hw/arm/virt: remove VirtGuestInfo
[qemu/ar7.git] / hw / arm / virt.c
blob7a03f840513989eed6a86ff2d0e40ecfa2e12a8a
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/compat.h"
45 #include "hw/loader.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/bitops.h"
48 #include "qemu/error-report.h"
49 #include "hw/pci-host/gpex.h"
50 #include "hw/arm/sysbus-fdt.h"
51 #include "hw/platform-bus.h"
52 #include "hw/arm/fdt.h"
53 #include "hw/intc/arm_gic.h"
54 #include "hw/intc/arm_gicv3_common.h"
55 #include "kvm_arm.h"
56 #include "hw/smbios/smbios.h"
57 #include "qapi/visitor.h"
58 #include "standard-headers/linux/input.h"
60 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
61 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
62 void *data) \
63 { \
64 MachineClass *mc = MACHINE_CLASS(oc); \
65 virt_machine_##major##_##minor##_options(mc); \
66 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
67 if (latest) { \
68 mc->alias = "virt"; \
69 } \
70 } \
71 static const TypeInfo machvirt_##major##_##minor##_info = { \
72 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
73 .parent = TYPE_VIRT_MACHINE, \
74 .instance_init = virt_##major##_##minor##_instance_init, \
75 .class_init = virt_##major##_##minor##_class_init, \
76 }; \
77 static void machvirt_machine_##major##_##minor##_init(void) \
78 { \
79 type_register_static(&machvirt_##major##_##minor##_info); \
80 } \
81 type_init(machvirt_machine_##major##_##minor##_init);
83 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
84 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
85 #define DEFINE_VIRT_MACHINE(major, minor) \
86 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
89 /* Number of external interrupt lines to configure the GIC with */
90 #define NUM_IRQS 256
92 #define PLATFORM_BUS_NUM_IRQS 64
94 static ARMPlatformBusSystemParams platform_bus_params;
96 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
97 * RAM can go up to the 256GB mark, leaving 256GB of the physical
98 * address space unallocated and free for future use between 256G and 512G.
99 * If we need to provide more RAM to VMs in the future then we need to:
100 * * allocate a second bank of RAM starting at 2TB and working up
101 * * fix the DT and ACPI table generation code in QEMU to correctly
102 * report two split lumps of RAM to the guest
103 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
104 * (We don't want to fill all the way up to 512GB with RAM because
105 * we might want it for non-RAM purposes later. Conversely it seems
106 * reasonable to assume that anybody configuring a VM with a quarter
107 * of a terabyte of RAM will be doing it on a host with more than a
108 * terabyte of physical address space.)
110 #define RAMLIMIT_GB 255
111 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
113 /* Addresses and sizes of our components.
114 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
115 * 128MB..256MB is used for miscellaneous device I/O.
116 * 256MB..1GB is reserved for possible future PCI support (ie where the
117 * PCI memory window will go if we add a PCI host controller).
118 * 1GB and up is RAM (which may happily spill over into the
119 * high memory region beyond 4GB).
120 * This represents a compromise between how much RAM can be given to
121 * a 32 bit VM and leaving space for expansion and in particular for PCI.
122 * Note that devices should generally be placed at multiples of 0x10000,
123 * to accommodate guests using 64K pages.
125 static const MemMapEntry a15memmap[] = {
126 /* Space up to 0x8000000 is reserved for a boot ROM */
127 [VIRT_FLASH] = { 0, 0x08000000 },
128 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
129 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
130 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
131 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
132 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
133 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
134 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
135 /* This redistributor space allows up to 2*64kB*123 CPUs */
136 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
137 [VIRT_UART] = { 0x09000000, 0x00001000 },
138 [VIRT_RTC] = { 0x09010000, 0x00001000 },
139 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
140 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
141 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
142 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
143 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
144 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
145 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
146 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
147 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
148 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
149 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
150 /* Second PCIe window, 512GB wide at the 512GB boundary */
151 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
154 static const int a15irqmap[] = {
155 [VIRT_UART] = 1,
156 [VIRT_RTC] = 2,
157 [VIRT_PCIE] = 3, /* ... to 6 */
158 [VIRT_GPIO] = 7,
159 [VIRT_SECURE_UART] = 8,
160 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
161 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
162 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
165 static const char *valid_cpus[] = {
166 "cortex-a15",
167 "cortex-a53",
168 "cortex-a57",
169 "host",
170 NULL
173 static bool cpuname_valid(const char *cpu)
175 int i;
177 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
178 if (strcmp(cpu, valid_cpus[i]) == 0) {
179 return true;
182 return false;
185 static void create_fdt(VirtMachineState *vms)
187 void *fdt = create_device_tree(&vms->fdt_size);
189 if (!fdt) {
190 error_report("create_device_tree() failed");
191 exit(1);
194 vms->fdt = fdt;
196 /* Header */
197 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
198 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
199 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
202 * /chosen and /memory nodes must exist for load_dtb
203 * to fill in necessary properties later
205 qemu_fdt_add_subnode(fdt, "/chosen");
206 qemu_fdt_add_subnode(fdt, "/memory");
207 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
209 /* Clock node, for the benefit of the UART. The kernel device tree
210 * binding documentation claims the PL011 node clock properties are
211 * optional but in practice if you omit them the kernel refuses to
212 * probe for the device.
214 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
215 qemu_fdt_add_subnode(fdt, "/apb-pclk");
216 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
217 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
218 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
219 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
220 "clk24mhz");
221 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
225 static void fdt_add_psci_node(const VirtMachineState *vms)
227 uint32_t cpu_suspend_fn;
228 uint32_t cpu_off_fn;
229 uint32_t cpu_on_fn;
230 uint32_t migrate_fn;
231 void *fdt = vms->fdt;
232 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
234 if (!vms->using_psci) {
235 return;
238 qemu_fdt_add_subnode(fdt, "/psci");
239 if (armcpu->psci_version == 2) {
240 const char comp[] = "arm,psci-0.2\0arm,psci";
241 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
243 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
244 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
245 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
246 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
247 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
248 } else {
249 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
250 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
251 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
253 } else {
254 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
256 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
257 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
258 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
259 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
262 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
263 * to the instruction that should be used to invoke PSCI functions.
264 * However, the device tree binding uses 'method' instead, so that is
265 * what we should use here.
267 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
269 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
270 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
271 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
272 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
275 static void fdt_add_timer_nodes(const VirtMachineState *vms)
277 /* On real hardware these interrupts are level-triggered.
278 * On KVM they were edge-triggered before host kernel version 4.4,
279 * and level-triggered afterwards.
280 * On emulated QEMU they are level-triggered.
282 * Getting the DTB info about them wrong is awkward for some
283 * guest kernels:
284 * pre-4.8 ignore the DT and leave the interrupt configured
285 * with whatever the GIC reset value (or the bootloader) left it at
286 * 4.8 before rc6 honour the incorrect data by programming it back
287 * into the GIC, causing problems
288 * 4.8rc6 and later ignore the DT and always write "level triggered"
289 * into the GIC
291 * For backwards-compatibility, virt-2.8 and earlier will continue
292 * to say these are edge-triggered, but later machines will report
293 * the correct information.
295 ARMCPU *armcpu;
296 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
297 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
299 if (vmc->claim_edge_triggered_timers) {
300 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
303 if (vms->gic_version == 2) {
304 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
305 GIC_FDT_IRQ_PPI_CPU_WIDTH,
306 (1 << vms->smp_cpus) - 1);
309 qemu_fdt_add_subnode(vms->fdt, "/timer");
311 armcpu = ARM_CPU(qemu_get_cpu(0));
312 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
313 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
314 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
315 compat, sizeof(compat));
316 } else {
317 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
318 "arm,armv7-timer");
320 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
321 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
322 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
323 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
324 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
325 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
328 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
330 int cpu;
331 int addr_cells = 1;
332 unsigned int i;
335 * From Documentation/devicetree/bindings/arm/cpus.txt
336 * On ARM v8 64-bit systems value should be set to 2,
337 * that corresponds to the MPIDR_EL1 register size.
338 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
339 * in the system, #address-cells can be set to 1, since
340 * MPIDR_EL1[63:32] bits are not used for CPUs
341 * identification.
343 * Here we actually don't know whether our system is 32- or 64-bit one.
344 * The simplest way to go is to examine affinity IDs of all our CPUs. If
345 * at least one of them has Aff3 populated, we set #address-cells to 2.
347 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
348 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
350 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
351 addr_cells = 2;
352 break;
356 qemu_fdt_add_subnode(vms->fdt, "/cpus");
357 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
358 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
360 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
361 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
362 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
364 qemu_fdt_add_subnode(vms->fdt, nodename);
365 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
366 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
367 armcpu->dtb_compatible);
369 if (vms->using_psci && vms->smp_cpus > 1) {
370 qemu_fdt_setprop_string(vms->fdt, nodename,
371 "enable-method", "psci");
374 if (addr_cells == 2) {
375 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
376 armcpu->mp_affinity);
377 } else {
378 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
379 armcpu->mp_affinity);
382 i = numa_get_node_for_cpu(cpu);
383 if (i < nb_numa_nodes) {
384 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", i);
387 g_free(nodename);
391 static void fdt_add_its_gic_node(VirtMachineState *vms)
393 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
394 qemu_fdt_add_subnode(vms->fdt, "/intc/its");
395 qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
396 "arm,gic-v3-its");
397 qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
398 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
399 2, vms->memmap[VIRT_GIC_ITS].base,
400 2, vms->memmap[VIRT_GIC_ITS].size);
401 qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
404 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
406 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
407 qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
408 qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
409 "arm,gic-v2m-frame");
410 qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
411 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
412 2, vms->memmap[VIRT_GIC_V2M].base,
413 2, vms->memmap[VIRT_GIC_V2M].size);
414 qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
417 static void fdt_add_gic_node(VirtMachineState *vms)
419 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
420 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
422 qemu_fdt_add_subnode(vms->fdt, "/intc");
423 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
424 qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
425 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
426 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
427 qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
428 if (vms->gic_version == 3) {
429 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
430 "arm,gic-v3");
431 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
432 2, vms->memmap[VIRT_GIC_DIST].base,
433 2, vms->memmap[VIRT_GIC_DIST].size,
434 2, vms->memmap[VIRT_GIC_REDIST].base,
435 2, vms->memmap[VIRT_GIC_REDIST].size);
436 } else {
437 /* 'cortex-a15-gic' means 'GIC v2' */
438 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
439 "arm,cortex-a15-gic");
440 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
441 2, vms->memmap[VIRT_GIC_DIST].base,
442 2, vms->memmap[VIRT_GIC_DIST].size,
443 2, vms->memmap[VIRT_GIC_CPU].base,
444 2, vms->memmap[VIRT_GIC_CPU].size);
447 qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
450 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
452 CPUState *cpu;
453 ARMCPU *armcpu;
454 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
456 CPU_FOREACH(cpu) {
457 armcpu = ARM_CPU(cpu);
458 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
459 !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
460 return;
464 if (vms->gic_version == 2) {
465 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
466 GIC_FDT_IRQ_PPI_CPU_WIDTH,
467 (1 << vms->smp_cpus) - 1);
470 armcpu = ARM_CPU(qemu_get_cpu(0));
471 qemu_fdt_add_subnode(vms->fdt, "/pmu");
472 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
473 const char compat[] = "arm,armv8-pmuv3";
474 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
475 compat, sizeof(compat));
476 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
477 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
481 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
483 const char *itsclass = its_class_name();
484 DeviceState *dev;
486 if (!itsclass) {
487 /* Do nothing if not supported */
488 return;
491 dev = qdev_create(NULL, itsclass);
493 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
494 &error_abort);
495 qdev_init_nofail(dev);
496 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
498 fdt_add_its_gic_node(vms);
501 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
503 int i;
504 int irq = vms->irqmap[VIRT_GIC_V2M];
505 DeviceState *dev;
507 dev = qdev_create(NULL, "arm-gicv2m");
508 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
509 qdev_prop_set_uint32(dev, "base-spi", irq);
510 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
511 qdev_init_nofail(dev);
513 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
514 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
517 fdt_add_v2m_gic_node(vms);
520 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
522 /* We create a standalone GIC */
523 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
524 DeviceState *gicdev;
525 SysBusDevice *gicbusdev;
526 const char *gictype;
527 int type = vms->gic_version, i;
529 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
531 gicdev = qdev_create(NULL, gictype);
532 qdev_prop_set_uint32(gicdev, "revision", type);
533 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
534 /* Note that the num-irq property counts both internal and external
535 * interrupts; there are always 32 of the former (mandated by GIC spec).
537 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
538 if (!kvm_irqchip_in_kernel()) {
539 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
541 qdev_init_nofail(gicdev);
542 gicbusdev = SYS_BUS_DEVICE(gicdev);
543 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
544 if (type == 3) {
545 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
546 } else {
547 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
550 /* Wire the outputs from each CPU's generic timer to the
551 * appropriate GIC PPI inputs, and the GIC's IRQ output to
552 * the CPU's IRQ input.
554 for (i = 0; i < smp_cpus; i++) {
555 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
556 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
557 int irq;
558 /* Mapping from the output timer irq lines from the CPU to the
559 * GIC PPI inputs we use for the virt board.
561 const int timer_irq[] = {
562 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
563 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
564 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
565 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
568 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
569 qdev_connect_gpio_out(cpudev, irq,
570 qdev_get_gpio_in(gicdev,
571 ppibase + timer_irq[irq]));
574 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
575 sysbus_connect_irq(gicbusdev, i + smp_cpus,
576 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
579 for (i = 0; i < NUM_IRQS; i++) {
580 pic[i] = qdev_get_gpio_in(gicdev, i);
583 fdt_add_gic_node(vms);
585 if (type == 3 && !vmc->no_its) {
586 create_its(vms, gicdev);
587 } else if (type == 2) {
588 create_v2m(vms, pic);
592 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
593 MemoryRegion *mem, CharDriverState *chr)
595 char *nodename;
596 hwaddr base = vms->memmap[uart].base;
597 hwaddr size = vms->memmap[uart].size;
598 int irq = vms->irqmap[uart];
599 const char compat[] = "arm,pl011\0arm,primecell";
600 const char clocknames[] = "uartclk\0apb_pclk";
601 DeviceState *dev = qdev_create(NULL, "pl011");
602 SysBusDevice *s = SYS_BUS_DEVICE(dev);
604 qdev_prop_set_chr(dev, "chardev", chr);
605 qdev_init_nofail(dev);
606 memory_region_add_subregion(mem, base,
607 sysbus_mmio_get_region(s, 0));
608 sysbus_connect_irq(s, 0, pic[irq]);
610 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
611 qemu_fdt_add_subnode(vms->fdt, nodename);
612 /* Note that we can't use setprop_string because of the embedded NUL */
613 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
614 compat, sizeof(compat));
615 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
616 2, base, 2, size);
617 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
618 GIC_FDT_IRQ_TYPE_SPI, irq,
619 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
620 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
621 vms->clock_phandle, vms->clock_phandle);
622 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
623 clocknames, sizeof(clocknames));
625 if (uart == VIRT_UART) {
626 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
627 } else {
628 /* Mark as not usable by the normal world */
629 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
630 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
633 g_free(nodename);
636 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
638 char *nodename;
639 hwaddr base = vms->memmap[VIRT_RTC].base;
640 hwaddr size = vms->memmap[VIRT_RTC].size;
641 int irq = vms->irqmap[VIRT_RTC];
642 const char compat[] = "arm,pl031\0arm,primecell";
644 sysbus_create_simple("pl031", base, pic[irq]);
646 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
647 qemu_fdt_add_subnode(vms->fdt, nodename);
648 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
649 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
650 2, base, 2, size);
651 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
652 GIC_FDT_IRQ_TYPE_SPI, irq,
653 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
654 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
655 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
656 g_free(nodename);
659 static DeviceState *gpio_key_dev;
660 static void virt_powerdown_req(Notifier *n, void *opaque)
662 /* use gpio Pin 3 for power button event */
663 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
666 static Notifier virt_system_powerdown_notifier = {
667 .notify = virt_powerdown_req
670 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
672 char *nodename;
673 DeviceState *pl061_dev;
674 hwaddr base = vms->memmap[VIRT_GPIO].base;
675 hwaddr size = vms->memmap[VIRT_GPIO].size;
676 int irq = vms->irqmap[VIRT_GPIO];
677 const char compat[] = "arm,pl061\0arm,primecell";
679 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
681 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
682 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
683 qemu_fdt_add_subnode(vms->fdt, nodename);
684 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
685 2, base, 2, size);
686 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
687 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
688 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
689 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
690 GIC_FDT_IRQ_TYPE_SPI, irq,
691 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
692 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
693 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
694 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
696 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
697 qdev_get_gpio_in(pl061_dev, 3));
698 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
699 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
700 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
701 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
703 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
704 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
705 "label", "GPIO Key Poweroff");
706 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
707 KEY_POWER);
708 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
709 "gpios", phandle, 3, 0);
711 /* connect powerdown request */
712 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
714 g_free(nodename);
717 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
719 int i;
720 hwaddr size = vms->memmap[VIRT_MMIO].size;
722 /* We create the transports in forwards order. Since qbus_realize()
723 * prepends (not appends) new child buses, the incrementing loop below will
724 * create a list of virtio-mmio buses with decreasing base addresses.
726 * When a -device option is processed from the command line,
727 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
728 * order. The upshot is that -device options in increasing command line
729 * order are mapped to virtio-mmio buses with decreasing base addresses.
731 * When this code was originally written, that arrangement ensured that the
732 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
733 * the first -device on the command line. (The end-to-end order is a
734 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
735 * guest kernel's name-to-address assignment strategy.)
737 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
738 * the message, if not necessarily the code, of commit 70161ff336.
739 * Therefore the loop now establishes the inverse of the original intent.
741 * Unfortunately, we can't counteract the kernel change by reversing the
742 * loop; it would break existing command lines.
744 * In any case, the kernel makes no guarantee about the stability of
745 * enumeration order of virtio devices (as demonstrated by it changing
746 * between kernel versions). For reliable and stable identification
747 * of disks users must use UUIDs or similar mechanisms.
749 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
750 int irq = vms->irqmap[VIRT_MMIO] + i;
751 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
753 sysbus_create_simple("virtio-mmio", base, pic[irq]);
756 /* We add dtb nodes in reverse order so that they appear in the finished
757 * device tree lowest address first.
759 * Note that this mapping is independent of the loop above. The previous
760 * loop influences virtio device to virtio transport assignment, whereas
761 * this loop controls how virtio transports are laid out in the dtb.
763 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
764 char *nodename;
765 int irq = vms->irqmap[VIRT_MMIO] + i;
766 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
768 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
769 qemu_fdt_add_subnode(vms->fdt, nodename);
770 qemu_fdt_setprop_string(vms->fdt, nodename,
771 "compatible", "virtio,mmio");
772 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
773 2, base, 2, size);
774 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
775 GIC_FDT_IRQ_TYPE_SPI, irq,
776 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
777 g_free(nodename);
781 static void create_one_flash(const char *name, hwaddr flashbase,
782 hwaddr flashsize, const char *file,
783 MemoryRegion *sysmem)
785 /* Create and map a single flash device. We use the same
786 * parameters as the flash devices on the Versatile Express board.
788 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
789 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
790 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
791 const uint64_t sectorlength = 256 * 1024;
793 if (dinfo) {
794 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
795 &error_abort);
798 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
799 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
800 qdev_prop_set_uint8(dev, "width", 4);
801 qdev_prop_set_uint8(dev, "device-width", 2);
802 qdev_prop_set_bit(dev, "big-endian", false);
803 qdev_prop_set_uint16(dev, "id0", 0x89);
804 qdev_prop_set_uint16(dev, "id1", 0x18);
805 qdev_prop_set_uint16(dev, "id2", 0x00);
806 qdev_prop_set_uint16(dev, "id3", 0x00);
807 qdev_prop_set_string(dev, "name", name);
808 qdev_init_nofail(dev);
810 memory_region_add_subregion(sysmem, flashbase,
811 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
813 if (file) {
814 char *fn;
815 int image_size;
817 if (drive_get(IF_PFLASH, 0, 0)) {
818 error_report("The contents of the first flash device may be "
819 "specified with -bios or with -drive if=pflash... "
820 "but you cannot use both options at once");
821 exit(1);
823 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
824 if (!fn) {
825 error_report("Could not find ROM image '%s'", file);
826 exit(1);
828 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
829 g_free(fn);
830 if (image_size < 0) {
831 error_report("Could not load ROM image '%s'", file);
832 exit(1);
837 static void create_flash(const VirtMachineState *vms,
838 MemoryRegion *sysmem,
839 MemoryRegion *secure_sysmem)
841 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
842 * Any file passed via -bios goes in the first of these.
843 * sysmem is the system memory space. secure_sysmem is the secure view
844 * of the system, and the first flash device should be made visible only
845 * there. The second flash device is visible to both secure and nonsecure.
846 * If sysmem == secure_sysmem this means there is no separate Secure
847 * address space and both flash devices are generally visible.
849 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
850 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
851 char *nodename;
853 create_one_flash("virt.flash0", flashbase, flashsize,
854 bios_name, secure_sysmem);
855 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
856 NULL, sysmem);
858 if (sysmem == secure_sysmem) {
859 /* Report both flash devices as a single node in the DT */
860 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
861 qemu_fdt_add_subnode(vms->fdt, nodename);
862 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
863 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
864 2, flashbase, 2, flashsize,
865 2, flashbase + flashsize, 2, flashsize);
866 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
867 g_free(nodename);
868 } else {
869 /* Report the devices as separate nodes so we can mark one as
870 * only visible to the secure world.
872 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
873 qemu_fdt_add_subnode(vms->fdt, nodename);
874 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
875 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
876 2, flashbase, 2, flashsize);
877 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
878 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
879 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
880 g_free(nodename);
882 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
883 qemu_fdt_add_subnode(vms->fdt, nodename);
884 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
885 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
886 2, flashbase + flashsize, 2, flashsize);
887 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
888 g_free(nodename);
892 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
894 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
895 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
896 FWCfgState *fw_cfg;
897 char *nodename;
899 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
900 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
902 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
903 qemu_fdt_add_subnode(vms->fdt, nodename);
904 qemu_fdt_setprop_string(vms->fdt, nodename,
905 "compatible", "qemu,fw-cfg-mmio");
906 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
907 2, base, 2, size);
908 g_free(nodename);
909 return fw_cfg;
912 static void create_pcie_irq_map(const VirtMachineState *vms,
913 uint32_t gic_phandle,
914 int first_irq, const char *nodename)
916 int devfn, pin;
917 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
918 uint32_t *irq_map = full_irq_map;
920 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
921 for (pin = 0; pin < 4; pin++) {
922 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
923 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
924 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
925 int i;
927 uint32_t map[] = {
928 devfn << 8, 0, 0, /* devfn */
929 pin + 1, /* PCI pin */
930 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
932 /* Convert map to big endian */
933 for (i = 0; i < 10; i++) {
934 irq_map[i] = cpu_to_be32(map[i]);
936 irq_map += 10;
940 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
941 full_irq_map, sizeof(full_irq_map));
943 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
944 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
945 0x7 /* PCI irq */);
948 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
950 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
951 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
952 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
953 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
954 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
955 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
956 hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
957 hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
958 hwaddr base = base_mmio;
959 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
960 int irq = vms->irqmap[VIRT_PCIE];
961 MemoryRegion *mmio_alias;
962 MemoryRegion *mmio_reg;
963 MemoryRegion *ecam_alias;
964 MemoryRegion *ecam_reg;
965 DeviceState *dev;
966 char *nodename;
967 int i;
968 PCIHostState *pci;
970 dev = qdev_create(NULL, TYPE_GPEX_HOST);
971 qdev_init_nofail(dev);
973 /* Map only the first size_ecam bytes of ECAM space */
974 ecam_alias = g_new0(MemoryRegion, 1);
975 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
976 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
977 ecam_reg, 0, size_ecam);
978 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
980 /* Map the MMIO window into system address space so as to expose
981 * the section of PCI MMIO space which starts at the same base address
982 * (ie 1:1 mapping for that part of PCI MMIO space visible through
983 * the window).
985 mmio_alias = g_new0(MemoryRegion, 1);
986 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
987 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
988 mmio_reg, base_mmio, size_mmio);
989 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
991 if (vms->highmem) {
992 /* Map high MMIO space */
993 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
995 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
996 mmio_reg, base_mmio_high, size_mmio_high);
997 memory_region_add_subregion(get_system_memory(), base_mmio_high,
998 high_mmio_alias);
1001 /* Map IO port space */
1002 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1004 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1005 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1008 pci = PCI_HOST_BRIDGE(dev);
1009 if (pci->bus) {
1010 for (i = 0; i < nb_nics; i++) {
1011 NICInfo *nd = &nd_table[i];
1013 if (!nd->model) {
1014 nd->model = g_strdup("virtio");
1017 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1021 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1022 qemu_fdt_add_subnode(vms->fdt, nodename);
1023 qemu_fdt_setprop_string(vms->fdt, nodename,
1024 "compatible", "pci-host-ecam-generic");
1025 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1026 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1027 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1028 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1029 nr_pcie_buses - 1);
1030 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1032 if (vms->msi_phandle) {
1033 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1034 vms->msi_phandle);
1037 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1038 2, base_ecam, 2, size_ecam);
1040 if (vms->highmem) {
1041 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1042 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1043 2, base_pio, 2, size_pio,
1044 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1045 2, base_mmio, 2, size_mmio,
1046 1, FDT_PCI_RANGE_MMIO_64BIT,
1047 2, base_mmio_high,
1048 2, base_mmio_high, 2, size_mmio_high);
1049 } else {
1050 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1051 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1052 2, base_pio, 2, size_pio,
1053 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1054 2, base_mmio, 2, size_mmio);
1057 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1058 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1060 g_free(nodename);
1063 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1065 DeviceState *dev;
1066 SysBusDevice *s;
1067 int i;
1068 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1069 MemoryRegion *sysmem = get_system_memory();
1071 platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1072 platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1073 platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1074 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1076 fdt_params->system_params = &platform_bus_params;
1077 fdt_params->binfo = &vms->bootinfo;
1078 fdt_params->intc = "/intc";
1080 * register a machine init done notifier that creates the device tree
1081 * nodes of the platform bus and its children dynamic sysbus devices
1083 arm_register_platform_bus_fdt_creator(fdt_params);
1085 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1086 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1087 qdev_prop_set_uint32(dev, "num_irqs",
1088 platform_bus_params.platform_bus_num_irqs);
1089 qdev_prop_set_uint32(dev, "mmio_size",
1090 platform_bus_params.platform_bus_size);
1091 qdev_init_nofail(dev);
1092 s = SYS_BUS_DEVICE(dev);
1094 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1095 int irqn = platform_bus_params.platform_bus_first_irq + i;
1096 sysbus_connect_irq(s, i, pic[irqn]);
1099 memory_region_add_subregion(sysmem,
1100 platform_bus_params.platform_bus_base,
1101 sysbus_mmio_get_region(s, 0));
1104 static void create_secure_ram(VirtMachineState *vms,
1105 MemoryRegion *secure_sysmem)
1107 MemoryRegion *secram = g_new(MemoryRegion, 1);
1108 char *nodename;
1109 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1110 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1112 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1113 vmstate_register_ram_global(secram);
1114 memory_region_add_subregion(secure_sysmem, base, secram);
1116 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1117 qemu_fdt_add_subnode(vms->fdt, nodename);
1118 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1119 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1120 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1121 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1123 g_free(nodename);
1126 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1128 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1129 bootinfo);
1131 *fdt_size = board->fdt_size;
1132 return board->fdt;
1135 static void virt_build_smbios(VirtMachineState *vms)
1137 uint8_t *smbios_tables, *smbios_anchor;
1138 size_t smbios_tables_len, smbios_anchor_len;
1139 const char *product = "QEMU Virtual Machine";
1141 if (!vms->fw_cfg) {
1142 return;
1145 if (kvm_enabled()) {
1146 product = "KVM Virtual Machine";
1149 smbios_set_defaults("QEMU", product,
1150 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1152 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1153 &smbios_anchor, &smbios_anchor_len);
1155 if (smbios_anchor) {
1156 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1157 smbios_tables, smbios_tables_len);
1158 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1159 smbios_anchor, smbios_anchor_len);
1163 static
1164 void virt_machine_done(Notifier *notifier, void *data)
1166 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1167 machine_done);
1169 virt_acpi_setup(vms);
1170 virt_build_smbios(vms);
1173 static void machvirt_init(MachineState *machine)
1175 VirtMachineState *vms = VIRT_MACHINE(machine);
1176 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1177 qemu_irq pic[NUM_IRQS];
1178 MemoryRegion *sysmem = get_system_memory();
1179 MemoryRegion *secure_sysmem = NULL;
1180 int n, virt_max_cpus;
1181 MemoryRegion *ram = g_new(MemoryRegion, 1);
1182 const char *cpu_model = machine->cpu_model;
1183 char **cpustr;
1184 ObjectClass *oc;
1185 const char *typename;
1186 CPUClass *cc;
1187 Error *err = NULL;
1188 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1189 uint8_t clustersz;
1191 if (!cpu_model) {
1192 cpu_model = "cortex-a15";
1195 /* We can probe only here because during property set
1196 * KVM is not available yet
1198 if (!vms->gic_version) {
1199 if (!kvm_enabled()) {
1200 error_report("gic-version=host requires KVM");
1201 exit(1);
1204 vms->gic_version = kvm_arm_vgic_probe();
1205 if (!vms->gic_version) {
1206 error_report("Unable to determine GIC version supported by host");
1207 exit(1);
1211 /* Separate the actual CPU model name from any appended features */
1212 cpustr = g_strsplit(cpu_model, ",", 2);
1214 if (!cpuname_valid(cpustr[0])) {
1215 error_report("mach-virt: CPU %s not supported", cpustr[0]);
1216 exit(1);
1219 /* If we have an EL3 boot ROM then the assumption is that it will
1220 * implement PSCI itself, so disable QEMU's internal implementation
1221 * so it doesn't get in the way. Instead of starting secondary
1222 * CPUs in PSCI powerdown state we will start them all running and
1223 * let the boot ROM sort them out.
1224 * The usual case is that we do use QEMU's PSCI implementation.
1226 vms->using_psci = !(vms->secure && firmware_loaded);
1228 /* The maximum number of CPUs depends on the GIC version, or on how
1229 * many redistributors we can fit into the memory map.
1231 if (vms->gic_version == 3) {
1232 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1233 clustersz = GICV3_TARGETLIST_BITS;
1234 } else {
1235 virt_max_cpus = GIC_NCPU;
1236 clustersz = GIC_TARGETLIST_BITS;
1239 if (max_cpus > virt_max_cpus) {
1240 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1241 "supported by machine 'mach-virt' (%d)",
1242 max_cpus, virt_max_cpus);
1243 exit(1);
1246 vms->smp_cpus = smp_cpus;
1248 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1249 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1250 exit(1);
1253 if (vms->secure) {
1254 if (kvm_enabled()) {
1255 error_report("mach-virt: KVM does not support Security extensions");
1256 exit(1);
1259 /* The Secure view of the world is the same as the NonSecure,
1260 * but with a few extra devices. Create it as a container region
1261 * containing the system memory at low priority; any secure-only
1262 * devices go in at higher priority and take precedence.
1264 secure_sysmem = g_new(MemoryRegion, 1);
1265 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1266 UINT64_MAX);
1267 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1270 create_fdt(vms);
1272 oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1273 if (!oc) {
1274 error_report("Unable to find CPU definition");
1275 exit(1);
1277 typename = object_class_get_name(oc);
1279 /* convert -smp CPU options specified by the user into global props */
1280 cc = CPU_CLASS(oc);
1281 cc->parse_features(typename, cpustr[1], &err);
1282 g_strfreev(cpustr);
1283 if (err) {
1284 error_report_err(err);
1285 exit(1);
1288 for (n = 0; n < smp_cpus; n++) {
1289 Object *cpuobj = object_new(typename);
1290 if (!vmc->disallow_affinity_adjustment) {
1291 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1292 * GIC's target-list limitations. 32-bit KVM hosts currently
1293 * always create clusters of 4 CPUs, but that is expected to
1294 * change when they gain support for gicv3. When KVM is enabled
1295 * it will override the changes we make here, therefore our
1296 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1297 * and to improve SGI efficiency.
1299 uint8_t aff1 = n / clustersz;
1300 uint8_t aff0 = n % clustersz;
1301 object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
1302 "mp-affinity", NULL);
1305 if (!vms->secure) {
1306 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1309 if (vms->using_psci) {
1310 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1311 "psci-conduit", NULL);
1313 /* Secondary CPUs start in PSCI powered-down state */
1314 if (n > 0) {
1315 object_property_set_bool(cpuobj, true,
1316 "start-powered-off", NULL);
1320 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1321 object_property_set_bool(cpuobj, false, "pmu", NULL);
1324 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1325 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1326 "reset-cbar", &error_abort);
1329 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1330 &error_abort);
1331 if (vms->secure) {
1332 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1333 "secure-memory", &error_abort);
1336 object_property_set_bool(cpuobj, true, "realized", NULL);
1338 fdt_add_timer_nodes(vms);
1339 fdt_add_cpu_nodes(vms);
1340 fdt_add_psci_node(vms);
1342 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1343 machine->ram_size);
1344 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1346 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1348 create_gic(vms, pic);
1350 fdt_add_pmu_nodes(vms);
1352 create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1354 if (vms->secure) {
1355 create_secure_ram(vms, secure_sysmem);
1356 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1359 create_rtc(vms, pic);
1361 create_pcie(vms, pic);
1363 create_gpio(vms, pic);
1365 /* Create mmio transports, so the user can create virtio backends
1366 * (which will be automatically plugged in to the transports). If
1367 * no backend is created the transport will just sit harmlessly idle.
1369 create_virtio_devices(vms, pic);
1371 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1372 rom_set_fw(vms->fw_cfg);
1374 vms->machine_done.notify = virt_machine_done;
1375 qemu_add_machine_init_done_notifier(&vms->machine_done);
1377 vms->bootinfo.ram_size = machine->ram_size;
1378 vms->bootinfo.kernel_filename = machine->kernel_filename;
1379 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1380 vms->bootinfo.initrd_filename = machine->initrd_filename;
1381 vms->bootinfo.nb_cpus = smp_cpus;
1382 vms->bootinfo.board_id = -1;
1383 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1384 vms->bootinfo.get_dtb = machvirt_dtb;
1385 vms->bootinfo.firmware_loaded = firmware_loaded;
1386 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1389 * arm_load_kernel machine init done notifier registration must
1390 * happen before the platform_bus_create call. In this latter,
1391 * another notifier is registered which adds platform bus nodes.
1392 * Notifiers are executed in registration reverse order.
1394 create_platform_bus(vms, pic);
1397 static bool virt_get_secure(Object *obj, Error **errp)
1399 VirtMachineState *vms = VIRT_MACHINE(obj);
1401 return vms->secure;
1404 static void virt_set_secure(Object *obj, bool value, Error **errp)
1406 VirtMachineState *vms = VIRT_MACHINE(obj);
1408 vms->secure = value;
1411 static bool virt_get_highmem(Object *obj, Error **errp)
1413 VirtMachineState *vms = VIRT_MACHINE(obj);
1415 return vms->highmem;
1418 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1420 VirtMachineState *vms = VIRT_MACHINE(obj);
1422 vms->highmem = value;
1425 static char *virt_get_gic_version(Object *obj, Error **errp)
1427 VirtMachineState *vms = VIRT_MACHINE(obj);
1428 const char *val = vms->gic_version == 3 ? "3" : "2";
1430 return g_strdup(val);
1433 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1435 VirtMachineState *vms = VIRT_MACHINE(obj);
1437 if (!strcmp(value, "3")) {
1438 vms->gic_version = 3;
1439 } else if (!strcmp(value, "2")) {
1440 vms->gic_version = 2;
1441 } else if (!strcmp(value, "host")) {
1442 vms->gic_version = 0; /* Will probe later */
1443 } else {
1444 error_setg(errp, "Invalid gic-version value");
1445 error_append_hint(errp, "Valid values are 3, 2, host.\n");
1449 static void virt_machine_class_init(ObjectClass *oc, void *data)
1451 MachineClass *mc = MACHINE_CLASS(oc);
1453 mc->init = machvirt_init;
1454 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1455 * it later in machvirt_init, where we have more information about the
1456 * configuration of the particular instance.
1458 mc->max_cpus = 255;
1459 mc->has_dynamic_sysbus = true;
1460 mc->block_default_type = IF_VIRTIO;
1461 mc->no_cdrom = 1;
1462 mc->pci_allow_0_address = true;
1463 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1464 mc->minimum_page_bits = 12;
1467 static const TypeInfo virt_machine_info = {
1468 .name = TYPE_VIRT_MACHINE,
1469 .parent = TYPE_MACHINE,
1470 .abstract = true,
1471 .instance_size = sizeof(VirtMachineState),
1472 .class_size = sizeof(VirtMachineClass),
1473 .class_init = virt_machine_class_init,
1476 static void machvirt_machine_init(void)
1478 type_register_static(&virt_machine_info);
1480 type_init(machvirt_machine_init);
1482 static void virt_2_9_instance_init(Object *obj)
1484 VirtMachineState *vms = VIRT_MACHINE(obj);
1486 /* EL3 is disabled by default on virt: this makes us consistent
1487 * between KVM and TCG for this board, and it also allows us to
1488 * boot UEFI blobs which assume no TrustZone support.
1490 vms->secure = false;
1491 object_property_add_bool(obj, "secure", virt_get_secure,
1492 virt_set_secure, NULL);
1493 object_property_set_description(obj, "secure",
1494 "Set on/off to enable/disable the ARM "
1495 "Security Extensions (TrustZone)",
1496 NULL);
1498 /* High memory is enabled by default */
1499 vms->highmem = true;
1500 object_property_add_bool(obj, "highmem", virt_get_highmem,
1501 virt_set_highmem, NULL);
1502 object_property_set_description(obj, "highmem",
1503 "Set on/off to enable/disable using "
1504 "physical address space above 32 bits",
1505 NULL);
1506 /* Default GIC type is v2 */
1507 vms->gic_version = 2;
1508 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1509 virt_set_gic_version, NULL);
1510 object_property_set_description(obj, "gic-version",
1511 "Set GIC version. "
1512 "Valid values are 2, 3 and host", NULL);
1514 vms->memmap = a15memmap;
1515 vms->irqmap = a15irqmap;
1518 static void virt_machine_2_9_options(MachineClass *mc)
1521 DEFINE_VIRT_MACHINE_AS_LATEST(2, 9)
1523 #define VIRT_COMPAT_2_8 \
1524 HW_COMPAT_2_8
1526 static void virt_2_8_instance_init(Object *obj)
1528 virt_2_9_instance_init(obj);
1531 static void virt_machine_2_8_options(MachineClass *mc)
1533 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1535 virt_machine_2_9_options(mc);
1536 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1537 /* For 2.8 and earlier we falsely claimed in the DT that
1538 * our timers were edge-triggered, not level-triggered.
1540 vmc->claim_edge_triggered_timers = true;
1542 DEFINE_VIRT_MACHINE(2, 8)
1544 #define VIRT_COMPAT_2_7 \
1545 HW_COMPAT_2_7
1547 static void virt_2_7_instance_init(Object *obj)
1549 virt_2_8_instance_init(obj);
1552 static void virt_machine_2_7_options(MachineClass *mc)
1554 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1556 virt_machine_2_8_options(mc);
1557 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1558 /* ITS was introduced with 2.8 */
1559 vmc->no_its = true;
1560 /* Stick with 1K pages for migration compatibility */
1561 mc->minimum_page_bits = 0;
1563 DEFINE_VIRT_MACHINE(2, 7)
1565 #define VIRT_COMPAT_2_6 \
1566 HW_COMPAT_2_6
1568 static void virt_2_6_instance_init(Object *obj)
1570 virt_2_7_instance_init(obj);
1573 static void virt_machine_2_6_options(MachineClass *mc)
1575 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1577 virt_machine_2_7_options(mc);
1578 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1579 vmc->disallow_affinity_adjustment = true;
1580 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1581 vmc->no_pmu = true;
1583 DEFINE_VIRT_MACHINE(2, 6)