target-arm: Expose output GPIO line for VCPU maintenance interrupt
[qemu/ar7.git] / target / xtensa / op_helper.c
blobdc0dd351bbec6fb5e413ae0964c297c20d431193
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "qemu/osdep.h"
29 #include "cpu.h"
30 #include "exec/helper-proto.h"
31 #include "qemu/host-utils.h"
32 #include "exec/exec-all.h"
33 #include "exec/cpu_ldst.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/timer.h"
37 void xtensa_cpu_do_unaligned_access(CPUState *cs,
38 vaddr addr, MMUAccessType access_type,
39 int mmu_idx, uintptr_t retaddr)
41 XtensaCPU *cpu = XTENSA_CPU(cs);
42 CPUXtensaState *env = &cpu->env;
44 if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
45 !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
46 cpu_restore_state(CPU(cpu), retaddr);
47 HELPER(exception_cause_vaddr)(env,
48 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
52 void tlb_fill(CPUState *cs, target_ulong vaddr, MMUAccessType access_type,
53 int mmu_idx, uintptr_t retaddr)
55 XtensaCPU *cpu = XTENSA_CPU(cs);
56 CPUXtensaState *env = &cpu->env;
57 uint32_t paddr;
58 uint32_t page_size;
59 unsigned access;
60 int ret = xtensa_get_physical_addr(env, true, vaddr, access_type, mmu_idx,
61 &paddr, &page_size, &access);
63 qemu_log_mask(CPU_LOG_MMU, "%s(%08x, %d, %d) -> %08x, ret = %d\n",
64 __func__, vaddr, access_type, mmu_idx, paddr, ret);
66 if (ret == 0) {
67 tlb_set_page(cs,
68 vaddr & TARGET_PAGE_MASK,
69 paddr & TARGET_PAGE_MASK,
70 access, mmu_idx, page_size);
71 } else {
72 cpu_restore_state(cs, retaddr);
73 HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
77 void xtensa_cpu_do_unassigned_access(CPUState *cs, hwaddr addr,
78 bool is_write, bool is_exec, int opaque,
79 unsigned size)
81 XtensaCPU *cpu = XTENSA_CPU(cs);
82 CPUXtensaState *env = &cpu->env;
84 HELPER(exception_cause_vaddr)(env, env->pc,
85 is_exec ?
86 INSTR_PIF_ADDR_ERROR_CAUSE :
87 LOAD_STORE_PIF_ADDR_ERROR_CAUSE,
88 is_exec ? addr : cs->mem_io_vaddr);
91 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
93 uint32_t paddr;
94 uint32_t page_size;
95 unsigned access;
96 int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
97 &paddr, &page_size, &access);
98 if (ret == 0) {
99 tb_invalidate_phys_addr(&address_space_memory, paddr);
103 void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
105 CPUState *cs = CPU(xtensa_env_get_cpu(env));
107 cs->exception_index = excp;
108 if (excp == EXCP_DEBUG) {
109 env->exception_taken = 0;
111 cpu_loop_exit(cs);
114 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
116 uint32_t vector;
118 env->pc = pc;
119 if (env->sregs[PS] & PS_EXCM) {
120 if (env->config->ndepc) {
121 env->sregs[DEPC] = pc;
122 } else {
123 env->sregs[EPC1] = pc;
125 vector = EXC_DOUBLE;
126 } else {
127 env->sregs[EPC1] = pc;
128 vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
131 env->sregs[EXCCAUSE] = cause;
132 env->sregs[PS] |= PS_EXCM;
134 HELPER(exception)(env, vector);
137 void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
138 uint32_t pc, uint32_t cause, uint32_t vaddr)
140 env->sregs[EXCVADDR] = vaddr;
141 HELPER(exception_cause)(env, pc, cause);
144 void debug_exception_env(CPUXtensaState *env, uint32_t cause)
146 if (xtensa_get_cintlevel(env) < env->config->debug_level) {
147 HELPER(debug_exception)(env, env->pc, cause);
151 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
153 unsigned level = env->config->debug_level;
155 env->pc = pc;
156 env->sregs[DEBUGCAUSE] = cause;
157 env->sregs[EPC1 + level - 1] = pc;
158 env->sregs[EPS2 + level - 2] = env->sregs[PS];
159 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
160 (level << PS_INTLEVEL_SHIFT);
161 HELPER(exception)(env, EXC_DEBUG);
164 static void copy_window_from_phys(CPUXtensaState *env,
165 uint32_t window, uint32_t phys, uint32_t n)
167 assert(phys < env->config->nareg);
168 if (phys + n <= env->config->nareg) {
169 memcpy(env->regs + window, env->phys_regs + phys,
170 n * sizeof(uint32_t));
171 } else {
172 uint32_t n1 = env->config->nareg - phys;
173 memcpy(env->regs + window, env->phys_regs + phys,
174 n1 * sizeof(uint32_t));
175 memcpy(env->regs + window + n1, env->phys_regs,
176 (n - n1) * sizeof(uint32_t));
180 static void copy_phys_from_window(CPUXtensaState *env,
181 uint32_t phys, uint32_t window, uint32_t n)
183 assert(phys < env->config->nareg);
184 if (phys + n <= env->config->nareg) {
185 memcpy(env->phys_regs + phys, env->regs + window,
186 n * sizeof(uint32_t));
187 } else {
188 uint32_t n1 = env->config->nareg - phys;
189 memcpy(env->phys_regs + phys, env->regs + window,
190 n1 * sizeof(uint32_t));
191 memcpy(env->phys_regs, env->regs + window + n1,
192 (n - n1) * sizeof(uint32_t));
197 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
199 return a & (env->config->nareg / 4 - 1);
202 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
204 return 1 << windowbase_bound(a, env);
207 void xtensa_sync_window_from_phys(CPUXtensaState *env)
209 copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
212 void xtensa_sync_phys_from_window(CPUXtensaState *env)
214 copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
217 static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
219 xtensa_sync_phys_from_window(env);
220 env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
221 xtensa_sync_window_from_phys(env);
224 static void rotate_window(CPUXtensaState *env, uint32_t delta)
226 rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
229 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
231 rotate_window_abs(env, v);
234 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
236 int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
237 if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
238 qemu_log_mask(LOG_GUEST_ERROR, "Illegal entry instruction(pc = %08x), PS = %08x\n",
239 pc, env->sregs[PS]);
240 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
241 } else {
242 uint32_t windowstart = xtensa_replicate_windowstart(env) >>
243 (env->sregs[WINDOW_BASE] + 1);
245 if (windowstart & ((1 << callinc) - 1)) {
246 HELPER(window_check)(env, pc, callinc);
248 env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
249 rotate_window(env, callinc);
250 env->sregs[WINDOW_START] |=
251 windowstart_bit(env->sregs[WINDOW_BASE], env);
255 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
257 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
258 uint32_t windowstart = xtensa_replicate_windowstart(env) >>
259 (env->sregs[WINDOW_BASE] + 1);
260 uint32_t n = ctz32(windowstart) + 1;
262 assert(n <= w);
264 rotate_window(env, n);
265 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
266 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
267 env->sregs[EPC1] = env->pc = pc;
269 switch (ctz32(windowstart >> n)) {
270 case 0:
271 HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
272 break;
273 case 1:
274 HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
275 break;
276 default:
277 HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
278 break;
282 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
284 int n = (env->regs[0] >> 30) & 0x3;
285 int m = 0;
286 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
287 uint32_t windowstart = env->sregs[WINDOW_START];
288 uint32_t ret_pc = 0;
290 if (windowstart & windowstart_bit(windowbase - 1, env)) {
291 m = 1;
292 } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
293 m = 2;
294 } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
295 m = 3;
298 if (n == 0 || (m != 0 && m != n) ||
299 ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
300 qemu_log_mask(LOG_GUEST_ERROR, "Illegal retw instruction(pc = %08x), "
301 "PS = %08x, m = %d, n = %d\n",
302 pc, env->sregs[PS], m, n);
303 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
304 } else {
305 int owb = windowbase;
307 ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
309 rotate_window(env, -n);
310 if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
311 env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
312 } else {
313 /* window underflow */
314 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
315 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
316 env->sregs[EPC1] = env->pc = pc;
318 if (n == 1) {
319 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
320 } else if (n == 2) {
321 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
322 } else if (n == 3) {
323 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
327 return ret_pc;
330 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
332 rotate_window(env, imm4);
335 void HELPER(restore_owb)(CPUXtensaState *env)
337 rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
340 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
342 if ((env->sregs[WINDOW_START] &
343 (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
344 windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
345 windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
346 HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
350 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
352 if (env->sregs[LBEG] != v) {
353 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
354 env->sregs[LBEG] = v;
358 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
360 if (env->sregs[LEND] != v) {
361 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
362 env->sregs[LEND] = v;
363 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
367 void HELPER(dump_state)(CPUXtensaState *env)
369 XtensaCPU *cpu = xtensa_env_get_cpu(env);
371 cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
374 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
376 CPUState *cpu;
378 env->pc = pc;
379 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
380 (intlevel << PS_INTLEVEL_SHIFT);
381 check_interrupts(env);
382 if (env->pending_irq_level) {
383 cpu_loop_exit(CPU(xtensa_env_get_cpu(env)));
384 return;
387 cpu = CPU(xtensa_env_get_cpu(env));
388 env->halt_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
389 cpu->halted = 1;
390 if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
391 xtensa_rearm_ccompare_timer(env);
393 HELPER(exception)(env, EXCP_HLT);
396 void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
398 xtensa_timer_irq(env, id, active);
401 void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
403 xtensa_advance_ccount(env, d);
406 void HELPER(check_interrupts)(CPUXtensaState *env)
408 check_interrupts(env);
411 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
413 get_page_addr_code(env, vaddr);
417 * Check vaddr accessibility/cache attributes and raise an exception if
418 * specified by the ATOMCTL SR.
420 * Note: local memory exclusion is not implemented
422 void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
424 uint32_t paddr, page_size, access;
425 uint32_t atomctl = env->sregs[ATOMCTL];
426 int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
427 xtensa_get_cring(env), &paddr, &page_size, &access);
430 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
431 * see opcode description in the ISA
433 if (rc == 0 &&
434 (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
435 rc = STORE_PROHIBITED_CAUSE;
438 if (rc) {
439 HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
443 * When data cache is not configured use ATOMCTL bypass field.
444 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
445 * under the Conditional Store Option.
447 if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
448 access = PAGE_CACHE_BYPASS;
451 switch (access & PAGE_CACHE_MASK) {
452 case PAGE_CACHE_WB:
453 atomctl >>= 2;
454 /* fall through */
455 case PAGE_CACHE_WT:
456 atomctl >>= 2;
457 /* fall through */
458 case PAGE_CACHE_BYPASS:
459 if ((atomctl & 0x3) == 0) {
460 HELPER(exception_cause_vaddr)(env, pc,
461 LOAD_STORE_ERROR_CAUSE, vaddr);
463 break;
465 case PAGE_CACHE_ISOLATE:
466 HELPER(exception_cause_vaddr)(env, pc,
467 LOAD_STORE_ERROR_CAUSE, vaddr);
468 break;
470 default:
471 break;
475 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
477 XtensaCPU *cpu = xtensa_env_get_cpu(env);
479 v = (v & 0xffffff00) | 0x1;
480 if (v != env->sregs[RASID]) {
481 env->sregs[RASID] = v;
482 tlb_flush(CPU(cpu));
486 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
488 uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
490 switch (way) {
491 case 4:
492 return (tlbcfg >> 16) & 0x3;
494 case 5:
495 return (tlbcfg >> 20) & 0x1;
497 case 6:
498 return (tlbcfg >> 24) & 0x1;
500 default:
501 return 0;
506 * Get bit mask for the virtual address bits translated by the TLB way
508 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
510 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
511 bool varway56 = dtlb ?
512 env->config->dtlb.varway56 :
513 env->config->itlb.varway56;
515 switch (way) {
516 case 4:
517 return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
519 case 5:
520 if (varway56) {
521 return 0xf8000000 << get_page_size(env, dtlb, way);
522 } else {
523 return 0xf8000000;
526 case 6:
527 if (varway56) {
528 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
529 } else {
530 return 0xf0000000;
533 default:
534 return 0xfffff000;
536 } else {
537 return REGION_PAGE_MASK;
542 * Get bit mask for the 'VPN without index' field.
543 * See ISA, 4.6.5.6, data format for RxTLB0
545 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
547 if (way < 4) {
548 bool is32 = (dtlb ?
549 env->config->dtlb.nrefillentries :
550 env->config->itlb.nrefillentries) == 32;
551 return is32 ? 0xffff8000 : 0xffffc000;
552 } else if (way == 4) {
553 return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
554 } else if (way <= 6) {
555 uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
556 bool varway56 = dtlb ?
557 env->config->dtlb.varway56 :
558 env->config->itlb.varway56;
560 if (varway56) {
561 return mask << (way == 5 ? 2 : 3);
562 } else {
563 return mask << 1;
565 } else {
566 return 0xfffff000;
571 * Split virtual address into VPN (with index) and entry index
572 * for the given TLB way
574 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
575 uint32_t *vpn, uint32_t wi, uint32_t *ei)
577 bool varway56 = dtlb ?
578 env->config->dtlb.varway56 :
579 env->config->itlb.varway56;
581 if (!dtlb) {
582 wi &= 7;
585 if (wi < 4) {
586 bool is32 = (dtlb ?
587 env->config->dtlb.nrefillentries :
588 env->config->itlb.nrefillentries) == 32;
589 *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
590 } else {
591 switch (wi) {
592 case 4:
594 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
595 *ei = (v >> eibase) & 0x3;
597 break;
599 case 5:
600 if (varway56) {
601 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
602 *ei = (v >> eibase) & 0x3;
603 } else {
604 *ei = (v >> 27) & 0x1;
606 break;
608 case 6:
609 if (varway56) {
610 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
611 *ei = (v >> eibase) & 0x7;
612 } else {
613 *ei = (v >> 28) & 0x1;
615 break;
617 default:
618 *ei = 0;
619 break;
622 *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
626 * Split TLB address into TLB way, entry index and VPN (with index).
627 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
629 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
630 uint32_t *vpn, uint32_t *wi, uint32_t *ei)
632 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
633 *wi = v & (dtlb ? 0xf : 0x7);
634 split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
635 } else {
636 *vpn = v & REGION_PAGE_MASK;
637 *wi = 0;
638 *ei = (v >> 29) & 0x7;
642 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
643 uint32_t v, bool dtlb, uint32_t *pwi)
645 uint32_t vpn;
646 uint32_t wi;
647 uint32_t ei;
649 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
650 if (pwi) {
651 *pwi = wi;
653 return xtensa_tlb_get_entry(env, dtlb, wi, ei);
656 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
658 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
659 uint32_t wi;
660 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
661 return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
662 } else {
663 return v & REGION_PAGE_MASK;
667 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
669 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
670 return entry->paddr | entry->attr;
673 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
675 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
676 uint32_t wi;
677 xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
678 if (entry->variable && entry->asid) {
679 tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr);
680 entry->asid = 0;
685 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
687 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
688 uint32_t wi;
689 uint32_t ei;
690 uint8_t ring;
691 int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
693 switch (res) {
694 case 0:
695 if (ring >= xtensa_get_ring(env)) {
696 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
698 break;
700 case INST_TLB_MULTI_HIT_CAUSE:
701 case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
702 HELPER(exception_cause_vaddr)(env, env->pc, res, v);
703 break;
705 return 0;
706 } else {
707 return (v & REGION_PAGE_MASK) | 0x1;
711 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
712 xtensa_tlb_entry *entry, bool dtlb,
713 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
715 entry->vaddr = vpn;
716 entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
717 entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
718 entry->attr = pte & 0xf;
721 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
722 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
724 XtensaCPU *cpu = xtensa_env_get_cpu(env);
725 CPUState *cs = CPU(cpu);
726 xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
728 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
729 if (entry->variable) {
730 if (entry->asid) {
731 tlb_flush_page(cs, entry->vaddr);
733 xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
734 tlb_flush_page(cs, entry->vaddr);
735 } else {
736 qemu_log_mask(LOG_GUEST_ERROR, "%s %d, %d, %d trying to set immutable entry\n",
737 __func__, dtlb, wi, ei);
739 } else {
740 tlb_flush_page(cs, entry->vaddr);
741 if (xtensa_option_enabled(env->config,
742 XTENSA_OPTION_REGION_TRANSLATION)) {
743 entry->paddr = pte & REGION_PAGE_MASK;
745 entry->attr = pte & 0xf;
749 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
751 uint32_t vpn;
752 uint32_t wi;
753 uint32_t ei;
754 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
755 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
759 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
761 uint32_t change = v ^ env->sregs[IBREAKENABLE];
762 unsigned i;
764 for (i = 0; i < env->config->nibreak; ++i) {
765 if (change & (1 << i)) {
766 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
769 env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
772 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
774 if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
775 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
776 tb_invalidate_virtual_addr(env, v);
778 env->sregs[IBREAKA + i] = v;
781 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
782 uint32_t dbreakc)
784 CPUState *cs = CPU(xtensa_env_get_cpu(env));
785 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
786 uint32_t mask = dbreakc | ~DBREAKC_MASK;
788 if (env->cpu_watchpoint[i]) {
789 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
791 if (dbreakc & DBREAKC_SB) {
792 flags |= BP_MEM_WRITE;
794 if (dbreakc & DBREAKC_LB) {
795 flags |= BP_MEM_READ;
797 /* contiguous mask after inversion is one less than some power of 2 */
798 if ((~mask + 1) & ~mask) {
799 qemu_log_mask(LOG_GUEST_ERROR, "DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
800 /* cut mask after the first zero bit */
801 mask = 0xffffffff << (32 - clo32(mask));
803 if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1,
804 flags, &env->cpu_watchpoint[i])) {
805 env->cpu_watchpoint[i] = NULL;
806 qemu_log_mask(LOG_GUEST_ERROR, "Failed to set data breakpoint at 0x%08x/%d\n",
807 dbreaka & mask, ~mask + 1);
811 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
813 uint32_t dbreakc = env->sregs[DBREAKC + i];
815 if ((dbreakc & DBREAKC_SB_LB) &&
816 env->sregs[DBREAKA + i] != v) {
817 set_dbreak(env, i, v, dbreakc);
819 env->sregs[DBREAKA + i] = v;
822 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
824 if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
825 if (v & DBREAKC_SB_LB) {
826 set_dbreak(env, i, env->sregs[DBREAKA + i], v);
827 } else {
828 if (env->cpu_watchpoint[i]) {
829 CPUState *cs = CPU(xtensa_env_get_cpu(env));
831 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
832 env->cpu_watchpoint[i] = NULL;
836 env->sregs[DBREAKC + i] = v;
839 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
841 static const int rounding_mode[] = {
842 float_round_nearest_even,
843 float_round_to_zero,
844 float_round_up,
845 float_round_down,
848 env->uregs[FCR] = v & 0xfffff07f;
849 set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
852 float32 HELPER(abs_s)(float32 v)
854 return float32_abs(v);
857 float32 HELPER(neg_s)(float32 v)
859 return float32_chs(v);
862 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
864 return float32_add(a, b, &env->fp_status);
867 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
869 return float32_sub(a, b, &env->fp_status);
872 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
874 return float32_mul(a, b, &env->fp_status);
877 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
879 return float32_muladd(b, c, a, 0,
880 &env->fp_status);
883 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
885 return float32_muladd(b, c, a, float_muladd_negate_product,
886 &env->fp_status);
889 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
891 float_status fp_status = {0};
893 set_float_rounding_mode(rounding_mode, &fp_status);
894 return float32_to_int32(
895 float32_scalbn(v, scale, &fp_status), &fp_status);
898 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
900 float_status fp_status = {0};
901 float32 res;
903 set_float_rounding_mode(rounding_mode, &fp_status);
905 res = float32_scalbn(v, scale, &fp_status);
907 if (float32_is_neg(v) && !float32_is_any_nan(v)) {
908 return float32_to_int32(res, &fp_status);
909 } else {
910 return float32_to_uint32(res, &fp_status);
914 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
916 return float32_scalbn(int32_to_float32(v, &env->fp_status),
917 (int32_t)scale, &env->fp_status);
920 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
922 return float32_scalbn(uint32_to_float32(v, &env->fp_status),
923 (int32_t)scale, &env->fp_status);
926 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
928 if (v) {
929 env->sregs[BR] |= br;
930 } else {
931 env->sregs[BR] &= ~br;
935 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
937 set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
940 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
942 set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
945 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
947 int v = float32_compare_quiet(a, b, &env->fp_status);
948 set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
951 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
953 set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
956 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
958 int v = float32_compare_quiet(a, b, &env->fp_status);
959 set_br(env, v == float_relation_less || v == float_relation_unordered, br);
962 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
964 set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
967 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
969 int v = float32_compare_quiet(a, b, &env->fp_status);
970 set_br(env, v != float_relation_greater, br);