hw/misc/led: Add yellow LED
[qemu/ar7.git] / accel / kvm / kvm-all.c
blob37b0a1861e723cb0c650209a0aed577422e8c3da
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "qapi/visitor.h"
43 #include "qapi/qapi-types-common.h"
44 #include "qapi/qapi-visit-common.h"
45 #include "sysemu/reset.h"
46 #include "qemu/guest-random.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm-cpus.h"
50 #include "hw/boards.h"
52 /* This check must be after config-host.h is included */
53 #ifdef CONFIG_EVENTFD
54 #include <sys/eventfd.h>
55 #endif
57 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
58 * need to use the real host PAGE_SIZE, as that's what KVM will use.
60 #ifdef PAGE_SIZE
61 #undef PAGE_SIZE
62 #endif
63 #define PAGE_SIZE qemu_real_host_page_size
65 //#define DEBUG_KVM
67 #ifdef DEBUG_KVM
68 #define DPRINTF(fmt, ...) \
69 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
70 #else
71 #define DPRINTF(fmt, ...) \
72 do { } while (0)
73 #endif
75 #define KVM_MSI_HASHTAB_SIZE 256
77 struct KVMParkedVcpu {
78 unsigned long vcpu_id;
79 int kvm_fd;
80 QLIST_ENTRY(KVMParkedVcpu) node;
83 struct KVMState
85 AccelState parent_obj;
87 int nr_slots;
88 int fd;
89 int vmfd;
90 int coalesced_mmio;
91 int coalesced_pio;
92 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
93 bool coalesced_flush_in_progress;
94 int vcpu_events;
95 int robust_singlestep;
96 int debugregs;
97 #ifdef KVM_CAP_SET_GUEST_DEBUG
98 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
99 #endif
100 int max_nested_state_len;
101 int many_ioeventfds;
102 int intx_set_mask;
103 int kvm_shadow_mem;
104 bool kernel_irqchip_allowed;
105 bool kernel_irqchip_required;
106 OnOffAuto kernel_irqchip_split;
107 bool sync_mmu;
108 uint64_t manual_dirty_log_protect;
109 /* The man page (and posix) say ioctl numbers are signed int, but
110 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
111 * unsigned, and treating them as signed here can break things */
112 unsigned irq_set_ioctl;
113 unsigned int sigmask_len;
114 GHashTable *gsimap;
115 #ifdef KVM_CAP_IRQ_ROUTING
116 struct kvm_irq_routing *irq_routes;
117 int nr_allocated_irq_routes;
118 unsigned long *used_gsi_bitmap;
119 unsigned int gsi_count;
120 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
121 #endif
122 KVMMemoryListener memory_listener;
123 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
125 /* For "info mtree -f" to tell if an MR is registered in KVM */
126 int nr_as;
127 struct KVMAs {
128 KVMMemoryListener *ml;
129 AddressSpace *as;
130 } *as;
133 KVMState *kvm_state;
134 bool kvm_kernel_irqchip;
135 bool kvm_split_irqchip;
136 bool kvm_async_interrupts_allowed;
137 bool kvm_halt_in_kernel_allowed;
138 bool kvm_eventfds_allowed;
139 bool kvm_irqfds_allowed;
140 bool kvm_resamplefds_allowed;
141 bool kvm_msi_via_irqfd_allowed;
142 bool kvm_gsi_routing_allowed;
143 bool kvm_gsi_direct_mapping;
144 bool kvm_allowed;
145 bool kvm_readonly_mem_allowed;
146 bool kvm_vm_attributes_allowed;
147 bool kvm_direct_msi_allowed;
148 bool kvm_ioeventfd_any_length_allowed;
149 bool kvm_msi_use_devid;
150 static bool kvm_immediate_exit;
151 static hwaddr kvm_max_slot_size = ~0;
153 static const KVMCapabilityInfo kvm_required_capabilites[] = {
154 KVM_CAP_INFO(USER_MEMORY),
155 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
156 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
157 KVM_CAP_LAST_INFO
160 static NotifierList kvm_irqchip_change_notifiers =
161 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
163 struct KVMResampleFd {
164 int gsi;
165 EventNotifier *resample_event;
166 QLIST_ENTRY(KVMResampleFd) node;
168 typedef struct KVMResampleFd KVMResampleFd;
171 * Only used with split irqchip where we need to do the resample fd
172 * kick for the kernel from userspace.
174 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
175 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
177 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock)
178 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock)
180 static inline void kvm_resample_fd_remove(int gsi)
182 KVMResampleFd *rfd;
184 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
185 if (rfd->gsi == gsi) {
186 QLIST_REMOVE(rfd, node);
187 g_free(rfd);
188 break;
193 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
195 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
197 rfd->gsi = gsi;
198 rfd->resample_event = event;
200 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
203 void kvm_resample_fd_notify(int gsi)
205 KVMResampleFd *rfd;
207 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
208 if (rfd->gsi == gsi) {
209 event_notifier_set(rfd->resample_event);
210 trace_kvm_resample_fd_notify(gsi);
211 return;
216 int kvm_get_max_memslots(void)
218 KVMState *s = KVM_STATE(current_accel());
220 return s->nr_slots;
223 /* Called with KVMMemoryListener.slots_lock held */
224 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
226 KVMState *s = kvm_state;
227 int i;
229 for (i = 0; i < s->nr_slots; i++) {
230 if (kml->slots[i].memory_size == 0) {
231 return &kml->slots[i];
235 return NULL;
238 bool kvm_has_free_slot(MachineState *ms)
240 KVMState *s = KVM_STATE(ms->accelerator);
241 bool result;
242 KVMMemoryListener *kml = &s->memory_listener;
244 kvm_slots_lock(kml);
245 result = !!kvm_get_free_slot(kml);
246 kvm_slots_unlock(kml);
248 return result;
251 /* Called with KVMMemoryListener.slots_lock held */
252 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
254 KVMSlot *slot = kvm_get_free_slot(kml);
256 if (slot) {
257 return slot;
260 fprintf(stderr, "%s: no free slot available\n", __func__);
261 abort();
264 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
265 hwaddr start_addr,
266 hwaddr size)
268 KVMState *s = kvm_state;
269 int i;
271 for (i = 0; i < s->nr_slots; i++) {
272 KVMSlot *mem = &kml->slots[i];
274 if (start_addr == mem->start_addr && size == mem->memory_size) {
275 return mem;
279 return NULL;
283 * Calculate and align the start address and the size of the section.
284 * Return the size. If the size is 0, the aligned section is empty.
286 static hwaddr kvm_align_section(MemoryRegionSection *section,
287 hwaddr *start)
289 hwaddr size = int128_get64(section->size);
290 hwaddr delta, aligned;
292 /* kvm works in page size chunks, but the function may be called
293 with sub-page size and unaligned start address. Pad the start
294 address to next and truncate size to previous page boundary. */
295 aligned = ROUND_UP(section->offset_within_address_space,
296 qemu_real_host_page_size);
297 delta = aligned - section->offset_within_address_space;
298 *start = aligned;
299 if (delta > size) {
300 return 0;
303 return (size - delta) & qemu_real_host_page_mask;
306 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
307 hwaddr *phys_addr)
309 KVMMemoryListener *kml = &s->memory_listener;
310 int i, ret = 0;
312 kvm_slots_lock(kml);
313 for (i = 0; i < s->nr_slots; i++) {
314 KVMSlot *mem = &kml->slots[i];
316 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
317 *phys_addr = mem->start_addr + (ram - mem->ram);
318 ret = 1;
319 break;
322 kvm_slots_unlock(kml);
324 return ret;
327 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
329 KVMState *s = kvm_state;
330 struct kvm_userspace_memory_region mem;
331 int ret;
333 mem.slot = slot->slot | (kml->as_id << 16);
334 mem.guest_phys_addr = slot->start_addr;
335 mem.userspace_addr = (unsigned long)slot->ram;
336 mem.flags = slot->flags;
338 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
339 /* Set the slot size to 0 before setting the slot to the desired
340 * value. This is needed based on KVM commit 75d61fbc. */
341 mem.memory_size = 0;
342 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
343 if (ret < 0) {
344 goto err;
347 mem.memory_size = slot->memory_size;
348 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
349 slot->old_flags = mem.flags;
350 err:
351 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
352 mem.memory_size, mem.userspace_addr, ret);
353 if (ret < 0) {
354 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
355 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
356 __func__, mem.slot, slot->start_addr,
357 (uint64_t)mem.memory_size, strerror(errno));
359 return ret;
362 static int do_kvm_destroy_vcpu(CPUState *cpu)
364 KVMState *s = kvm_state;
365 long mmap_size;
366 struct KVMParkedVcpu *vcpu = NULL;
367 int ret = 0;
369 DPRINTF("kvm_destroy_vcpu\n");
371 ret = kvm_arch_destroy_vcpu(cpu);
372 if (ret < 0) {
373 goto err;
376 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
377 if (mmap_size < 0) {
378 ret = mmap_size;
379 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
380 goto err;
383 ret = munmap(cpu->kvm_run, mmap_size);
384 if (ret < 0) {
385 goto err;
388 vcpu = g_malloc0(sizeof(*vcpu));
389 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
390 vcpu->kvm_fd = cpu->kvm_fd;
391 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
392 err:
393 return ret;
396 void kvm_destroy_vcpu(CPUState *cpu)
398 if (do_kvm_destroy_vcpu(cpu) < 0) {
399 error_report("kvm_destroy_vcpu failed");
400 exit(EXIT_FAILURE);
404 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
406 struct KVMParkedVcpu *cpu;
408 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
409 if (cpu->vcpu_id == vcpu_id) {
410 int kvm_fd;
412 QLIST_REMOVE(cpu, node);
413 kvm_fd = cpu->kvm_fd;
414 g_free(cpu);
415 return kvm_fd;
419 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
422 int kvm_init_vcpu(CPUState *cpu, Error **errp)
424 KVMState *s = kvm_state;
425 long mmap_size;
426 int ret;
428 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
430 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
431 if (ret < 0) {
432 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
433 kvm_arch_vcpu_id(cpu));
434 goto err;
437 cpu->kvm_fd = ret;
438 cpu->kvm_state = s;
439 cpu->vcpu_dirty = true;
441 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
442 if (mmap_size < 0) {
443 ret = mmap_size;
444 error_setg_errno(errp, -mmap_size,
445 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
446 goto err;
449 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
450 cpu->kvm_fd, 0);
451 if (cpu->kvm_run == MAP_FAILED) {
452 ret = -errno;
453 error_setg_errno(errp, ret,
454 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
455 kvm_arch_vcpu_id(cpu));
456 goto err;
459 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
460 s->coalesced_mmio_ring =
461 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
464 ret = kvm_arch_init_vcpu(cpu);
465 if (ret < 0) {
466 error_setg_errno(errp, -ret,
467 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
468 kvm_arch_vcpu_id(cpu));
470 err:
471 return ret;
475 * dirty pages logging control
478 static int kvm_mem_flags(MemoryRegion *mr)
480 bool readonly = mr->readonly || memory_region_is_romd(mr);
481 int flags = 0;
483 if (memory_region_get_dirty_log_mask(mr) != 0) {
484 flags |= KVM_MEM_LOG_DIRTY_PAGES;
486 if (readonly && kvm_readonly_mem_allowed) {
487 flags |= KVM_MEM_READONLY;
489 return flags;
492 /* Called with KVMMemoryListener.slots_lock held */
493 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
494 MemoryRegion *mr)
496 mem->flags = kvm_mem_flags(mr);
498 /* If nothing changed effectively, no need to issue ioctl */
499 if (mem->flags == mem->old_flags) {
500 return 0;
503 return kvm_set_user_memory_region(kml, mem, false);
506 static int kvm_section_update_flags(KVMMemoryListener *kml,
507 MemoryRegionSection *section)
509 hwaddr start_addr, size, slot_size;
510 KVMSlot *mem;
511 int ret = 0;
513 size = kvm_align_section(section, &start_addr);
514 if (!size) {
515 return 0;
518 kvm_slots_lock(kml);
520 while (size && !ret) {
521 slot_size = MIN(kvm_max_slot_size, size);
522 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
523 if (!mem) {
524 /* We don't have a slot if we want to trap every access. */
525 goto out;
528 ret = kvm_slot_update_flags(kml, mem, section->mr);
529 start_addr += slot_size;
530 size -= slot_size;
533 out:
534 kvm_slots_unlock(kml);
535 return ret;
538 static void kvm_log_start(MemoryListener *listener,
539 MemoryRegionSection *section,
540 int old, int new)
542 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
543 int r;
545 if (old != 0) {
546 return;
549 r = kvm_section_update_flags(kml, section);
550 if (r < 0) {
551 abort();
555 static void kvm_log_stop(MemoryListener *listener,
556 MemoryRegionSection *section,
557 int old, int new)
559 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
560 int r;
562 if (new != 0) {
563 return;
566 r = kvm_section_update_flags(kml, section);
567 if (r < 0) {
568 abort();
572 /* get kvm's dirty pages bitmap and update qemu's */
573 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
574 unsigned long *bitmap)
576 ram_addr_t start = section->offset_within_region +
577 memory_region_get_ram_addr(section->mr);
578 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
580 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
581 return 0;
584 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
586 /* Allocate the dirty bitmap for a slot */
587 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem)
590 * XXX bad kernel interface alert
591 * For dirty bitmap, kernel allocates array of size aligned to
592 * bits-per-long. But for case when the kernel is 64bits and
593 * the userspace is 32bits, userspace can't align to the same
594 * bits-per-long, since sizeof(long) is different between kernel
595 * and user space. This way, userspace will provide buffer which
596 * may be 4 bytes less than the kernel will use, resulting in
597 * userspace memory corruption (which is not detectable by valgrind
598 * too, in most cases).
599 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
600 * a hope that sizeof(long) won't become >8 any time soon.
602 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
603 * And mem->memory_size is aligned to it (otherwise this mem can't
604 * be registered to KVM).
606 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size,
607 /*HOST_LONG_BITS*/ 64) / 8;
608 mem->dirty_bmap = g_malloc0(bitmap_size);
612 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
614 * This function will first try to fetch dirty bitmap from the kernel,
615 * and then updates qemu's dirty bitmap.
617 * NOTE: caller must be with kml->slots_lock held.
619 * @kml: the KVM memory listener object
620 * @section: the memory section to sync the dirty bitmap with
622 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
623 MemoryRegionSection *section)
625 KVMState *s = kvm_state;
626 struct kvm_dirty_log d = {};
627 KVMSlot *mem;
628 hwaddr start_addr, size;
629 hwaddr slot_size, slot_offset = 0;
630 int ret = 0;
632 size = kvm_align_section(section, &start_addr);
633 while (size) {
634 MemoryRegionSection subsection = *section;
636 slot_size = MIN(kvm_max_slot_size, size);
637 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
638 if (!mem) {
639 /* We don't have a slot if we want to trap every access. */
640 goto out;
643 if (!mem->dirty_bmap) {
644 /* Allocate on the first log_sync, once and for all */
645 kvm_memslot_init_dirty_bitmap(mem);
648 d.dirty_bitmap = mem->dirty_bmap;
649 d.slot = mem->slot | (kml->as_id << 16);
650 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
651 if (ret == -ENOENT) {
652 /* kernel does not have dirty bitmap in this slot */
653 ret = 0;
654 } else if (ret < 0) {
655 error_report("ioctl KVM_GET_DIRTY_LOG failed: %d", errno);
656 goto out;
657 } else {
658 subsection.offset_within_region += slot_offset;
659 subsection.size = int128_make64(slot_size);
660 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
663 slot_offset += slot_size;
664 start_addr += slot_size;
665 size -= slot_size;
667 out:
668 return ret;
671 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
672 #define KVM_CLEAR_LOG_SHIFT 6
673 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
674 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
677 * As the granule of kvm dirty log is qemu_real_host_page_size,
678 * @start and @size are expected and restricted to align to it.
680 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
681 uint64_t size)
683 KVMState *s = kvm_state;
684 uint64_t end, bmap_start, start_delta, bmap_npages;
685 struct kvm_clear_dirty_log d;
686 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
687 int ret;
689 /* Make sure start and size are qemu_real_host_page_size aligned */
690 assert(QEMU_IS_ALIGNED(start | size, psize));
693 * We need to extend either the start or the size or both to
694 * satisfy the KVM interface requirement. Firstly, do the start
695 * page alignment on 64 host pages
697 bmap_start = start & KVM_CLEAR_LOG_MASK;
698 start_delta = start - bmap_start;
699 bmap_start /= psize;
702 * The kernel interface has restriction on the size too, that either:
704 * (1) the size is 64 host pages aligned (just like the start), or
705 * (2) the size fills up until the end of the KVM memslot.
707 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
708 << KVM_CLEAR_LOG_SHIFT;
709 end = mem->memory_size / psize;
710 if (bmap_npages > end - bmap_start) {
711 bmap_npages = end - bmap_start;
713 start_delta /= psize;
716 * Prepare the bitmap to clear dirty bits. Here we must guarantee
717 * that we won't clear any unknown dirty bits otherwise we might
718 * accidentally clear some set bits which are not yet synced from
719 * the kernel into QEMU's bitmap, then we'll lose track of the
720 * guest modifications upon those pages (which can directly lead
721 * to guest data loss or panic after migration).
723 * Layout of the KVMSlot.dirty_bmap:
725 * |<-------- bmap_npages -----------..>|
726 * [1]
727 * start_delta size
728 * |----------------|-------------|------------------|------------|
729 * ^ ^ ^ ^
730 * | | | |
731 * start bmap_start (start) end
732 * of memslot of memslot
734 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
737 assert(bmap_start % BITS_PER_LONG == 0);
738 /* We should never do log_clear before log_sync */
739 assert(mem->dirty_bmap);
740 if (start_delta || bmap_npages - size / psize) {
741 /* Slow path - we need to manipulate a temp bitmap */
742 bmap_clear = bitmap_new(bmap_npages);
743 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
744 bmap_start, start_delta + size / psize);
746 * We need to fill the holes at start because that was not
747 * specified by the caller and we extended the bitmap only for
748 * 64 pages alignment
750 bitmap_clear(bmap_clear, 0, start_delta);
751 d.dirty_bitmap = bmap_clear;
752 } else {
754 * Fast path - both start and size align well with BITS_PER_LONG
755 * (or the end of memory slot)
757 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
760 d.first_page = bmap_start;
761 /* It should never overflow. If it happens, say something */
762 assert(bmap_npages <= UINT32_MAX);
763 d.num_pages = bmap_npages;
764 d.slot = mem->slot | (as_id << 16);
766 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
767 if (ret < 0 && ret != -ENOENT) {
768 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
769 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
770 __func__, d.slot, (uint64_t)d.first_page,
771 (uint32_t)d.num_pages, ret);
772 } else {
773 ret = 0;
774 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
778 * After we have updated the remote dirty bitmap, we update the
779 * cached bitmap as well for the memslot, then if another user
780 * clears the same region we know we shouldn't clear it again on
781 * the remote otherwise it's data loss as well.
783 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
784 size / psize);
785 /* This handles the NULL case well */
786 g_free(bmap_clear);
787 return ret;
792 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
794 * NOTE: this will be a no-op if we haven't enabled manual dirty log
795 * protection in the host kernel because in that case this operation
796 * will be done within log_sync().
798 * @kml: the kvm memory listener
799 * @section: the memory range to clear dirty bitmap
801 static int kvm_physical_log_clear(KVMMemoryListener *kml,
802 MemoryRegionSection *section)
804 KVMState *s = kvm_state;
805 uint64_t start, size, offset, count;
806 KVMSlot *mem;
807 int ret = 0, i;
809 if (!s->manual_dirty_log_protect) {
810 /* No need to do explicit clear */
811 return ret;
814 start = section->offset_within_address_space;
815 size = int128_get64(section->size);
817 if (!size) {
818 /* Nothing more we can do... */
819 return ret;
822 kvm_slots_lock(kml);
824 for (i = 0; i < s->nr_slots; i++) {
825 mem = &kml->slots[i];
826 /* Discard slots that are empty or do not overlap the section */
827 if (!mem->memory_size ||
828 mem->start_addr > start + size - 1 ||
829 start > mem->start_addr + mem->memory_size - 1) {
830 continue;
833 if (start >= mem->start_addr) {
834 /* The slot starts before section or is aligned to it. */
835 offset = start - mem->start_addr;
836 count = MIN(mem->memory_size - offset, size);
837 } else {
838 /* The slot starts after section. */
839 offset = 0;
840 count = MIN(mem->memory_size, size - (mem->start_addr - start));
842 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
843 if (ret < 0) {
844 break;
848 kvm_slots_unlock(kml);
850 return ret;
853 static void kvm_coalesce_mmio_region(MemoryListener *listener,
854 MemoryRegionSection *secion,
855 hwaddr start, hwaddr size)
857 KVMState *s = kvm_state;
859 if (s->coalesced_mmio) {
860 struct kvm_coalesced_mmio_zone zone;
862 zone.addr = start;
863 zone.size = size;
864 zone.pad = 0;
866 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
870 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
871 MemoryRegionSection *secion,
872 hwaddr start, hwaddr size)
874 KVMState *s = kvm_state;
876 if (s->coalesced_mmio) {
877 struct kvm_coalesced_mmio_zone zone;
879 zone.addr = start;
880 zone.size = size;
881 zone.pad = 0;
883 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
887 static void kvm_coalesce_pio_add(MemoryListener *listener,
888 MemoryRegionSection *section,
889 hwaddr start, hwaddr size)
891 KVMState *s = kvm_state;
893 if (s->coalesced_pio) {
894 struct kvm_coalesced_mmio_zone zone;
896 zone.addr = start;
897 zone.size = size;
898 zone.pio = 1;
900 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
904 static void kvm_coalesce_pio_del(MemoryListener *listener,
905 MemoryRegionSection *section,
906 hwaddr start, hwaddr size)
908 KVMState *s = kvm_state;
910 if (s->coalesced_pio) {
911 struct kvm_coalesced_mmio_zone zone;
913 zone.addr = start;
914 zone.size = size;
915 zone.pio = 1;
917 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
921 static MemoryListener kvm_coalesced_pio_listener = {
922 .coalesced_io_add = kvm_coalesce_pio_add,
923 .coalesced_io_del = kvm_coalesce_pio_del,
926 int kvm_check_extension(KVMState *s, unsigned int extension)
928 int ret;
930 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
931 if (ret < 0) {
932 ret = 0;
935 return ret;
938 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
940 int ret;
942 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
943 if (ret < 0) {
944 /* VM wide version not implemented, use global one instead */
945 ret = kvm_check_extension(s, extension);
948 return ret;
951 typedef struct HWPoisonPage {
952 ram_addr_t ram_addr;
953 QLIST_ENTRY(HWPoisonPage) list;
954 } HWPoisonPage;
956 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
957 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
959 static void kvm_unpoison_all(void *param)
961 HWPoisonPage *page, *next_page;
963 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
964 QLIST_REMOVE(page, list);
965 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
966 g_free(page);
970 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
972 HWPoisonPage *page;
974 QLIST_FOREACH(page, &hwpoison_page_list, list) {
975 if (page->ram_addr == ram_addr) {
976 return;
979 page = g_new(HWPoisonPage, 1);
980 page->ram_addr = ram_addr;
981 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
984 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
986 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
987 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
988 * endianness, but the memory core hands them in target endianness.
989 * For example, PPC is always treated as big-endian even if running
990 * on KVM and on PPC64LE. Correct here.
992 switch (size) {
993 case 2:
994 val = bswap16(val);
995 break;
996 case 4:
997 val = bswap32(val);
998 break;
1000 #endif
1001 return val;
1004 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1005 bool assign, uint32_t size, bool datamatch)
1007 int ret;
1008 struct kvm_ioeventfd iofd = {
1009 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1010 .addr = addr,
1011 .len = size,
1012 .flags = 0,
1013 .fd = fd,
1016 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1017 datamatch);
1018 if (!kvm_enabled()) {
1019 return -ENOSYS;
1022 if (datamatch) {
1023 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1025 if (!assign) {
1026 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1029 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1031 if (ret < 0) {
1032 return -errno;
1035 return 0;
1038 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1039 bool assign, uint32_t size, bool datamatch)
1041 struct kvm_ioeventfd kick = {
1042 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1043 .addr = addr,
1044 .flags = KVM_IOEVENTFD_FLAG_PIO,
1045 .len = size,
1046 .fd = fd,
1048 int r;
1049 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1050 if (!kvm_enabled()) {
1051 return -ENOSYS;
1053 if (datamatch) {
1054 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1056 if (!assign) {
1057 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1059 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1060 if (r < 0) {
1061 return r;
1063 return 0;
1067 static int kvm_check_many_ioeventfds(void)
1069 /* Userspace can use ioeventfd for io notification. This requires a host
1070 * that supports eventfd(2) and an I/O thread; since eventfd does not
1071 * support SIGIO it cannot interrupt the vcpu.
1073 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1074 * can avoid creating too many ioeventfds.
1076 #if defined(CONFIG_EVENTFD)
1077 int ioeventfds[7];
1078 int i, ret = 0;
1079 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1080 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1081 if (ioeventfds[i] < 0) {
1082 break;
1084 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1085 if (ret < 0) {
1086 close(ioeventfds[i]);
1087 break;
1091 /* Decide whether many devices are supported or not */
1092 ret = i == ARRAY_SIZE(ioeventfds);
1094 while (i-- > 0) {
1095 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1096 close(ioeventfds[i]);
1098 return ret;
1099 #else
1100 return 0;
1101 #endif
1104 static const KVMCapabilityInfo *
1105 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1107 while (list->name) {
1108 if (!kvm_check_extension(s, list->value)) {
1109 return list;
1111 list++;
1113 return NULL;
1116 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1118 g_assert(
1119 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1121 kvm_max_slot_size = max_slot_size;
1124 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1125 MemoryRegionSection *section, bool add)
1127 KVMSlot *mem;
1128 int err;
1129 MemoryRegion *mr = section->mr;
1130 bool writeable = !mr->readonly && !mr->rom_device;
1131 hwaddr start_addr, size, slot_size;
1132 void *ram;
1134 if (!memory_region_is_ram(mr)) {
1135 if (writeable || !kvm_readonly_mem_allowed) {
1136 return;
1137 } else if (!mr->romd_mode) {
1138 /* If the memory device is not in romd_mode, then we actually want
1139 * to remove the kvm memory slot so all accesses will trap. */
1140 add = false;
1144 size = kvm_align_section(section, &start_addr);
1145 if (!size) {
1146 return;
1149 /* use aligned delta to align the ram address */
1150 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1151 (start_addr - section->offset_within_address_space);
1153 kvm_slots_lock(kml);
1155 if (!add) {
1156 do {
1157 slot_size = MIN(kvm_max_slot_size, size);
1158 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1159 if (!mem) {
1160 goto out;
1162 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1163 kvm_physical_sync_dirty_bitmap(kml, section);
1166 /* unregister the slot */
1167 g_free(mem->dirty_bmap);
1168 mem->dirty_bmap = NULL;
1169 mem->memory_size = 0;
1170 mem->flags = 0;
1171 err = kvm_set_user_memory_region(kml, mem, false);
1172 if (err) {
1173 fprintf(stderr, "%s: error unregistering slot: %s\n",
1174 __func__, strerror(-err));
1175 abort();
1177 start_addr += slot_size;
1178 size -= slot_size;
1179 } while (size);
1180 goto out;
1183 /* register the new slot */
1184 do {
1185 slot_size = MIN(kvm_max_slot_size, size);
1186 mem = kvm_alloc_slot(kml);
1187 mem->memory_size = slot_size;
1188 mem->start_addr = start_addr;
1189 mem->ram = ram;
1190 mem->flags = kvm_mem_flags(mr);
1192 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1194 * Reallocate the bmap; it means it doesn't disappear in
1195 * middle of a migrate.
1197 kvm_memslot_init_dirty_bitmap(mem);
1199 err = kvm_set_user_memory_region(kml, mem, true);
1200 if (err) {
1201 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1202 strerror(-err));
1203 abort();
1205 start_addr += slot_size;
1206 ram += slot_size;
1207 size -= slot_size;
1208 } while (size);
1210 out:
1211 kvm_slots_unlock(kml);
1214 static void kvm_region_add(MemoryListener *listener,
1215 MemoryRegionSection *section)
1217 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1219 memory_region_ref(section->mr);
1220 kvm_set_phys_mem(kml, section, true);
1223 static void kvm_region_del(MemoryListener *listener,
1224 MemoryRegionSection *section)
1226 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1228 kvm_set_phys_mem(kml, section, false);
1229 memory_region_unref(section->mr);
1232 static void kvm_log_sync(MemoryListener *listener,
1233 MemoryRegionSection *section)
1235 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1236 int r;
1238 kvm_slots_lock(kml);
1239 r = kvm_physical_sync_dirty_bitmap(kml, section);
1240 kvm_slots_unlock(kml);
1241 if (r < 0) {
1242 abort();
1246 static void kvm_log_clear(MemoryListener *listener,
1247 MemoryRegionSection *section)
1249 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1250 int r;
1252 r = kvm_physical_log_clear(kml, section);
1253 if (r < 0) {
1254 error_report_once("%s: kvm log clear failed: mr=%s "
1255 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1256 section->mr->name, section->offset_within_region,
1257 int128_get64(section->size));
1258 abort();
1262 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1263 MemoryRegionSection *section,
1264 bool match_data, uint64_t data,
1265 EventNotifier *e)
1267 int fd = event_notifier_get_fd(e);
1268 int r;
1270 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1271 data, true, int128_get64(section->size),
1272 match_data);
1273 if (r < 0) {
1274 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1275 __func__, strerror(-r), -r);
1276 abort();
1280 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1281 MemoryRegionSection *section,
1282 bool match_data, uint64_t data,
1283 EventNotifier *e)
1285 int fd = event_notifier_get_fd(e);
1286 int r;
1288 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1289 data, false, int128_get64(section->size),
1290 match_data);
1291 if (r < 0) {
1292 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1293 __func__, strerror(-r), -r);
1294 abort();
1298 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1299 MemoryRegionSection *section,
1300 bool match_data, uint64_t data,
1301 EventNotifier *e)
1303 int fd = event_notifier_get_fd(e);
1304 int r;
1306 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1307 data, true, int128_get64(section->size),
1308 match_data);
1309 if (r < 0) {
1310 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1311 __func__, strerror(-r), -r);
1312 abort();
1316 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1317 MemoryRegionSection *section,
1318 bool match_data, uint64_t data,
1319 EventNotifier *e)
1322 int fd = event_notifier_get_fd(e);
1323 int r;
1325 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1326 data, false, int128_get64(section->size),
1327 match_data);
1328 if (r < 0) {
1329 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1330 __func__, strerror(-r), -r);
1331 abort();
1335 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1336 AddressSpace *as, int as_id)
1338 int i;
1340 qemu_mutex_init(&kml->slots_lock);
1341 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1342 kml->as_id = as_id;
1344 for (i = 0; i < s->nr_slots; i++) {
1345 kml->slots[i].slot = i;
1348 kml->listener.region_add = kvm_region_add;
1349 kml->listener.region_del = kvm_region_del;
1350 kml->listener.log_start = kvm_log_start;
1351 kml->listener.log_stop = kvm_log_stop;
1352 kml->listener.log_sync = kvm_log_sync;
1353 kml->listener.log_clear = kvm_log_clear;
1354 kml->listener.priority = 10;
1356 memory_listener_register(&kml->listener, as);
1358 for (i = 0; i < s->nr_as; ++i) {
1359 if (!s->as[i].as) {
1360 s->as[i].as = as;
1361 s->as[i].ml = kml;
1362 break;
1367 static MemoryListener kvm_io_listener = {
1368 .eventfd_add = kvm_io_ioeventfd_add,
1369 .eventfd_del = kvm_io_ioeventfd_del,
1370 .priority = 10,
1373 int kvm_set_irq(KVMState *s, int irq, int level)
1375 struct kvm_irq_level event;
1376 int ret;
1378 assert(kvm_async_interrupts_enabled());
1380 event.level = level;
1381 event.irq = irq;
1382 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1383 if (ret < 0) {
1384 perror("kvm_set_irq");
1385 abort();
1388 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1391 #ifdef KVM_CAP_IRQ_ROUTING
1392 typedef struct KVMMSIRoute {
1393 struct kvm_irq_routing_entry kroute;
1394 QTAILQ_ENTRY(KVMMSIRoute) entry;
1395 } KVMMSIRoute;
1397 static void set_gsi(KVMState *s, unsigned int gsi)
1399 set_bit(gsi, s->used_gsi_bitmap);
1402 static void clear_gsi(KVMState *s, unsigned int gsi)
1404 clear_bit(gsi, s->used_gsi_bitmap);
1407 void kvm_init_irq_routing(KVMState *s)
1409 int gsi_count, i;
1411 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1412 if (gsi_count > 0) {
1413 /* Round up so we can search ints using ffs */
1414 s->used_gsi_bitmap = bitmap_new(gsi_count);
1415 s->gsi_count = gsi_count;
1418 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1419 s->nr_allocated_irq_routes = 0;
1421 if (!kvm_direct_msi_allowed) {
1422 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1423 QTAILQ_INIT(&s->msi_hashtab[i]);
1427 kvm_arch_init_irq_routing(s);
1430 void kvm_irqchip_commit_routes(KVMState *s)
1432 int ret;
1434 if (kvm_gsi_direct_mapping()) {
1435 return;
1438 if (!kvm_gsi_routing_enabled()) {
1439 return;
1442 s->irq_routes->flags = 0;
1443 trace_kvm_irqchip_commit_routes();
1444 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1445 assert(ret == 0);
1448 static void kvm_add_routing_entry(KVMState *s,
1449 struct kvm_irq_routing_entry *entry)
1451 struct kvm_irq_routing_entry *new;
1452 int n, size;
1454 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1455 n = s->nr_allocated_irq_routes * 2;
1456 if (n < 64) {
1457 n = 64;
1459 size = sizeof(struct kvm_irq_routing);
1460 size += n * sizeof(*new);
1461 s->irq_routes = g_realloc(s->irq_routes, size);
1462 s->nr_allocated_irq_routes = n;
1464 n = s->irq_routes->nr++;
1465 new = &s->irq_routes->entries[n];
1467 *new = *entry;
1469 set_gsi(s, entry->gsi);
1472 static int kvm_update_routing_entry(KVMState *s,
1473 struct kvm_irq_routing_entry *new_entry)
1475 struct kvm_irq_routing_entry *entry;
1476 int n;
1478 for (n = 0; n < s->irq_routes->nr; n++) {
1479 entry = &s->irq_routes->entries[n];
1480 if (entry->gsi != new_entry->gsi) {
1481 continue;
1484 if(!memcmp(entry, new_entry, sizeof *entry)) {
1485 return 0;
1488 *entry = *new_entry;
1490 return 0;
1493 return -ESRCH;
1496 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1498 struct kvm_irq_routing_entry e = {};
1500 assert(pin < s->gsi_count);
1502 e.gsi = irq;
1503 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1504 e.flags = 0;
1505 e.u.irqchip.irqchip = irqchip;
1506 e.u.irqchip.pin = pin;
1507 kvm_add_routing_entry(s, &e);
1510 void kvm_irqchip_release_virq(KVMState *s, int virq)
1512 struct kvm_irq_routing_entry *e;
1513 int i;
1515 if (kvm_gsi_direct_mapping()) {
1516 return;
1519 for (i = 0; i < s->irq_routes->nr; i++) {
1520 e = &s->irq_routes->entries[i];
1521 if (e->gsi == virq) {
1522 s->irq_routes->nr--;
1523 *e = s->irq_routes->entries[s->irq_routes->nr];
1526 clear_gsi(s, virq);
1527 kvm_arch_release_virq_post(virq);
1528 trace_kvm_irqchip_release_virq(virq);
1531 void kvm_irqchip_add_change_notifier(Notifier *n)
1533 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1536 void kvm_irqchip_remove_change_notifier(Notifier *n)
1538 notifier_remove(n);
1541 void kvm_irqchip_change_notify(void)
1543 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1546 static unsigned int kvm_hash_msi(uint32_t data)
1548 /* This is optimized for IA32 MSI layout. However, no other arch shall
1549 * repeat the mistake of not providing a direct MSI injection API. */
1550 return data & 0xff;
1553 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1555 KVMMSIRoute *route, *next;
1556 unsigned int hash;
1558 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1559 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1560 kvm_irqchip_release_virq(s, route->kroute.gsi);
1561 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1562 g_free(route);
1567 static int kvm_irqchip_get_virq(KVMState *s)
1569 int next_virq;
1572 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1573 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1574 * number can succeed even though a new route entry cannot be added.
1575 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1577 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1578 kvm_flush_dynamic_msi_routes(s);
1581 /* Return the lowest unused GSI in the bitmap */
1582 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1583 if (next_virq >= s->gsi_count) {
1584 return -ENOSPC;
1585 } else {
1586 return next_virq;
1590 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1592 unsigned int hash = kvm_hash_msi(msg.data);
1593 KVMMSIRoute *route;
1595 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1596 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1597 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1598 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1599 return route;
1602 return NULL;
1605 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1607 struct kvm_msi msi;
1608 KVMMSIRoute *route;
1610 if (kvm_direct_msi_allowed) {
1611 msi.address_lo = (uint32_t)msg.address;
1612 msi.address_hi = msg.address >> 32;
1613 msi.data = le32_to_cpu(msg.data);
1614 msi.flags = 0;
1615 memset(msi.pad, 0, sizeof(msi.pad));
1617 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1620 route = kvm_lookup_msi_route(s, msg);
1621 if (!route) {
1622 int virq;
1624 virq = kvm_irqchip_get_virq(s);
1625 if (virq < 0) {
1626 return virq;
1629 route = g_malloc0(sizeof(KVMMSIRoute));
1630 route->kroute.gsi = virq;
1631 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1632 route->kroute.flags = 0;
1633 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1634 route->kroute.u.msi.address_hi = msg.address >> 32;
1635 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1637 kvm_add_routing_entry(s, &route->kroute);
1638 kvm_irqchip_commit_routes(s);
1640 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1641 entry);
1644 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1646 return kvm_set_irq(s, route->kroute.gsi, 1);
1649 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1651 struct kvm_irq_routing_entry kroute = {};
1652 int virq;
1653 MSIMessage msg = {0, 0};
1655 if (pci_available && dev) {
1656 msg = pci_get_msi_message(dev, vector);
1659 if (kvm_gsi_direct_mapping()) {
1660 return kvm_arch_msi_data_to_gsi(msg.data);
1663 if (!kvm_gsi_routing_enabled()) {
1664 return -ENOSYS;
1667 virq = kvm_irqchip_get_virq(s);
1668 if (virq < 0) {
1669 return virq;
1672 kroute.gsi = virq;
1673 kroute.type = KVM_IRQ_ROUTING_MSI;
1674 kroute.flags = 0;
1675 kroute.u.msi.address_lo = (uint32_t)msg.address;
1676 kroute.u.msi.address_hi = msg.address >> 32;
1677 kroute.u.msi.data = le32_to_cpu(msg.data);
1678 if (pci_available && kvm_msi_devid_required()) {
1679 kroute.flags = KVM_MSI_VALID_DEVID;
1680 kroute.u.msi.devid = pci_requester_id(dev);
1682 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1683 kvm_irqchip_release_virq(s, virq);
1684 return -EINVAL;
1687 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1688 vector, virq);
1690 kvm_add_routing_entry(s, &kroute);
1691 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1692 kvm_irqchip_commit_routes(s);
1694 return virq;
1697 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1698 PCIDevice *dev)
1700 struct kvm_irq_routing_entry kroute = {};
1702 if (kvm_gsi_direct_mapping()) {
1703 return 0;
1706 if (!kvm_irqchip_in_kernel()) {
1707 return -ENOSYS;
1710 kroute.gsi = virq;
1711 kroute.type = KVM_IRQ_ROUTING_MSI;
1712 kroute.flags = 0;
1713 kroute.u.msi.address_lo = (uint32_t)msg.address;
1714 kroute.u.msi.address_hi = msg.address >> 32;
1715 kroute.u.msi.data = le32_to_cpu(msg.data);
1716 if (pci_available && kvm_msi_devid_required()) {
1717 kroute.flags = KVM_MSI_VALID_DEVID;
1718 kroute.u.msi.devid = pci_requester_id(dev);
1720 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1721 return -EINVAL;
1724 trace_kvm_irqchip_update_msi_route(virq);
1726 return kvm_update_routing_entry(s, &kroute);
1729 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1730 EventNotifier *resample, int virq,
1731 bool assign)
1733 int fd = event_notifier_get_fd(event);
1734 int rfd = resample ? event_notifier_get_fd(resample) : -1;
1736 struct kvm_irqfd irqfd = {
1737 .fd = fd,
1738 .gsi = virq,
1739 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1742 if (rfd != -1) {
1743 assert(assign);
1744 if (kvm_irqchip_is_split()) {
1746 * When the slow irqchip (e.g. IOAPIC) is in the
1747 * userspace, KVM kernel resamplefd will not work because
1748 * the EOI of the interrupt will be delivered to userspace
1749 * instead, so the KVM kernel resamplefd kick will be
1750 * skipped. The userspace here mimics what the kernel
1751 * provides with resamplefd, remember the resamplefd and
1752 * kick it when we receive EOI of this IRQ.
1754 * This is hackery because IOAPIC is mostly bypassed
1755 * (except EOI broadcasts) when irqfd is used. However
1756 * this can bring much performance back for split irqchip
1757 * with INTx IRQs (for VFIO, this gives 93% perf of the
1758 * full fast path, which is 46% perf boost comparing to
1759 * the INTx slow path).
1761 kvm_resample_fd_insert(virq, resample);
1762 } else {
1763 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1764 irqfd.resamplefd = rfd;
1766 } else if (!assign) {
1767 if (kvm_irqchip_is_split()) {
1768 kvm_resample_fd_remove(virq);
1772 if (!kvm_irqfds_enabled()) {
1773 return -ENOSYS;
1776 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1779 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1781 struct kvm_irq_routing_entry kroute = {};
1782 int virq;
1784 if (!kvm_gsi_routing_enabled()) {
1785 return -ENOSYS;
1788 virq = kvm_irqchip_get_virq(s);
1789 if (virq < 0) {
1790 return virq;
1793 kroute.gsi = virq;
1794 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1795 kroute.flags = 0;
1796 kroute.u.adapter.summary_addr = adapter->summary_addr;
1797 kroute.u.adapter.ind_addr = adapter->ind_addr;
1798 kroute.u.adapter.summary_offset = adapter->summary_offset;
1799 kroute.u.adapter.ind_offset = adapter->ind_offset;
1800 kroute.u.adapter.adapter_id = adapter->adapter_id;
1802 kvm_add_routing_entry(s, &kroute);
1804 return virq;
1807 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1809 struct kvm_irq_routing_entry kroute = {};
1810 int virq;
1812 if (!kvm_gsi_routing_enabled()) {
1813 return -ENOSYS;
1815 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1816 return -ENOSYS;
1818 virq = kvm_irqchip_get_virq(s);
1819 if (virq < 0) {
1820 return virq;
1823 kroute.gsi = virq;
1824 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1825 kroute.flags = 0;
1826 kroute.u.hv_sint.vcpu = vcpu;
1827 kroute.u.hv_sint.sint = sint;
1829 kvm_add_routing_entry(s, &kroute);
1830 kvm_irqchip_commit_routes(s);
1832 return virq;
1835 #else /* !KVM_CAP_IRQ_ROUTING */
1837 void kvm_init_irq_routing(KVMState *s)
1841 void kvm_irqchip_release_virq(KVMState *s, int virq)
1845 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1847 abort();
1850 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1852 return -ENOSYS;
1855 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1857 return -ENOSYS;
1860 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1862 return -ENOSYS;
1865 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1866 EventNotifier *resample, int virq,
1867 bool assign)
1869 abort();
1872 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1874 return -ENOSYS;
1876 #endif /* !KVM_CAP_IRQ_ROUTING */
1878 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1879 EventNotifier *rn, int virq)
1881 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
1884 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1885 int virq)
1887 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
1890 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1891 EventNotifier *rn, qemu_irq irq)
1893 gpointer key, gsi;
1894 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1896 if (!found) {
1897 return -ENXIO;
1899 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1902 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1903 qemu_irq irq)
1905 gpointer key, gsi;
1906 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1908 if (!found) {
1909 return -ENXIO;
1911 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1914 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1916 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1919 static void kvm_irqchip_create(KVMState *s)
1921 int ret;
1923 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
1924 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1926 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1927 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1928 if (ret < 0) {
1929 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1930 exit(1);
1932 } else {
1933 return;
1936 /* First probe and see if there's a arch-specific hook to create the
1937 * in-kernel irqchip for us */
1938 ret = kvm_arch_irqchip_create(s);
1939 if (ret == 0) {
1940 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
1941 perror("Split IRQ chip mode not supported.");
1942 exit(1);
1943 } else {
1944 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1947 if (ret < 0) {
1948 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1949 exit(1);
1952 kvm_kernel_irqchip = true;
1953 /* If we have an in-kernel IRQ chip then we must have asynchronous
1954 * interrupt delivery (though the reverse is not necessarily true)
1956 kvm_async_interrupts_allowed = true;
1957 kvm_halt_in_kernel_allowed = true;
1959 kvm_init_irq_routing(s);
1961 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1964 /* Find number of supported CPUs using the recommended
1965 * procedure from the kernel API documentation to cope with
1966 * older kernels that may be missing capabilities.
1968 static int kvm_recommended_vcpus(KVMState *s)
1970 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1971 return (ret) ? ret : 4;
1974 static int kvm_max_vcpus(KVMState *s)
1976 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1977 return (ret) ? ret : kvm_recommended_vcpus(s);
1980 static int kvm_max_vcpu_id(KVMState *s)
1982 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1983 return (ret) ? ret : kvm_max_vcpus(s);
1986 bool kvm_vcpu_id_is_valid(int vcpu_id)
1988 KVMState *s = KVM_STATE(current_accel());
1989 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1992 static int kvm_init(MachineState *ms)
1994 MachineClass *mc = MACHINE_GET_CLASS(ms);
1995 static const char upgrade_note[] =
1996 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1997 "(see http://sourceforge.net/projects/kvm).\n";
1998 struct {
1999 const char *name;
2000 int num;
2001 } num_cpus[] = {
2002 { "SMP", ms->smp.cpus },
2003 { "hotpluggable", ms->smp.max_cpus },
2004 { NULL, }
2005 }, *nc = num_cpus;
2006 int soft_vcpus_limit, hard_vcpus_limit;
2007 KVMState *s;
2008 const KVMCapabilityInfo *missing_cap;
2009 int ret;
2010 int type = 0;
2011 uint64_t dirty_log_manual_caps;
2013 s = KVM_STATE(ms->accelerator);
2016 * On systems where the kernel can support different base page
2017 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2018 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2019 * page size for the system though.
2021 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2023 s->sigmask_len = 8;
2025 #ifdef KVM_CAP_SET_GUEST_DEBUG
2026 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2027 #endif
2028 QLIST_INIT(&s->kvm_parked_vcpus);
2029 s->vmfd = -1;
2030 s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2031 if (s->fd == -1) {
2032 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2033 ret = -errno;
2034 goto err;
2037 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2038 if (ret < KVM_API_VERSION) {
2039 if (ret >= 0) {
2040 ret = -EINVAL;
2042 fprintf(stderr, "kvm version too old\n");
2043 goto err;
2046 if (ret > KVM_API_VERSION) {
2047 ret = -EINVAL;
2048 fprintf(stderr, "kvm version not supported\n");
2049 goto err;
2052 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2053 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2055 /* If unspecified, use the default value */
2056 if (!s->nr_slots) {
2057 s->nr_slots = 32;
2060 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2061 if (s->nr_as <= 1) {
2062 s->nr_as = 1;
2064 s->as = g_new0(struct KVMAs, s->nr_as);
2066 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2067 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2068 "kvm-type",
2069 &error_abort);
2070 type = mc->kvm_type(ms, kvm_type);
2071 } else if (mc->kvm_type) {
2072 type = mc->kvm_type(ms, NULL);
2075 do {
2076 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2077 } while (ret == -EINTR);
2079 if (ret < 0) {
2080 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2081 strerror(-ret));
2083 #ifdef TARGET_S390X
2084 if (ret == -EINVAL) {
2085 fprintf(stderr,
2086 "Host kernel setup problem detected. Please verify:\n");
2087 fprintf(stderr, "- for kernels supporting the switch_amode or"
2088 " user_mode parameters, whether\n");
2089 fprintf(stderr,
2090 " user space is running in primary address space\n");
2091 fprintf(stderr,
2092 "- for kernels supporting the vm.allocate_pgste sysctl, "
2093 "whether it is enabled\n");
2095 #endif
2096 goto err;
2099 s->vmfd = ret;
2101 /* check the vcpu limits */
2102 soft_vcpus_limit = kvm_recommended_vcpus(s);
2103 hard_vcpus_limit = kvm_max_vcpus(s);
2105 while (nc->name) {
2106 if (nc->num > soft_vcpus_limit) {
2107 warn_report("Number of %s cpus requested (%d) exceeds "
2108 "the recommended cpus supported by KVM (%d)",
2109 nc->name, nc->num, soft_vcpus_limit);
2111 if (nc->num > hard_vcpus_limit) {
2112 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2113 "the maximum cpus supported by KVM (%d)\n",
2114 nc->name, nc->num, hard_vcpus_limit);
2115 exit(1);
2118 nc++;
2121 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2122 if (!missing_cap) {
2123 missing_cap =
2124 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2126 if (missing_cap) {
2127 ret = -EINVAL;
2128 fprintf(stderr, "kvm does not support %s\n%s",
2129 missing_cap->name, upgrade_note);
2130 goto err;
2133 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2134 s->coalesced_pio = s->coalesced_mmio &&
2135 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2137 dirty_log_manual_caps =
2138 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2139 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2140 KVM_DIRTY_LOG_INITIALLY_SET);
2141 s->manual_dirty_log_protect = dirty_log_manual_caps;
2142 if (dirty_log_manual_caps) {
2143 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2144 dirty_log_manual_caps);
2145 if (ret) {
2146 warn_report("Trying to enable capability %"PRIu64" of "
2147 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2148 "Falling back to the legacy mode. ",
2149 dirty_log_manual_caps);
2150 s->manual_dirty_log_protect = 0;
2154 #ifdef KVM_CAP_VCPU_EVENTS
2155 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2156 #endif
2158 s->robust_singlestep =
2159 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2161 #ifdef KVM_CAP_DEBUGREGS
2162 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2163 #endif
2165 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2167 #ifdef KVM_CAP_IRQ_ROUTING
2168 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2169 #endif
2171 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2173 s->irq_set_ioctl = KVM_IRQ_LINE;
2174 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2175 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2178 kvm_readonly_mem_allowed =
2179 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2181 kvm_eventfds_allowed =
2182 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2184 kvm_irqfds_allowed =
2185 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2187 kvm_resamplefds_allowed =
2188 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2190 kvm_vm_attributes_allowed =
2191 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2193 kvm_ioeventfd_any_length_allowed =
2194 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2196 kvm_state = s;
2198 ret = kvm_arch_init(ms, s);
2199 if (ret < 0) {
2200 goto err;
2203 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2204 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2207 qemu_register_reset(kvm_unpoison_all, NULL);
2209 if (s->kernel_irqchip_allowed) {
2210 kvm_irqchip_create(s);
2213 if (kvm_eventfds_allowed) {
2214 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2215 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2217 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2218 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2220 kvm_memory_listener_register(s, &s->memory_listener,
2221 &address_space_memory, 0);
2222 if (kvm_eventfds_allowed) {
2223 memory_listener_register(&kvm_io_listener,
2224 &address_space_io);
2226 memory_listener_register(&kvm_coalesced_pio_listener,
2227 &address_space_io);
2229 s->many_ioeventfds = kvm_check_many_ioeventfds();
2231 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2232 if (!s->sync_mmu) {
2233 ret = ram_block_discard_disable(true);
2234 assert(!ret);
2236 return 0;
2238 err:
2239 assert(ret < 0);
2240 if (s->vmfd >= 0) {
2241 close(s->vmfd);
2243 if (s->fd != -1) {
2244 close(s->fd);
2246 g_free(s->memory_listener.slots);
2248 return ret;
2251 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2253 s->sigmask_len = sigmask_len;
2256 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2257 int size, uint32_t count)
2259 int i;
2260 uint8_t *ptr = data;
2262 for (i = 0; i < count; i++) {
2263 address_space_rw(&address_space_io, port, attrs,
2264 ptr, size,
2265 direction == KVM_EXIT_IO_OUT);
2266 ptr += size;
2270 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2272 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2273 run->internal.suberror);
2275 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2276 int i;
2278 for (i = 0; i < run->internal.ndata; ++i) {
2279 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2280 i, (uint64_t)run->internal.data[i]);
2283 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2284 fprintf(stderr, "emulation failure\n");
2285 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2286 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2287 return EXCP_INTERRUPT;
2290 /* FIXME: Should trigger a qmp message to let management know
2291 * something went wrong.
2293 return -1;
2296 void kvm_flush_coalesced_mmio_buffer(void)
2298 KVMState *s = kvm_state;
2300 if (s->coalesced_flush_in_progress) {
2301 return;
2304 s->coalesced_flush_in_progress = true;
2306 if (s->coalesced_mmio_ring) {
2307 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2308 while (ring->first != ring->last) {
2309 struct kvm_coalesced_mmio *ent;
2311 ent = &ring->coalesced_mmio[ring->first];
2313 if (ent->pio == 1) {
2314 address_space_write(&address_space_io, ent->phys_addr,
2315 MEMTXATTRS_UNSPECIFIED, ent->data,
2316 ent->len);
2317 } else {
2318 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2320 smp_wmb();
2321 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2325 s->coalesced_flush_in_progress = false;
2328 bool kvm_cpu_check_are_resettable(void)
2330 return kvm_arch_cpu_check_are_resettable();
2333 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2335 if (!cpu->vcpu_dirty) {
2336 kvm_arch_get_registers(cpu);
2337 cpu->vcpu_dirty = true;
2341 void kvm_cpu_synchronize_state(CPUState *cpu)
2343 if (!cpu->vcpu_dirty) {
2344 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2348 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2350 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2351 cpu->vcpu_dirty = false;
2354 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2356 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2359 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2361 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2362 cpu->vcpu_dirty = false;
2365 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2367 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2370 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2372 cpu->vcpu_dirty = true;
2375 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2377 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2380 #ifdef KVM_HAVE_MCE_INJECTION
2381 static __thread void *pending_sigbus_addr;
2382 static __thread int pending_sigbus_code;
2383 static __thread bool have_sigbus_pending;
2384 #endif
2386 static void kvm_cpu_kick(CPUState *cpu)
2388 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2391 static void kvm_cpu_kick_self(void)
2393 if (kvm_immediate_exit) {
2394 kvm_cpu_kick(current_cpu);
2395 } else {
2396 qemu_cpu_kick_self();
2400 static void kvm_eat_signals(CPUState *cpu)
2402 struct timespec ts = { 0, 0 };
2403 siginfo_t siginfo;
2404 sigset_t waitset;
2405 sigset_t chkset;
2406 int r;
2408 if (kvm_immediate_exit) {
2409 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2410 /* Write kvm_run->immediate_exit before the cpu->exit_request
2411 * write in kvm_cpu_exec.
2413 smp_wmb();
2414 return;
2417 sigemptyset(&waitset);
2418 sigaddset(&waitset, SIG_IPI);
2420 do {
2421 r = sigtimedwait(&waitset, &siginfo, &ts);
2422 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2423 perror("sigtimedwait");
2424 exit(1);
2427 r = sigpending(&chkset);
2428 if (r == -1) {
2429 perror("sigpending");
2430 exit(1);
2432 } while (sigismember(&chkset, SIG_IPI));
2435 int kvm_cpu_exec(CPUState *cpu)
2437 struct kvm_run *run = cpu->kvm_run;
2438 int ret, run_ret;
2440 DPRINTF("kvm_cpu_exec()\n");
2442 if (kvm_arch_process_async_events(cpu)) {
2443 qatomic_set(&cpu->exit_request, 0);
2444 return EXCP_HLT;
2447 qemu_mutex_unlock_iothread();
2448 cpu_exec_start(cpu);
2450 do {
2451 MemTxAttrs attrs;
2453 if (cpu->vcpu_dirty) {
2454 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2455 cpu->vcpu_dirty = false;
2458 kvm_arch_pre_run(cpu, run);
2459 if (qatomic_read(&cpu->exit_request)) {
2460 DPRINTF("interrupt exit requested\n");
2462 * KVM requires us to reenter the kernel after IO exits to complete
2463 * instruction emulation. This self-signal will ensure that we
2464 * leave ASAP again.
2466 kvm_cpu_kick_self();
2469 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2470 * Matching barrier in kvm_eat_signals.
2472 smp_rmb();
2474 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2476 attrs = kvm_arch_post_run(cpu, run);
2478 #ifdef KVM_HAVE_MCE_INJECTION
2479 if (unlikely(have_sigbus_pending)) {
2480 qemu_mutex_lock_iothread();
2481 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2482 pending_sigbus_addr);
2483 have_sigbus_pending = false;
2484 qemu_mutex_unlock_iothread();
2486 #endif
2488 if (run_ret < 0) {
2489 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2490 DPRINTF("io window exit\n");
2491 kvm_eat_signals(cpu);
2492 ret = EXCP_INTERRUPT;
2493 break;
2495 fprintf(stderr, "error: kvm run failed %s\n",
2496 strerror(-run_ret));
2497 #ifdef TARGET_PPC
2498 if (run_ret == -EBUSY) {
2499 fprintf(stderr,
2500 "This is probably because your SMT is enabled.\n"
2501 "VCPU can only run on primary threads with all "
2502 "secondary threads offline.\n");
2504 #endif
2505 ret = -1;
2506 break;
2509 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2510 switch (run->exit_reason) {
2511 case KVM_EXIT_IO:
2512 DPRINTF("handle_io\n");
2513 /* Called outside BQL */
2514 kvm_handle_io(run->io.port, attrs,
2515 (uint8_t *)run + run->io.data_offset,
2516 run->io.direction,
2517 run->io.size,
2518 run->io.count);
2519 ret = 0;
2520 break;
2521 case KVM_EXIT_MMIO:
2522 DPRINTF("handle_mmio\n");
2523 /* Called outside BQL */
2524 address_space_rw(&address_space_memory,
2525 run->mmio.phys_addr, attrs,
2526 run->mmio.data,
2527 run->mmio.len,
2528 run->mmio.is_write);
2529 ret = 0;
2530 break;
2531 case KVM_EXIT_IRQ_WINDOW_OPEN:
2532 DPRINTF("irq_window_open\n");
2533 ret = EXCP_INTERRUPT;
2534 break;
2535 case KVM_EXIT_SHUTDOWN:
2536 DPRINTF("shutdown\n");
2537 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2538 ret = EXCP_INTERRUPT;
2539 break;
2540 case KVM_EXIT_UNKNOWN:
2541 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2542 (uint64_t)run->hw.hardware_exit_reason);
2543 ret = -1;
2544 break;
2545 case KVM_EXIT_INTERNAL_ERROR:
2546 ret = kvm_handle_internal_error(cpu, run);
2547 break;
2548 case KVM_EXIT_SYSTEM_EVENT:
2549 switch (run->system_event.type) {
2550 case KVM_SYSTEM_EVENT_SHUTDOWN:
2551 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2552 ret = EXCP_INTERRUPT;
2553 break;
2554 case KVM_SYSTEM_EVENT_RESET:
2555 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2556 ret = EXCP_INTERRUPT;
2557 break;
2558 case KVM_SYSTEM_EVENT_CRASH:
2559 kvm_cpu_synchronize_state(cpu);
2560 qemu_mutex_lock_iothread();
2561 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2562 qemu_mutex_unlock_iothread();
2563 ret = 0;
2564 break;
2565 default:
2566 DPRINTF("kvm_arch_handle_exit\n");
2567 ret = kvm_arch_handle_exit(cpu, run);
2568 break;
2570 break;
2571 default:
2572 DPRINTF("kvm_arch_handle_exit\n");
2573 ret = kvm_arch_handle_exit(cpu, run);
2574 break;
2576 } while (ret == 0);
2578 cpu_exec_end(cpu);
2579 qemu_mutex_lock_iothread();
2581 if (ret < 0) {
2582 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2583 vm_stop(RUN_STATE_INTERNAL_ERROR);
2586 qatomic_set(&cpu->exit_request, 0);
2587 return ret;
2590 int kvm_ioctl(KVMState *s, int type, ...)
2592 int ret;
2593 void *arg;
2594 va_list ap;
2596 va_start(ap, type);
2597 arg = va_arg(ap, void *);
2598 va_end(ap);
2600 trace_kvm_ioctl(type, arg);
2601 ret = ioctl(s->fd, type, arg);
2602 if (ret == -1) {
2603 ret = -errno;
2605 return ret;
2608 int kvm_vm_ioctl(KVMState *s, int type, ...)
2610 int ret;
2611 void *arg;
2612 va_list ap;
2614 va_start(ap, type);
2615 arg = va_arg(ap, void *);
2616 va_end(ap);
2618 trace_kvm_vm_ioctl(type, arg);
2619 ret = ioctl(s->vmfd, type, arg);
2620 if (ret == -1) {
2621 ret = -errno;
2623 return ret;
2626 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2628 int ret;
2629 void *arg;
2630 va_list ap;
2632 va_start(ap, type);
2633 arg = va_arg(ap, void *);
2634 va_end(ap);
2636 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2637 ret = ioctl(cpu->kvm_fd, type, arg);
2638 if (ret == -1) {
2639 ret = -errno;
2641 return ret;
2644 int kvm_device_ioctl(int fd, int type, ...)
2646 int ret;
2647 void *arg;
2648 va_list ap;
2650 va_start(ap, type);
2651 arg = va_arg(ap, void *);
2652 va_end(ap);
2654 trace_kvm_device_ioctl(fd, type, arg);
2655 ret = ioctl(fd, type, arg);
2656 if (ret == -1) {
2657 ret = -errno;
2659 return ret;
2662 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2664 int ret;
2665 struct kvm_device_attr attribute = {
2666 .group = group,
2667 .attr = attr,
2670 if (!kvm_vm_attributes_allowed) {
2671 return 0;
2674 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2675 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2676 return ret ? 0 : 1;
2679 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2681 struct kvm_device_attr attribute = {
2682 .group = group,
2683 .attr = attr,
2684 .flags = 0,
2687 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2690 int kvm_device_access(int fd, int group, uint64_t attr,
2691 void *val, bool write, Error **errp)
2693 struct kvm_device_attr kvmattr;
2694 int err;
2696 kvmattr.flags = 0;
2697 kvmattr.group = group;
2698 kvmattr.attr = attr;
2699 kvmattr.addr = (uintptr_t)val;
2701 err = kvm_device_ioctl(fd,
2702 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2703 &kvmattr);
2704 if (err < 0) {
2705 error_setg_errno(errp, -err,
2706 "KVM_%s_DEVICE_ATTR failed: Group %d "
2707 "attr 0x%016" PRIx64,
2708 write ? "SET" : "GET", group, attr);
2710 return err;
2713 bool kvm_has_sync_mmu(void)
2715 return kvm_state->sync_mmu;
2718 int kvm_has_vcpu_events(void)
2720 return kvm_state->vcpu_events;
2723 int kvm_has_robust_singlestep(void)
2725 return kvm_state->robust_singlestep;
2728 int kvm_has_debugregs(void)
2730 return kvm_state->debugregs;
2733 int kvm_max_nested_state_length(void)
2735 return kvm_state->max_nested_state_len;
2738 int kvm_has_many_ioeventfds(void)
2740 if (!kvm_enabled()) {
2741 return 0;
2743 return kvm_state->many_ioeventfds;
2746 int kvm_has_gsi_routing(void)
2748 #ifdef KVM_CAP_IRQ_ROUTING
2749 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2750 #else
2751 return false;
2752 #endif
2755 int kvm_has_intx_set_mask(void)
2757 return kvm_state->intx_set_mask;
2760 bool kvm_arm_supports_user_irq(void)
2762 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2765 #ifdef KVM_CAP_SET_GUEST_DEBUG
2766 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2767 target_ulong pc)
2769 struct kvm_sw_breakpoint *bp;
2771 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2772 if (bp->pc == pc) {
2773 return bp;
2776 return NULL;
2779 int kvm_sw_breakpoints_active(CPUState *cpu)
2781 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2784 struct kvm_set_guest_debug_data {
2785 struct kvm_guest_debug dbg;
2786 int err;
2789 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2791 struct kvm_set_guest_debug_data *dbg_data =
2792 (struct kvm_set_guest_debug_data *) data.host_ptr;
2794 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2795 &dbg_data->dbg);
2798 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2800 struct kvm_set_guest_debug_data data;
2802 data.dbg.control = reinject_trap;
2804 if (cpu->singlestep_enabled) {
2805 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2807 kvm_arch_update_guest_debug(cpu, &data.dbg);
2809 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2810 RUN_ON_CPU_HOST_PTR(&data));
2811 return data.err;
2814 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2815 target_ulong len, int type)
2817 struct kvm_sw_breakpoint *bp;
2818 int err;
2820 if (type == GDB_BREAKPOINT_SW) {
2821 bp = kvm_find_sw_breakpoint(cpu, addr);
2822 if (bp) {
2823 bp->use_count++;
2824 return 0;
2827 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2828 bp->pc = addr;
2829 bp->use_count = 1;
2830 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2831 if (err) {
2832 g_free(bp);
2833 return err;
2836 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2837 } else {
2838 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2839 if (err) {
2840 return err;
2844 CPU_FOREACH(cpu) {
2845 err = kvm_update_guest_debug(cpu, 0);
2846 if (err) {
2847 return err;
2850 return 0;
2853 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2854 target_ulong len, int type)
2856 struct kvm_sw_breakpoint *bp;
2857 int err;
2859 if (type == GDB_BREAKPOINT_SW) {
2860 bp = kvm_find_sw_breakpoint(cpu, addr);
2861 if (!bp) {
2862 return -ENOENT;
2865 if (bp->use_count > 1) {
2866 bp->use_count--;
2867 return 0;
2870 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2871 if (err) {
2872 return err;
2875 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2876 g_free(bp);
2877 } else {
2878 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2879 if (err) {
2880 return err;
2884 CPU_FOREACH(cpu) {
2885 err = kvm_update_guest_debug(cpu, 0);
2886 if (err) {
2887 return err;
2890 return 0;
2893 void kvm_remove_all_breakpoints(CPUState *cpu)
2895 struct kvm_sw_breakpoint *bp, *next;
2896 KVMState *s = cpu->kvm_state;
2897 CPUState *tmpcpu;
2899 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2900 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2901 /* Try harder to find a CPU that currently sees the breakpoint. */
2902 CPU_FOREACH(tmpcpu) {
2903 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2904 break;
2908 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2909 g_free(bp);
2911 kvm_arch_remove_all_hw_breakpoints();
2913 CPU_FOREACH(cpu) {
2914 kvm_update_guest_debug(cpu, 0);
2918 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2920 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2922 return -EINVAL;
2925 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2926 target_ulong len, int type)
2928 return -EINVAL;
2931 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2932 target_ulong len, int type)
2934 return -EINVAL;
2937 void kvm_remove_all_breakpoints(CPUState *cpu)
2940 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2942 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2944 KVMState *s = kvm_state;
2945 struct kvm_signal_mask *sigmask;
2946 int r;
2948 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2950 sigmask->len = s->sigmask_len;
2951 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2952 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2953 g_free(sigmask);
2955 return r;
2958 static void kvm_ipi_signal(int sig)
2960 if (current_cpu) {
2961 assert(kvm_immediate_exit);
2962 kvm_cpu_kick(current_cpu);
2966 void kvm_init_cpu_signals(CPUState *cpu)
2968 int r;
2969 sigset_t set;
2970 struct sigaction sigact;
2972 memset(&sigact, 0, sizeof(sigact));
2973 sigact.sa_handler = kvm_ipi_signal;
2974 sigaction(SIG_IPI, &sigact, NULL);
2976 pthread_sigmask(SIG_BLOCK, NULL, &set);
2977 #if defined KVM_HAVE_MCE_INJECTION
2978 sigdelset(&set, SIGBUS);
2979 pthread_sigmask(SIG_SETMASK, &set, NULL);
2980 #endif
2981 sigdelset(&set, SIG_IPI);
2982 if (kvm_immediate_exit) {
2983 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2984 } else {
2985 r = kvm_set_signal_mask(cpu, &set);
2987 if (r) {
2988 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2989 exit(1);
2993 /* Called asynchronously in VCPU thread. */
2994 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2996 #ifdef KVM_HAVE_MCE_INJECTION
2997 if (have_sigbus_pending) {
2998 return 1;
3000 have_sigbus_pending = true;
3001 pending_sigbus_addr = addr;
3002 pending_sigbus_code = code;
3003 qatomic_set(&cpu->exit_request, 1);
3004 return 0;
3005 #else
3006 return 1;
3007 #endif
3010 /* Called synchronously (via signalfd) in main thread. */
3011 int kvm_on_sigbus(int code, void *addr)
3013 #ifdef KVM_HAVE_MCE_INJECTION
3014 /* Action required MCE kills the process if SIGBUS is blocked. Because
3015 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3016 * we can only get action optional here.
3018 assert(code != BUS_MCEERR_AR);
3019 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3020 return 0;
3021 #else
3022 return 1;
3023 #endif
3026 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3028 int ret;
3029 struct kvm_create_device create_dev;
3031 create_dev.type = type;
3032 create_dev.fd = -1;
3033 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3035 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3036 return -ENOTSUP;
3039 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3040 if (ret) {
3041 return ret;
3044 return test ? 0 : create_dev.fd;
3047 bool kvm_device_supported(int vmfd, uint64_t type)
3049 struct kvm_create_device create_dev = {
3050 .type = type,
3051 .fd = -1,
3052 .flags = KVM_CREATE_DEVICE_TEST,
3055 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3056 return false;
3059 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3062 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3064 struct kvm_one_reg reg;
3065 int r;
3067 reg.id = id;
3068 reg.addr = (uintptr_t) source;
3069 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3070 if (r) {
3071 trace_kvm_failed_reg_set(id, strerror(-r));
3073 return r;
3076 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3078 struct kvm_one_reg reg;
3079 int r;
3081 reg.id = id;
3082 reg.addr = (uintptr_t) target;
3083 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3084 if (r) {
3085 trace_kvm_failed_reg_get(id, strerror(-r));
3087 return r;
3090 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3091 hwaddr start_addr, hwaddr size)
3093 KVMState *kvm = KVM_STATE(ms->accelerator);
3094 int i;
3096 for (i = 0; i < kvm->nr_as; ++i) {
3097 if (kvm->as[i].as == as && kvm->as[i].ml) {
3098 size = MIN(kvm_max_slot_size, size);
3099 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3100 start_addr, size);
3104 return false;
3107 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3108 const char *name, void *opaque,
3109 Error **errp)
3111 KVMState *s = KVM_STATE(obj);
3112 int64_t value = s->kvm_shadow_mem;
3114 visit_type_int(v, name, &value, errp);
3117 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3118 const char *name, void *opaque,
3119 Error **errp)
3121 KVMState *s = KVM_STATE(obj);
3122 int64_t value;
3124 if (!visit_type_int(v, name, &value, errp)) {
3125 return;
3128 s->kvm_shadow_mem = value;
3131 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3132 const char *name, void *opaque,
3133 Error **errp)
3135 KVMState *s = KVM_STATE(obj);
3136 OnOffSplit mode;
3138 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3139 return;
3141 switch (mode) {
3142 case ON_OFF_SPLIT_ON:
3143 s->kernel_irqchip_allowed = true;
3144 s->kernel_irqchip_required = true;
3145 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3146 break;
3147 case ON_OFF_SPLIT_OFF:
3148 s->kernel_irqchip_allowed = false;
3149 s->kernel_irqchip_required = false;
3150 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3151 break;
3152 case ON_OFF_SPLIT_SPLIT:
3153 s->kernel_irqchip_allowed = true;
3154 s->kernel_irqchip_required = true;
3155 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3156 break;
3157 default:
3158 /* The value was checked in visit_type_OnOffSplit() above. If
3159 * we get here, then something is wrong in QEMU.
3161 abort();
3165 bool kvm_kernel_irqchip_allowed(void)
3167 return kvm_state->kernel_irqchip_allowed;
3170 bool kvm_kernel_irqchip_required(void)
3172 return kvm_state->kernel_irqchip_required;
3175 bool kvm_kernel_irqchip_split(void)
3177 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3180 static void kvm_accel_instance_init(Object *obj)
3182 KVMState *s = KVM_STATE(obj);
3184 s->kvm_shadow_mem = -1;
3185 s->kernel_irqchip_allowed = true;
3186 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3189 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3191 AccelClass *ac = ACCEL_CLASS(oc);
3192 ac->name = "KVM";
3193 ac->init_machine = kvm_init;
3194 ac->has_memory = kvm_accel_has_memory;
3195 ac->allowed = &kvm_allowed;
3197 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3198 NULL, kvm_set_kernel_irqchip,
3199 NULL, NULL);
3200 object_class_property_set_description(oc, "kernel-irqchip",
3201 "Configure KVM in-kernel irqchip");
3203 object_class_property_add(oc, "kvm-shadow-mem", "int",
3204 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3205 NULL, NULL);
3206 object_class_property_set_description(oc, "kvm-shadow-mem",
3207 "KVM shadow MMU size");
3210 static const TypeInfo kvm_accel_type = {
3211 .name = TYPE_KVM_ACCEL,
3212 .parent = TYPE_ACCEL,
3213 .instance_init = kvm_accel_instance_init,
3214 .class_init = kvm_accel_class_init,
3215 .instance_size = sizeof(KVMState),
3218 static void kvm_type_init(void)
3220 type_register_static(&kvm_accel_type);
3223 type_init(kvm_type_init);