4 * Copyright (c) 2007 CodeSourcery
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "exec/cpu_ldst.h"
24 #include "hw/semihosting/semihost.h"
26 #if defined(CONFIG_USER_ONLY)
28 void m68k_cpu_do_interrupt(CPUState
*cs
)
30 cs
->exception_index
= -1;
33 static inline void do_interrupt_m68k_hardirq(CPUM68KState
*env
)
39 static void cf_rte(CPUM68KState
*env
)
45 fmt
= cpu_ldl_kernel(env
, sp
);
46 env
->pc
= cpu_ldl_kernel(env
, sp
+ 4);
47 sp
|= (fmt
>> 28) & 3;
48 env
->aregs
[7] = sp
+ 8;
50 cpu_m68k_set_sr(env
, fmt
);
53 static void m68k_rte(CPUM68KState
*env
)
61 sr
= cpu_lduw_kernel(env
, sp
);
63 env
->pc
= cpu_ldl_kernel(env
, sp
);
65 if (m68k_feature(env
, M68K_FEATURE_QUAD_MULDIV
)) {
66 /* all except 68000 */
67 fmt
= cpu_lduw_kernel(env
, sp
);
74 cpu_m68k_set_sr(env
, sr
);
89 cpu_m68k_set_sr(env
, sr
);
92 static const char *m68k_exception_name(int index
)
96 return "Access Fault";
98 return "Address Error";
100 return "Illegal Instruction";
102 return "Divide by Zero";
106 return "FTRAPcc, TRAPcc, TRAPV";
108 return "Privilege Violation";
115 case EXCP_DEBEGBP
: /* 68020/030 only */
116 return "Copro Protocol Violation";
118 return "Format Error";
119 case EXCP_UNINITIALIZED
:
120 return "Unitialized Interruot";
122 return "Spurious Interrupt";
123 case EXCP_INT_LEVEL_1
:
124 return "Level 1 Interrupt";
125 case EXCP_INT_LEVEL_1
+ 1:
126 return "Level 2 Interrupt";
127 case EXCP_INT_LEVEL_1
+ 2:
128 return "Level 3 Interrupt";
129 case EXCP_INT_LEVEL_1
+ 3:
130 return "Level 4 Interrupt";
131 case EXCP_INT_LEVEL_1
+ 4:
132 return "Level 5 Interrupt";
133 case EXCP_INT_LEVEL_1
+ 5:
134 return "Level 6 Interrupt";
135 case EXCP_INT_LEVEL_1
+ 6:
136 return "Level 7 Interrupt";
157 case EXCP_TRAP0
+ 10:
159 case EXCP_TRAP0
+ 11:
161 case EXCP_TRAP0
+ 12:
163 case EXCP_TRAP0
+ 13:
165 case EXCP_TRAP0
+ 14:
167 case EXCP_TRAP0
+ 15:
170 return "FP Branch/Set on unordered condition";
172 return "FP Inexact Result";
174 return "FP Divide by Zero";
176 return "FP Underflow";
178 return "FP Operand Error";
180 return "FP Overflow";
182 return "FP Signaling NAN";
184 return "FP Unimplemented Data Type";
185 case EXCP_MMU_CONF
: /* 68030/68851 only */
186 return "MMU Configuration Error";
187 case EXCP_MMU_ILLEGAL
: /* 68851 only */
188 return "MMU Illegal Operation";
189 case EXCP_MMU_ACCESS
: /* 68851 only */
190 return "MMU Access Level Violation";
192 return "User Defined Vector";
197 static void cf_interrupt_all(CPUM68KState
*env
, int is_hw
)
199 CPUState
*cs
= env_cpu(env
);
210 switch (cs
->exception_index
) {
212 /* Return from an exception. */
216 if (semihosting_enabled()
217 && (env
->sr
& SR_S
) != 0
218 && (env
->pc
& 3) == 0
219 && cpu_lduw_code(env
, env
->pc
- 4) == 0x4e71
220 && cpu_ldl_code(env
, env
->pc
) == 0x4e7bf000) {
222 do_m68k_semihosting(env
, env
->dregs
[0]);
226 cs
->exception_index
= EXCP_HLT
;
230 if (cs
->exception_index
>= EXCP_TRAP0
231 && cs
->exception_index
<= EXCP_TRAP15
) {
232 /* Move the PC after the trap instruction. */
237 vector
= cs
->exception_index
<< 2;
239 sr
= env
->sr
| cpu_m68k_get_ccr(env
);
240 if (qemu_loglevel_mask(CPU_LOG_INT
)) {
242 qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
243 ++count
, m68k_exception_name(cs
->exception_index
),
244 vector
, env
->pc
, env
->aregs
[7], sr
);
253 env
->sr
= (env
->sr
& ~SR_I
) | (env
->pending_level
<< SR_I_SHIFT
);
258 fmt
|= (sp
& 3) << 28;
260 /* ??? This could cause MMU faults. */
263 cpu_stl_kernel(env
, sp
, retaddr
);
265 cpu_stl_kernel(env
, sp
, fmt
);
267 /* Jump to vector. */
268 env
->pc
= cpu_ldl_kernel(env
, env
->vbr
+ vector
);
271 static inline void do_stack_frame(CPUM68KState
*env
, uint32_t *sp
,
272 uint16_t format
, uint16_t sr
,
273 uint32_t addr
, uint32_t retaddr
)
275 if (m68k_feature(env
, M68K_FEATURE_QUAD_MULDIV
)) {
276 /* all except 68000 */
277 CPUState
*cs
= env_cpu(env
);
281 cpu_stl_kernel(env
, *sp
, env
->pc
);
283 cpu_stl_kernel(env
, *sp
, addr
);
288 cpu_stl_kernel(env
, *sp
, addr
);
292 cpu_stw_kernel(env
, *sp
, (format
<< 12) + (cs
->exception_index
<< 2));
295 cpu_stl_kernel(env
, *sp
, retaddr
);
297 cpu_stw_kernel(env
, *sp
, sr
);
300 static void m68k_interrupt_all(CPUM68KState
*env
, int is_hw
)
302 CPUState
*cs
= env_cpu(env
);
311 switch (cs
->exception_index
) {
313 /* Return from an exception. */
316 case EXCP_TRAP0
... EXCP_TRAP15
:
317 /* Move the PC after the trap instruction. */
323 vector
= cs
->exception_index
<< 2;
325 sr
= env
->sr
| cpu_m68k_get_ccr(env
);
326 if (qemu_loglevel_mask(CPU_LOG_INT
)) {
328 qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
329 ++count
, m68k_exception_name(cs
->exception_index
),
330 vector
, env
->pc
, env
->aregs
[7], sr
);
334 * MC68040UM/AD, chapter 9.3.10
337 /* "the processor first make an internal copy" */
339 /* "set the mode to supervisor" */
341 /* "suppress tracing" */
343 /* "sets the processor interrupt mask" */
345 sr
|= (env
->sr
& ~SR_I
) | (env
->pending_level
<< SR_I_SHIFT
);
347 cpu_m68k_set_sr(env
, sr
);
351 if (cs
->exception_index
== EXCP_ACCESS
) {
352 if (env
->mmu
.fault
) {
353 cpu_abort(cs
, "DOUBLE MMU FAULT\n");
355 env
->mmu
.fault
= true;
357 cpu_stl_kernel(env
, sp
, 0); /* push data 3 */
359 cpu_stl_kernel(env
, sp
, 0); /* push data 2 */
361 cpu_stl_kernel(env
, sp
, 0); /* push data 1 */
363 cpu_stl_kernel(env
, sp
, 0); /* write back 1 / push data 0 */
365 cpu_stl_kernel(env
, sp
, 0); /* write back 1 address */
367 cpu_stl_kernel(env
, sp
, 0); /* write back 2 data */
369 cpu_stl_kernel(env
, sp
, 0); /* write back 2 address */
371 cpu_stl_kernel(env
, sp
, 0); /* write back 3 data */
373 cpu_stl_kernel(env
, sp
, env
->mmu
.ar
); /* write back 3 address */
375 cpu_stl_kernel(env
, sp
, env
->mmu
.ar
); /* fault address */
377 cpu_stw_kernel(env
, sp
, 0); /* write back 1 status */
379 cpu_stw_kernel(env
, sp
, 0); /* write back 2 status */
381 cpu_stw_kernel(env
, sp
, 0); /* write back 3 status */
383 cpu_stw_kernel(env
, sp
, env
->mmu
.ssw
); /* special status word */
385 cpu_stl_kernel(env
, sp
, env
->mmu
.ar
); /* effective address */
386 do_stack_frame(env
, &sp
, 7, oldsr
, 0, retaddr
);
387 env
->mmu
.fault
= false;
388 if (qemu_loglevel_mask(CPU_LOG_INT
)) {
390 "ssw: %08x ea: %08x sfc: %d dfc: %d\n",
391 env
->mmu
.ssw
, env
->mmu
.ar
, env
->sfc
, env
->dfc
);
393 } else if (cs
->exception_index
== EXCP_ADDRESS
) {
394 do_stack_frame(env
, &sp
, 2, oldsr
, 0, retaddr
);
395 } else if (cs
->exception_index
== EXCP_ILLEGAL
||
396 cs
->exception_index
== EXCP_DIV0
||
397 cs
->exception_index
== EXCP_CHK
||
398 cs
->exception_index
== EXCP_TRAPCC
||
399 cs
->exception_index
== EXCP_TRACE
) {
400 /* FIXME: addr is not only env->pc */
401 do_stack_frame(env
, &sp
, 2, oldsr
, env
->pc
, retaddr
);
402 } else if (is_hw
&& oldsr
& SR_M
&&
403 cs
->exception_index
>= EXCP_SPURIOUS
&&
404 cs
->exception_index
<= EXCP_INT_LEVEL_7
) {
405 do_stack_frame(env
, &sp
, 0, oldsr
, 0, retaddr
);
408 cpu_m68k_set_sr(env
, sr
&= ~SR_M
);
409 sp
= env
->aregs
[7] & ~1;
410 do_stack_frame(env
, &sp
, 1, oldsr
, 0, retaddr
);
412 do_stack_frame(env
, &sp
, 0, oldsr
, 0, retaddr
);
416 /* Jump to vector. */
417 env
->pc
= cpu_ldl_kernel(env
, env
->vbr
+ vector
);
420 static void do_interrupt_all(CPUM68KState
*env
, int is_hw
)
422 if (m68k_feature(env
, M68K_FEATURE_M68000
)) {
423 m68k_interrupt_all(env
, is_hw
);
426 cf_interrupt_all(env
, is_hw
);
429 void m68k_cpu_do_interrupt(CPUState
*cs
)
431 M68kCPU
*cpu
= M68K_CPU(cs
);
432 CPUM68KState
*env
= &cpu
->env
;
434 do_interrupt_all(env
, 0);
437 static inline void do_interrupt_m68k_hardirq(CPUM68KState
*env
)
439 do_interrupt_all(env
, 1);
442 void m68k_cpu_transaction_failed(CPUState
*cs
, hwaddr physaddr
, vaddr addr
,
443 unsigned size
, MMUAccessType access_type
,
444 int mmu_idx
, MemTxAttrs attrs
,
445 MemTxResult response
, uintptr_t retaddr
)
447 M68kCPU
*cpu
= M68K_CPU(cs
);
448 CPUM68KState
*env
= &cpu
->env
;
450 cpu_restore_state(cs
, retaddr
, true);
452 if (m68k_feature(env
, M68K_FEATURE_M68040
)) {
454 env
->mmu
.ssw
|= M68K_ATC_040
;
455 /* FIXME: manage MMU table access error */
456 env
->mmu
.ssw
&= ~M68K_TM_040
;
457 if (env
->sr
& SR_S
) { /* SUPERVISOR */
458 env
->mmu
.ssw
|= M68K_TM_040_SUPER
;
460 if (access_type
== MMU_INST_FETCH
) { /* instruction or data */
461 env
->mmu
.ssw
|= M68K_TM_040_CODE
;
463 env
->mmu
.ssw
|= M68K_TM_040_DATA
;
465 env
->mmu
.ssw
&= ~M68K_BA_SIZE_MASK
;
468 env
->mmu
.ssw
|= M68K_BA_SIZE_BYTE
;
471 env
->mmu
.ssw
|= M68K_BA_SIZE_WORD
;
474 env
->mmu
.ssw
|= M68K_BA_SIZE_LONG
;
478 if (access_type
!= MMU_DATA_STORE
) {
479 env
->mmu
.ssw
|= M68K_RW_040
;
484 cs
->exception_index
= EXCP_ACCESS
;
490 bool m68k_cpu_exec_interrupt(CPUState
*cs
, int interrupt_request
)
492 M68kCPU
*cpu
= M68K_CPU(cs
);
493 CPUM68KState
*env
= &cpu
->env
;
495 if (interrupt_request
& CPU_INTERRUPT_HARD
496 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
) < env
->pending_level
) {
498 * Real hardware gets the interrupt vector via an IACK cycle
499 * at this point. Current emulated hardware doesn't rely on
500 * this, so we provide/save the vector when the interrupt is
503 cs
->exception_index
= env
->pending_vector
;
504 do_interrupt_m68k_hardirq(env
);
510 static void raise_exception_ra(CPUM68KState
*env
, int tt
, uintptr_t raddr
)
512 CPUState
*cs
= env_cpu(env
);
514 cs
->exception_index
= tt
;
515 cpu_loop_exit_restore(cs
, raddr
);
518 static void raise_exception(CPUM68KState
*env
, int tt
)
520 raise_exception_ra(env
, tt
, 0);
523 void HELPER(raise_exception
)(CPUM68KState
*env
, uint32_t tt
)
525 raise_exception(env
, tt
);
528 void HELPER(divuw
)(CPUM68KState
*env
, int destr
, uint32_t den
)
530 uint32_t num
= env
->dregs
[destr
];
534 raise_exception_ra(env
, EXCP_DIV0
, GETPC());
539 env
->cc_c
= 0; /* always cleared, even if overflow */
543 * real 68040 keeps N and unset Z on overflow,
544 * whereas documentation says "undefined"
549 env
->dregs
[destr
] = deposit32(quot
, 16, 16, rem
);
550 env
->cc_z
= (int16_t)quot
;
551 env
->cc_n
= (int16_t)quot
;
555 void HELPER(divsw
)(CPUM68KState
*env
, int destr
, int32_t den
)
557 int32_t num
= env
->dregs
[destr
];
561 raise_exception_ra(env
, EXCP_DIV0
, GETPC());
566 env
->cc_c
= 0; /* always cleared, even if overflow */
567 if (quot
!= (int16_t)quot
) {
569 /* nothing else is modified */
571 * real 68040 keeps N and unset Z on overflow,
572 * whereas documentation says "undefined"
577 env
->dregs
[destr
] = deposit32(quot
, 16, 16, rem
);
578 env
->cc_z
= (int16_t)quot
;
579 env
->cc_n
= (int16_t)quot
;
583 void HELPER(divul
)(CPUM68KState
*env
, int numr
, int regr
, uint32_t den
)
585 uint32_t num
= env
->dregs
[numr
];
589 raise_exception_ra(env
, EXCP_DIV0
, GETPC());
599 if (m68k_feature(env
, M68K_FEATURE_CF_ISA_A
)) {
601 env
->dregs
[numr
] = quot
;
603 env
->dregs
[regr
] = rem
;
606 env
->dregs
[regr
] = rem
;
607 env
->dregs
[numr
] = quot
;
611 void HELPER(divsl
)(CPUM68KState
*env
, int numr
, int regr
, int32_t den
)
613 int32_t num
= env
->dregs
[numr
];
617 raise_exception_ra(env
, EXCP_DIV0
, GETPC());
627 if (m68k_feature(env
, M68K_FEATURE_CF_ISA_A
)) {
629 env
->dregs
[numr
] = quot
;
631 env
->dregs
[regr
] = rem
;
634 env
->dregs
[regr
] = rem
;
635 env
->dregs
[numr
] = quot
;
639 void HELPER(divull
)(CPUM68KState
*env
, int numr
, int regr
, uint32_t den
)
641 uint64_t num
= deposit64(env
->dregs
[numr
], 32, 32, env
->dregs
[regr
]);
646 raise_exception_ra(env
, EXCP_DIV0
, GETPC());
651 env
->cc_c
= 0; /* always cleared, even if overflow */
652 if (quot
> 0xffffffffULL
) {
655 * real 68040 keeps N and unset Z on overflow,
656 * whereas documentation says "undefined"
666 * If Dq and Dr are the same, the quotient is returned.
667 * therefore we set Dq last.
670 env
->dregs
[regr
] = rem
;
671 env
->dregs
[numr
] = quot
;
674 void HELPER(divsll
)(CPUM68KState
*env
, int numr
, int regr
, int32_t den
)
676 int64_t num
= deposit64(env
->dregs
[numr
], 32, 32, env
->dregs
[regr
]);
681 raise_exception_ra(env
, EXCP_DIV0
, GETPC());
686 env
->cc_c
= 0; /* always cleared, even if overflow */
687 if (quot
!= (int32_t)quot
) {
690 * real 68040 keeps N and unset Z on overflow,
691 * whereas documentation says "undefined"
701 * If Dq and Dr are the same, the quotient is returned.
702 * therefore we set Dq last.
705 env
->dregs
[regr
] = rem
;
706 env
->dregs
[numr
] = quot
;
709 /* We're executing in a serial context -- no need to be atomic. */
710 void HELPER(cas2w
)(CPUM68KState
*env
, uint32_t regs
, uint32_t a1
, uint32_t a2
)
712 uint32_t Dc1
= extract32(regs
, 9, 3);
713 uint32_t Dc2
= extract32(regs
, 6, 3);
714 uint32_t Du1
= extract32(regs
, 3, 3);
715 uint32_t Du2
= extract32(regs
, 0, 3);
716 int16_t c1
= env
->dregs
[Dc1
];
717 int16_t c2
= env
->dregs
[Dc2
];
718 int16_t u1
= env
->dregs
[Du1
];
719 int16_t u2
= env
->dregs
[Du2
];
721 uintptr_t ra
= GETPC();
723 l1
= cpu_lduw_data_ra(env
, a1
, ra
);
724 l2
= cpu_lduw_data_ra(env
, a2
, ra
);
725 if (l1
== c1
&& l2
== c2
) {
726 cpu_stw_data_ra(env
, a1
, u1
, ra
);
727 cpu_stw_data_ra(env
, a2
, u2
, ra
);
737 env
->cc_op
= CC_OP_CMPW
;
738 env
->dregs
[Dc1
] = deposit32(env
->dregs
[Dc1
], 0, 16, l1
);
739 env
->dregs
[Dc2
] = deposit32(env
->dregs
[Dc2
], 0, 16, l2
);
742 static void do_cas2l(CPUM68KState
*env
, uint32_t regs
, uint32_t a1
, uint32_t a2
,
745 uint32_t Dc1
= extract32(regs
, 9, 3);
746 uint32_t Dc2
= extract32(regs
, 6, 3);
747 uint32_t Du1
= extract32(regs
, 3, 3);
748 uint32_t Du2
= extract32(regs
, 0, 3);
749 uint32_t c1
= env
->dregs
[Dc1
];
750 uint32_t c2
= env
->dregs
[Dc2
];
751 uint32_t u1
= env
->dregs
[Du1
];
752 uint32_t u2
= env
->dregs
[Du2
];
754 uintptr_t ra
= GETPC();
755 #if defined(CONFIG_ATOMIC64) && !defined(CONFIG_USER_ONLY)
756 int mmu_idx
= cpu_mmu_index(env
, 0);
761 /* We're executing in a parallel context -- must be atomic. */
762 #ifdef CONFIG_ATOMIC64
764 if ((a1
& 7) == 0 && a2
== a1
+ 4) {
765 c
= deposit64(c2
, 32, 32, c1
);
766 u
= deposit64(u2
, 32, 32, u1
);
767 #ifdef CONFIG_USER_ONLY
768 l
= helper_atomic_cmpxchgq_be(env
, a1
, c
, u
);
770 oi
= make_memop_idx(MO_BEQ
, mmu_idx
);
771 l
= helper_atomic_cmpxchgq_be_mmu(env
, a1
, c
, u
, oi
, ra
);
775 } else if ((a2
& 7) == 0 && a1
== a2
+ 4) {
776 c
= deposit64(c1
, 32, 32, c2
);
777 u
= deposit64(u1
, 32, 32, u2
);
778 #ifdef CONFIG_USER_ONLY
779 l
= helper_atomic_cmpxchgq_be(env
, a2
, c
, u
);
781 oi
= make_memop_idx(MO_BEQ
, mmu_idx
);
782 l
= helper_atomic_cmpxchgq_be_mmu(env
, a2
, c
, u
, oi
, ra
);
789 /* Tell the main loop we need to serialize this insn. */
790 cpu_loop_exit_atomic(env_cpu(env
), ra
);
793 /* We're executing in a serial context -- no need to be atomic. */
794 l1
= cpu_ldl_data_ra(env
, a1
, ra
);
795 l2
= cpu_ldl_data_ra(env
, a2
, ra
);
796 if (l1
== c1
&& l2
== c2
) {
797 cpu_stl_data_ra(env
, a1
, u1
, ra
);
798 cpu_stl_data_ra(env
, a2
, u2
, ra
);
809 env
->cc_op
= CC_OP_CMPL
;
810 env
->dregs
[Dc1
] = l1
;
811 env
->dregs
[Dc2
] = l2
;
814 void HELPER(cas2l
)(CPUM68KState
*env
, uint32_t regs
, uint32_t a1
, uint32_t a2
)
816 do_cas2l(env
, regs
, a1
, a2
, false);
819 void HELPER(cas2l_parallel
)(CPUM68KState
*env
, uint32_t regs
, uint32_t a1
,
822 do_cas2l(env
, regs
, a1
, a2
, true);
832 static struct bf_data
bf_prep(uint32_t addr
, int32_t ofs
, uint32_t len
)
836 /* Bound length; map 0 to 32. */
837 len
= ((len
- 1) & 31) + 1;
839 /* Note that ofs is signed. */
848 * Compute the number of bytes required (minus one) to
849 * satisfy the bitfield.
851 blen
= (bofs
+ len
- 1) / 8;
854 * Canonicalize the bit offset for data loaded into a 64-bit big-endian
855 * word. For the cases where BLEN is not a power of 2, adjust ADDR so
856 * that we can use the next power of two sized load without crossing a
857 * page boundary, unless the field itself crosses the boundary.
877 bofs
+= 8 * (addr
& 3);
882 g_assert_not_reached();
885 return (struct bf_data
){
893 static uint64_t bf_load(CPUM68KState
*env
, uint32_t addr
, int blen
,
898 return cpu_ldub_data_ra(env
, addr
, ra
);
900 return cpu_lduw_data_ra(env
, addr
, ra
);
903 return cpu_ldl_data_ra(env
, addr
, ra
);
905 return cpu_ldq_data_ra(env
, addr
, ra
);
907 g_assert_not_reached();
911 static void bf_store(CPUM68KState
*env
, uint32_t addr
, int blen
,
912 uint64_t data
, uintptr_t ra
)
916 cpu_stb_data_ra(env
, addr
, data
, ra
);
919 cpu_stw_data_ra(env
, addr
, data
, ra
);
923 cpu_stl_data_ra(env
, addr
, data
, ra
);
926 cpu_stq_data_ra(env
, addr
, data
, ra
);
929 g_assert_not_reached();
933 uint32_t HELPER(bfexts_mem
)(CPUM68KState
*env
, uint32_t addr
,
934 int32_t ofs
, uint32_t len
)
936 uintptr_t ra
= GETPC();
937 struct bf_data d
= bf_prep(addr
, ofs
, len
);
938 uint64_t data
= bf_load(env
, d
.addr
, d
.blen
, ra
);
940 return (int64_t)(data
<< d
.bofs
) >> (64 - d
.len
);
943 uint64_t HELPER(bfextu_mem
)(CPUM68KState
*env
, uint32_t addr
,
944 int32_t ofs
, uint32_t len
)
946 uintptr_t ra
= GETPC();
947 struct bf_data d
= bf_prep(addr
, ofs
, len
);
948 uint64_t data
= bf_load(env
, d
.addr
, d
.blen
, ra
);
951 * Put CC_N at the top of the high word; put the zero-extended value
952 * at the bottom of the low word.
956 data
|= data
<< (64 - d
.len
);
961 uint32_t HELPER(bfins_mem
)(CPUM68KState
*env
, uint32_t addr
, uint32_t val
,
962 int32_t ofs
, uint32_t len
)
964 uintptr_t ra
= GETPC();
965 struct bf_data d
= bf_prep(addr
, ofs
, len
);
966 uint64_t data
= bf_load(env
, d
.addr
, d
.blen
, ra
);
967 uint64_t mask
= -1ull << (64 - d
.len
) >> d
.bofs
;
969 data
= (data
& ~mask
) | (((uint64_t)val
<< (64 - d
.len
)) >> d
.bofs
);
971 bf_store(env
, d
.addr
, d
.blen
, data
, ra
);
973 /* The field at the top of the word is also CC_N for CC_OP_LOGIC. */
974 return val
<< (32 - d
.len
);
977 uint32_t HELPER(bfchg_mem
)(CPUM68KState
*env
, uint32_t addr
,
978 int32_t ofs
, uint32_t len
)
980 uintptr_t ra
= GETPC();
981 struct bf_data d
= bf_prep(addr
, ofs
, len
);
982 uint64_t data
= bf_load(env
, d
.addr
, d
.blen
, ra
);
983 uint64_t mask
= -1ull << (64 - d
.len
) >> d
.bofs
;
985 bf_store(env
, d
.addr
, d
.blen
, data
^ mask
, ra
);
987 return ((data
& mask
) << d
.bofs
) >> 32;
990 uint32_t HELPER(bfclr_mem
)(CPUM68KState
*env
, uint32_t addr
,
991 int32_t ofs
, uint32_t len
)
993 uintptr_t ra
= GETPC();
994 struct bf_data d
= bf_prep(addr
, ofs
, len
);
995 uint64_t data
= bf_load(env
, d
.addr
, d
.blen
, ra
);
996 uint64_t mask
= -1ull << (64 - d
.len
) >> d
.bofs
;
998 bf_store(env
, d
.addr
, d
.blen
, data
& ~mask
, ra
);
1000 return ((data
& mask
) << d
.bofs
) >> 32;
1003 uint32_t HELPER(bfset_mem
)(CPUM68KState
*env
, uint32_t addr
,
1004 int32_t ofs
, uint32_t len
)
1006 uintptr_t ra
= GETPC();
1007 struct bf_data d
= bf_prep(addr
, ofs
, len
);
1008 uint64_t data
= bf_load(env
, d
.addr
, d
.blen
, ra
);
1009 uint64_t mask
= -1ull << (64 - d
.len
) >> d
.bofs
;
1011 bf_store(env
, d
.addr
, d
.blen
, data
| mask
, ra
);
1013 return ((data
& mask
) << d
.bofs
) >> 32;
1016 uint32_t HELPER(bfffo_reg
)(uint32_t n
, uint32_t ofs
, uint32_t len
)
1018 return (n
? clz32(n
) : len
) + ofs
;
1021 uint64_t HELPER(bfffo_mem
)(CPUM68KState
*env
, uint32_t addr
,
1022 int32_t ofs
, uint32_t len
)
1024 uintptr_t ra
= GETPC();
1025 struct bf_data d
= bf_prep(addr
, ofs
, len
);
1026 uint64_t data
= bf_load(env
, d
.addr
, d
.blen
, ra
);
1027 uint64_t mask
= -1ull << (64 - d
.len
) >> d
.bofs
;
1028 uint64_t n
= (data
& mask
) << d
.bofs
;
1029 uint32_t ffo
= helper_bfffo_reg(n
>> 32, ofs
, d
.len
);
1032 * Return FFO in the low word and N in the high word.
1033 * Note that because of MASK and the shift, the low word
1039 void HELPER(chk
)(CPUM68KState
*env
, int32_t val
, int32_t ub
)
1043 * X: Not affected, C,V,Z: Undefined,
1044 * N: Set if val < 0; cleared if val > ub, undefined otherwise
1045 * We implement here values found from a real MC68040:
1046 * X,V,Z: Not affected
1047 * N: Set if val < 0; cleared if val >= 0
1048 * C: if 0 <= ub: set if val < 0 or val > ub, cleared otherwise
1049 * if 0 > ub: set if val > ub and val < 0, cleared otherwise
1052 env
->cc_c
= 0 <= ub
? val
< 0 || val
> ub
: val
> ub
&& val
< 0;
1054 if (val
< 0 || val
> ub
) {
1055 CPUState
*cs
= env_cpu(env
);
1057 /* Recover PC and CC_OP for the beginning of the insn. */
1058 cpu_restore_state(cs
, GETPC(), true);
1060 /* flags have been modified by gen_flush_flags() */
1061 env
->cc_op
= CC_OP_FLAGS
;
1062 /* Adjust PC to end of the insn. */
1065 cs
->exception_index
= EXCP_CHK
;
1070 void HELPER(chk2
)(CPUM68KState
*env
, int32_t val
, int32_t lb
, int32_t ub
)
1074 * X: Not affected, N,V: Undefined,
1075 * Z: Set if val is equal to lb or ub
1076 * C: Set if val < lb or val > ub, cleared otherwise
1077 * We implement here values found from a real MC68040:
1078 * X,N,V: Not affected
1079 * Z: Set if val is equal to lb or ub
1080 * C: if lb <= ub: set if val < lb or val > ub, cleared otherwise
1081 * if lb > ub: set if val > ub and val < lb, cleared otherwise
1083 env
->cc_z
= val
!= lb
&& val
!= ub
;
1084 env
->cc_c
= lb
<= ub
? val
< lb
|| val
> ub
: val
> ub
&& val
< lb
;
1087 CPUState
*cs
= env_cpu(env
);
1089 /* Recover PC and CC_OP for the beginning of the insn. */
1090 cpu_restore_state(cs
, GETPC(), true);
1092 /* flags have been modified by gen_flush_flags() */
1093 env
->cc_op
= CC_OP_FLAGS
;
1094 /* Adjust PC to end of the insn. */
1097 cs
->exception_index
= EXCP_CHK
;