hw/arm/virt: allow pmu instantiation with userspace irqchip
[qemu/ar7.git] / hw / arm / virt.c
blob999f448af2747214a3ab85d16a0b73bb309994e6
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/compat.h"
45 #include "hw/loader.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/bitops.h"
48 #include "qemu/error-report.h"
49 #include "hw/pci-host/gpex.h"
50 #include "hw/arm/sysbus-fdt.h"
51 #include "hw/platform-bus.h"
52 #include "hw/arm/fdt.h"
53 #include "hw/intc/arm_gic.h"
54 #include "hw/intc/arm_gicv3_common.h"
55 #include "kvm_arm.h"
56 #include "hw/smbios/smbios.h"
57 #include "qapi/visitor.h"
58 #include "standard-headers/linux/input.h"
60 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
61 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
62 void *data) \
63 { \
64 MachineClass *mc = MACHINE_CLASS(oc); \
65 virt_machine_##major##_##minor##_options(mc); \
66 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
67 if (latest) { \
68 mc->alias = "virt"; \
69 } \
70 } \
71 static const TypeInfo machvirt_##major##_##minor##_info = { \
72 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
73 .parent = TYPE_VIRT_MACHINE, \
74 .instance_init = virt_##major##_##minor##_instance_init, \
75 .class_init = virt_##major##_##minor##_class_init, \
76 }; \
77 static void machvirt_machine_##major##_##minor##_init(void) \
78 { \
79 type_register_static(&machvirt_##major##_##minor##_info); \
80 } \
81 type_init(machvirt_machine_##major##_##minor##_init);
83 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
84 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
85 #define DEFINE_VIRT_MACHINE(major, minor) \
86 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
89 /* Number of external interrupt lines to configure the GIC with */
90 #define NUM_IRQS 256
92 #define PLATFORM_BUS_NUM_IRQS 64
94 static ARMPlatformBusSystemParams platform_bus_params;
96 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
97 * RAM can go up to the 256GB mark, leaving 256GB of the physical
98 * address space unallocated and free for future use between 256G and 512G.
99 * If we need to provide more RAM to VMs in the future then we need to:
100 * * allocate a second bank of RAM starting at 2TB and working up
101 * * fix the DT and ACPI table generation code in QEMU to correctly
102 * report two split lumps of RAM to the guest
103 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
104 * (We don't want to fill all the way up to 512GB with RAM because
105 * we might want it for non-RAM purposes later. Conversely it seems
106 * reasonable to assume that anybody configuring a VM with a quarter
107 * of a terabyte of RAM will be doing it on a host with more than a
108 * terabyte of physical address space.)
110 #define RAMLIMIT_GB 255
111 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
113 /* Addresses and sizes of our components.
114 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
115 * 128MB..256MB is used for miscellaneous device I/O.
116 * 256MB..1GB is reserved for possible future PCI support (ie where the
117 * PCI memory window will go if we add a PCI host controller).
118 * 1GB and up is RAM (which may happily spill over into the
119 * high memory region beyond 4GB).
120 * This represents a compromise between how much RAM can be given to
121 * a 32 bit VM and leaving space for expansion and in particular for PCI.
122 * Note that devices should generally be placed at multiples of 0x10000,
123 * to accommodate guests using 64K pages.
125 static const MemMapEntry a15memmap[] = {
126 /* Space up to 0x8000000 is reserved for a boot ROM */
127 [VIRT_FLASH] = { 0, 0x08000000 },
128 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
129 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
130 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
131 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
132 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
133 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
134 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
135 /* This redistributor space allows up to 2*64kB*123 CPUs */
136 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
137 [VIRT_UART] = { 0x09000000, 0x00001000 },
138 [VIRT_RTC] = { 0x09010000, 0x00001000 },
139 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
140 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
141 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
142 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
143 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
144 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
145 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
146 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
147 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
148 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
149 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
150 /* Second PCIe window, 512GB wide at the 512GB boundary */
151 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
154 static const int a15irqmap[] = {
155 [VIRT_UART] = 1,
156 [VIRT_RTC] = 2,
157 [VIRT_PCIE] = 3, /* ... to 6 */
158 [VIRT_GPIO] = 7,
159 [VIRT_SECURE_UART] = 8,
160 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
161 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
162 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
165 static const char *valid_cpus[] = {
166 "cortex-a15",
167 "cortex-a53",
168 "cortex-a57",
169 "host",
172 static bool cpuname_valid(const char *cpu)
174 int i;
176 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
177 if (strcmp(cpu, valid_cpus[i]) == 0) {
178 return true;
181 return false;
184 static void create_fdt(VirtMachineState *vms)
186 void *fdt = create_device_tree(&vms->fdt_size);
188 if (!fdt) {
189 error_report("create_device_tree() failed");
190 exit(1);
193 vms->fdt = fdt;
195 /* Header */
196 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
197 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
198 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
201 * /chosen and /memory nodes must exist for load_dtb
202 * to fill in necessary properties later
204 qemu_fdt_add_subnode(fdt, "/chosen");
205 qemu_fdt_add_subnode(fdt, "/memory");
206 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
208 /* Clock node, for the benefit of the UART. The kernel device tree
209 * binding documentation claims the PL011 node clock properties are
210 * optional but in practice if you omit them the kernel refuses to
211 * probe for the device.
213 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
214 qemu_fdt_add_subnode(fdt, "/apb-pclk");
215 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
216 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
217 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
218 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
219 "clk24mhz");
220 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
222 if (have_numa_distance) {
223 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
224 uint32_t *matrix = g_malloc0(size);
225 int idx, i, j;
227 for (i = 0; i < nb_numa_nodes; i++) {
228 for (j = 0; j < nb_numa_nodes; j++) {
229 idx = (i * nb_numa_nodes + j) * 3;
230 matrix[idx + 0] = cpu_to_be32(i);
231 matrix[idx + 1] = cpu_to_be32(j);
232 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
236 qemu_fdt_add_subnode(fdt, "/distance-map");
237 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
238 "numa-distance-map-v1");
239 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
240 matrix, size);
241 g_free(matrix);
245 static void fdt_add_psci_node(const VirtMachineState *vms)
247 uint32_t cpu_suspend_fn;
248 uint32_t cpu_off_fn;
249 uint32_t cpu_on_fn;
250 uint32_t migrate_fn;
251 void *fdt = vms->fdt;
252 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
253 const char *psci_method;
255 switch (vms->psci_conduit) {
256 case QEMU_PSCI_CONDUIT_DISABLED:
257 return;
258 case QEMU_PSCI_CONDUIT_HVC:
259 psci_method = "hvc";
260 break;
261 case QEMU_PSCI_CONDUIT_SMC:
262 psci_method = "smc";
263 break;
264 default:
265 g_assert_not_reached();
268 qemu_fdt_add_subnode(fdt, "/psci");
269 if (armcpu->psci_version == 2) {
270 const char comp[] = "arm,psci-0.2\0arm,psci";
271 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
273 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
274 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
275 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
276 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
277 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
278 } else {
279 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
280 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
281 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
283 } else {
284 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
286 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
287 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
288 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
289 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
292 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
293 * to the instruction that should be used to invoke PSCI functions.
294 * However, the device tree binding uses 'method' instead, so that is
295 * what we should use here.
297 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
299 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
300 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
301 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
302 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
305 static void fdt_add_timer_nodes(const VirtMachineState *vms)
307 /* On real hardware these interrupts are level-triggered.
308 * On KVM they were edge-triggered before host kernel version 4.4,
309 * and level-triggered afterwards.
310 * On emulated QEMU they are level-triggered.
312 * Getting the DTB info about them wrong is awkward for some
313 * guest kernels:
314 * pre-4.8 ignore the DT and leave the interrupt configured
315 * with whatever the GIC reset value (or the bootloader) left it at
316 * 4.8 before rc6 honour the incorrect data by programming it back
317 * into the GIC, causing problems
318 * 4.8rc6 and later ignore the DT and always write "level triggered"
319 * into the GIC
321 * For backwards-compatibility, virt-2.8 and earlier will continue
322 * to say these are edge-triggered, but later machines will report
323 * the correct information.
325 ARMCPU *armcpu;
326 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
327 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
329 if (vmc->claim_edge_triggered_timers) {
330 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
333 if (vms->gic_version == 2) {
334 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
335 GIC_FDT_IRQ_PPI_CPU_WIDTH,
336 (1 << vms->smp_cpus) - 1);
339 qemu_fdt_add_subnode(vms->fdt, "/timer");
341 armcpu = ARM_CPU(qemu_get_cpu(0));
342 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
343 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
344 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
345 compat, sizeof(compat));
346 } else {
347 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
348 "arm,armv7-timer");
350 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
351 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
352 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
353 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
354 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
355 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
358 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
360 int cpu;
361 int addr_cells = 1;
362 const MachineState *ms = MACHINE(vms);
365 * From Documentation/devicetree/bindings/arm/cpus.txt
366 * On ARM v8 64-bit systems value should be set to 2,
367 * that corresponds to the MPIDR_EL1 register size.
368 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
369 * in the system, #address-cells can be set to 1, since
370 * MPIDR_EL1[63:32] bits are not used for CPUs
371 * identification.
373 * Here we actually don't know whether our system is 32- or 64-bit one.
374 * The simplest way to go is to examine affinity IDs of all our CPUs. If
375 * at least one of them has Aff3 populated, we set #address-cells to 2.
377 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
378 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
380 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
381 addr_cells = 2;
382 break;
386 qemu_fdt_add_subnode(vms->fdt, "/cpus");
387 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
388 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
390 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
391 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
392 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
393 CPUState *cs = CPU(armcpu);
395 qemu_fdt_add_subnode(vms->fdt, nodename);
396 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
397 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
398 armcpu->dtb_compatible);
400 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
401 && vms->smp_cpus > 1) {
402 qemu_fdt_setprop_string(vms->fdt, nodename,
403 "enable-method", "psci");
406 if (addr_cells == 2) {
407 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
408 armcpu->mp_affinity);
409 } else {
410 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
411 armcpu->mp_affinity);
414 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
415 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
416 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
419 g_free(nodename);
423 static void fdt_add_its_gic_node(VirtMachineState *vms)
425 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
426 qemu_fdt_add_subnode(vms->fdt, "/intc/its");
427 qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
428 "arm,gic-v3-its");
429 qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
430 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
431 2, vms->memmap[VIRT_GIC_ITS].base,
432 2, vms->memmap[VIRT_GIC_ITS].size);
433 qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
436 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
438 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
439 qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
440 qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
441 "arm,gic-v2m-frame");
442 qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
443 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
444 2, vms->memmap[VIRT_GIC_V2M].base,
445 2, vms->memmap[VIRT_GIC_V2M].size);
446 qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
449 static void fdt_add_gic_node(VirtMachineState *vms)
451 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
452 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
454 qemu_fdt_add_subnode(vms->fdt, "/intc");
455 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
456 qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
457 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
458 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
459 qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
460 if (vms->gic_version == 3) {
461 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
462 "arm,gic-v3");
463 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
464 2, vms->memmap[VIRT_GIC_DIST].base,
465 2, vms->memmap[VIRT_GIC_DIST].size,
466 2, vms->memmap[VIRT_GIC_REDIST].base,
467 2, vms->memmap[VIRT_GIC_REDIST].size);
468 if (vms->virt) {
469 qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
470 GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
471 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
473 } else {
474 /* 'cortex-a15-gic' means 'GIC v2' */
475 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
476 "arm,cortex-a15-gic");
477 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
478 2, vms->memmap[VIRT_GIC_DIST].base,
479 2, vms->memmap[VIRT_GIC_DIST].size,
480 2, vms->memmap[VIRT_GIC_CPU].base,
481 2, vms->memmap[VIRT_GIC_CPU].size);
484 qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
487 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
489 CPUState *cpu;
490 ARMCPU *armcpu;
491 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
493 CPU_FOREACH(cpu) {
494 armcpu = ARM_CPU(cpu);
495 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
496 return;
498 if (kvm_enabled()) {
499 if (kvm_irqchip_in_kernel() &&
500 !kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ))) {
501 return;
503 if (!kvm_arm_pmu_init(cpu)) {
504 return;
509 if (vms->gic_version == 2) {
510 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
511 GIC_FDT_IRQ_PPI_CPU_WIDTH,
512 (1 << vms->smp_cpus) - 1);
515 armcpu = ARM_CPU(qemu_get_cpu(0));
516 qemu_fdt_add_subnode(vms->fdt, "/pmu");
517 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
518 const char compat[] = "arm,armv8-pmuv3";
519 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
520 compat, sizeof(compat));
521 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
522 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
526 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
528 const char *itsclass = its_class_name();
529 DeviceState *dev;
531 if (!itsclass) {
532 /* Do nothing if not supported */
533 return;
536 dev = qdev_create(NULL, itsclass);
538 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
539 &error_abort);
540 qdev_init_nofail(dev);
541 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
543 fdt_add_its_gic_node(vms);
546 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
548 int i;
549 int irq = vms->irqmap[VIRT_GIC_V2M];
550 DeviceState *dev;
552 dev = qdev_create(NULL, "arm-gicv2m");
553 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
554 qdev_prop_set_uint32(dev, "base-spi", irq);
555 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
556 qdev_init_nofail(dev);
558 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
559 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
562 fdt_add_v2m_gic_node(vms);
565 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
567 /* We create a standalone GIC */
568 DeviceState *gicdev;
569 SysBusDevice *gicbusdev;
570 const char *gictype;
571 int type = vms->gic_version, i;
573 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
575 gicdev = qdev_create(NULL, gictype);
576 qdev_prop_set_uint32(gicdev, "revision", type);
577 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
578 /* Note that the num-irq property counts both internal and external
579 * interrupts; there are always 32 of the former (mandated by GIC spec).
581 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
582 if (!kvm_irqchip_in_kernel()) {
583 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
585 qdev_init_nofail(gicdev);
586 gicbusdev = SYS_BUS_DEVICE(gicdev);
587 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
588 if (type == 3) {
589 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
590 } else {
591 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
594 /* Wire the outputs from each CPU's generic timer and the GICv3
595 * maintenance interrupt signal to the appropriate GIC PPI inputs,
596 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
598 for (i = 0; i < smp_cpus; i++) {
599 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
600 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
601 int irq;
602 /* Mapping from the output timer irq lines from the CPU to the
603 * GIC PPI inputs we use for the virt board.
605 const int timer_irq[] = {
606 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
607 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
608 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
609 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
612 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
613 qdev_connect_gpio_out(cpudev, irq,
614 qdev_get_gpio_in(gicdev,
615 ppibase + timer_irq[irq]));
618 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
619 qdev_get_gpio_in(gicdev, ppibase
620 + ARCH_GICV3_MAINT_IRQ));
621 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
622 qdev_get_gpio_in(gicdev, ppibase
623 + VIRTUAL_PMU_IRQ));
625 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
626 sysbus_connect_irq(gicbusdev, i + smp_cpus,
627 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
628 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
629 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
630 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
631 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
634 for (i = 0; i < NUM_IRQS; i++) {
635 pic[i] = qdev_get_gpio_in(gicdev, i);
638 fdt_add_gic_node(vms);
640 if (type == 3 && vms->its) {
641 create_its(vms, gicdev);
642 } else if (type == 2) {
643 create_v2m(vms, pic);
647 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
648 MemoryRegion *mem, Chardev *chr)
650 char *nodename;
651 hwaddr base = vms->memmap[uart].base;
652 hwaddr size = vms->memmap[uart].size;
653 int irq = vms->irqmap[uart];
654 const char compat[] = "arm,pl011\0arm,primecell";
655 const char clocknames[] = "uartclk\0apb_pclk";
656 DeviceState *dev = qdev_create(NULL, "pl011");
657 SysBusDevice *s = SYS_BUS_DEVICE(dev);
659 qdev_prop_set_chr(dev, "chardev", chr);
660 qdev_init_nofail(dev);
661 memory_region_add_subregion(mem, base,
662 sysbus_mmio_get_region(s, 0));
663 sysbus_connect_irq(s, 0, pic[irq]);
665 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
666 qemu_fdt_add_subnode(vms->fdt, nodename);
667 /* Note that we can't use setprop_string because of the embedded NUL */
668 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
669 compat, sizeof(compat));
670 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
671 2, base, 2, size);
672 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
673 GIC_FDT_IRQ_TYPE_SPI, irq,
674 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
675 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
676 vms->clock_phandle, vms->clock_phandle);
677 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
678 clocknames, sizeof(clocknames));
680 if (uart == VIRT_UART) {
681 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
682 } else {
683 /* Mark as not usable by the normal world */
684 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
685 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
688 g_free(nodename);
691 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
693 char *nodename;
694 hwaddr base = vms->memmap[VIRT_RTC].base;
695 hwaddr size = vms->memmap[VIRT_RTC].size;
696 int irq = vms->irqmap[VIRT_RTC];
697 const char compat[] = "arm,pl031\0arm,primecell";
699 sysbus_create_simple("pl031", base, pic[irq]);
701 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
702 qemu_fdt_add_subnode(vms->fdt, nodename);
703 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
704 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
705 2, base, 2, size);
706 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
707 GIC_FDT_IRQ_TYPE_SPI, irq,
708 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
709 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
710 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
711 g_free(nodename);
714 static DeviceState *gpio_key_dev;
715 static void virt_powerdown_req(Notifier *n, void *opaque)
717 /* use gpio Pin 3 for power button event */
718 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
721 static Notifier virt_system_powerdown_notifier = {
722 .notify = virt_powerdown_req
725 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
727 char *nodename;
728 DeviceState *pl061_dev;
729 hwaddr base = vms->memmap[VIRT_GPIO].base;
730 hwaddr size = vms->memmap[VIRT_GPIO].size;
731 int irq = vms->irqmap[VIRT_GPIO];
732 const char compat[] = "arm,pl061\0arm,primecell";
734 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
736 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
737 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
738 qemu_fdt_add_subnode(vms->fdt, nodename);
739 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
740 2, base, 2, size);
741 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
742 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
743 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
744 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
745 GIC_FDT_IRQ_TYPE_SPI, irq,
746 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
747 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
748 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
749 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
751 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
752 qdev_get_gpio_in(pl061_dev, 3));
753 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
754 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
755 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
756 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
758 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
759 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
760 "label", "GPIO Key Poweroff");
761 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
762 KEY_POWER);
763 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
764 "gpios", phandle, 3, 0);
766 /* connect powerdown request */
767 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
769 g_free(nodename);
772 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
774 int i;
775 hwaddr size = vms->memmap[VIRT_MMIO].size;
777 /* We create the transports in forwards order. Since qbus_realize()
778 * prepends (not appends) new child buses, the incrementing loop below will
779 * create a list of virtio-mmio buses with decreasing base addresses.
781 * When a -device option is processed from the command line,
782 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
783 * order. The upshot is that -device options in increasing command line
784 * order are mapped to virtio-mmio buses with decreasing base addresses.
786 * When this code was originally written, that arrangement ensured that the
787 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
788 * the first -device on the command line. (The end-to-end order is a
789 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
790 * guest kernel's name-to-address assignment strategy.)
792 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
793 * the message, if not necessarily the code, of commit 70161ff336.
794 * Therefore the loop now establishes the inverse of the original intent.
796 * Unfortunately, we can't counteract the kernel change by reversing the
797 * loop; it would break existing command lines.
799 * In any case, the kernel makes no guarantee about the stability of
800 * enumeration order of virtio devices (as demonstrated by it changing
801 * between kernel versions). For reliable and stable identification
802 * of disks users must use UUIDs or similar mechanisms.
804 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
805 int irq = vms->irqmap[VIRT_MMIO] + i;
806 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
808 sysbus_create_simple("virtio-mmio", base, pic[irq]);
811 /* We add dtb nodes in reverse order so that they appear in the finished
812 * device tree lowest address first.
814 * Note that this mapping is independent of the loop above. The previous
815 * loop influences virtio device to virtio transport assignment, whereas
816 * this loop controls how virtio transports are laid out in the dtb.
818 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
819 char *nodename;
820 int irq = vms->irqmap[VIRT_MMIO] + i;
821 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
823 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
824 qemu_fdt_add_subnode(vms->fdt, nodename);
825 qemu_fdt_setprop_string(vms->fdt, nodename,
826 "compatible", "virtio,mmio");
827 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
828 2, base, 2, size);
829 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
830 GIC_FDT_IRQ_TYPE_SPI, irq,
831 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
832 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
833 g_free(nodename);
837 static void create_one_flash(const char *name, hwaddr flashbase,
838 hwaddr flashsize, const char *file,
839 MemoryRegion *sysmem)
841 /* Create and map a single flash device. We use the same
842 * parameters as the flash devices on the Versatile Express board.
844 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
845 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
846 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
847 const uint64_t sectorlength = 256 * 1024;
849 if (dinfo) {
850 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
851 &error_abort);
854 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
855 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
856 qdev_prop_set_uint8(dev, "width", 4);
857 qdev_prop_set_uint8(dev, "device-width", 2);
858 qdev_prop_set_bit(dev, "big-endian", false);
859 qdev_prop_set_uint16(dev, "id0", 0x89);
860 qdev_prop_set_uint16(dev, "id1", 0x18);
861 qdev_prop_set_uint16(dev, "id2", 0x00);
862 qdev_prop_set_uint16(dev, "id3", 0x00);
863 qdev_prop_set_string(dev, "name", name);
864 qdev_init_nofail(dev);
866 memory_region_add_subregion(sysmem, flashbase,
867 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
869 if (file) {
870 char *fn;
871 int image_size;
873 if (drive_get(IF_PFLASH, 0, 0)) {
874 error_report("The contents of the first flash device may be "
875 "specified with -bios or with -drive if=pflash... "
876 "but you cannot use both options at once");
877 exit(1);
879 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
880 if (!fn) {
881 error_report("Could not find ROM image '%s'", file);
882 exit(1);
884 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
885 g_free(fn);
886 if (image_size < 0) {
887 error_report("Could not load ROM image '%s'", file);
888 exit(1);
893 static void create_flash(const VirtMachineState *vms,
894 MemoryRegion *sysmem,
895 MemoryRegion *secure_sysmem)
897 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
898 * Any file passed via -bios goes in the first of these.
899 * sysmem is the system memory space. secure_sysmem is the secure view
900 * of the system, and the first flash device should be made visible only
901 * there. The second flash device is visible to both secure and nonsecure.
902 * If sysmem == secure_sysmem this means there is no separate Secure
903 * address space and both flash devices are generally visible.
905 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
906 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
907 char *nodename;
909 create_one_flash("virt.flash0", flashbase, flashsize,
910 bios_name, secure_sysmem);
911 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
912 NULL, sysmem);
914 if (sysmem == secure_sysmem) {
915 /* Report both flash devices as a single node in the DT */
916 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
917 qemu_fdt_add_subnode(vms->fdt, nodename);
918 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
919 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
920 2, flashbase, 2, flashsize,
921 2, flashbase + flashsize, 2, flashsize);
922 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
923 g_free(nodename);
924 } else {
925 /* Report the devices as separate nodes so we can mark one as
926 * only visible to the secure world.
928 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
929 qemu_fdt_add_subnode(vms->fdt, nodename);
930 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
931 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
932 2, flashbase, 2, flashsize);
933 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
934 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
935 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
936 g_free(nodename);
938 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
939 qemu_fdt_add_subnode(vms->fdt, nodename);
940 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
941 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
942 2, flashbase + flashsize, 2, flashsize);
943 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
944 g_free(nodename);
948 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
950 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
951 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
952 FWCfgState *fw_cfg;
953 char *nodename;
955 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
956 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
958 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
959 qemu_fdt_add_subnode(vms->fdt, nodename);
960 qemu_fdt_setprop_string(vms->fdt, nodename,
961 "compatible", "qemu,fw-cfg-mmio");
962 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
963 2, base, 2, size);
964 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
965 g_free(nodename);
966 return fw_cfg;
969 static void create_pcie_irq_map(const VirtMachineState *vms,
970 uint32_t gic_phandle,
971 int first_irq, const char *nodename)
973 int devfn, pin;
974 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
975 uint32_t *irq_map = full_irq_map;
977 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
978 for (pin = 0; pin < 4; pin++) {
979 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
980 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
981 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
982 int i;
984 uint32_t map[] = {
985 devfn << 8, 0, 0, /* devfn */
986 pin + 1, /* PCI pin */
987 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
989 /* Convert map to big endian */
990 for (i = 0; i < 10; i++) {
991 irq_map[i] = cpu_to_be32(map[i]);
993 irq_map += 10;
997 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
998 full_irq_map, sizeof(full_irq_map));
1000 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1001 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1002 0x7 /* PCI irq */);
1005 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
1007 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1008 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1009 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
1010 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1011 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1012 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1013 hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
1014 hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
1015 hwaddr base = base_mmio;
1016 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1017 int irq = vms->irqmap[VIRT_PCIE];
1018 MemoryRegion *mmio_alias;
1019 MemoryRegion *mmio_reg;
1020 MemoryRegion *ecam_alias;
1021 MemoryRegion *ecam_reg;
1022 DeviceState *dev;
1023 char *nodename;
1024 int i;
1025 PCIHostState *pci;
1027 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1028 qdev_init_nofail(dev);
1030 /* Map only the first size_ecam bytes of ECAM space */
1031 ecam_alias = g_new0(MemoryRegion, 1);
1032 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1033 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1034 ecam_reg, 0, size_ecam);
1035 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1037 /* Map the MMIO window into system address space so as to expose
1038 * the section of PCI MMIO space which starts at the same base address
1039 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1040 * the window).
1042 mmio_alias = g_new0(MemoryRegion, 1);
1043 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1044 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1045 mmio_reg, base_mmio, size_mmio);
1046 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1048 if (vms->highmem) {
1049 /* Map high MMIO space */
1050 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1052 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1053 mmio_reg, base_mmio_high, size_mmio_high);
1054 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1055 high_mmio_alias);
1058 /* Map IO port space */
1059 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1061 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1062 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1065 pci = PCI_HOST_BRIDGE(dev);
1066 if (pci->bus) {
1067 for (i = 0; i < nb_nics; i++) {
1068 NICInfo *nd = &nd_table[i];
1070 if (!nd->model) {
1071 nd->model = g_strdup("virtio");
1074 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1078 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1079 qemu_fdt_add_subnode(vms->fdt, nodename);
1080 qemu_fdt_setprop_string(vms->fdt, nodename,
1081 "compatible", "pci-host-ecam-generic");
1082 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1083 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1084 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1085 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1086 nr_pcie_buses - 1);
1087 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1089 if (vms->msi_phandle) {
1090 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1091 vms->msi_phandle);
1094 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1095 2, base_ecam, 2, size_ecam);
1097 if (vms->highmem) {
1098 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1099 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1100 2, base_pio, 2, size_pio,
1101 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1102 2, base_mmio, 2, size_mmio,
1103 1, FDT_PCI_RANGE_MMIO_64BIT,
1104 2, base_mmio_high,
1105 2, base_mmio_high, 2, size_mmio_high);
1106 } else {
1107 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1108 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1109 2, base_pio, 2, size_pio,
1110 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1111 2, base_mmio, 2, size_mmio);
1114 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1115 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1117 g_free(nodename);
1120 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1122 DeviceState *dev;
1123 SysBusDevice *s;
1124 int i;
1125 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1126 MemoryRegion *sysmem = get_system_memory();
1128 platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1129 platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1130 platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1131 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1133 fdt_params->system_params = &platform_bus_params;
1134 fdt_params->binfo = &vms->bootinfo;
1135 fdt_params->intc = "/intc";
1137 * register a machine init done notifier that creates the device tree
1138 * nodes of the platform bus and its children dynamic sysbus devices
1140 arm_register_platform_bus_fdt_creator(fdt_params);
1142 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1143 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1144 qdev_prop_set_uint32(dev, "num_irqs",
1145 platform_bus_params.platform_bus_num_irqs);
1146 qdev_prop_set_uint32(dev, "mmio_size",
1147 platform_bus_params.platform_bus_size);
1148 qdev_init_nofail(dev);
1149 s = SYS_BUS_DEVICE(dev);
1151 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1152 int irqn = platform_bus_params.platform_bus_first_irq + i;
1153 sysbus_connect_irq(s, i, pic[irqn]);
1156 memory_region_add_subregion(sysmem,
1157 platform_bus_params.platform_bus_base,
1158 sysbus_mmio_get_region(s, 0));
1161 static void create_secure_ram(VirtMachineState *vms,
1162 MemoryRegion *secure_sysmem)
1164 MemoryRegion *secram = g_new(MemoryRegion, 1);
1165 char *nodename;
1166 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1167 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1169 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1170 &error_fatal);
1171 memory_region_add_subregion(secure_sysmem, base, secram);
1173 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1174 qemu_fdt_add_subnode(vms->fdt, nodename);
1175 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1176 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1177 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1178 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1180 g_free(nodename);
1183 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1185 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1186 bootinfo);
1188 *fdt_size = board->fdt_size;
1189 return board->fdt;
1192 static void virt_build_smbios(VirtMachineState *vms)
1194 uint8_t *smbios_tables, *smbios_anchor;
1195 size_t smbios_tables_len, smbios_anchor_len;
1196 const char *product = "QEMU Virtual Machine";
1198 if (!vms->fw_cfg) {
1199 return;
1202 if (kvm_enabled()) {
1203 product = "KVM Virtual Machine";
1206 smbios_set_defaults("QEMU", product,
1207 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1209 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1210 &smbios_anchor, &smbios_anchor_len);
1212 if (smbios_anchor) {
1213 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1214 smbios_tables, smbios_tables_len);
1215 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1216 smbios_anchor, smbios_anchor_len);
1220 static
1221 void virt_machine_done(Notifier *notifier, void *data)
1223 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1224 machine_done);
1226 virt_acpi_setup(vms);
1227 virt_build_smbios(vms);
1230 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1232 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1233 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1235 if (!vmc->disallow_affinity_adjustment) {
1236 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1237 * GIC's target-list limitations. 32-bit KVM hosts currently
1238 * always create clusters of 4 CPUs, but that is expected to
1239 * change when they gain support for gicv3. When KVM is enabled
1240 * it will override the changes we make here, therefore our
1241 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1242 * and to improve SGI efficiency.
1244 if (vms->gic_version == 3) {
1245 clustersz = GICV3_TARGETLIST_BITS;
1246 } else {
1247 clustersz = GIC_TARGETLIST_BITS;
1250 return arm_cpu_mp_affinity(idx, clustersz);
1253 static void machvirt_init(MachineState *machine)
1255 VirtMachineState *vms = VIRT_MACHINE(machine);
1256 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1257 MachineClass *mc = MACHINE_GET_CLASS(machine);
1258 const CPUArchIdList *possible_cpus;
1259 qemu_irq pic[NUM_IRQS];
1260 MemoryRegion *sysmem = get_system_memory();
1261 MemoryRegion *secure_sysmem = NULL;
1262 int n, virt_max_cpus;
1263 MemoryRegion *ram = g_new(MemoryRegion, 1);
1264 const char *cpu_model = machine->cpu_model;
1265 char **cpustr;
1266 ObjectClass *oc;
1267 const char *typename;
1268 CPUClass *cc;
1269 Error *err = NULL;
1270 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1272 if (!cpu_model) {
1273 cpu_model = "cortex-a15";
1276 /* We can probe only here because during property set
1277 * KVM is not available yet
1279 if (!vms->gic_version) {
1280 if (!kvm_enabled()) {
1281 error_report("gic-version=host requires KVM");
1282 exit(1);
1285 vms->gic_version = kvm_arm_vgic_probe();
1286 if (!vms->gic_version) {
1287 error_report("Unable to determine GIC version supported by host");
1288 exit(1);
1292 /* Separate the actual CPU model name from any appended features */
1293 cpustr = g_strsplit(cpu_model, ",", 2);
1295 if (!cpuname_valid(cpustr[0])) {
1296 error_report("mach-virt: CPU %s not supported", cpustr[0]);
1297 exit(1);
1300 /* If we have an EL3 boot ROM then the assumption is that it will
1301 * implement PSCI itself, so disable QEMU's internal implementation
1302 * so it doesn't get in the way. Instead of starting secondary
1303 * CPUs in PSCI powerdown state we will start them all running and
1304 * let the boot ROM sort them out.
1305 * The usual case is that we do use QEMU's PSCI implementation;
1306 * if the guest has EL2 then we will use SMC as the conduit,
1307 * and otherwise we will use HVC (for backwards compatibility and
1308 * because if we're using KVM then we must use HVC).
1310 if (vms->secure && firmware_loaded) {
1311 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1312 } else if (vms->virt) {
1313 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1314 } else {
1315 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1318 /* The maximum number of CPUs depends on the GIC version, or on how
1319 * many redistributors we can fit into the memory map.
1321 if (vms->gic_version == 3) {
1322 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1323 } else {
1324 virt_max_cpus = GIC_NCPU;
1327 if (max_cpus > virt_max_cpus) {
1328 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1329 "supported by machine 'mach-virt' (%d)",
1330 max_cpus, virt_max_cpus);
1331 exit(1);
1334 vms->smp_cpus = smp_cpus;
1336 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1337 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1338 exit(1);
1341 if (vms->virt && kvm_enabled()) {
1342 error_report("mach-virt: KVM does not support providing "
1343 "Virtualization extensions to the guest CPU");
1344 exit(1);
1347 if (vms->secure) {
1348 if (kvm_enabled()) {
1349 error_report("mach-virt: KVM does not support Security extensions");
1350 exit(1);
1353 /* The Secure view of the world is the same as the NonSecure,
1354 * but with a few extra devices. Create it as a container region
1355 * containing the system memory at low priority; any secure-only
1356 * devices go in at higher priority and take precedence.
1358 secure_sysmem = g_new(MemoryRegion, 1);
1359 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1360 UINT64_MAX);
1361 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1364 create_fdt(vms);
1366 oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1367 if (!oc) {
1368 error_report("Unable to find CPU definition");
1369 exit(1);
1371 typename = object_class_get_name(oc);
1373 /* convert -smp CPU options specified by the user into global props */
1374 cc = CPU_CLASS(oc);
1375 cc->parse_features(typename, cpustr[1], &err);
1376 g_strfreev(cpustr);
1377 if (err) {
1378 error_report_err(err);
1379 exit(1);
1382 possible_cpus = mc->possible_cpu_arch_ids(machine);
1383 for (n = 0; n < possible_cpus->len; n++) {
1384 Object *cpuobj;
1385 CPUState *cs;
1387 if (n >= smp_cpus) {
1388 break;
1391 cpuobj = object_new(typename);
1392 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1393 "mp-affinity", NULL);
1395 cs = CPU(cpuobj);
1396 cs->cpu_index = n;
1398 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1399 &error_fatal);
1401 if (!vms->secure) {
1402 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1405 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1406 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1409 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1410 object_property_set_int(cpuobj, vms->psci_conduit,
1411 "psci-conduit", NULL);
1413 /* Secondary CPUs start in PSCI powered-down state */
1414 if (n > 0) {
1415 object_property_set_bool(cpuobj, true,
1416 "start-powered-off", NULL);
1420 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1421 object_property_set_bool(cpuobj, false, "pmu", NULL);
1424 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1425 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1426 "reset-cbar", &error_abort);
1429 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1430 &error_abort);
1431 if (vms->secure) {
1432 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1433 "secure-memory", &error_abort);
1436 object_property_set_bool(cpuobj, true, "realized", NULL);
1437 object_unref(cpuobj);
1439 fdt_add_timer_nodes(vms);
1440 fdt_add_cpu_nodes(vms);
1441 fdt_add_psci_node(vms);
1443 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1444 machine->ram_size);
1445 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1447 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1449 create_gic(vms, pic);
1451 fdt_add_pmu_nodes(vms);
1453 create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1455 if (vms->secure) {
1456 create_secure_ram(vms, secure_sysmem);
1457 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1460 create_rtc(vms, pic);
1462 create_pcie(vms, pic);
1464 create_gpio(vms, pic);
1466 /* Create mmio transports, so the user can create virtio backends
1467 * (which will be automatically plugged in to the transports). If
1468 * no backend is created the transport will just sit harmlessly idle.
1470 create_virtio_devices(vms, pic);
1472 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1473 rom_set_fw(vms->fw_cfg);
1475 vms->machine_done.notify = virt_machine_done;
1476 qemu_add_machine_init_done_notifier(&vms->machine_done);
1478 vms->bootinfo.ram_size = machine->ram_size;
1479 vms->bootinfo.kernel_filename = machine->kernel_filename;
1480 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1481 vms->bootinfo.initrd_filename = machine->initrd_filename;
1482 vms->bootinfo.nb_cpus = smp_cpus;
1483 vms->bootinfo.board_id = -1;
1484 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1485 vms->bootinfo.get_dtb = machvirt_dtb;
1486 vms->bootinfo.firmware_loaded = firmware_loaded;
1487 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1490 * arm_load_kernel machine init done notifier registration must
1491 * happen before the platform_bus_create call. In this latter,
1492 * another notifier is registered which adds platform bus nodes.
1493 * Notifiers are executed in registration reverse order.
1495 create_platform_bus(vms, pic);
1498 static bool virt_get_secure(Object *obj, Error **errp)
1500 VirtMachineState *vms = VIRT_MACHINE(obj);
1502 return vms->secure;
1505 static void virt_set_secure(Object *obj, bool value, Error **errp)
1507 VirtMachineState *vms = VIRT_MACHINE(obj);
1509 vms->secure = value;
1512 static bool virt_get_virt(Object *obj, Error **errp)
1514 VirtMachineState *vms = VIRT_MACHINE(obj);
1516 return vms->virt;
1519 static void virt_set_virt(Object *obj, bool value, Error **errp)
1521 VirtMachineState *vms = VIRT_MACHINE(obj);
1523 vms->virt = value;
1526 static bool virt_get_highmem(Object *obj, Error **errp)
1528 VirtMachineState *vms = VIRT_MACHINE(obj);
1530 return vms->highmem;
1533 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1535 VirtMachineState *vms = VIRT_MACHINE(obj);
1537 vms->highmem = value;
1540 static bool virt_get_its(Object *obj, Error **errp)
1542 VirtMachineState *vms = VIRT_MACHINE(obj);
1544 return vms->its;
1547 static void virt_set_its(Object *obj, bool value, Error **errp)
1549 VirtMachineState *vms = VIRT_MACHINE(obj);
1551 vms->its = value;
1554 static char *virt_get_gic_version(Object *obj, Error **errp)
1556 VirtMachineState *vms = VIRT_MACHINE(obj);
1557 const char *val = vms->gic_version == 3 ? "3" : "2";
1559 return g_strdup(val);
1562 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1564 VirtMachineState *vms = VIRT_MACHINE(obj);
1566 if (!strcmp(value, "3")) {
1567 vms->gic_version = 3;
1568 } else if (!strcmp(value, "2")) {
1569 vms->gic_version = 2;
1570 } else if (!strcmp(value, "host")) {
1571 vms->gic_version = 0; /* Will probe later */
1572 } else {
1573 error_setg(errp, "Invalid gic-version value");
1574 error_append_hint(errp, "Valid values are 3, 2, host.\n");
1578 static CpuInstanceProperties
1579 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1581 MachineClass *mc = MACHINE_GET_CLASS(ms);
1582 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1584 assert(cpu_index < possible_cpus->len);
1585 return possible_cpus->cpus[cpu_index].props;
1588 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1590 int n;
1591 VirtMachineState *vms = VIRT_MACHINE(ms);
1593 if (ms->possible_cpus) {
1594 assert(ms->possible_cpus->len == max_cpus);
1595 return ms->possible_cpus;
1598 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1599 sizeof(CPUArchId) * max_cpus);
1600 ms->possible_cpus->len = max_cpus;
1601 for (n = 0; n < ms->possible_cpus->len; n++) {
1602 ms->possible_cpus->cpus[n].arch_id =
1603 virt_cpu_mp_affinity(vms, n);
1604 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1605 ms->possible_cpus->cpus[n].props.thread_id = n;
1607 /* default distribution of CPUs over NUMA nodes */
1608 if (nb_numa_nodes) {
1609 /* preset values but do not enable them i.e. 'has_node_id = false',
1610 * numa init code will enable them later if manual mapping wasn't
1611 * present on CLI */
1612 ms->possible_cpus->cpus[n].props.node_id = n % nb_numa_nodes;
1615 return ms->possible_cpus;
1618 static void virt_machine_class_init(ObjectClass *oc, void *data)
1620 MachineClass *mc = MACHINE_CLASS(oc);
1622 mc->init = machvirt_init;
1623 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1624 * it later in machvirt_init, where we have more information about the
1625 * configuration of the particular instance.
1627 mc->max_cpus = 255;
1628 mc->has_dynamic_sysbus = true;
1629 mc->block_default_type = IF_VIRTIO;
1630 mc->no_cdrom = 1;
1631 mc->pci_allow_0_address = true;
1632 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1633 mc->minimum_page_bits = 12;
1634 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1635 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1638 static const TypeInfo virt_machine_info = {
1639 .name = TYPE_VIRT_MACHINE,
1640 .parent = TYPE_MACHINE,
1641 .abstract = true,
1642 .instance_size = sizeof(VirtMachineState),
1643 .class_size = sizeof(VirtMachineClass),
1644 .class_init = virt_machine_class_init,
1647 static void machvirt_machine_init(void)
1649 type_register_static(&virt_machine_info);
1651 type_init(machvirt_machine_init);
1653 static void virt_2_10_instance_init(Object *obj)
1655 VirtMachineState *vms = VIRT_MACHINE(obj);
1656 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1658 /* EL3 is disabled by default on virt: this makes us consistent
1659 * between KVM and TCG for this board, and it also allows us to
1660 * boot UEFI blobs which assume no TrustZone support.
1662 vms->secure = false;
1663 object_property_add_bool(obj, "secure", virt_get_secure,
1664 virt_set_secure, NULL);
1665 object_property_set_description(obj, "secure",
1666 "Set on/off to enable/disable the ARM "
1667 "Security Extensions (TrustZone)",
1668 NULL);
1670 /* EL2 is also disabled by default, for similar reasons */
1671 vms->virt = false;
1672 object_property_add_bool(obj, "virtualization", virt_get_virt,
1673 virt_set_virt, NULL);
1674 object_property_set_description(obj, "virtualization",
1675 "Set on/off to enable/disable emulating a "
1676 "guest CPU which implements the ARM "
1677 "Virtualization Extensions",
1678 NULL);
1680 /* High memory is enabled by default */
1681 vms->highmem = true;
1682 object_property_add_bool(obj, "highmem", virt_get_highmem,
1683 virt_set_highmem, NULL);
1684 object_property_set_description(obj, "highmem",
1685 "Set on/off to enable/disable using "
1686 "physical address space above 32 bits",
1687 NULL);
1688 /* Default GIC type is v2 */
1689 vms->gic_version = 2;
1690 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1691 virt_set_gic_version, NULL);
1692 object_property_set_description(obj, "gic-version",
1693 "Set GIC version. "
1694 "Valid values are 2, 3 and host", NULL);
1696 if (vmc->no_its) {
1697 vms->its = false;
1698 } else {
1699 /* Default allows ITS instantiation */
1700 vms->its = true;
1701 object_property_add_bool(obj, "its", virt_get_its,
1702 virt_set_its, NULL);
1703 object_property_set_description(obj, "its",
1704 "Set on/off to enable/disable "
1705 "ITS instantiation",
1706 NULL);
1709 vms->memmap = a15memmap;
1710 vms->irqmap = a15irqmap;
1713 static void virt_machine_2_10_options(MachineClass *mc)
1716 DEFINE_VIRT_MACHINE_AS_LATEST(2, 10)
1718 #define VIRT_COMPAT_2_9 \
1719 HW_COMPAT_2_9
1721 static void virt_2_9_instance_init(Object *obj)
1723 virt_2_10_instance_init(obj);
1726 static void virt_machine_2_9_options(MachineClass *mc)
1728 virt_machine_2_10_options(mc);
1729 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
1731 DEFINE_VIRT_MACHINE(2, 9)
1733 #define VIRT_COMPAT_2_8 \
1734 HW_COMPAT_2_8
1736 static void virt_2_8_instance_init(Object *obj)
1738 virt_2_9_instance_init(obj);
1741 static void virt_machine_2_8_options(MachineClass *mc)
1743 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1745 virt_machine_2_9_options(mc);
1746 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1747 /* For 2.8 and earlier we falsely claimed in the DT that
1748 * our timers were edge-triggered, not level-triggered.
1750 vmc->claim_edge_triggered_timers = true;
1752 DEFINE_VIRT_MACHINE(2, 8)
1754 #define VIRT_COMPAT_2_7 \
1755 HW_COMPAT_2_7
1757 static void virt_2_7_instance_init(Object *obj)
1759 virt_2_8_instance_init(obj);
1762 static void virt_machine_2_7_options(MachineClass *mc)
1764 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1766 virt_machine_2_8_options(mc);
1767 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1768 /* ITS was introduced with 2.8 */
1769 vmc->no_its = true;
1770 /* Stick with 1K pages for migration compatibility */
1771 mc->minimum_page_bits = 0;
1773 DEFINE_VIRT_MACHINE(2, 7)
1775 #define VIRT_COMPAT_2_6 \
1776 HW_COMPAT_2_6
1778 static void virt_2_6_instance_init(Object *obj)
1780 virt_2_7_instance_init(obj);
1783 static void virt_machine_2_6_options(MachineClass *mc)
1785 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1787 virt_machine_2_7_options(mc);
1788 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1789 vmc->disallow_affinity_adjustment = true;
1790 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1791 vmc->no_pmu = true;
1793 DEFINE_VIRT_MACHINE(2, 6)