memory: extract first iteration of address_space_read and address_space_write
[qemu/ar7.git] / include / exec / ram_addr.h
blobd1d9963680c0d786a56c08e2527c211f51223f8b
1 /*
2 * Declarations for cpu physical memory functions
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or
10 * later. See the COPYING file in the top-level directory.
15 * This header is for use by exec.c and memory.c ONLY. Do not include it.
16 * The functions declared here will be removed soon.
19 #ifndef RAM_ADDR_H
20 #define RAM_ADDR_H
22 #ifndef CONFIG_USER_ONLY
23 #include "hw/xen/xen.h"
25 struct RAMBlock {
26 struct rcu_head rcu;
27 struct MemoryRegion *mr;
28 uint8_t *host;
29 ram_addr_t offset;
30 ram_addr_t used_length;
31 ram_addr_t max_length;
32 void (*resized)(const char*, uint64_t length, void *host);
33 uint32_t flags;
34 /* Protected by iothread lock. */
35 char idstr[256];
36 /* RCU-enabled, writes protected by the ramlist lock */
37 QLIST_ENTRY(RAMBlock) next;
38 int fd;
41 static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
43 assert(offset < block->used_length);
44 assert(block->host);
45 return (char *)block->host + offset;
48 typedef struct RAMList {
49 QemuMutex mutex;
50 /* Protected by the iothread lock. */
51 unsigned long *dirty_memory[DIRTY_MEMORY_NUM];
52 RAMBlock *mru_block;
53 /* RCU-enabled, writes protected by the ramlist lock. */
54 QLIST_HEAD(, RAMBlock) blocks;
55 uint32_t version;
56 } RAMList;
57 extern RAMList ram_list;
59 ram_addr_t last_ram_offset(void);
60 void qemu_mutex_lock_ramlist(void);
61 void qemu_mutex_unlock_ramlist(void);
63 ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
64 bool share, const char *mem_path,
65 Error **errp);
66 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
67 MemoryRegion *mr, Error **errp);
68 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp);
69 ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
70 void (*resized)(const char*,
71 uint64_t length,
72 void *host),
73 MemoryRegion *mr, Error **errp);
74 int qemu_get_ram_fd(ram_addr_t addr);
75 void *qemu_get_ram_block_host_ptr(ram_addr_t addr);
76 void *qemu_get_ram_ptr(ram_addr_t addr);
77 void qemu_ram_free(ram_addr_t addr);
79 int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp);
81 #define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
82 #define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
84 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
85 ram_addr_t length,
86 unsigned client)
88 unsigned long end, page, next;
90 assert(client < DIRTY_MEMORY_NUM);
92 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
93 page = start >> TARGET_PAGE_BITS;
94 next = find_next_bit(ram_list.dirty_memory[client], end, page);
96 return next < end;
99 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
100 ram_addr_t length,
101 unsigned client)
103 unsigned long end, page, next;
105 assert(client < DIRTY_MEMORY_NUM);
107 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
108 page = start >> TARGET_PAGE_BITS;
109 next = find_next_zero_bit(ram_list.dirty_memory[client], end, page);
111 return next >= end;
114 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
115 unsigned client)
117 return cpu_physical_memory_get_dirty(addr, 1, client);
120 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
122 bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
123 bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
124 bool migration =
125 cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
126 return !(vga && code && migration);
129 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
130 ram_addr_t length,
131 uint8_t mask)
133 uint8_t ret = 0;
135 if (mask & (1 << DIRTY_MEMORY_VGA) &&
136 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
137 ret |= (1 << DIRTY_MEMORY_VGA);
139 if (mask & (1 << DIRTY_MEMORY_CODE) &&
140 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
141 ret |= (1 << DIRTY_MEMORY_CODE);
143 if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
144 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
145 ret |= (1 << DIRTY_MEMORY_MIGRATION);
147 return ret;
150 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
151 unsigned client)
153 assert(client < DIRTY_MEMORY_NUM);
154 set_bit_atomic(addr >> TARGET_PAGE_BITS, ram_list.dirty_memory[client]);
157 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
158 ram_addr_t length,
159 uint8_t mask)
161 unsigned long end, page;
162 unsigned long **d = ram_list.dirty_memory;
164 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
165 page = start >> TARGET_PAGE_BITS;
166 if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
167 bitmap_set_atomic(d[DIRTY_MEMORY_MIGRATION], page, end - page);
169 if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
170 bitmap_set_atomic(d[DIRTY_MEMORY_VGA], page, end - page);
172 if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
173 bitmap_set_atomic(d[DIRTY_MEMORY_CODE], page, end - page);
175 xen_modified_memory(start, length);
178 #if !defined(_WIN32)
179 static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
180 ram_addr_t start,
181 ram_addr_t pages)
183 unsigned long i, j;
184 unsigned long page_number, c;
185 hwaddr addr;
186 ram_addr_t ram_addr;
187 unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
188 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
189 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
191 /* start address is aligned at the start of a word? */
192 if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
193 (hpratio == 1)) {
194 long k;
195 long nr = BITS_TO_LONGS(pages);
197 for (k = 0; k < nr; k++) {
198 if (bitmap[k]) {
199 unsigned long temp = leul_to_cpu(bitmap[k]);
200 unsigned long **d = ram_list.dirty_memory;
202 atomic_or(&d[DIRTY_MEMORY_MIGRATION][page + k], temp);
203 atomic_or(&d[DIRTY_MEMORY_VGA][page + k], temp);
204 if (tcg_enabled()) {
205 atomic_or(&d[DIRTY_MEMORY_CODE][page + k], temp);
209 xen_modified_memory(start, pages << TARGET_PAGE_BITS);
210 } else {
211 uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
213 * bitmap-traveling is faster than memory-traveling (for addr...)
214 * especially when most of the memory is not dirty.
216 for (i = 0; i < len; i++) {
217 if (bitmap[i] != 0) {
218 c = leul_to_cpu(bitmap[i]);
219 do {
220 j = ctzl(c);
221 c &= ~(1ul << j);
222 page_number = (i * HOST_LONG_BITS + j) * hpratio;
223 addr = page_number * TARGET_PAGE_SIZE;
224 ram_addr = start + addr;
225 cpu_physical_memory_set_dirty_range(ram_addr,
226 TARGET_PAGE_SIZE * hpratio, clients);
227 } while (c != 0);
232 #endif /* not _WIN32 */
234 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
235 ram_addr_t length,
236 unsigned client);
238 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
239 ram_addr_t length)
241 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
242 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
243 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
247 static inline
248 uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest,
249 ram_addr_t start,
250 ram_addr_t length)
252 ram_addr_t addr;
253 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
254 uint64_t num_dirty = 0;
256 /* start address is aligned at the start of a word? */
257 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
258 int k;
259 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
260 unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
262 for (k = page; k < page + nr; k++) {
263 if (src[k]) {
264 unsigned long bits = atomic_xchg(&src[k], 0);
265 unsigned long new_dirty;
266 new_dirty = ~dest[k];
267 dest[k] |= bits;
268 new_dirty &= bits;
269 num_dirty += ctpopl(new_dirty);
272 } else {
273 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
274 if (cpu_physical_memory_test_and_clear_dirty(
275 start + addr,
276 TARGET_PAGE_SIZE,
277 DIRTY_MEMORY_MIGRATION)) {
278 long k = (start + addr) >> TARGET_PAGE_BITS;
279 if (!test_and_set_bit(k, dest)) {
280 num_dirty++;
286 return num_dirty;
289 void migration_bitmap_extend(ram_addr_t old, ram_addr_t new);
290 #endif
291 #endif