hw/arm/virt: Move common definitions to virt.h
[qemu/ar7.git] / hw / arm / virt.c
blob8959d0cbe354b6034741675a72ff4b06c8416fbf
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/arm/virt.h"
35 #include "hw/devices.h"
36 #include "net/net.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/kvm.h"
41 #include "hw/boards.h"
42 #include "hw/loader.h"
43 #include "exec/address-spaces.h"
44 #include "qemu/bitops.h"
45 #include "qemu/error-report.h"
46 #include "hw/pci-host/gpex.h"
48 /* Number of external interrupt lines to configure the GIC with */
49 #define NUM_IRQS 128
51 #define GIC_FDT_IRQ_TYPE_SPI 0
52 #define GIC_FDT_IRQ_TYPE_PPI 1
54 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
55 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
56 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
57 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
59 #define GIC_FDT_IRQ_PPI_CPU_START 8
60 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
62 typedef struct VirtBoardInfo {
63 struct arm_boot_info bootinfo;
64 const char *cpu_model;
65 const MemMapEntry *memmap;
66 const int *irqmap;
67 int smp_cpus;
68 void *fdt;
69 int fdt_size;
70 uint32_t clock_phandle;
71 } VirtBoardInfo;
73 typedef struct {
74 MachineClass parent;
75 VirtBoardInfo *daughterboard;
76 } VirtMachineClass;
78 typedef struct {
79 MachineState parent;
80 bool secure;
81 } VirtMachineState;
83 #define TYPE_VIRT_MACHINE "virt"
84 #define VIRT_MACHINE(obj) \
85 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
86 #define VIRT_MACHINE_GET_CLASS(obj) \
87 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
88 #define VIRT_MACHINE_CLASS(klass) \
89 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
91 /* Addresses and sizes of our components.
92 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
93 * 128MB..256MB is used for miscellaneous device I/O.
94 * 256MB..1GB is reserved for possible future PCI support (ie where the
95 * PCI memory window will go if we add a PCI host controller).
96 * 1GB and up is RAM (which may happily spill over into the
97 * high memory region beyond 4GB).
98 * This represents a compromise between how much RAM can be given to
99 * a 32 bit VM and leaving space for expansion and in particular for PCI.
100 * Note that devices should generally be placed at multiples of 0x10000,
101 * to accommodate guests using 64K pages.
103 static const MemMapEntry a15memmap[] = {
104 /* Space up to 0x8000000 is reserved for a boot ROM */
105 [VIRT_FLASH] = { 0, 0x08000000 },
106 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
107 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
108 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
109 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
110 [VIRT_UART] = { 0x09000000, 0x00001000 },
111 [VIRT_RTC] = { 0x09010000, 0x00001000 },
112 [VIRT_FW_CFG] = { 0x09020000, 0x0000000a },
113 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
114 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
116 * PCIE verbose map:
118 * MMIO window { 0x10000000, 0x2eff0000 },
119 * PIO window { 0x3eff0000, 0x00010000 },
120 * ECAM { 0x3f000000, 0x01000000 },
122 [VIRT_PCIE] = { 0x10000000, 0x30000000 },
123 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
126 static const int a15irqmap[] = {
127 [VIRT_UART] = 1,
128 [VIRT_RTC] = 2,
129 [VIRT_PCIE] = 3, /* ... to 6 */
130 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
133 static VirtBoardInfo machines[] = {
135 .cpu_model = "cortex-a15",
136 .memmap = a15memmap,
137 .irqmap = a15irqmap,
140 .cpu_model = "cortex-a57",
141 .memmap = a15memmap,
142 .irqmap = a15irqmap,
145 .cpu_model = "host",
146 .memmap = a15memmap,
147 .irqmap = a15irqmap,
151 static VirtBoardInfo *find_machine_info(const char *cpu)
153 int i;
155 for (i = 0; i < ARRAY_SIZE(machines); i++) {
156 if (strcmp(cpu, machines[i].cpu_model) == 0) {
157 return &machines[i];
160 return NULL;
163 static void create_fdt(VirtBoardInfo *vbi)
165 void *fdt = create_device_tree(&vbi->fdt_size);
167 if (!fdt) {
168 error_report("create_device_tree() failed");
169 exit(1);
172 vbi->fdt = fdt;
174 /* Header */
175 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
176 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
177 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
180 * /chosen and /memory nodes must exist for load_dtb
181 * to fill in necessary properties later
183 qemu_fdt_add_subnode(fdt, "/chosen");
184 qemu_fdt_add_subnode(fdt, "/memory");
185 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
187 /* Clock node, for the benefit of the UART. The kernel device tree
188 * binding documentation claims the PL011 node clock properties are
189 * optional but in practice if you omit them the kernel refuses to
190 * probe for the device.
192 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
193 qemu_fdt_add_subnode(fdt, "/apb-pclk");
194 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
195 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
196 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
197 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
198 "clk24mhz");
199 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
203 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
205 uint32_t cpu_suspend_fn;
206 uint32_t cpu_off_fn;
207 uint32_t cpu_on_fn;
208 uint32_t migrate_fn;
209 void *fdt = vbi->fdt;
210 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
212 qemu_fdt_add_subnode(fdt, "/psci");
213 if (armcpu->psci_version == 2) {
214 const char comp[] = "arm,psci-0.2\0arm,psci";
215 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
217 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
218 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
219 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
220 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
221 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
222 } else {
223 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
224 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
225 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
227 } else {
228 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
230 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
231 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
232 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
233 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
236 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
237 * to the instruction that should be used to invoke PSCI functions.
238 * However, the device tree binding uses 'method' instead, so that is
239 * what we should use here.
241 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
243 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
244 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
245 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
246 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
249 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
251 /* Note that on A15 h/w these interrupts are level-triggered,
252 * but for the GIC implementation provided by both QEMU and KVM
253 * they are edge-triggered.
255 ARMCPU *armcpu;
256 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
258 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
259 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
261 qemu_fdt_add_subnode(vbi->fdt, "/timer");
263 armcpu = ARM_CPU(qemu_get_cpu(0));
264 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
265 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
266 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
267 compat, sizeof(compat));
268 } else {
269 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
270 "arm,armv7-timer");
272 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
273 GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
274 GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
275 GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
276 GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
279 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
281 int cpu;
283 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
284 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
285 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
287 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
288 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
289 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
291 qemu_fdt_add_subnode(vbi->fdt, nodename);
292 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
293 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
294 armcpu->dtb_compatible);
296 if (vbi->smp_cpus > 1) {
297 qemu_fdt_setprop_string(vbi->fdt, nodename,
298 "enable-method", "psci");
301 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
302 g_free(nodename);
306 static uint32_t fdt_add_gic_node(const VirtBoardInfo *vbi)
308 uint32_t gic_phandle;
310 gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
311 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
313 qemu_fdt_add_subnode(vbi->fdt, "/intc");
314 /* 'cortex-a15-gic' means 'GIC v2' */
315 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
316 "arm,cortex-a15-gic");
317 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
318 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
319 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
320 2, vbi->memmap[VIRT_GIC_DIST].base,
321 2, vbi->memmap[VIRT_GIC_DIST].size,
322 2, vbi->memmap[VIRT_GIC_CPU].base,
323 2, vbi->memmap[VIRT_GIC_CPU].size);
324 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
326 return gic_phandle;
329 static uint32_t create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
331 /* We create a standalone GIC v2 */
332 DeviceState *gicdev;
333 SysBusDevice *gicbusdev;
334 const char *gictype = "arm_gic";
335 int i;
337 if (kvm_irqchip_in_kernel()) {
338 gictype = "kvm-arm-gic";
341 gicdev = qdev_create(NULL, gictype);
342 qdev_prop_set_uint32(gicdev, "revision", 2);
343 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
344 /* Note that the num-irq property counts both internal and external
345 * interrupts; there are always 32 of the former (mandated by GIC spec).
347 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
348 qdev_init_nofail(gicdev);
349 gicbusdev = SYS_BUS_DEVICE(gicdev);
350 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
351 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
353 /* Wire the outputs from each CPU's generic timer to the
354 * appropriate GIC PPI inputs, and the GIC's IRQ output to
355 * the CPU's IRQ input.
357 for (i = 0; i < smp_cpus; i++) {
358 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
359 int ppibase = NUM_IRQS + i * 32;
360 /* physical timer; we wire it up to the non-secure timer's ID,
361 * since a real A15 always has TrustZone but QEMU doesn't.
363 qdev_connect_gpio_out(cpudev, 0,
364 qdev_get_gpio_in(gicdev, ppibase + 30));
365 /* virtual timer */
366 qdev_connect_gpio_out(cpudev, 1,
367 qdev_get_gpio_in(gicdev, ppibase + 27));
369 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
370 sysbus_connect_irq(gicbusdev, i + smp_cpus,
371 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
374 for (i = 0; i < NUM_IRQS; i++) {
375 pic[i] = qdev_get_gpio_in(gicdev, i);
378 return fdt_add_gic_node(vbi);
381 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
383 char *nodename;
384 hwaddr base = vbi->memmap[VIRT_UART].base;
385 hwaddr size = vbi->memmap[VIRT_UART].size;
386 int irq = vbi->irqmap[VIRT_UART];
387 const char compat[] = "arm,pl011\0arm,primecell";
388 const char clocknames[] = "uartclk\0apb_pclk";
390 sysbus_create_simple("pl011", base, pic[irq]);
392 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
393 qemu_fdt_add_subnode(vbi->fdt, nodename);
394 /* Note that we can't use setprop_string because of the embedded NUL */
395 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
396 compat, sizeof(compat));
397 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
398 2, base, 2, size);
399 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
400 GIC_FDT_IRQ_TYPE_SPI, irq,
401 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
402 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
403 vbi->clock_phandle, vbi->clock_phandle);
404 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
405 clocknames, sizeof(clocknames));
407 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
408 g_free(nodename);
411 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
413 char *nodename;
414 hwaddr base = vbi->memmap[VIRT_RTC].base;
415 hwaddr size = vbi->memmap[VIRT_RTC].size;
416 int irq = vbi->irqmap[VIRT_RTC];
417 const char compat[] = "arm,pl031\0arm,primecell";
419 sysbus_create_simple("pl031", base, pic[irq]);
421 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
422 qemu_fdt_add_subnode(vbi->fdt, nodename);
423 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
424 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
425 2, base, 2, size);
426 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
427 GIC_FDT_IRQ_TYPE_SPI, irq,
428 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
429 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
430 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
431 g_free(nodename);
434 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
436 int i;
437 hwaddr size = vbi->memmap[VIRT_MMIO].size;
439 /* We create the transports in forwards order. Since qbus_realize()
440 * prepends (not appends) new child buses, the incrementing loop below will
441 * create a list of virtio-mmio buses with decreasing base addresses.
443 * When a -device option is processed from the command line,
444 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
445 * order. The upshot is that -device options in increasing command line
446 * order are mapped to virtio-mmio buses with decreasing base addresses.
448 * When this code was originally written, that arrangement ensured that the
449 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
450 * the first -device on the command line. (The end-to-end order is a
451 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
452 * guest kernel's name-to-address assignment strategy.)
454 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
455 * the message, if not necessarily the code, of commit 70161ff336.
456 * Therefore the loop now establishes the inverse of the original intent.
458 * Unfortunately, we can't counteract the kernel change by reversing the
459 * loop; it would break existing command lines.
461 * In any case, the kernel makes no guarantee about the stability of
462 * enumeration order of virtio devices (as demonstrated by it changing
463 * between kernel versions). For reliable and stable identification
464 * of disks users must use UUIDs or similar mechanisms.
466 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
467 int irq = vbi->irqmap[VIRT_MMIO] + i;
468 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
470 sysbus_create_simple("virtio-mmio", base, pic[irq]);
473 /* We add dtb nodes in reverse order so that they appear in the finished
474 * device tree lowest address first.
476 * Note that this mapping is independent of the loop above. The previous
477 * loop influences virtio device to virtio transport assignment, whereas
478 * this loop controls how virtio transports are laid out in the dtb.
480 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
481 char *nodename;
482 int irq = vbi->irqmap[VIRT_MMIO] + i;
483 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
485 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
486 qemu_fdt_add_subnode(vbi->fdt, nodename);
487 qemu_fdt_setprop_string(vbi->fdt, nodename,
488 "compatible", "virtio,mmio");
489 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
490 2, base, 2, size);
491 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
492 GIC_FDT_IRQ_TYPE_SPI, irq,
493 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
494 g_free(nodename);
498 static void create_one_flash(const char *name, hwaddr flashbase,
499 hwaddr flashsize)
501 /* Create and map a single flash device. We use the same
502 * parameters as the flash devices on the Versatile Express board.
504 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
505 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
506 const uint64_t sectorlength = 256 * 1024;
508 if (dinfo) {
509 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
510 &error_abort);
513 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
514 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
515 qdev_prop_set_uint8(dev, "width", 4);
516 qdev_prop_set_uint8(dev, "device-width", 2);
517 qdev_prop_set_uint8(dev, "big-endian", 0);
518 qdev_prop_set_uint16(dev, "id0", 0x89);
519 qdev_prop_set_uint16(dev, "id1", 0x18);
520 qdev_prop_set_uint16(dev, "id2", 0x00);
521 qdev_prop_set_uint16(dev, "id3", 0x00);
522 qdev_prop_set_string(dev, "name", name);
523 qdev_init_nofail(dev);
525 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
528 static void create_flash(const VirtBoardInfo *vbi)
530 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
531 * Any file passed via -bios goes in the first of these.
533 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
534 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
535 char *nodename;
537 if (bios_name) {
538 char *fn;
539 int image_size;
541 if (drive_get(IF_PFLASH, 0, 0)) {
542 error_report("The contents of the first flash device may be "
543 "specified with -bios or with -drive if=pflash... "
544 "but you cannot use both options at once");
545 exit(1);
547 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
548 if (!fn) {
549 error_report("Could not find ROM image '%s'", bios_name);
550 exit(1);
552 image_size = load_image_targphys(fn, flashbase, flashsize);
553 g_free(fn);
554 if (image_size < 0) {
555 error_report("Could not load ROM image '%s'", bios_name);
556 exit(1);
560 create_one_flash("virt.flash0", flashbase, flashsize);
561 create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
563 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
564 qemu_fdt_add_subnode(vbi->fdt, nodename);
565 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
566 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
567 2, flashbase, 2, flashsize,
568 2, flashbase + flashsize, 2, flashsize);
569 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
570 g_free(nodename);
573 static void create_fw_cfg(const VirtBoardInfo *vbi)
575 hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
576 hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
577 char *nodename;
579 fw_cfg_init_mem_wide(base + 8, base, 8);
581 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
582 qemu_fdt_add_subnode(vbi->fdt, nodename);
583 qemu_fdt_setprop_string(vbi->fdt, nodename,
584 "compatible", "qemu,fw-cfg-mmio");
585 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
586 2, base, 2, size);
587 g_free(nodename);
590 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
591 int first_irq, const char *nodename)
593 int devfn, pin;
594 uint32_t full_irq_map[4 * 4 * 8] = { 0 };
595 uint32_t *irq_map = full_irq_map;
597 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
598 for (pin = 0; pin < 4; pin++) {
599 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
600 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
601 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
602 int i;
604 uint32_t map[] = {
605 devfn << 8, 0, 0, /* devfn */
606 pin + 1, /* PCI pin */
607 gic_phandle, irq_type, irq_nr, irq_level }; /* GIC irq */
609 /* Convert map to big endian */
610 for (i = 0; i < 8; i++) {
611 irq_map[i] = cpu_to_be32(map[i]);
613 irq_map += 8;
617 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
618 full_irq_map, sizeof(full_irq_map));
620 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
621 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
622 0x7 /* PCI irq */);
625 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
626 uint32_t gic_phandle)
628 hwaddr base = vbi->memmap[VIRT_PCIE].base;
629 hwaddr size = vbi->memmap[VIRT_PCIE].size;
630 hwaddr end = base + size;
631 hwaddr size_mmio;
632 hwaddr size_ioport = 64 * 1024;
633 int nr_pcie_buses = 16;
634 hwaddr size_ecam = PCIE_MMCFG_SIZE_MIN * nr_pcie_buses;
635 hwaddr base_mmio = base;
636 hwaddr base_ioport;
637 hwaddr base_ecam;
638 int irq = vbi->irqmap[VIRT_PCIE];
639 MemoryRegion *mmio_alias;
640 MemoryRegion *mmio_reg;
641 MemoryRegion *ecam_alias;
642 MemoryRegion *ecam_reg;
643 DeviceState *dev;
644 char *nodename;
645 int i;
647 base_ecam = QEMU_ALIGN_DOWN(end - size_ecam, size_ecam);
648 base_ioport = QEMU_ALIGN_DOWN(base_ecam - size_ioport, size_ioport);
649 size_mmio = base_ioport - base;
651 dev = qdev_create(NULL, TYPE_GPEX_HOST);
652 qdev_init_nofail(dev);
654 /* Map only the first size_ecam bytes of ECAM space */
655 ecam_alias = g_new0(MemoryRegion, 1);
656 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
657 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
658 ecam_reg, 0, size_ecam);
659 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
661 /* Map the MMIO window into system address space so as to expose
662 * the section of PCI MMIO space which starts at the same base address
663 * (ie 1:1 mapping for that part of PCI MMIO space visible through
664 * the window).
666 mmio_alias = g_new0(MemoryRegion, 1);
667 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
668 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
669 mmio_reg, base_mmio, size_mmio);
670 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
672 /* Map IO port space */
673 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_ioport);
675 for (i = 0; i < GPEX_NUM_IRQS; i++) {
676 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
679 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
680 qemu_fdt_add_subnode(vbi->fdt, nodename);
681 qemu_fdt_setprop_string(vbi->fdt, nodename,
682 "compatible", "pci-host-ecam-generic");
683 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
684 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
685 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
686 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
687 nr_pcie_buses - 1);
689 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
690 2, base_ecam, 2, size_ecam);
691 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
692 1, FDT_PCI_RANGE_IOPORT, 2, 0,
693 2, base_ioport, 2, size_ioport,
694 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
695 2, base_mmio, 2, size_mmio);
697 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
698 create_pcie_irq_map(vbi, gic_phandle, irq, nodename);
700 g_free(nodename);
703 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
705 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
707 *fdt_size = board->fdt_size;
708 return board->fdt;
711 static void machvirt_init(MachineState *machine)
713 VirtMachineState *vms = VIRT_MACHINE(machine);
714 qemu_irq pic[NUM_IRQS];
715 MemoryRegion *sysmem = get_system_memory();
716 int n;
717 MemoryRegion *ram = g_new(MemoryRegion, 1);
718 const char *cpu_model = machine->cpu_model;
719 VirtBoardInfo *vbi;
720 uint32_t gic_phandle;
721 char **cpustr;
723 if (!cpu_model) {
724 cpu_model = "cortex-a15";
727 /* Separate the actual CPU model name from any appended features */
728 cpustr = g_strsplit(cpu_model, ",", 2);
730 vbi = find_machine_info(cpustr[0]);
732 if (!vbi) {
733 error_report("mach-virt: CPU %s not supported", cpustr[0]);
734 exit(1);
737 vbi->smp_cpus = smp_cpus;
739 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
740 error_report("mach-virt: cannot model more than 30GB RAM");
741 exit(1);
744 create_fdt(vbi);
746 for (n = 0; n < smp_cpus; n++) {
747 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
748 CPUClass *cc = CPU_CLASS(oc);
749 Object *cpuobj;
750 Error *err = NULL;
751 char *cpuopts = g_strdup(cpustr[1]);
753 if (!oc) {
754 fprintf(stderr, "Unable to find CPU definition\n");
755 exit(1);
757 cpuobj = object_new(object_class_get_name(oc));
759 /* Handle any CPU options specified by the user */
760 cc->parse_features(CPU(cpuobj), cpuopts, &err);
761 g_free(cpuopts);
762 if (err) {
763 error_report_err(err);
764 exit(1);
767 if (!vms->secure) {
768 object_property_set_bool(cpuobj, false, "has_el3", NULL);
771 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
772 NULL);
774 /* Secondary CPUs start in PSCI powered-down state */
775 if (n > 0) {
776 object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
779 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
780 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
781 "reset-cbar", &error_abort);
784 object_property_set_bool(cpuobj, true, "realized", NULL);
786 g_strfreev(cpustr);
787 fdt_add_timer_nodes(vbi);
788 fdt_add_cpu_nodes(vbi);
789 fdt_add_psci_node(vbi);
791 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
792 machine->ram_size);
793 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
795 create_flash(vbi);
797 gic_phandle = create_gic(vbi, pic);
799 create_uart(vbi, pic);
801 create_rtc(vbi, pic);
803 create_pcie(vbi, pic, gic_phandle);
805 /* Create mmio transports, so the user can create virtio backends
806 * (which will be automatically plugged in to the transports). If
807 * no backend is created the transport will just sit harmlessly idle.
809 create_virtio_devices(vbi, pic);
811 create_fw_cfg(vbi);
813 vbi->bootinfo.ram_size = machine->ram_size;
814 vbi->bootinfo.kernel_filename = machine->kernel_filename;
815 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
816 vbi->bootinfo.initrd_filename = machine->initrd_filename;
817 vbi->bootinfo.nb_cpus = smp_cpus;
818 vbi->bootinfo.board_id = -1;
819 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
820 vbi->bootinfo.get_dtb = machvirt_dtb;
821 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
822 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
825 static bool virt_get_secure(Object *obj, Error **errp)
827 VirtMachineState *vms = VIRT_MACHINE(obj);
829 return vms->secure;
832 static void virt_set_secure(Object *obj, bool value, Error **errp)
834 VirtMachineState *vms = VIRT_MACHINE(obj);
836 vms->secure = value;
839 static void virt_instance_init(Object *obj)
841 VirtMachineState *vms = VIRT_MACHINE(obj);
843 /* EL3 is enabled by default on virt */
844 vms->secure = true;
845 object_property_add_bool(obj, "secure", virt_get_secure,
846 virt_set_secure, NULL);
847 object_property_set_description(obj, "secure",
848 "Set on/off to enable/disable the ARM "
849 "Security Extensions (TrustZone)",
850 NULL);
853 static void virt_class_init(ObjectClass *oc, void *data)
855 MachineClass *mc = MACHINE_CLASS(oc);
857 mc->name = TYPE_VIRT_MACHINE;
858 mc->desc = "ARM Virtual Machine",
859 mc->init = machvirt_init;
860 mc->max_cpus = 8;
863 static const TypeInfo machvirt_info = {
864 .name = TYPE_VIRT_MACHINE,
865 .parent = TYPE_MACHINE,
866 .instance_size = sizeof(VirtMachineState),
867 .instance_init = virt_instance_init,
868 .class_size = sizeof(VirtMachineClass),
869 .class_init = virt_class_init,
872 static void machvirt_machine_init(void)
874 type_register_static(&machvirt_info);
877 machine_init(machvirt_machine_init);