4 /* CPU interfaces that are target independent. */
6 #ifndef CONFIG_USER_ONLY
7 #include "exec/hwaddr.h"
12 * Type wide enough to contain any #target_ulong virtual address.
14 typedef uint64_t vaddr
;
15 #define VADDR_PRId PRId64
16 #define VADDR_PRIu PRIu64
17 #define VADDR_PRIo PRIo64
18 #define VADDR_PRIx PRIx64
19 #define VADDR_PRIX PRIX64
20 #define VADDR_MAX UINT64_MAX
22 void cpu_exec_init_all(void);
23 void cpu_exec_step_atomic(CPUState
*cpu
);
25 /* Using intptr_t ensures that qemu_*_page_mask is sign-extended even
26 * when intptr_t is 32-bit and we are aligning a long long.
28 extern uintptr_t qemu_host_page_size
;
29 extern intptr_t qemu_host_page_mask
;
31 #define HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_host_page_size)
32 #define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size())
34 /* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */
35 void qemu_init_cpu_list(void);
36 void cpu_list_lock(void);
37 void cpu_list_unlock(void);
38 unsigned int cpu_list_generation_id_get(void);
40 void tcg_flush_softmmu_tlb(CPUState
*cs
);
42 void tcg_iommu_init_notifier_list(CPUState
*cpu
);
43 void tcg_iommu_free_notifier_list(CPUState
*cpu
);
45 #if !defined(CONFIG_USER_ONLY)
54 #define DEVICE_HOST_ENDIAN DEVICE_BIG_ENDIAN
56 #define DEVICE_HOST_ENDIAN DEVICE_LITTLE_ENDIAN
59 /* address in the RAM (different from a physical address) */
60 #if defined(CONFIG_XEN_BACKEND)
61 typedef uint64_t ram_addr_t
;
62 # define RAM_ADDR_MAX UINT64_MAX
63 # define RAM_ADDR_FMT "%" PRIx64
65 typedef uintptr_t ram_addr_t
;
66 # define RAM_ADDR_MAX UINTPTR_MAX
67 # define RAM_ADDR_FMT "%" PRIxPTR
72 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
);
73 /* This should not be used by devices. */
74 ram_addr_t
qemu_ram_addr_from_host(void *ptr
);
75 ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
);
76 RAMBlock
*qemu_ram_block_by_name(const char *name
);
77 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
79 ram_addr_t
qemu_ram_block_host_offset(RAMBlock
*rb
, void *host
);
80 void qemu_ram_set_idstr(RAMBlock
*block
, const char *name
, DeviceState
*dev
);
81 void qemu_ram_unset_idstr(RAMBlock
*block
);
82 const char *qemu_ram_get_idstr(RAMBlock
*rb
);
83 void *qemu_ram_get_host_addr(RAMBlock
*rb
);
84 ram_addr_t
qemu_ram_get_offset(RAMBlock
*rb
);
85 ram_addr_t
qemu_ram_get_used_length(RAMBlock
*rb
);
86 ram_addr_t
qemu_ram_get_max_length(RAMBlock
*rb
);
87 bool qemu_ram_is_shared(RAMBlock
*rb
);
88 bool qemu_ram_is_noreserve(RAMBlock
*rb
);
89 bool qemu_ram_is_uf_zeroable(RAMBlock
*rb
);
90 void qemu_ram_set_uf_zeroable(RAMBlock
*rb
);
91 bool qemu_ram_is_migratable(RAMBlock
*rb
);
92 void qemu_ram_set_migratable(RAMBlock
*rb
);
93 void qemu_ram_unset_migratable(RAMBlock
*rb
);
95 size_t qemu_ram_pagesize(RAMBlock
*block
);
96 size_t qemu_ram_pagesize_largest(void);
99 * cpu_address_space_init:
100 * @cpu: CPU to add this address space to
101 * @asidx: integer index of this address space
102 * @prefix: prefix to be used as name of address space
103 * @mr: the root memory region of address space
105 * Add the specified address space to the CPU's cpu_ases list.
106 * The address space added with @asidx 0 is the one used for the
107 * convenience pointer cpu->as.
108 * The target-specific code which registers ASes is responsible
109 * for defining what semantics address space 0, 1, 2, etc have.
111 * Before the first call to this function, the caller must set
112 * cpu->num_ases to the total number of address spaces it needs
115 * Note that with KVM only one address space is supported.
117 void cpu_address_space_init(CPUState
*cpu
, int asidx
,
118 const char *prefix
, MemoryRegion
*mr
);
120 void cpu_physical_memory_rw(hwaddr addr
, void *buf
,
121 hwaddr len
, bool is_write
);
122 static inline void cpu_physical_memory_read(hwaddr addr
,
123 void *buf
, hwaddr len
)
125 cpu_physical_memory_rw(addr
, buf
, len
, false);
127 static inline void cpu_physical_memory_write(hwaddr addr
,
128 const void *buf
, hwaddr len
)
130 cpu_physical_memory_rw(addr
, (void *)buf
, len
, true);
132 void cpu_reloading_memory_map(void);
133 void *cpu_physical_memory_map(hwaddr addr
,
136 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
137 bool is_write
, hwaddr access_len
);
138 void cpu_register_map_client(QEMUBH
*bh
);
139 void cpu_unregister_map_client(QEMUBH
*bh
);
141 bool cpu_physical_memory_is_io(hwaddr phys_addr
);
143 /* Coalesced MMIO regions are areas where write operations can be reordered.
144 * This usually implies that write operations are side-effect free. This allows
145 * batching which can make a major impact on performance when using
148 void qemu_flush_coalesced_mmio_buffer(void);
150 void cpu_flush_icache_range(hwaddr start
, hwaddr len
);
152 typedef int (RAMBlockIterFunc
)(RAMBlock
*rb
, void *opaque
);
154 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
);
155 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
);
159 /* Returns: 0 on success, -1 on error */
160 int cpu_memory_rw_debug(CPUState
*cpu
, vaddr addr
,
161 void *ptr
, size_t len
, bool is_write
);
164 extern int singlestep
;
166 void list_cpus(const char *optarg
);
168 #endif /* CPU_COMMON_H */