2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "hw/sysbus.h"
33 #include "hw/arm/arm.h"
34 #include "hw/arm/primecell.h"
35 #include "hw/arm/virt.h"
36 #include "hw/devices.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/kvm.h"
42 #include "hw/boards.h"
43 #include "hw/loader.h"
44 #include "exec/address-spaces.h"
45 #include "qemu/bitops.h"
46 #include "qemu/error-report.h"
47 #include "hw/pci-host/gpex.h"
48 #include "hw/arm/virt-acpi-build.h"
49 #include "hw/arm/sysbus-fdt.h"
50 #include "hw/platform-bus.h"
51 #include "hw/arm/fdt.h"
52 #include "hw/intc/arm_gic_common.h"
54 #include "hw/smbios/smbios.h"
55 #include "qapi/visitor.h"
56 #include "standard-headers/linux/input.h"
58 /* Number of external interrupt lines to configure the GIC with */
61 #define PLATFORM_BUS_NUM_IRQS 64
63 static ARMPlatformBusSystemParams platform_bus_params
;
65 typedef struct VirtBoardInfo
{
66 struct arm_boot_info bootinfo
;
67 const char *cpu_model
;
68 const MemMapEntry
*memmap
;
73 uint32_t clock_phandle
;
80 VirtBoardInfo
*daughterboard
;
90 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
91 #define VIRT_MACHINE(obj) \
92 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
93 #define VIRT_MACHINE_GET_CLASS(obj) \
94 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
95 #define VIRT_MACHINE_CLASS(klass) \
96 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
98 /* Addresses and sizes of our components.
99 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
100 * 128MB..256MB is used for miscellaneous device I/O.
101 * 256MB..1GB is reserved for possible future PCI support (ie where the
102 * PCI memory window will go if we add a PCI host controller).
103 * 1GB and up is RAM (which may happily spill over into the
104 * high memory region beyond 4GB).
105 * This represents a compromise between how much RAM can be given to
106 * a 32 bit VM and leaving space for expansion and in particular for PCI.
107 * Note that devices should generally be placed at multiples of 0x10000,
108 * to accommodate guests using 64K pages.
110 static const MemMapEntry a15memmap
[] = {
111 /* Space up to 0x8000000 is reserved for a boot ROM */
112 [VIRT_FLASH
] = { 0, 0x08000000 },
113 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
114 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
115 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
116 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
117 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
118 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
119 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
120 /* This redistributor space allows up to 2*64kB*123 CPUs */
121 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
122 [VIRT_UART
] = { 0x09000000, 0x00001000 },
123 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
124 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
125 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
126 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
127 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
128 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
129 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
130 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
131 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
132 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
133 [VIRT_MEM
] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
134 /* Second PCIe window, 512GB wide at the 512GB boundary */
135 [VIRT_PCIE_MMIO_HIGH
] = { 0x8000000000ULL
, 0x8000000000ULL
},
138 static const int a15irqmap
[] = {
141 [VIRT_PCIE
] = 3, /* ... to 6 */
143 [VIRT_SECURE_UART
] = 8,
144 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
145 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
146 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
149 static VirtBoardInfo machines
[] = {
151 .cpu_model
= "cortex-a15",
156 .cpu_model
= "cortex-a53",
161 .cpu_model
= "cortex-a57",
172 static VirtBoardInfo
*find_machine_info(const char *cpu
)
176 for (i
= 0; i
< ARRAY_SIZE(machines
); i
++) {
177 if (strcmp(cpu
, machines
[i
].cpu_model
) == 0) {
184 static void create_fdt(VirtBoardInfo
*vbi
)
186 void *fdt
= create_device_tree(&vbi
->fdt_size
);
189 error_report("create_device_tree() failed");
196 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
197 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
198 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
201 * /chosen and /memory nodes must exist for load_dtb
202 * to fill in necessary properties later
204 qemu_fdt_add_subnode(fdt
, "/chosen");
205 qemu_fdt_add_subnode(fdt
, "/memory");
206 qemu_fdt_setprop_string(fdt
, "/memory", "device_type", "memory");
208 /* Clock node, for the benefit of the UART. The kernel device tree
209 * binding documentation claims the PL011 node clock properties are
210 * optional but in practice if you omit them the kernel refuses to
211 * probe for the device.
213 vbi
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
214 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
215 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
216 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
217 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
218 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
220 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vbi
->clock_phandle
);
224 static void fdt_add_psci_node(const VirtBoardInfo
*vbi
)
226 uint32_t cpu_suspend_fn
;
230 void *fdt
= vbi
->fdt
;
231 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(0));
233 qemu_fdt_add_subnode(fdt
, "/psci");
234 if (armcpu
->psci_version
== 2) {
235 const char comp
[] = "arm,psci-0.2\0arm,psci";
236 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
238 cpu_off_fn
= QEMU_PSCI_0_2_FN_CPU_OFF
;
239 if (arm_feature(&armcpu
->env
, ARM_FEATURE_AARCH64
)) {
240 cpu_suspend_fn
= QEMU_PSCI_0_2_FN64_CPU_SUSPEND
;
241 cpu_on_fn
= QEMU_PSCI_0_2_FN64_CPU_ON
;
242 migrate_fn
= QEMU_PSCI_0_2_FN64_MIGRATE
;
244 cpu_suspend_fn
= QEMU_PSCI_0_2_FN_CPU_SUSPEND
;
245 cpu_on_fn
= QEMU_PSCI_0_2_FN_CPU_ON
;
246 migrate_fn
= QEMU_PSCI_0_2_FN_MIGRATE
;
249 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
251 cpu_suspend_fn
= QEMU_PSCI_0_1_FN_CPU_SUSPEND
;
252 cpu_off_fn
= QEMU_PSCI_0_1_FN_CPU_OFF
;
253 cpu_on_fn
= QEMU_PSCI_0_1_FN_CPU_ON
;
254 migrate_fn
= QEMU_PSCI_0_1_FN_MIGRATE
;
257 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
258 * to the instruction that should be used to invoke PSCI functions.
259 * However, the device tree binding uses 'method' instead, so that is
260 * what we should use here.
262 qemu_fdt_setprop_string(fdt
, "/psci", "method", "hvc");
264 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend", cpu_suspend_fn
);
265 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", cpu_off_fn
);
266 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", cpu_on_fn
);
267 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", migrate_fn
);
270 static void fdt_add_timer_nodes(const VirtBoardInfo
*vbi
, int gictype
)
272 /* Note that on A15 h/w these interrupts are level-triggered,
273 * but for the GIC implementation provided by both QEMU and KVM
274 * they are edge-triggered.
277 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
280 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
281 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
282 (1 << vbi
->smp_cpus
) - 1);
285 qemu_fdt_add_subnode(vbi
->fdt
, "/timer");
287 armcpu
= ARM_CPU(qemu_get_cpu(0));
288 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
289 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
290 qemu_fdt_setprop(vbi
->fdt
, "/timer", "compatible",
291 compat
, sizeof(compat
));
293 qemu_fdt_setprop_string(vbi
->fdt
, "/timer", "compatible",
296 qemu_fdt_setprop(vbi
->fdt
, "/timer", "always-on", NULL
, 0);
297 qemu_fdt_setprop_cells(vbi
->fdt
, "/timer", "interrupts",
298 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
299 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
300 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
301 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
304 static void fdt_add_cpu_nodes(const VirtBoardInfo
*vbi
)
310 * From Documentation/devicetree/bindings/arm/cpus.txt
311 * On ARM v8 64-bit systems value should be set to 2,
312 * that corresponds to the MPIDR_EL1 register size.
313 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
314 * in the system, #address-cells can be set to 1, since
315 * MPIDR_EL1[63:32] bits are not used for CPUs
318 * Here we actually don't know whether our system is 32- or 64-bit one.
319 * The simplest way to go is to examine affinity IDs of all our CPUs. If
320 * at least one of them has Aff3 populated, we set #address-cells to 2.
322 for (cpu
= 0; cpu
< vbi
->smp_cpus
; cpu
++) {
323 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
325 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
331 qemu_fdt_add_subnode(vbi
->fdt
, "/cpus");
332 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#address-cells", addr_cells
);
333 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#size-cells", 0x0);
335 for (cpu
= vbi
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
336 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
337 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
339 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
340 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "cpu");
341 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible",
342 armcpu
->dtb_compatible
);
344 if (vbi
->smp_cpus
> 1) {
345 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
346 "enable-method", "psci");
349 if (addr_cells
== 2) {
350 qemu_fdt_setprop_u64(vbi
->fdt
, nodename
, "reg",
351 armcpu
->mp_affinity
);
353 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "reg",
354 armcpu
->mp_affinity
);
361 static void fdt_add_v2m_gic_node(VirtBoardInfo
*vbi
)
363 vbi
->v2m_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
364 qemu_fdt_add_subnode(vbi
->fdt
, "/intc/v2m");
365 qemu_fdt_setprop_string(vbi
->fdt
, "/intc/v2m", "compatible",
366 "arm,gic-v2m-frame");
367 qemu_fdt_setprop(vbi
->fdt
, "/intc/v2m", "msi-controller", NULL
, 0);
368 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc/v2m", "reg",
369 2, vbi
->memmap
[VIRT_GIC_V2M
].base
,
370 2, vbi
->memmap
[VIRT_GIC_V2M
].size
);
371 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc/v2m", "phandle", vbi
->v2m_phandle
);
374 static void fdt_add_gic_node(VirtBoardInfo
*vbi
, int type
)
376 vbi
->gic_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
377 qemu_fdt_setprop_cell(vbi
->fdt
, "/", "interrupt-parent", vbi
->gic_phandle
);
379 qemu_fdt_add_subnode(vbi
->fdt
, "/intc");
380 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#interrupt-cells", 3);
381 qemu_fdt_setprop(vbi
->fdt
, "/intc", "interrupt-controller", NULL
, 0);
382 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#address-cells", 0x2);
383 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#size-cells", 0x2);
384 qemu_fdt_setprop(vbi
->fdt
, "/intc", "ranges", NULL
, 0);
386 qemu_fdt_setprop_string(vbi
->fdt
, "/intc", "compatible",
388 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc", "reg",
389 2, vbi
->memmap
[VIRT_GIC_DIST
].base
,
390 2, vbi
->memmap
[VIRT_GIC_DIST
].size
,
391 2, vbi
->memmap
[VIRT_GIC_REDIST
].base
,
392 2, vbi
->memmap
[VIRT_GIC_REDIST
].size
);
394 /* 'cortex-a15-gic' means 'GIC v2' */
395 qemu_fdt_setprop_string(vbi
->fdt
, "/intc", "compatible",
396 "arm,cortex-a15-gic");
397 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc", "reg",
398 2, vbi
->memmap
[VIRT_GIC_DIST
].base
,
399 2, vbi
->memmap
[VIRT_GIC_DIST
].size
,
400 2, vbi
->memmap
[VIRT_GIC_CPU
].base
,
401 2, vbi
->memmap
[VIRT_GIC_CPU
].size
);
404 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "phandle", vbi
->gic_phandle
);
407 static void create_v2m(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
410 int irq
= vbi
->irqmap
[VIRT_GIC_V2M
];
413 dev
= qdev_create(NULL
, "arm-gicv2m");
414 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vbi
->memmap
[VIRT_GIC_V2M
].base
);
415 qdev_prop_set_uint32(dev
, "base-spi", irq
);
416 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
417 qdev_init_nofail(dev
);
419 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
420 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
423 fdt_add_v2m_gic_node(vbi
);
426 static void create_gic(VirtBoardInfo
*vbi
, qemu_irq
*pic
, int type
, bool secure
)
428 /* We create a standalone GIC */
430 SysBusDevice
*gicbusdev
;
434 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
436 gicdev
= qdev_create(NULL
, gictype
);
437 qdev_prop_set_uint32(gicdev
, "revision", type
);
438 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
439 /* Note that the num-irq property counts both internal and external
440 * interrupts; there are always 32 of the former (mandated by GIC spec).
442 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
443 if (!kvm_irqchip_in_kernel()) {
444 qdev_prop_set_bit(gicdev
, "has-security-extensions", secure
);
446 qdev_init_nofail(gicdev
);
447 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
448 sysbus_mmio_map(gicbusdev
, 0, vbi
->memmap
[VIRT_GIC_DIST
].base
);
450 sysbus_mmio_map(gicbusdev
, 1, vbi
->memmap
[VIRT_GIC_REDIST
].base
);
452 sysbus_mmio_map(gicbusdev
, 1, vbi
->memmap
[VIRT_GIC_CPU
].base
);
455 /* Wire the outputs from each CPU's generic timer to the
456 * appropriate GIC PPI inputs, and the GIC's IRQ output to
457 * the CPU's IRQ input.
459 for (i
= 0; i
< smp_cpus
; i
++) {
460 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
461 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
463 /* Mapping from the output timer irq lines from the CPU to the
464 * GIC PPI inputs we use for the virt board.
466 const int timer_irq
[] = {
467 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
468 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
469 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
470 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
473 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
474 qdev_connect_gpio_out(cpudev
, irq
,
475 qdev_get_gpio_in(gicdev
,
476 ppibase
+ timer_irq
[irq
]));
479 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
480 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
481 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
484 for (i
= 0; i
< NUM_IRQS
; i
++) {
485 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
488 fdt_add_gic_node(vbi
, type
);
491 create_v2m(vbi
, pic
);
495 static void create_uart(const VirtBoardInfo
*vbi
, qemu_irq
*pic
, int uart
,
499 hwaddr base
= vbi
->memmap
[uart
].base
;
500 hwaddr size
= vbi
->memmap
[uart
].size
;
501 int irq
= vbi
->irqmap
[uart
];
502 const char compat
[] = "arm,pl011\0arm,primecell";
503 const char clocknames
[] = "uartclk\0apb_pclk";
504 DeviceState
*dev
= qdev_create(NULL
, "pl011");
505 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
507 qdev_init_nofail(dev
);
508 memory_region_add_subregion(mem
, base
,
509 sysbus_mmio_get_region(s
, 0));
510 sysbus_connect_irq(s
, 0, pic
[irq
]);
512 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
513 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
514 /* Note that we can't use setprop_string because of the embedded NUL */
515 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible",
516 compat
, sizeof(compat
));
517 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
519 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
520 GIC_FDT_IRQ_TYPE_SPI
, irq
,
521 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
522 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "clocks",
523 vbi
->clock_phandle
, vbi
->clock_phandle
);
524 qemu_fdt_setprop(vbi
->fdt
, nodename
, "clock-names",
525 clocknames
, sizeof(clocknames
));
527 if (uart
== VIRT_UART
) {
528 qemu_fdt_setprop_string(vbi
->fdt
, "/chosen", "stdout-path", nodename
);
530 /* Mark as not usable by the normal world */
531 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "status", "disabled");
532 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "secure-status", "okay");
538 static void create_rtc(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
541 hwaddr base
= vbi
->memmap
[VIRT_RTC
].base
;
542 hwaddr size
= vbi
->memmap
[VIRT_RTC
].size
;
543 int irq
= vbi
->irqmap
[VIRT_RTC
];
544 const char compat
[] = "arm,pl031\0arm,primecell";
546 sysbus_create_simple("pl031", base
, pic
[irq
]);
548 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
549 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
550 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
551 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
553 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
554 GIC_FDT_IRQ_TYPE_SPI
, irq
,
555 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
556 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "clocks", vbi
->clock_phandle
);
557 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "clock-names", "apb_pclk");
561 static DeviceState
*pl061_dev
;
562 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
564 /* use gpio Pin 3 for power button event */
565 qemu_set_irq(qdev_get_gpio_in(pl061_dev
, 3), 1);
568 static Notifier virt_system_powerdown_notifier
= {
569 .notify
= virt_powerdown_req
572 static void create_gpio(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
575 hwaddr base
= vbi
->memmap
[VIRT_GPIO
].base
;
576 hwaddr size
= vbi
->memmap
[VIRT_GPIO
].size
;
577 int irq
= vbi
->irqmap
[VIRT_GPIO
];
578 const char compat
[] = "arm,pl061\0arm,primecell";
580 pl061_dev
= sysbus_create_simple("pl061", base
, pic
[irq
]);
582 uint32_t phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
583 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
584 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
585 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
587 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
588 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#gpio-cells", 2);
589 qemu_fdt_setprop(vbi
->fdt
, nodename
, "gpio-controller", NULL
, 0);
590 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
591 GIC_FDT_IRQ_TYPE_SPI
, irq
,
592 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
593 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "clocks", vbi
->clock_phandle
);
594 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "clock-names", "apb_pclk");
595 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "phandle", phandle
);
597 qemu_fdt_add_subnode(vbi
->fdt
, "/gpio-keys");
598 qemu_fdt_setprop_string(vbi
->fdt
, "/gpio-keys", "compatible", "gpio-keys");
599 qemu_fdt_setprop_cell(vbi
->fdt
, "/gpio-keys", "#size-cells", 0);
600 qemu_fdt_setprop_cell(vbi
->fdt
, "/gpio-keys", "#address-cells", 1);
602 qemu_fdt_add_subnode(vbi
->fdt
, "/gpio-keys/poweroff");
603 qemu_fdt_setprop_string(vbi
->fdt
, "/gpio-keys/poweroff",
604 "label", "GPIO Key Poweroff");
605 qemu_fdt_setprop_cell(vbi
->fdt
, "/gpio-keys/poweroff", "linux,code",
607 qemu_fdt_setprop_cells(vbi
->fdt
, "/gpio-keys/poweroff",
608 "gpios", phandle
, 3, 0);
610 /* connect powerdown request */
611 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier
);
616 static void create_virtio_devices(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
619 hwaddr size
= vbi
->memmap
[VIRT_MMIO
].size
;
621 /* We create the transports in forwards order. Since qbus_realize()
622 * prepends (not appends) new child buses, the incrementing loop below will
623 * create a list of virtio-mmio buses with decreasing base addresses.
625 * When a -device option is processed from the command line,
626 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
627 * order. The upshot is that -device options in increasing command line
628 * order are mapped to virtio-mmio buses with decreasing base addresses.
630 * When this code was originally written, that arrangement ensured that the
631 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
632 * the first -device on the command line. (The end-to-end order is a
633 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
634 * guest kernel's name-to-address assignment strategy.)
636 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
637 * the message, if not necessarily the code, of commit 70161ff336.
638 * Therefore the loop now establishes the inverse of the original intent.
640 * Unfortunately, we can't counteract the kernel change by reversing the
641 * loop; it would break existing command lines.
643 * In any case, the kernel makes no guarantee about the stability of
644 * enumeration order of virtio devices (as demonstrated by it changing
645 * between kernel versions). For reliable and stable identification
646 * of disks users must use UUIDs or similar mechanisms.
648 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
649 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
650 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
652 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
655 /* We add dtb nodes in reverse order so that they appear in the finished
656 * device tree lowest address first.
658 * Note that this mapping is independent of the loop above. The previous
659 * loop influences virtio device to virtio transport assignment, whereas
660 * this loop controls how virtio transports are laid out in the dtb.
662 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
664 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
665 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
667 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
668 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
669 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
670 "compatible", "virtio,mmio");
671 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
673 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
674 GIC_FDT_IRQ_TYPE_SPI
, irq
,
675 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
680 static void create_one_flash(const char *name
, hwaddr flashbase
,
683 /* Create and map a single flash device. We use the same
684 * parameters as the flash devices on the Versatile Express board.
686 DriveInfo
*dinfo
= drive_get_next(IF_PFLASH
);
687 DeviceState
*dev
= qdev_create(NULL
, "cfi.pflash01");
688 const uint64_t sectorlength
= 256 * 1024;
691 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
695 qdev_prop_set_uint32(dev
, "num-blocks", flashsize
/ sectorlength
);
696 qdev_prop_set_uint64(dev
, "sector-length", sectorlength
);
697 qdev_prop_set_uint8(dev
, "width", 4);
698 qdev_prop_set_uint8(dev
, "device-width", 2);
699 qdev_prop_set_bit(dev
, "big-endian", false);
700 qdev_prop_set_uint16(dev
, "id0", 0x89);
701 qdev_prop_set_uint16(dev
, "id1", 0x18);
702 qdev_prop_set_uint16(dev
, "id2", 0x00);
703 qdev_prop_set_uint16(dev
, "id3", 0x00);
704 qdev_prop_set_string(dev
, "name", name
);
705 qdev_init_nofail(dev
);
707 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, flashbase
);
710 static void create_flash(const VirtBoardInfo
*vbi
)
712 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
713 * Any file passed via -bios goes in the first of these.
715 hwaddr flashsize
= vbi
->memmap
[VIRT_FLASH
].size
/ 2;
716 hwaddr flashbase
= vbi
->memmap
[VIRT_FLASH
].base
;
723 if (drive_get(IF_PFLASH
, 0, 0)) {
724 error_report("The contents of the first flash device may be "
725 "specified with -bios or with -drive if=pflash... "
726 "but you cannot use both options at once");
729 fn
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
731 error_report("Could not find ROM image '%s'", bios_name
);
734 image_size
= load_image_targphys(fn
, flashbase
, flashsize
);
736 if (image_size
< 0) {
737 error_report("Could not load ROM image '%s'", bios_name
);
742 create_one_flash("virt.flash0", flashbase
, flashsize
);
743 create_one_flash("virt.flash1", flashbase
+ flashsize
, flashsize
);
745 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
746 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
747 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
748 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
749 2, flashbase
, 2, flashsize
,
750 2, flashbase
+ flashsize
, 2, flashsize
);
751 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
755 static void create_fw_cfg(const VirtBoardInfo
*vbi
, AddressSpace
*as
)
757 hwaddr base
= vbi
->memmap
[VIRT_FW_CFG
].base
;
758 hwaddr size
= vbi
->memmap
[VIRT_FW_CFG
].size
;
761 fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
763 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
764 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
765 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
766 "compatible", "qemu,fw-cfg-mmio");
767 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
772 static void create_pcie_irq_map(const VirtBoardInfo
*vbi
, uint32_t gic_phandle
,
773 int first_irq
, const char *nodename
)
776 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
777 uint32_t *irq_map
= full_irq_map
;
779 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
780 for (pin
= 0; pin
< 4; pin
++) {
781 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
782 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
783 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
787 devfn
<< 8, 0, 0, /* devfn */
788 pin
+ 1, /* PCI pin */
789 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
791 /* Convert map to big endian */
792 for (i
= 0; i
< 10; i
++) {
793 irq_map
[i
] = cpu_to_be32(map
[i
]);
799 qemu_fdt_setprop(vbi
->fdt
, nodename
, "interrupt-map",
800 full_irq_map
, sizeof(full_irq_map
));
802 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupt-map-mask",
803 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
807 static void create_pcie(const VirtBoardInfo
*vbi
, qemu_irq
*pic
,
810 hwaddr base_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].base
;
811 hwaddr size_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].size
;
812 hwaddr base_mmio_high
= vbi
->memmap
[VIRT_PCIE_MMIO_HIGH
].base
;
813 hwaddr size_mmio_high
= vbi
->memmap
[VIRT_PCIE_MMIO_HIGH
].size
;
814 hwaddr base_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].base
;
815 hwaddr size_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].size
;
816 hwaddr base_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].base
;
817 hwaddr size_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].size
;
818 hwaddr base
= base_mmio
;
819 int nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
820 int irq
= vbi
->irqmap
[VIRT_PCIE
];
821 MemoryRegion
*mmio_alias
;
822 MemoryRegion
*mmio_reg
;
823 MemoryRegion
*ecam_alias
;
824 MemoryRegion
*ecam_reg
;
830 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
831 qdev_init_nofail(dev
);
833 /* Map only the first size_ecam bytes of ECAM space */
834 ecam_alias
= g_new0(MemoryRegion
, 1);
835 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
836 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
837 ecam_reg
, 0, size_ecam
);
838 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
840 /* Map the MMIO window into system address space so as to expose
841 * the section of PCI MMIO space which starts at the same base address
842 * (ie 1:1 mapping for that part of PCI MMIO space visible through
845 mmio_alias
= g_new0(MemoryRegion
, 1);
846 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
847 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
848 mmio_reg
, base_mmio
, size_mmio
);
849 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
852 /* Map high MMIO space */
853 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
855 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
856 mmio_reg
, base_mmio_high
, size_mmio_high
);
857 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
861 /* Map IO port space */
862 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
864 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
865 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
868 pci
= PCI_HOST_BRIDGE(dev
);
870 for (i
= 0; i
< nb_nics
; i
++) {
871 NICInfo
*nd
= &nd_table
[i
];
874 nd
->model
= g_strdup("virtio");
877 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
881 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
882 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
883 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
884 "compatible", "pci-host-ecam-generic");
885 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "pci");
886 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#address-cells", 3);
887 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#size-cells", 2);
888 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "bus-range", 0,
891 if (vbi
->v2m_phandle
) {
892 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "msi-parent",
896 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
897 2, base_ecam
, 2, size_ecam
);
900 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
901 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
902 2, base_pio
, 2, size_pio
,
903 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
904 2, base_mmio
, 2, size_mmio
,
905 1, FDT_PCI_RANGE_MMIO_64BIT
,
907 2, base_mmio_high
, 2, size_mmio_high
);
909 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
910 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
911 2, base_pio
, 2, size_pio
,
912 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
913 2, base_mmio
, 2, size_mmio
);
916 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#interrupt-cells", 1);
917 create_pcie_irq_map(vbi
, vbi
->gic_phandle
, irq
, nodename
);
922 static void create_platform_bus(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
927 ARMPlatformBusFDTParams
*fdt_params
= g_new(ARMPlatformBusFDTParams
, 1);
928 MemoryRegion
*sysmem
= get_system_memory();
930 platform_bus_params
.platform_bus_base
= vbi
->memmap
[VIRT_PLATFORM_BUS
].base
;
931 platform_bus_params
.platform_bus_size
= vbi
->memmap
[VIRT_PLATFORM_BUS
].size
;
932 platform_bus_params
.platform_bus_first_irq
= vbi
->irqmap
[VIRT_PLATFORM_BUS
];
933 platform_bus_params
.platform_bus_num_irqs
= PLATFORM_BUS_NUM_IRQS
;
935 fdt_params
->system_params
= &platform_bus_params
;
936 fdt_params
->binfo
= &vbi
->bootinfo
;
937 fdt_params
->intc
= "/intc";
939 * register a machine init done notifier that creates the device tree
940 * nodes of the platform bus and its children dynamic sysbus devices
942 arm_register_platform_bus_fdt_creator(fdt_params
);
944 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
945 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
946 qdev_prop_set_uint32(dev
, "num_irqs",
947 platform_bus_params
.platform_bus_num_irqs
);
948 qdev_prop_set_uint32(dev
, "mmio_size",
949 platform_bus_params
.platform_bus_size
);
950 qdev_init_nofail(dev
);
951 s
= SYS_BUS_DEVICE(dev
);
953 for (i
= 0; i
< platform_bus_params
.platform_bus_num_irqs
; i
++) {
954 int irqn
= platform_bus_params
.platform_bus_first_irq
+ i
;
955 sysbus_connect_irq(s
, i
, pic
[irqn
]);
958 memory_region_add_subregion(sysmem
,
959 platform_bus_params
.platform_bus_base
,
960 sysbus_mmio_get_region(s
, 0));
963 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
965 const VirtBoardInfo
*board
= (const VirtBoardInfo
*)binfo
;
967 *fdt_size
= board
->fdt_size
;
971 static void virt_build_smbios(VirtGuestInfo
*guest_info
)
973 FWCfgState
*fw_cfg
= guest_info
->fw_cfg
;
974 uint8_t *smbios_tables
, *smbios_anchor
;
975 size_t smbios_tables_len
, smbios_anchor_len
;
976 const char *product
= "QEMU Virtual Machine";
983 product
= "KVM Virtual Machine";
986 smbios_set_defaults("QEMU", product
,
987 "1.0", false, true, SMBIOS_ENTRY_POINT_30
);
989 smbios_get_tables(NULL
, 0, &smbios_tables
, &smbios_tables_len
,
990 &smbios_anchor
, &smbios_anchor_len
);
993 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-tables",
994 smbios_tables
, smbios_tables_len
);
995 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-anchor",
996 smbios_anchor
, smbios_anchor_len
);
1001 void virt_guest_info_machine_done(Notifier
*notifier
, void *data
)
1003 VirtGuestInfoState
*guest_info_state
= container_of(notifier
,
1004 VirtGuestInfoState
, machine_done
);
1005 virt_acpi_setup(&guest_info_state
->info
);
1006 virt_build_smbios(&guest_info_state
->info
);
1009 static void machvirt_init(MachineState
*machine
)
1011 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1012 qemu_irq pic
[NUM_IRQS
];
1013 MemoryRegion
*sysmem
= get_system_memory();
1014 MemoryRegion
*secure_sysmem
= NULL
;
1015 int gic_version
= vms
->gic_version
;
1017 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1018 const char *cpu_model
= machine
->cpu_model
;
1020 VirtGuestInfoState
*guest_info_state
= g_malloc0(sizeof *guest_info_state
);
1021 VirtGuestInfo
*guest_info
= &guest_info_state
->info
;
1025 cpu_model
= "cortex-a15";
1028 /* We can probe only here because during property set
1029 * KVM is not available yet
1032 gic_version
= kvm_arm_vgic_probe();
1034 error_report("Unable to determine GIC version supported by host");
1035 error_printf("KVM acceleration is probably not supported\n");
1040 /* Separate the actual CPU model name from any appended features */
1041 cpustr
= g_strsplit(cpu_model
, ",", 2);
1043 vbi
= find_machine_info(cpustr
[0]);
1046 error_report("mach-virt: CPU %s not supported", cpustr
[0]);
1050 /* The maximum number of CPUs depends on the GIC version, or on how
1051 * many redistributors we can fit into the memory map.
1053 if (gic_version
== 3) {
1054 max_cpus
= vbi
->memmap
[VIRT_GIC_REDIST
].size
/ 0x20000;
1056 max_cpus
= GIC_NCPU
;
1059 if (smp_cpus
> max_cpus
) {
1060 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1061 "supported by machine 'mach-virt' (%d)",
1062 smp_cpus
, max_cpus
);
1066 vbi
->smp_cpus
= smp_cpus
;
1068 if (machine
->ram_size
> vbi
->memmap
[VIRT_MEM
].size
) {
1069 error_report("mach-virt: cannot model more than 30GB RAM");
1074 if (kvm_enabled()) {
1075 error_report("mach-virt: KVM does not support Security extensions");
1079 /* The Secure view of the world is the same as the NonSecure,
1080 * but with a few extra devices. Create it as a container region
1081 * containing the system memory at low priority; any secure-only
1082 * devices go in at higher priority and take precedence.
1084 secure_sysmem
= g_new(MemoryRegion
, 1);
1085 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1087 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1092 for (n
= 0; n
< smp_cpus
; n
++) {
1093 ObjectClass
*oc
= cpu_class_by_name(TYPE_ARM_CPU
, cpustr
[0]);
1094 CPUClass
*cc
= CPU_CLASS(oc
);
1097 char *cpuopts
= g_strdup(cpustr
[1]);
1100 error_report("Unable to find CPU definition");
1103 cpuobj
= object_new(object_class_get_name(oc
));
1105 /* Handle any CPU options specified by the user */
1106 cc
->parse_features(CPU(cpuobj
), cpuopts
, &err
);
1109 error_report_err(err
);
1114 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
1117 object_property_set_int(cpuobj
, QEMU_PSCI_CONDUIT_HVC
, "psci-conduit",
1120 /* Secondary CPUs start in PSCI powered-down state */
1122 object_property_set_bool(cpuobj
, true, "start-powered-off", NULL
);
1125 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
1126 object_property_set_int(cpuobj
, vbi
->memmap
[VIRT_CPUPERIPHS
].base
,
1127 "reset-cbar", &error_abort
);
1130 object_property_set_link(cpuobj
, OBJECT(sysmem
), "memory",
1133 object_property_set_link(cpuobj
, OBJECT(secure_sysmem
),
1134 "secure-memory", &error_abort
);
1137 object_property_set_bool(cpuobj
, true, "realized", NULL
);
1140 fdt_add_timer_nodes(vbi
, gic_version
);
1141 fdt_add_cpu_nodes(vbi
);
1142 fdt_add_psci_node(vbi
);
1144 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
1146 memory_region_add_subregion(sysmem
, vbi
->memmap
[VIRT_MEM
].base
, ram
);
1150 create_gic(vbi
, pic
, gic_version
, vms
->secure
);
1152 create_uart(vbi
, pic
, VIRT_UART
, sysmem
);
1155 create_uart(vbi
, pic
, VIRT_SECURE_UART
, secure_sysmem
);
1158 create_rtc(vbi
, pic
);
1160 create_pcie(vbi
, pic
, vms
->highmem
);
1162 create_gpio(vbi
, pic
);
1164 /* Create mmio transports, so the user can create virtio backends
1165 * (which will be automatically plugged in to the transports). If
1166 * no backend is created the transport will just sit harmlessly idle.
1168 create_virtio_devices(vbi
, pic
);
1170 create_fw_cfg(vbi
, &address_space_memory
);
1171 rom_set_fw(fw_cfg_find());
1173 guest_info
->smp_cpus
= smp_cpus
;
1174 guest_info
->fw_cfg
= fw_cfg_find();
1175 guest_info
->memmap
= vbi
->memmap
;
1176 guest_info
->irqmap
= vbi
->irqmap
;
1177 guest_info
->use_highmem
= vms
->highmem
;
1178 guest_info
->gic_version
= gic_version
;
1179 guest_info_state
->machine_done
.notify
= virt_guest_info_machine_done
;
1180 qemu_add_machine_init_done_notifier(&guest_info_state
->machine_done
);
1182 vbi
->bootinfo
.ram_size
= machine
->ram_size
;
1183 vbi
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
1184 vbi
->bootinfo
.kernel_cmdline
= machine
->kernel_cmdline
;
1185 vbi
->bootinfo
.initrd_filename
= machine
->initrd_filename
;
1186 vbi
->bootinfo
.nb_cpus
= smp_cpus
;
1187 vbi
->bootinfo
.board_id
= -1;
1188 vbi
->bootinfo
.loader_start
= vbi
->memmap
[VIRT_MEM
].base
;
1189 vbi
->bootinfo
.get_dtb
= machvirt_dtb
;
1190 vbi
->bootinfo
.firmware_loaded
= bios_name
|| drive_get(IF_PFLASH
, 0, 0);
1191 arm_load_kernel(ARM_CPU(first_cpu
), &vbi
->bootinfo
);
1194 * arm_load_kernel machine init done notifier registration must
1195 * happen before the platform_bus_create call. In this latter,
1196 * another notifier is registered which adds platform bus nodes.
1197 * Notifiers are executed in registration reverse order.
1199 create_platform_bus(vbi
, pic
);
1202 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1204 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1209 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1211 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1213 vms
->secure
= value
;
1216 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
1218 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1220 return vms
->highmem
;
1223 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
1225 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1227 vms
->highmem
= value
;
1230 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
1232 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1233 const char *val
= vms
->gic_version
== 3 ? "3" : "2";
1235 return g_strdup(val
);
1238 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
1240 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1242 if (!strcmp(value
, "3")) {
1243 vms
->gic_version
= 3;
1244 } else if (!strcmp(value
, "2")) {
1245 vms
->gic_version
= 2;
1246 } else if (!strcmp(value
, "host")) {
1247 vms
->gic_version
= 0; /* Will probe later */
1249 error_setg(errp
, "Invalid gic-version value");
1250 error_append_hint(errp
, "Valid values are 3, 2, host.\n");
1254 static void virt_instance_init(Object
*obj
)
1256 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1258 /* EL3 is disabled by default on virt: this makes us consistent
1259 * between KVM and TCG for this board, and it also allows us to
1260 * boot UEFI blobs which assume no TrustZone support.
1262 vms
->secure
= false;
1263 object_property_add_bool(obj
, "secure", virt_get_secure
,
1264 virt_set_secure
, NULL
);
1265 object_property_set_description(obj
, "secure",
1266 "Set on/off to enable/disable the ARM "
1267 "Security Extensions (TrustZone)",
1270 /* High memory is enabled by default */
1271 vms
->highmem
= true;
1272 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
1273 virt_set_highmem
, NULL
);
1274 object_property_set_description(obj
, "highmem",
1275 "Set on/off to enable/disable using "
1276 "physical address space above 32 bits",
1278 /* Default GIC type is v2 */
1279 vms
->gic_version
= 2;
1280 object_property_add_str(obj
, "gic-version", virt_get_gic_version
,
1281 virt_set_gic_version
, NULL
);
1282 object_property_set_description(obj
, "gic-version",
1284 "Valid values are 2, 3 and host", NULL
);
1287 static void virt_class_init(ObjectClass
*oc
, void *data
)
1289 MachineClass
*mc
= MACHINE_CLASS(oc
);
1291 mc
->desc
= "ARM Virtual Machine",
1292 mc
->init
= machvirt_init
;
1293 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1294 * it later in machvirt_init, where we have more information about the
1295 * configuration of the particular instance.
1297 mc
->max_cpus
= MAX_CPUMASK_BITS
;
1298 mc
->has_dynamic_sysbus
= true;
1299 mc
->block_default_type
= IF_VIRTIO
;
1301 mc
->pci_allow_0_address
= true;
1304 static const TypeInfo machvirt_info
= {
1305 .name
= TYPE_VIRT_MACHINE
,
1306 .parent
= TYPE_MACHINE
,
1307 .instance_size
= sizeof(VirtMachineState
),
1308 .instance_init
= virt_instance_init
,
1309 .class_size
= sizeof(VirtMachineClass
),
1310 .class_init
= virt_class_init
,
1313 static void machvirt_machine_init(void)
1315 type_register_static(&machvirt_info
);
1318 machine_init(machvirt_machine_init
);