memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
568 mmio_reg, base_mmio_high, size_mmio_high);
569 memory_region_add_subregion(get_system_memory(), base_mmio_high,
570 mmio_alias_high);
572 /* Map IO port space */
573 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
575 for (i = 0; i < GPEX_NUM_IRQS; i++) {
576 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
577 qdev_get_gpio_in(sms->gic, irq + i));
578 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
581 pci = PCI_HOST_BRIDGE(dev);
582 if (pci->bus) {
583 for (i = 0; i < nb_nics; i++) {
584 NICInfo *nd = &nd_table[i];
586 if (!nd->model) {
587 nd->model = g_strdup("e1000e");
590 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
594 pci_create_simple(pci->bus, -1, "VGA");
596 create_smmu(sms, pci->bus);
599 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
601 const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
602 bootinfo);
604 *fdt_size = board->fdt_size;
605 return board->fdt;
608 static void create_secure_ec(MemoryRegion *mem)
610 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
611 DeviceState *dev = qdev_new("sbsa-ec");
612 SysBusDevice *s = SYS_BUS_DEVICE(dev);
614 memory_region_add_subregion(mem, base,
615 sysbus_mmio_get_region(s, 0));
618 static void sbsa_ref_init(MachineState *machine)
620 unsigned int smp_cpus = machine->smp.cpus;
621 unsigned int max_cpus = machine->smp.max_cpus;
622 SBSAMachineState *sms = SBSA_MACHINE(machine);
623 MachineClass *mc = MACHINE_GET_CLASS(machine);
624 MemoryRegion *sysmem = get_system_memory();
625 MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
626 bool firmware_loaded;
627 const CPUArchIdList *possible_cpus;
628 int n, sbsa_max_cpus;
630 if (strcmp(machine->cpu_type, ARM_CPU_TYPE_NAME("cortex-a57"))) {
631 error_report("sbsa-ref: CPU type other than the built-in "
632 "cortex-a57 not supported");
633 exit(1);
636 if (kvm_enabled()) {
637 error_report("sbsa-ref: KVM is not supported for this machine");
638 exit(1);
642 * The Secure view of the world is the same as the NonSecure,
643 * but with a few extra devices. Create it as a container region
644 * containing the system memory at low priority; any secure-only
645 * devices go in at higher priority and take precedence.
647 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
648 UINT64_MAX);
649 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
651 firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
653 if (machine->kernel_filename && firmware_loaded) {
654 error_report("sbsa-ref: No fw_cfg device on this machine, "
655 "so -kernel option is not supported when firmware loaded, "
656 "please load OS from hard disk instead");
657 exit(1);
661 * This machine has EL3 enabled, external firmware should supply PSCI
662 * implementation, so the QEMU's internal PSCI is disabled.
664 sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
666 sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
668 if (max_cpus > sbsa_max_cpus) {
669 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
670 "supported by machine 'sbsa-ref' (%d)",
671 max_cpus, sbsa_max_cpus);
672 exit(1);
675 sms->smp_cpus = smp_cpus;
677 if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
678 error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
679 exit(1);
682 possible_cpus = mc->possible_cpu_arch_ids(machine);
683 for (n = 0; n < possible_cpus->len; n++) {
684 Object *cpuobj;
685 CPUState *cs;
687 if (n >= smp_cpus) {
688 break;
691 cpuobj = object_new(possible_cpus->cpus[n].type);
692 object_property_set_int(cpuobj, "mp-affinity",
693 possible_cpus->cpus[n].arch_id, NULL);
695 cs = CPU(cpuobj);
696 cs->cpu_index = n;
698 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
699 &error_fatal);
701 if (object_property_find(cpuobj, "reset-cbar")) {
702 object_property_set_int(cpuobj, "reset-cbar",
703 sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
704 &error_abort);
707 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
708 &error_abort);
710 object_property_set_link(cpuobj, "secure-memory",
711 OBJECT(secure_sysmem), &error_abort);
713 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
714 object_unref(cpuobj);
717 memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
718 machine->ram);
720 create_fdt(sms);
722 create_secure_ram(sms, secure_sysmem);
724 create_gic(sms);
726 create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
727 create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
728 /* Second secure UART for RAS and MM from EL0 */
729 create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
731 create_rtc(sms);
733 create_gpio(sms);
735 create_ahci(sms);
737 create_ehci(sms);
739 create_pcie(sms);
741 create_secure_ec(secure_sysmem);
743 sms->bootinfo.ram_size = machine->ram_size;
744 sms->bootinfo.nb_cpus = smp_cpus;
745 sms->bootinfo.board_id = -1;
746 sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
747 sms->bootinfo.get_dtb = sbsa_ref_dtb;
748 sms->bootinfo.firmware_loaded = firmware_loaded;
749 arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
752 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
754 unsigned int max_cpus = ms->smp.max_cpus;
755 SBSAMachineState *sms = SBSA_MACHINE(ms);
756 int n;
758 if (ms->possible_cpus) {
759 assert(ms->possible_cpus->len == max_cpus);
760 return ms->possible_cpus;
763 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
764 sizeof(CPUArchId) * max_cpus);
765 ms->possible_cpus->len = max_cpus;
766 for (n = 0; n < ms->possible_cpus->len; n++) {
767 ms->possible_cpus->cpus[n].type = ms->cpu_type;
768 ms->possible_cpus->cpus[n].arch_id =
769 sbsa_ref_cpu_mp_affinity(sms, n);
770 ms->possible_cpus->cpus[n].props.has_thread_id = true;
771 ms->possible_cpus->cpus[n].props.thread_id = n;
773 return ms->possible_cpus;
776 static CpuInstanceProperties
777 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
779 MachineClass *mc = MACHINE_GET_CLASS(ms);
780 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
782 assert(cpu_index < possible_cpus->len);
783 return possible_cpus->cpus[cpu_index].props;
786 static int64_t
787 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
789 return idx % ms->numa_state->num_nodes;
792 static void sbsa_ref_instance_init(Object *obj)
794 SBSAMachineState *sms = SBSA_MACHINE(obj);
796 sbsa_flash_create(sms);
799 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
801 MachineClass *mc = MACHINE_CLASS(oc);
803 mc->init = sbsa_ref_init;
804 mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
805 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57");
806 mc->max_cpus = 512;
807 mc->pci_allow_0_address = true;
808 mc->minimum_page_bits = 12;
809 mc->block_default_type = IF_IDE;
810 mc->no_cdrom = 1;
811 mc->default_ram_size = 1 * GiB;
812 mc->default_ram_id = "sbsa-ref.ram";
813 mc->default_cpus = 4;
814 mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
815 mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
816 mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
819 static const TypeInfo sbsa_ref_info = {
820 .name = TYPE_SBSA_MACHINE,
821 .parent = TYPE_MACHINE,
822 .instance_init = sbsa_ref_instance_init,
823 .class_init = sbsa_ref_class_init,
824 .instance_size = sizeof(SBSAMachineState),
827 static void sbsa_ref_machine_init(void)
829 type_register_static(&sbsa_ref_info);
832 type_init(sbsa_ref_machine_init);