hw/arm/virt: introduce DEFINE_VIRT_MACHINE
[qemu/ar7.git] / hw / arm / virt.c
blob86a1a510e5561afe6217cf3e5b8a53e5e02a1f86
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/boards.h"
45 #include "hw/loader.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/bitops.h"
48 #include "qemu/error-report.h"
49 #include "hw/pci-host/gpex.h"
50 #include "hw/arm/virt-acpi-build.h"
51 #include "hw/arm/sysbus-fdt.h"
52 #include "hw/platform-bus.h"
53 #include "hw/arm/fdt.h"
54 #include "hw/intc/arm_gic_common.h"
55 #include "kvm_arm.h"
56 #include "hw/smbios/smbios.h"
57 #include "qapi/visitor.h"
58 #include "standard-headers/linux/input.h"
60 /* Number of external interrupt lines to configure the GIC with */
61 #define NUM_IRQS 256
63 #define PLATFORM_BUS_NUM_IRQS 64
65 static ARMPlatformBusSystemParams platform_bus_params;
67 typedef struct VirtBoardInfo {
68 struct arm_boot_info bootinfo;
69 const char *cpu_model;
70 const MemMapEntry *memmap;
71 const int *irqmap;
72 int smp_cpus;
73 void *fdt;
74 int fdt_size;
75 uint32_t clock_phandle;
76 uint32_t gic_phandle;
77 uint32_t v2m_phandle;
78 bool using_psci;
79 } VirtBoardInfo;
81 typedef struct {
82 MachineClass parent;
83 VirtBoardInfo *daughterboard;
84 } VirtMachineClass;
86 typedef struct {
87 MachineState parent;
88 bool secure;
89 bool highmem;
90 int32_t gic_version;
91 } VirtMachineState;
93 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
94 #define VIRT_MACHINE(obj) \
95 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
96 #define VIRT_MACHINE_GET_CLASS(obj) \
97 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
98 #define VIRT_MACHINE_CLASS(klass) \
99 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
102 #define DEFINE_VIRT_MACHINE(major, minor) \
103 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
104 void *data) \
106 MachineClass *mc = MACHINE_CLASS(oc); \
107 virt_machine_##major##_##minor##_options(mc); \
108 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
110 static const TypeInfo machvirt_##major##_##minor##_info = { \
111 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
112 .parent = TYPE_VIRT_MACHINE, \
113 .instance_init = virt_##major##_##minor##_instance_init, \
114 .class_init = virt_##major##_##minor##_class_init, \
115 }; \
116 static void machvirt_machine_##major##_##minor##_init(void) \
118 type_register_static(&machvirt_##major##_##minor##_info); \
120 type_init(machvirt_machine_##major##_##minor##_init);
123 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
124 * RAM can go up to the 256GB mark, leaving 256GB of the physical
125 * address space unallocated and free for future use between 256G and 512G.
126 * If we need to provide more RAM to VMs in the future then we need to:
127 * * allocate a second bank of RAM starting at 2TB and working up
128 * * fix the DT and ACPI table generation code in QEMU to correctly
129 * report two split lumps of RAM to the guest
130 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
131 * (We don't want to fill all the way up to 512GB with RAM because
132 * we might want it for non-RAM purposes later. Conversely it seems
133 * reasonable to assume that anybody configuring a VM with a quarter
134 * of a terabyte of RAM will be doing it on a host with more than a
135 * terabyte of physical address space.)
137 #define RAMLIMIT_GB 255
138 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
140 /* Addresses and sizes of our components.
141 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
142 * 128MB..256MB is used for miscellaneous device I/O.
143 * 256MB..1GB is reserved for possible future PCI support (ie where the
144 * PCI memory window will go if we add a PCI host controller).
145 * 1GB and up is RAM (which may happily spill over into the
146 * high memory region beyond 4GB).
147 * This represents a compromise between how much RAM can be given to
148 * a 32 bit VM and leaving space for expansion and in particular for PCI.
149 * Note that devices should generally be placed at multiples of 0x10000,
150 * to accommodate guests using 64K pages.
152 static const MemMapEntry a15memmap[] = {
153 /* Space up to 0x8000000 is reserved for a boot ROM */
154 [VIRT_FLASH] = { 0, 0x08000000 },
155 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
156 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
157 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
158 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
159 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
160 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
161 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
162 /* This redistributor space allows up to 2*64kB*123 CPUs */
163 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
164 [VIRT_UART] = { 0x09000000, 0x00001000 },
165 [VIRT_RTC] = { 0x09010000, 0x00001000 },
166 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
167 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
168 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
169 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
170 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
171 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
172 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
173 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
174 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
175 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
176 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
177 /* Second PCIe window, 512GB wide at the 512GB boundary */
178 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
181 static const int a15irqmap[] = {
182 [VIRT_UART] = 1,
183 [VIRT_RTC] = 2,
184 [VIRT_PCIE] = 3, /* ... to 6 */
185 [VIRT_GPIO] = 7,
186 [VIRT_SECURE_UART] = 8,
187 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
188 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
189 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
192 static VirtBoardInfo machines[] = {
194 .cpu_model = "cortex-a15",
195 .memmap = a15memmap,
196 .irqmap = a15irqmap,
199 .cpu_model = "cortex-a53",
200 .memmap = a15memmap,
201 .irqmap = a15irqmap,
204 .cpu_model = "cortex-a57",
205 .memmap = a15memmap,
206 .irqmap = a15irqmap,
209 .cpu_model = "host",
210 .memmap = a15memmap,
211 .irqmap = a15irqmap,
215 static VirtBoardInfo *find_machine_info(const char *cpu)
217 int i;
219 for (i = 0; i < ARRAY_SIZE(machines); i++) {
220 if (strcmp(cpu, machines[i].cpu_model) == 0) {
221 return &machines[i];
224 return NULL;
227 static void create_fdt(VirtBoardInfo *vbi)
229 void *fdt = create_device_tree(&vbi->fdt_size);
231 if (!fdt) {
232 error_report("create_device_tree() failed");
233 exit(1);
236 vbi->fdt = fdt;
238 /* Header */
239 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
240 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
241 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
244 * /chosen and /memory nodes must exist for load_dtb
245 * to fill in necessary properties later
247 qemu_fdt_add_subnode(fdt, "/chosen");
248 qemu_fdt_add_subnode(fdt, "/memory");
249 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
251 /* Clock node, for the benefit of the UART. The kernel device tree
252 * binding documentation claims the PL011 node clock properties are
253 * optional but in practice if you omit them the kernel refuses to
254 * probe for the device.
256 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
257 qemu_fdt_add_subnode(fdt, "/apb-pclk");
258 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
259 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
260 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
261 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
262 "clk24mhz");
263 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
267 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
269 uint32_t cpu_suspend_fn;
270 uint32_t cpu_off_fn;
271 uint32_t cpu_on_fn;
272 uint32_t migrate_fn;
273 void *fdt = vbi->fdt;
274 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
276 if (!vbi->using_psci) {
277 return;
280 qemu_fdt_add_subnode(fdt, "/psci");
281 if (armcpu->psci_version == 2) {
282 const char comp[] = "arm,psci-0.2\0arm,psci";
283 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
285 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
286 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
287 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
288 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
289 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
290 } else {
291 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
292 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
293 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
295 } else {
296 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
298 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
299 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
300 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
301 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
304 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
305 * to the instruction that should be used to invoke PSCI functions.
306 * However, the device tree binding uses 'method' instead, so that is
307 * what we should use here.
309 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
311 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
312 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
313 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
314 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
317 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
319 /* Note that on A15 h/w these interrupts are level-triggered,
320 * but for the GIC implementation provided by both QEMU and KVM
321 * they are edge-triggered.
323 ARMCPU *armcpu;
324 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
326 if (gictype == 2) {
327 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
328 GIC_FDT_IRQ_PPI_CPU_WIDTH,
329 (1 << vbi->smp_cpus) - 1);
332 qemu_fdt_add_subnode(vbi->fdt, "/timer");
334 armcpu = ARM_CPU(qemu_get_cpu(0));
335 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
336 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
337 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
338 compat, sizeof(compat));
339 } else {
340 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
341 "arm,armv7-timer");
343 qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0);
344 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
345 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
346 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
347 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
348 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
351 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
353 int cpu;
354 int addr_cells = 1;
355 unsigned int i;
358 * From Documentation/devicetree/bindings/arm/cpus.txt
359 * On ARM v8 64-bit systems value should be set to 2,
360 * that corresponds to the MPIDR_EL1 register size.
361 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
362 * in the system, #address-cells can be set to 1, since
363 * MPIDR_EL1[63:32] bits are not used for CPUs
364 * identification.
366 * Here we actually don't know whether our system is 32- or 64-bit one.
367 * The simplest way to go is to examine affinity IDs of all our CPUs. If
368 * at least one of them has Aff3 populated, we set #address-cells to 2.
370 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
371 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
373 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
374 addr_cells = 2;
375 break;
379 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
380 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
381 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
383 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
384 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
385 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
387 qemu_fdt_add_subnode(vbi->fdt, nodename);
388 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
389 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
390 armcpu->dtb_compatible);
392 if (vbi->using_psci && vbi->smp_cpus > 1) {
393 qemu_fdt_setprop_string(vbi->fdt, nodename,
394 "enable-method", "psci");
397 if (addr_cells == 2) {
398 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
399 armcpu->mp_affinity);
400 } else {
401 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
402 armcpu->mp_affinity);
405 for (i = 0; i < nb_numa_nodes; i++) {
406 if (test_bit(cpu, numa_info[i].node_cpu)) {
407 qemu_fdt_setprop_cell(vbi->fdt, nodename, "numa-node-id", i);
411 g_free(nodename);
415 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
417 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
418 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
419 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
420 "arm,gic-v2m-frame");
421 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
422 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
423 2, vbi->memmap[VIRT_GIC_V2M].base,
424 2, vbi->memmap[VIRT_GIC_V2M].size);
425 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
428 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
430 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
431 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
433 qemu_fdt_add_subnode(vbi->fdt, "/intc");
434 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
435 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
436 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
437 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
438 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
439 if (type == 3) {
440 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
441 "arm,gic-v3");
442 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
443 2, vbi->memmap[VIRT_GIC_DIST].base,
444 2, vbi->memmap[VIRT_GIC_DIST].size,
445 2, vbi->memmap[VIRT_GIC_REDIST].base,
446 2, vbi->memmap[VIRT_GIC_REDIST].size);
447 } else {
448 /* 'cortex-a15-gic' means 'GIC v2' */
449 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
450 "arm,cortex-a15-gic");
451 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
452 2, vbi->memmap[VIRT_GIC_DIST].base,
453 2, vbi->memmap[VIRT_GIC_DIST].size,
454 2, vbi->memmap[VIRT_GIC_CPU].base,
455 2, vbi->memmap[VIRT_GIC_CPU].size);
458 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
461 static void fdt_add_pmu_nodes(const VirtBoardInfo *vbi, int gictype)
463 CPUState *cpu;
464 ARMCPU *armcpu;
465 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
467 CPU_FOREACH(cpu) {
468 armcpu = ARM_CPU(cpu);
469 if (!armcpu->has_pmu ||
470 !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
471 return;
475 if (gictype == 2) {
476 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
477 GIC_FDT_IRQ_PPI_CPU_WIDTH,
478 (1 << vbi->smp_cpus) - 1);
481 armcpu = ARM_CPU(qemu_get_cpu(0));
482 qemu_fdt_add_subnode(vbi->fdt, "/pmu");
483 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
484 const char compat[] = "arm,armv8-pmuv3";
485 qemu_fdt_setprop(vbi->fdt, "/pmu", "compatible",
486 compat, sizeof(compat));
487 qemu_fdt_setprop_cells(vbi->fdt, "/pmu", "interrupts",
488 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
492 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
494 int i;
495 int irq = vbi->irqmap[VIRT_GIC_V2M];
496 DeviceState *dev;
498 dev = qdev_create(NULL, "arm-gicv2m");
499 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
500 qdev_prop_set_uint32(dev, "base-spi", irq);
501 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
502 qdev_init_nofail(dev);
504 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
505 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
508 fdt_add_v2m_gic_node(vbi);
511 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure)
513 /* We create a standalone GIC */
514 DeviceState *gicdev;
515 SysBusDevice *gicbusdev;
516 const char *gictype;
517 int i;
519 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
521 gicdev = qdev_create(NULL, gictype);
522 qdev_prop_set_uint32(gicdev, "revision", type);
523 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
524 /* Note that the num-irq property counts both internal and external
525 * interrupts; there are always 32 of the former (mandated by GIC spec).
527 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
528 if (!kvm_irqchip_in_kernel()) {
529 qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
531 qdev_init_nofail(gicdev);
532 gicbusdev = SYS_BUS_DEVICE(gicdev);
533 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
534 if (type == 3) {
535 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
536 } else {
537 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
540 /* Wire the outputs from each CPU's generic timer to the
541 * appropriate GIC PPI inputs, and the GIC's IRQ output to
542 * the CPU's IRQ input.
544 for (i = 0; i < smp_cpus; i++) {
545 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
546 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
547 int irq;
548 /* Mapping from the output timer irq lines from the CPU to the
549 * GIC PPI inputs we use for the virt board.
551 const int timer_irq[] = {
552 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
553 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
554 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
555 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
558 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
559 qdev_connect_gpio_out(cpudev, irq,
560 qdev_get_gpio_in(gicdev,
561 ppibase + timer_irq[irq]));
564 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
565 sysbus_connect_irq(gicbusdev, i + smp_cpus,
566 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
569 for (i = 0; i < NUM_IRQS; i++) {
570 pic[i] = qdev_get_gpio_in(gicdev, i);
573 fdt_add_gic_node(vbi, type);
575 if (type == 2) {
576 create_v2m(vbi, pic);
580 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart,
581 MemoryRegion *mem, CharDriverState *chr)
583 char *nodename;
584 hwaddr base = vbi->memmap[uart].base;
585 hwaddr size = vbi->memmap[uart].size;
586 int irq = vbi->irqmap[uart];
587 const char compat[] = "arm,pl011\0arm,primecell";
588 const char clocknames[] = "uartclk\0apb_pclk";
589 DeviceState *dev = qdev_create(NULL, "pl011");
590 SysBusDevice *s = SYS_BUS_DEVICE(dev);
592 qdev_prop_set_chr(dev, "chardev", chr);
593 qdev_init_nofail(dev);
594 memory_region_add_subregion(mem, base,
595 sysbus_mmio_get_region(s, 0));
596 sysbus_connect_irq(s, 0, pic[irq]);
598 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
599 qemu_fdt_add_subnode(vbi->fdt, nodename);
600 /* Note that we can't use setprop_string because of the embedded NUL */
601 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
602 compat, sizeof(compat));
603 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
604 2, base, 2, size);
605 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
606 GIC_FDT_IRQ_TYPE_SPI, irq,
607 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
608 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
609 vbi->clock_phandle, vbi->clock_phandle);
610 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
611 clocknames, sizeof(clocknames));
613 if (uart == VIRT_UART) {
614 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
615 } else {
616 /* Mark as not usable by the normal world */
617 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
618 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
621 g_free(nodename);
624 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
626 char *nodename;
627 hwaddr base = vbi->memmap[VIRT_RTC].base;
628 hwaddr size = vbi->memmap[VIRT_RTC].size;
629 int irq = vbi->irqmap[VIRT_RTC];
630 const char compat[] = "arm,pl031\0arm,primecell";
632 sysbus_create_simple("pl031", base, pic[irq]);
634 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
635 qemu_fdt_add_subnode(vbi->fdt, nodename);
636 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
637 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
638 2, base, 2, size);
639 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
640 GIC_FDT_IRQ_TYPE_SPI, irq,
641 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
642 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
643 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
644 g_free(nodename);
647 static DeviceState *gpio_key_dev;
648 static void virt_powerdown_req(Notifier *n, void *opaque)
650 /* use gpio Pin 3 for power button event */
651 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
654 static Notifier virt_system_powerdown_notifier = {
655 .notify = virt_powerdown_req
658 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic)
660 char *nodename;
661 DeviceState *pl061_dev;
662 hwaddr base = vbi->memmap[VIRT_GPIO].base;
663 hwaddr size = vbi->memmap[VIRT_GPIO].size;
664 int irq = vbi->irqmap[VIRT_GPIO];
665 const char compat[] = "arm,pl061\0arm,primecell";
667 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
669 uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt);
670 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
671 qemu_fdt_add_subnode(vbi->fdt, nodename);
672 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
673 2, base, 2, size);
674 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
675 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2);
676 qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0);
677 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
678 GIC_FDT_IRQ_TYPE_SPI, irq,
679 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
680 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
681 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
682 qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle);
684 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
685 qdev_get_gpio_in(pl061_dev, 3));
686 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys");
687 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys");
688 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0);
689 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1);
691 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff");
692 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff",
693 "label", "GPIO Key Poweroff");
694 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code",
695 KEY_POWER);
696 qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff",
697 "gpios", phandle, 3, 0);
699 /* connect powerdown request */
700 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
702 g_free(nodename);
705 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
707 int i;
708 hwaddr size = vbi->memmap[VIRT_MMIO].size;
710 /* We create the transports in forwards order. Since qbus_realize()
711 * prepends (not appends) new child buses, the incrementing loop below will
712 * create a list of virtio-mmio buses with decreasing base addresses.
714 * When a -device option is processed from the command line,
715 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
716 * order. The upshot is that -device options in increasing command line
717 * order are mapped to virtio-mmio buses with decreasing base addresses.
719 * When this code was originally written, that arrangement ensured that the
720 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
721 * the first -device on the command line. (The end-to-end order is a
722 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
723 * guest kernel's name-to-address assignment strategy.)
725 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
726 * the message, if not necessarily the code, of commit 70161ff336.
727 * Therefore the loop now establishes the inverse of the original intent.
729 * Unfortunately, we can't counteract the kernel change by reversing the
730 * loop; it would break existing command lines.
732 * In any case, the kernel makes no guarantee about the stability of
733 * enumeration order of virtio devices (as demonstrated by it changing
734 * between kernel versions). For reliable and stable identification
735 * of disks users must use UUIDs or similar mechanisms.
737 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
738 int irq = vbi->irqmap[VIRT_MMIO] + i;
739 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
741 sysbus_create_simple("virtio-mmio", base, pic[irq]);
744 /* We add dtb nodes in reverse order so that they appear in the finished
745 * device tree lowest address first.
747 * Note that this mapping is independent of the loop above. The previous
748 * loop influences virtio device to virtio transport assignment, whereas
749 * this loop controls how virtio transports are laid out in the dtb.
751 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
752 char *nodename;
753 int irq = vbi->irqmap[VIRT_MMIO] + i;
754 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
756 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
757 qemu_fdt_add_subnode(vbi->fdt, nodename);
758 qemu_fdt_setprop_string(vbi->fdt, nodename,
759 "compatible", "virtio,mmio");
760 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
761 2, base, 2, size);
762 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
763 GIC_FDT_IRQ_TYPE_SPI, irq,
764 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
765 g_free(nodename);
769 static void create_one_flash(const char *name, hwaddr flashbase,
770 hwaddr flashsize, const char *file,
771 MemoryRegion *sysmem)
773 /* Create and map a single flash device. We use the same
774 * parameters as the flash devices on the Versatile Express board.
776 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
777 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
778 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
779 const uint64_t sectorlength = 256 * 1024;
781 if (dinfo) {
782 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
783 &error_abort);
786 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
787 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
788 qdev_prop_set_uint8(dev, "width", 4);
789 qdev_prop_set_uint8(dev, "device-width", 2);
790 qdev_prop_set_bit(dev, "big-endian", false);
791 qdev_prop_set_uint16(dev, "id0", 0x89);
792 qdev_prop_set_uint16(dev, "id1", 0x18);
793 qdev_prop_set_uint16(dev, "id2", 0x00);
794 qdev_prop_set_uint16(dev, "id3", 0x00);
795 qdev_prop_set_string(dev, "name", name);
796 qdev_init_nofail(dev);
798 memory_region_add_subregion(sysmem, flashbase,
799 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
801 if (file) {
802 char *fn;
803 int image_size;
805 if (drive_get(IF_PFLASH, 0, 0)) {
806 error_report("The contents of the first flash device may be "
807 "specified with -bios or with -drive if=pflash... "
808 "but you cannot use both options at once");
809 exit(1);
811 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
812 if (!fn) {
813 error_report("Could not find ROM image '%s'", file);
814 exit(1);
816 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
817 g_free(fn);
818 if (image_size < 0) {
819 error_report("Could not load ROM image '%s'", file);
820 exit(1);
825 static void create_flash(const VirtBoardInfo *vbi,
826 MemoryRegion *sysmem,
827 MemoryRegion *secure_sysmem)
829 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
830 * Any file passed via -bios goes in the first of these.
831 * sysmem is the system memory space. secure_sysmem is the secure view
832 * of the system, and the first flash device should be made visible only
833 * there. The second flash device is visible to both secure and nonsecure.
834 * If sysmem == secure_sysmem this means there is no separate Secure
835 * address space and both flash devices are generally visible.
837 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
838 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
839 char *nodename;
841 create_one_flash("virt.flash0", flashbase, flashsize,
842 bios_name, secure_sysmem);
843 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
844 NULL, sysmem);
846 if (sysmem == secure_sysmem) {
847 /* Report both flash devices as a single node in the DT */
848 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
849 qemu_fdt_add_subnode(vbi->fdt, nodename);
850 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
851 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
852 2, flashbase, 2, flashsize,
853 2, flashbase + flashsize, 2, flashsize);
854 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
855 g_free(nodename);
856 } else {
857 /* Report the devices as separate nodes so we can mark one as
858 * only visible to the secure world.
860 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
861 qemu_fdt_add_subnode(vbi->fdt, nodename);
862 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
863 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
864 2, flashbase, 2, flashsize);
865 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
866 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
867 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
868 g_free(nodename);
870 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
871 qemu_fdt_add_subnode(vbi->fdt, nodename);
872 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
873 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
874 2, flashbase + flashsize, 2, flashsize);
875 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
876 g_free(nodename);
880 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
882 hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
883 hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
884 char *nodename;
886 fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
888 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
889 qemu_fdt_add_subnode(vbi->fdt, nodename);
890 qemu_fdt_setprop_string(vbi->fdt, nodename,
891 "compatible", "qemu,fw-cfg-mmio");
892 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
893 2, base, 2, size);
894 g_free(nodename);
897 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
898 int first_irq, const char *nodename)
900 int devfn, pin;
901 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
902 uint32_t *irq_map = full_irq_map;
904 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
905 for (pin = 0; pin < 4; pin++) {
906 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
907 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
908 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
909 int i;
911 uint32_t map[] = {
912 devfn << 8, 0, 0, /* devfn */
913 pin + 1, /* PCI pin */
914 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
916 /* Convert map to big endian */
917 for (i = 0; i < 10; i++) {
918 irq_map[i] = cpu_to_be32(map[i]);
920 irq_map += 10;
924 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
925 full_irq_map, sizeof(full_irq_map));
927 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
928 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
929 0x7 /* PCI irq */);
932 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
933 bool use_highmem)
935 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
936 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
937 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
938 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
939 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
940 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
941 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
942 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
943 hwaddr base = base_mmio;
944 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
945 int irq = vbi->irqmap[VIRT_PCIE];
946 MemoryRegion *mmio_alias;
947 MemoryRegion *mmio_reg;
948 MemoryRegion *ecam_alias;
949 MemoryRegion *ecam_reg;
950 DeviceState *dev;
951 char *nodename;
952 int i;
953 PCIHostState *pci;
955 dev = qdev_create(NULL, TYPE_GPEX_HOST);
956 qdev_init_nofail(dev);
958 /* Map only the first size_ecam bytes of ECAM space */
959 ecam_alias = g_new0(MemoryRegion, 1);
960 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
961 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
962 ecam_reg, 0, size_ecam);
963 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
965 /* Map the MMIO window into system address space so as to expose
966 * the section of PCI MMIO space which starts at the same base address
967 * (ie 1:1 mapping for that part of PCI MMIO space visible through
968 * the window).
970 mmio_alias = g_new0(MemoryRegion, 1);
971 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
972 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
973 mmio_reg, base_mmio, size_mmio);
974 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
976 if (use_highmem) {
977 /* Map high MMIO space */
978 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
980 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
981 mmio_reg, base_mmio_high, size_mmio_high);
982 memory_region_add_subregion(get_system_memory(), base_mmio_high,
983 high_mmio_alias);
986 /* Map IO port space */
987 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
989 for (i = 0; i < GPEX_NUM_IRQS; i++) {
990 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
993 pci = PCI_HOST_BRIDGE(dev);
994 if (pci->bus) {
995 for (i = 0; i < nb_nics; i++) {
996 NICInfo *nd = &nd_table[i];
998 if (!nd->model) {
999 nd->model = g_strdup("virtio");
1002 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1006 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1007 qemu_fdt_add_subnode(vbi->fdt, nodename);
1008 qemu_fdt_setprop_string(vbi->fdt, nodename,
1009 "compatible", "pci-host-ecam-generic");
1010 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
1011 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
1012 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
1013 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
1014 nr_pcie_buses - 1);
1016 if (vbi->v2m_phandle) {
1017 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
1018 vbi->v2m_phandle);
1021 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
1022 2, base_ecam, 2, size_ecam);
1024 if (use_highmem) {
1025 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1026 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1027 2, base_pio, 2, size_pio,
1028 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1029 2, base_mmio, 2, size_mmio,
1030 1, FDT_PCI_RANGE_MMIO_64BIT,
1031 2, base_mmio_high,
1032 2, base_mmio_high, 2, size_mmio_high);
1033 } else {
1034 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1035 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1036 2, base_pio, 2, size_pio,
1037 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1038 2, base_mmio, 2, size_mmio);
1041 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
1042 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
1044 g_free(nodename);
1047 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
1049 DeviceState *dev;
1050 SysBusDevice *s;
1051 int i;
1052 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1053 MemoryRegion *sysmem = get_system_memory();
1055 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
1056 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
1057 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
1058 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1060 fdt_params->system_params = &platform_bus_params;
1061 fdt_params->binfo = &vbi->bootinfo;
1062 fdt_params->intc = "/intc";
1064 * register a machine init done notifier that creates the device tree
1065 * nodes of the platform bus and its children dynamic sysbus devices
1067 arm_register_platform_bus_fdt_creator(fdt_params);
1069 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1070 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1071 qdev_prop_set_uint32(dev, "num_irqs",
1072 platform_bus_params.platform_bus_num_irqs);
1073 qdev_prop_set_uint32(dev, "mmio_size",
1074 platform_bus_params.platform_bus_size);
1075 qdev_init_nofail(dev);
1076 s = SYS_BUS_DEVICE(dev);
1078 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1079 int irqn = platform_bus_params.platform_bus_first_irq + i;
1080 sysbus_connect_irq(s, i, pic[irqn]);
1083 memory_region_add_subregion(sysmem,
1084 platform_bus_params.platform_bus_base,
1085 sysbus_mmio_get_region(s, 0));
1088 static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem)
1090 MemoryRegion *secram = g_new(MemoryRegion, 1);
1091 char *nodename;
1092 hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base;
1093 hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size;
1095 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1096 vmstate_register_ram_global(secram);
1097 memory_region_add_subregion(secure_sysmem, base, secram);
1099 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1100 qemu_fdt_add_subnode(vbi->fdt, nodename);
1101 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory");
1102 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size);
1103 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
1104 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
1106 g_free(nodename);
1109 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1111 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
1113 *fdt_size = board->fdt_size;
1114 return board->fdt;
1117 static void virt_build_smbios(VirtGuestInfo *guest_info)
1119 FWCfgState *fw_cfg = guest_info->fw_cfg;
1120 uint8_t *smbios_tables, *smbios_anchor;
1121 size_t smbios_tables_len, smbios_anchor_len;
1122 const char *product = "QEMU Virtual Machine";
1124 if (!fw_cfg) {
1125 return;
1128 if (kvm_enabled()) {
1129 product = "KVM Virtual Machine";
1132 smbios_set_defaults("QEMU", product,
1133 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1135 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1136 &smbios_anchor, &smbios_anchor_len);
1138 if (smbios_anchor) {
1139 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
1140 smbios_tables, smbios_tables_len);
1141 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
1142 smbios_anchor, smbios_anchor_len);
1146 static
1147 void virt_guest_info_machine_done(Notifier *notifier, void *data)
1149 VirtGuestInfoState *guest_info_state = container_of(notifier,
1150 VirtGuestInfoState, machine_done);
1151 virt_acpi_setup(&guest_info_state->info);
1152 virt_build_smbios(&guest_info_state->info);
1155 static void machvirt_init(MachineState *machine)
1157 VirtMachineState *vms = VIRT_MACHINE(machine);
1158 qemu_irq pic[NUM_IRQS];
1159 MemoryRegion *sysmem = get_system_memory();
1160 MemoryRegion *secure_sysmem = NULL;
1161 int gic_version = vms->gic_version;
1162 int n, virt_max_cpus;
1163 MemoryRegion *ram = g_new(MemoryRegion, 1);
1164 const char *cpu_model = machine->cpu_model;
1165 VirtBoardInfo *vbi;
1166 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1167 VirtGuestInfo *guest_info = &guest_info_state->info;
1168 char **cpustr;
1169 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1171 if (!cpu_model) {
1172 cpu_model = "cortex-a15";
1175 /* We can probe only here because during property set
1176 * KVM is not available yet
1178 if (!gic_version) {
1179 if (!kvm_enabled()) {
1180 error_report("gic-version=host requires KVM");
1181 exit(1);
1184 gic_version = kvm_arm_vgic_probe();
1185 if (!gic_version) {
1186 error_report("Unable to determine GIC version supported by host");
1187 exit(1);
1191 /* Separate the actual CPU model name from any appended features */
1192 cpustr = g_strsplit(cpu_model, ",", 2);
1194 vbi = find_machine_info(cpustr[0]);
1196 if (!vbi) {
1197 error_report("mach-virt: CPU %s not supported", cpustr[0]);
1198 exit(1);
1201 /* If we have an EL3 boot ROM then the assumption is that it will
1202 * implement PSCI itself, so disable QEMU's internal implementation
1203 * so it doesn't get in the way. Instead of starting secondary
1204 * CPUs in PSCI powerdown state we will start them all running and
1205 * let the boot ROM sort them out.
1206 * The usual case is that we do use QEMU's PSCI implementation.
1208 vbi->using_psci = !(vms->secure && firmware_loaded);
1210 /* The maximum number of CPUs depends on the GIC version, or on how
1211 * many redistributors we can fit into the memory map.
1213 if (gic_version == 3) {
1214 virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
1215 } else {
1216 virt_max_cpus = GIC_NCPU;
1219 if (max_cpus > virt_max_cpus) {
1220 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1221 "supported by machine 'mach-virt' (%d)",
1222 max_cpus, virt_max_cpus);
1223 exit(1);
1226 vbi->smp_cpus = smp_cpus;
1228 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
1229 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1230 exit(1);
1233 if (vms->secure) {
1234 if (kvm_enabled()) {
1235 error_report("mach-virt: KVM does not support Security extensions");
1236 exit(1);
1239 /* The Secure view of the world is the same as the NonSecure,
1240 * but with a few extra devices. Create it as a container region
1241 * containing the system memory at low priority; any secure-only
1242 * devices go in at higher priority and take precedence.
1244 secure_sysmem = g_new(MemoryRegion, 1);
1245 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1246 UINT64_MAX);
1247 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1250 create_fdt(vbi);
1252 for (n = 0; n < smp_cpus; n++) {
1253 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1254 CPUClass *cc = CPU_CLASS(oc);
1255 Object *cpuobj;
1256 Error *err = NULL;
1257 char *cpuopts = g_strdup(cpustr[1]);
1259 if (!oc) {
1260 error_report("Unable to find CPU definition");
1261 exit(1);
1263 cpuobj = object_new(object_class_get_name(oc));
1265 /* Handle any CPU options specified by the user */
1266 cc->parse_features(CPU(cpuobj), cpuopts, &err);
1267 g_free(cpuopts);
1268 if (err) {
1269 error_report_err(err);
1270 exit(1);
1273 if (!vms->secure) {
1274 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1277 if (vbi->using_psci) {
1278 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1279 "psci-conduit", NULL);
1281 /* Secondary CPUs start in PSCI powered-down state */
1282 if (n > 0) {
1283 object_property_set_bool(cpuobj, true,
1284 "start-powered-off", NULL);
1288 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1289 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1290 "reset-cbar", &error_abort);
1293 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1294 &error_abort);
1295 if (vms->secure) {
1296 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1297 "secure-memory", &error_abort);
1300 object_property_set_bool(cpuobj, true, "realized", NULL);
1302 g_strfreev(cpustr);
1303 fdt_add_timer_nodes(vbi, gic_version);
1304 fdt_add_cpu_nodes(vbi);
1305 fdt_add_psci_node(vbi);
1307 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1308 machine->ram_size);
1309 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1311 create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1313 create_gic(vbi, pic, gic_version, vms->secure);
1315 fdt_add_pmu_nodes(vbi, gic_version);
1317 create_uart(vbi, pic, VIRT_UART, sysmem, serial_hds[0]);
1319 if (vms->secure) {
1320 create_secure_ram(vbi, secure_sysmem);
1321 create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1324 create_rtc(vbi, pic);
1326 create_pcie(vbi, pic, vms->highmem);
1328 create_gpio(vbi, pic);
1330 /* Create mmio transports, so the user can create virtio backends
1331 * (which will be automatically plugged in to the transports). If
1332 * no backend is created the transport will just sit harmlessly idle.
1334 create_virtio_devices(vbi, pic);
1336 create_fw_cfg(vbi, &address_space_memory);
1337 rom_set_fw(fw_cfg_find());
1339 guest_info->smp_cpus = smp_cpus;
1340 guest_info->fw_cfg = fw_cfg_find();
1341 guest_info->memmap = vbi->memmap;
1342 guest_info->irqmap = vbi->irqmap;
1343 guest_info->use_highmem = vms->highmem;
1344 guest_info->gic_version = gic_version;
1345 guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1346 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1348 vbi->bootinfo.ram_size = machine->ram_size;
1349 vbi->bootinfo.kernel_filename = machine->kernel_filename;
1350 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1351 vbi->bootinfo.initrd_filename = machine->initrd_filename;
1352 vbi->bootinfo.nb_cpus = smp_cpus;
1353 vbi->bootinfo.board_id = -1;
1354 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1355 vbi->bootinfo.get_dtb = machvirt_dtb;
1356 vbi->bootinfo.firmware_loaded = firmware_loaded;
1357 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1360 * arm_load_kernel machine init done notifier registration must
1361 * happen before the platform_bus_create call. In this latter,
1362 * another notifier is registered which adds platform bus nodes.
1363 * Notifiers are executed in registration reverse order.
1365 create_platform_bus(vbi, pic);
1368 static bool virt_get_secure(Object *obj, Error **errp)
1370 VirtMachineState *vms = VIRT_MACHINE(obj);
1372 return vms->secure;
1375 static void virt_set_secure(Object *obj, bool value, Error **errp)
1377 VirtMachineState *vms = VIRT_MACHINE(obj);
1379 vms->secure = value;
1382 static bool virt_get_highmem(Object *obj, Error **errp)
1384 VirtMachineState *vms = VIRT_MACHINE(obj);
1386 return vms->highmem;
1389 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1391 VirtMachineState *vms = VIRT_MACHINE(obj);
1393 vms->highmem = value;
1396 static char *virt_get_gic_version(Object *obj, Error **errp)
1398 VirtMachineState *vms = VIRT_MACHINE(obj);
1399 const char *val = vms->gic_version == 3 ? "3" : "2";
1401 return g_strdup(val);
1404 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1406 VirtMachineState *vms = VIRT_MACHINE(obj);
1408 if (!strcmp(value, "3")) {
1409 vms->gic_version = 3;
1410 } else if (!strcmp(value, "2")) {
1411 vms->gic_version = 2;
1412 } else if (!strcmp(value, "host")) {
1413 vms->gic_version = 0; /* Will probe later */
1414 } else {
1415 error_setg(errp, "Invalid gic-version value");
1416 error_append_hint(errp, "Valid values are 3, 2, host.\n");
1420 static void virt_machine_class_init(ObjectClass *oc, void *data)
1422 MachineClass *mc = MACHINE_CLASS(oc);
1424 mc->init = machvirt_init;
1425 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1426 * it later in machvirt_init, where we have more information about the
1427 * configuration of the particular instance.
1429 mc->max_cpus = MAX_CPUMASK_BITS;
1430 mc->has_dynamic_sysbus = true;
1431 mc->block_default_type = IF_VIRTIO;
1432 mc->no_cdrom = 1;
1433 mc->pci_allow_0_address = true;
1436 static const TypeInfo virt_machine_info = {
1437 .name = TYPE_VIRT_MACHINE,
1438 .parent = TYPE_MACHINE,
1439 .abstract = true,
1440 .instance_size = sizeof(VirtMachineState),
1441 .class_size = sizeof(VirtMachineClass),
1442 .class_init = virt_machine_class_init,
1445 static void machvirt_machine_init(void)
1447 type_register_static(&virt_machine_info);
1449 type_init(machvirt_machine_init);
1451 static void virt_2_6_instance_init(Object *obj)
1453 VirtMachineState *vms = VIRT_MACHINE(obj);
1455 /* EL3 is disabled by default on virt: this makes us consistent
1456 * between KVM and TCG for this board, and it also allows us to
1457 * boot UEFI blobs which assume no TrustZone support.
1459 vms->secure = false;
1460 object_property_add_bool(obj, "secure", virt_get_secure,
1461 virt_set_secure, NULL);
1462 object_property_set_description(obj, "secure",
1463 "Set on/off to enable/disable the ARM "
1464 "Security Extensions (TrustZone)",
1465 NULL);
1467 /* High memory is enabled by default */
1468 vms->highmem = true;
1469 object_property_add_bool(obj, "highmem", virt_get_highmem,
1470 virt_set_highmem, NULL);
1471 object_property_set_description(obj, "highmem",
1472 "Set on/off to enable/disable using "
1473 "physical address space above 32 bits",
1474 NULL);
1475 /* Default GIC type is v2 */
1476 vms->gic_version = 2;
1477 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1478 virt_set_gic_version, NULL);
1479 object_property_set_description(obj, "gic-version",
1480 "Set GIC version. "
1481 "Valid values are 2, 3 and host", NULL);
1484 static void virt_machine_2_6_options(MachineClass *mc)
1486 mc->alias = "virt";
1488 DEFINE_VIRT_MACHINE(2, 6)