target/arm: Honor HCR_EL2.TID1 trapping requirements
[qemu/ar7.git] / hw / i386 / intel_iommu.c
blob43c94b993b4ab591067676ed022ab43aeeb2af8d
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "exec/address-spaces.h"
28 #include "intel_iommu_internal.h"
29 #include "hw/pci/pci.h"
30 #include "hw/pci/pci_bus.h"
31 #include "hw/qdev-properties.h"
32 #include "hw/i386/pc.h"
33 #include "hw/i386/apic-msidef.h"
34 #include "hw/boards.h"
35 #include "hw/i386/x86-iommu.h"
36 #include "hw/pci-host/q35.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/sysemu.h"
39 #include "hw/i386/apic_internal.h"
40 #include "kvm_i386.h"
41 #include "migration/vmstate.h"
42 #include "trace.h"
44 /* context entry operations */
45 #define VTD_CE_GET_RID2PASID(ce) \
46 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
47 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
48 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
50 /* pe operations */
51 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
52 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
53 #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
54 if (ret_fr) { \
55 ret_fr = -ret_fr; \
56 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
57 trace_vtd_fault_disabled(); \
58 } else { \
59 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
60 } \
61 goto error; \
62 } \
65 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
66 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
68 static void vtd_panic_require_caching_mode(void)
70 error_report("We need to set caching-mode=on for intel-iommu to enable "
71 "device assignment with IOMMU protection.");
72 exit(1);
75 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
76 uint64_t wmask, uint64_t w1cmask)
78 stq_le_p(&s->csr[addr], val);
79 stq_le_p(&s->wmask[addr], wmask);
80 stq_le_p(&s->w1cmask[addr], w1cmask);
83 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
85 stq_le_p(&s->womask[addr], mask);
88 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
89 uint32_t wmask, uint32_t w1cmask)
91 stl_le_p(&s->csr[addr], val);
92 stl_le_p(&s->wmask[addr], wmask);
93 stl_le_p(&s->w1cmask[addr], w1cmask);
96 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
98 stl_le_p(&s->womask[addr], mask);
101 /* "External" get/set operations */
102 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
104 uint64_t oldval = ldq_le_p(&s->csr[addr]);
105 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
106 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
107 stq_le_p(&s->csr[addr],
108 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
111 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
113 uint32_t oldval = ldl_le_p(&s->csr[addr]);
114 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
115 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
116 stl_le_p(&s->csr[addr],
117 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
120 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
122 uint64_t val = ldq_le_p(&s->csr[addr]);
123 uint64_t womask = ldq_le_p(&s->womask[addr]);
124 return val & ~womask;
127 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
129 uint32_t val = ldl_le_p(&s->csr[addr]);
130 uint32_t womask = ldl_le_p(&s->womask[addr]);
131 return val & ~womask;
134 /* "Internal" get/set operations */
135 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
137 return ldq_le_p(&s->csr[addr]);
140 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
142 return ldl_le_p(&s->csr[addr]);
145 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
147 stq_le_p(&s->csr[addr], val);
150 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
151 uint32_t clear, uint32_t mask)
153 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
154 stl_le_p(&s->csr[addr], new_val);
155 return new_val;
158 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
159 uint64_t clear, uint64_t mask)
161 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
162 stq_le_p(&s->csr[addr], new_val);
163 return new_val;
166 static inline void vtd_iommu_lock(IntelIOMMUState *s)
168 qemu_mutex_lock(&s->iommu_lock);
171 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
173 qemu_mutex_unlock(&s->iommu_lock);
176 static void vtd_update_scalable_state(IntelIOMMUState *s)
178 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
180 if (s->scalable_mode) {
181 s->root_scalable = val & VTD_RTADDR_SMT;
185 /* Whether the address space needs to notify new mappings */
186 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
188 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
191 /* GHashTable functions */
192 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
194 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
197 static guint vtd_uint64_hash(gconstpointer v)
199 return (guint)*(const uint64_t *)v;
202 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
203 gpointer user_data)
205 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
206 uint16_t domain_id = *(uint16_t *)user_data;
207 return entry->domain_id == domain_id;
210 /* The shift of an addr for a certain level of paging structure */
211 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
213 assert(level != 0);
214 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
217 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
219 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
222 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
223 gpointer user_data)
225 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
226 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
227 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
228 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
229 return (entry->domain_id == info->domain_id) &&
230 (((entry->gfn & info->mask) == gfn) ||
231 (entry->gfn == gfn_tlb));
234 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
235 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
237 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
239 VTDAddressSpace *vtd_as;
240 VTDBus *vtd_bus;
241 GHashTableIter bus_it;
242 uint32_t devfn_it;
244 trace_vtd_context_cache_reset();
246 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
248 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
249 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
250 vtd_as = vtd_bus->dev_as[devfn_it];
251 if (!vtd_as) {
252 continue;
254 vtd_as->context_cache_entry.context_cache_gen = 0;
257 s->context_cache_gen = 1;
260 /* Must be called with IOMMU lock held. */
261 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
263 assert(s->iotlb);
264 g_hash_table_remove_all(s->iotlb);
267 static void vtd_reset_iotlb(IntelIOMMUState *s)
269 vtd_iommu_lock(s);
270 vtd_reset_iotlb_locked(s);
271 vtd_iommu_unlock(s);
274 static void vtd_reset_caches(IntelIOMMUState *s)
276 vtd_iommu_lock(s);
277 vtd_reset_iotlb_locked(s);
278 vtd_reset_context_cache_locked(s);
279 vtd_iommu_unlock(s);
282 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
283 uint32_t level)
285 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
286 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
289 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
291 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
294 /* Must be called with IOMMU lock held */
295 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
296 hwaddr addr)
298 VTDIOTLBEntry *entry;
299 uint64_t key;
300 int level;
302 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
303 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
304 source_id, level);
305 entry = g_hash_table_lookup(s->iotlb, &key);
306 if (entry) {
307 goto out;
311 out:
312 return entry;
315 /* Must be with IOMMU lock held */
316 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
317 uint16_t domain_id, hwaddr addr, uint64_t slpte,
318 uint8_t access_flags, uint32_t level)
320 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
321 uint64_t *key = g_malloc(sizeof(*key));
322 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
324 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
325 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
326 trace_vtd_iotlb_reset("iotlb exceeds size limit");
327 vtd_reset_iotlb_locked(s);
330 entry->gfn = gfn;
331 entry->domain_id = domain_id;
332 entry->slpte = slpte;
333 entry->access_flags = access_flags;
334 entry->mask = vtd_slpt_level_page_mask(level);
335 *key = vtd_get_iotlb_key(gfn, source_id, level);
336 g_hash_table_replace(s->iotlb, key, entry);
339 /* Given the reg addr of both the message data and address, generate an
340 * interrupt via MSI.
342 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
343 hwaddr mesg_data_reg)
345 MSIMessage msi;
347 assert(mesg_data_reg < DMAR_REG_SIZE);
348 assert(mesg_addr_reg < DMAR_REG_SIZE);
350 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
351 msi.data = vtd_get_long_raw(s, mesg_data_reg);
353 trace_vtd_irq_generate(msi.address, msi.data);
355 apic_get_class()->send_msi(&msi);
358 /* Generate a fault event to software via MSI if conditions are met.
359 * Notice that the value of FSTS_REG being passed to it should be the one
360 * before any update.
362 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
364 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
365 pre_fsts & VTD_FSTS_IQE) {
366 error_report_once("There are previous interrupt conditions "
367 "to be serviced by software, fault event "
368 "is not generated");
369 return;
371 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
372 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
373 error_report_once("Interrupt Mask set, irq is not generated");
374 } else {
375 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
376 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
380 /* Check if the Fault (F) field of the Fault Recording Register referenced by
381 * @index is Set.
383 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
385 /* Each reg is 128-bit */
386 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
387 addr += 8; /* Access the high 64-bit half */
389 assert(index < DMAR_FRCD_REG_NR);
391 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
394 /* Update the PPF field of Fault Status Register.
395 * Should be called whenever change the F field of any fault recording
396 * registers.
398 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
400 uint32_t i;
401 uint32_t ppf_mask = 0;
403 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
404 if (vtd_is_frcd_set(s, i)) {
405 ppf_mask = VTD_FSTS_PPF;
406 break;
409 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
410 trace_vtd_fsts_ppf(!!ppf_mask);
413 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
415 /* Each reg is 128-bit */
416 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
417 addr += 8; /* Access the high 64-bit half */
419 assert(index < DMAR_FRCD_REG_NR);
421 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
422 vtd_update_fsts_ppf(s);
425 /* Must not update F field now, should be done later */
426 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
427 uint16_t source_id, hwaddr addr,
428 VTDFaultReason fault, bool is_write)
430 uint64_t hi = 0, lo;
431 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
433 assert(index < DMAR_FRCD_REG_NR);
435 lo = VTD_FRCD_FI(addr);
436 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
437 if (!is_write) {
438 hi |= VTD_FRCD_T;
440 vtd_set_quad_raw(s, frcd_reg_addr, lo);
441 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
443 trace_vtd_frr_new(index, hi, lo);
446 /* Try to collapse multiple pending faults from the same requester */
447 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
449 uint32_t i;
450 uint64_t frcd_reg;
451 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
453 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
454 frcd_reg = vtd_get_quad_raw(s, addr);
455 if ((frcd_reg & VTD_FRCD_F) &&
456 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
457 return true;
459 addr += 16; /* 128-bit for each */
461 return false;
464 /* Log and report an DMAR (address translation) fault to software */
465 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
466 hwaddr addr, VTDFaultReason fault,
467 bool is_write)
469 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
471 assert(fault < VTD_FR_MAX);
473 if (fault == VTD_FR_RESERVED_ERR) {
474 /* This is not a normal fault reason case. Drop it. */
475 return;
478 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
480 if (fsts_reg & VTD_FSTS_PFO) {
481 error_report_once("New fault is not recorded due to "
482 "Primary Fault Overflow");
483 return;
486 if (vtd_try_collapse_fault(s, source_id)) {
487 error_report_once("New fault is not recorded due to "
488 "compression of faults");
489 return;
492 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
493 error_report_once("Next Fault Recording Reg is used, "
494 "new fault is not recorded, set PFO field");
495 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
496 return;
499 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
501 if (fsts_reg & VTD_FSTS_PPF) {
502 error_report_once("There are pending faults already, "
503 "fault event is not generated");
504 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
505 s->next_frcd_reg++;
506 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
507 s->next_frcd_reg = 0;
509 } else {
510 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
511 VTD_FSTS_FRI(s->next_frcd_reg));
512 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
513 s->next_frcd_reg++;
514 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
515 s->next_frcd_reg = 0;
517 /* This case actually cause the PPF to be Set.
518 * So generate fault event (interrupt).
520 vtd_generate_fault_event(s, fsts_reg);
524 /* Handle Invalidation Queue Errors of queued invalidation interface error
525 * conditions.
527 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
529 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
531 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
532 vtd_generate_fault_event(s, fsts_reg);
535 /* Set the IWC field and try to generate an invalidation completion interrupt */
536 static void vtd_generate_completion_event(IntelIOMMUState *s)
538 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
539 trace_vtd_inv_desc_wait_irq("One pending, skip current");
540 return;
542 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
543 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
544 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
545 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
546 "new event not generated");
547 return;
548 } else {
549 /* Generate the interrupt event */
550 trace_vtd_inv_desc_wait_irq("Generating complete event");
551 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
552 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
556 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
557 VTDRootEntry *re,
558 uint8_t devfn)
560 if (s->root_scalable && devfn > UINT8_MAX / 2) {
561 return re->hi & VTD_ROOT_ENTRY_P;
564 return re->lo & VTD_ROOT_ENTRY_P;
567 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
568 VTDRootEntry *re)
570 dma_addr_t addr;
572 addr = s->root + index * sizeof(*re);
573 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
574 re->lo = 0;
575 return -VTD_FR_ROOT_TABLE_INV;
577 re->lo = le64_to_cpu(re->lo);
578 re->hi = le64_to_cpu(re->hi);
579 return 0;
582 static inline bool vtd_ce_present(VTDContextEntry *context)
584 return context->lo & VTD_CONTEXT_ENTRY_P;
587 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
588 VTDRootEntry *re,
589 uint8_t index,
590 VTDContextEntry *ce)
592 dma_addr_t addr, ce_size;
594 /* we have checked that root entry is present */
595 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
596 VTD_CTX_ENTRY_LEGACY_SIZE;
598 if (s->root_scalable && index > UINT8_MAX / 2) {
599 index = index & (~VTD_DEVFN_CHECK_MASK);
600 addr = re->hi & VTD_ROOT_ENTRY_CTP;
601 } else {
602 addr = re->lo & VTD_ROOT_ENTRY_CTP;
605 addr = addr + index * ce_size;
606 if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
607 return -VTD_FR_CONTEXT_TABLE_INV;
610 ce->lo = le64_to_cpu(ce->lo);
611 ce->hi = le64_to_cpu(ce->hi);
612 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
613 ce->val[2] = le64_to_cpu(ce->val[2]);
614 ce->val[3] = le64_to_cpu(ce->val[3]);
616 return 0;
619 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
621 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
624 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
626 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
629 /* Whether the pte indicates the address of the page frame */
630 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
632 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
635 /* Get the content of a spte located in @base_addr[@index] */
636 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
638 uint64_t slpte;
640 assert(index < VTD_SL_PT_ENTRY_NR);
642 if (dma_memory_read(&address_space_memory,
643 base_addr + index * sizeof(slpte), &slpte,
644 sizeof(slpte))) {
645 slpte = (uint64_t)-1;
646 return slpte;
648 slpte = le64_to_cpu(slpte);
649 return slpte;
652 /* Given an iova and the level of paging structure, return the offset
653 * of current level.
655 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
657 return (iova >> vtd_slpt_level_shift(level)) &
658 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
661 /* Check Capability Register to see if the @level of page-table is supported */
662 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
664 return VTD_CAP_SAGAW_MASK & s->cap &
665 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
668 /* Return true if check passed, otherwise false */
669 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
670 VTDPASIDEntry *pe)
672 switch (VTD_PE_GET_TYPE(pe)) {
673 case VTD_SM_PASID_ENTRY_FLT:
674 case VTD_SM_PASID_ENTRY_SLT:
675 case VTD_SM_PASID_ENTRY_NESTED:
676 break;
677 case VTD_SM_PASID_ENTRY_PT:
678 if (!x86_iommu->pt_supported) {
679 return false;
681 break;
682 default:
683 /* Unknwon type */
684 return false;
686 return true;
689 static int vtd_get_pasid_dire(dma_addr_t pasid_dir_base,
690 uint32_t pasid,
691 VTDPASIDDirEntry *pdire)
693 uint32_t index;
694 dma_addr_t addr, entry_size;
696 index = VTD_PASID_DIR_INDEX(pasid);
697 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
698 addr = pasid_dir_base + index * entry_size;
699 if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
700 return -VTD_FR_PASID_TABLE_INV;
703 return 0;
706 static int vtd_get_pasid_entry(IntelIOMMUState *s,
707 uint32_t pasid,
708 VTDPASIDDirEntry *pdire,
709 VTDPASIDEntry *pe)
711 uint32_t index;
712 dma_addr_t addr, entry_size;
713 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
715 index = VTD_PASID_TABLE_INDEX(pasid);
716 entry_size = VTD_PASID_ENTRY_SIZE;
717 addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
718 addr = addr + index * entry_size;
719 if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
720 return -VTD_FR_PASID_TABLE_INV;
723 /* Do translation type check */
724 if (!vtd_pe_type_check(x86_iommu, pe)) {
725 return -VTD_FR_PASID_TABLE_INV;
728 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
729 return -VTD_FR_PASID_TABLE_INV;
732 return 0;
735 static int vtd_get_pasid_entry_from_pasid(IntelIOMMUState *s,
736 dma_addr_t pasid_dir_base,
737 uint32_t pasid,
738 VTDPASIDEntry *pe)
740 int ret;
741 VTDPASIDDirEntry pdire;
743 ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
744 if (ret) {
745 return ret;
748 ret = vtd_get_pasid_entry(s, pasid, &pdire, pe);
749 if (ret) {
750 return ret;
753 return ret;
756 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
757 VTDContextEntry *ce,
758 VTDPASIDEntry *pe)
760 uint32_t pasid;
761 dma_addr_t pasid_dir_base;
762 int ret = 0;
764 pasid = VTD_CE_GET_RID2PASID(ce);
765 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
766 ret = vtd_get_pasid_entry_from_pasid(s, pasid_dir_base, pasid, pe);
768 return ret;
771 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
772 VTDContextEntry *ce,
773 bool *pe_fpd_set)
775 int ret;
776 uint32_t pasid;
777 dma_addr_t pasid_dir_base;
778 VTDPASIDDirEntry pdire;
779 VTDPASIDEntry pe;
781 pasid = VTD_CE_GET_RID2PASID(ce);
782 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
784 ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
785 if (ret) {
786 return ret;
789 if (pdire.val & VTD_PASID_DIR_FPD) {
790 *pe_fpd_set = true;
791 return 0;
794 ret = vtd_get_pasid_entry(s, pasid, &pdire, &pe);
795 if (ret) {
796 return ret;
799 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
800 *pe_fpd_set = true;
803 return 0;
806 /* Get the page-table level that hardware should use for the second-level
807 * page-table walk from the Address Width field of context-entry.
809 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
811 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
814 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
815 VTDContextEntry *ce)
817 VTDPASIDEntry pe;
819 if (s->root_scalable) {
820 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
821 return VTD_PE_GET_LEVEL(&pe);
824 return vtd_ce_get_level(ce);
827 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
829 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
832 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
833 VTDContextEntry *ce)
835 VTDPASIDEntry pe;
837 if (s->root_scalable) {
838 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
839 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
842 return vtd_ce_get_agaw(ce);
845 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
847 return ce->lo & VTD_CONTEXT_ENTRY_TT;
850 /* Only for Legacy Mode. Return true if check passed, otherwise false */
851 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
852 VTDContextEntry *ce)
854 switch (vtd_ce_get_type(ce)) {
855 case VTD_CONTEXT_TT_MULTI_LEVEL:
856 /* Always supported */
857 break;
858 case VTD_CONTEXT_TT_DEV_IOTLB:
859 if (!x86_iommu->dt_supported) {
860 error_report_once("%s: DT specified but not supported", __func__);
861 return false;
863 break;
864 case VTD_CONTEXT_TT_PASS_THROUGH:
865 if (!x86_iommu->pt_supported) {
866 error_report_once("%s: PT specified but not supported", __func__);
867 return false;
869 break;
870 default:
871 /* Unknown type */
872 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
873 vtd_ce_get_type(ce));
874 return false;
876 return true;
879 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
880 VTDContextEntry *ce, uint8_t aw)
882 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
883 return 1ULL << MIN(ce_agaw, aw);
886 /* Return true if IOVA passes range check, otherwise false. */
887 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
888 uint64_t iova, VTDContextEntry *ce,
889 uint8_t aw)
892 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
893 * in CAP_REG and AW in context-entry.
895 return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
898 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
899 VTDContextEntry *ce)
901 VTDPASIDEntry pe;
903 if (s->root_scalable) {
904 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
905 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
908 return vtd_ce_get_slpt_base(ce);
912 * Rsvd field masks for spte:
913 * vtd_spte_rsvd 4k pages
914 * vtd_spte_rsvd_large large pages
916 static uint64_t vtd_spte_rsvd[5];
917 static uint64_t vtd_spte_rsvd_large[5];
919 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
921 uint64_t rsvd_mask = vtd_spte_rsvd[level];
923 if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
924 (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
925 /* large page */
926 rsvd_mask = vtd_spte_rsvd_large[level];
929 return slpte & rsvd_mask;
932 /* Find the VTD address space associated with a given bus number */
933 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
935 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
936 if (!vtd_bus) {
938 * Iterate over the registered buses to find the one which
939 * currently hold this bus number, and update the bus_num
940 * lookup table:
942 GHashTableIter iter;
944 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
945 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
946 if (pci_bus_num(vtd_bus->bus) == bus_num) {
947 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
948 return vtd_bus;
952 return vtd_bus;
955 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
956 * of the translation, can be used for deciding the size of large page.
958 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
959 uint64_t iova, bool is_write,
960 uint64_t *slptep, uint32_t *slpte_level,
961 bool *reads, bool *writes, uint8_t aw_bits)
963 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
964 uint32_t level = vtd_get_iova_level(s, ce);
965 uint32_t offset;
966 uint64_t slpte;
967 uint64_t access_right_check;
969 if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
970 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
971 __func__, iova);
972 return -VTD_FR_ADDR_BEYOND_MGAW;
975 /* FIXME: what is the Atomics request here? */
976 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
978 while (true) {
979 offset = vtd_iova_level_offset(iova, level);
980 slpte = vtd_get_slpte(addr, offset);
982 if (slpte == (uint64_t)-1) {
983 error_report_once("%s: detected read error on DMAR slpte "
984 "(iova=0x%" PRIx64 ")", __func__, iova);
985 if (level == vtd_get_iova_level(s, ce)) {
986 /* Invalid programming of context-entry */
987 return -VTD_FR_CONTEXT_ENTRY_INV;
988 } else {
989 return -VTD_FR_PAGING_ENTRY_INV;
992 *reads = (*reads) && (slpte & VTD_SL_R);
993 *writes = (*writes) && (slpte & VTD_SL_W);
994 if (!(slpte & access_right_check)) {
995 error_report_once("%s: detected slpte permission error "
996 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
997 "slpte=0x%" PRIx64 ", write=%d)", __func__,
998 iova, level, slpte, is_write);
999 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1001 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1002 error_report_once("%s: detected splte reserve non-zero "
1003 "iova=0x%" PRIx64 ", level=0x%" PRIx32
1004 "slpte=0x%" PRIx64 ")", __func__, iova,
1005 level, slpte);
1006 return -VTD_FR_PAGING_ENTRY_RSVD;
1009 if (vtd_is_last_slpte(slpte, level)) {
1010 *slptep = slpte;
1011 *slpte_level = level;
1012 return 0;
1014 addr = vtd_get_slpte_addr(slpte, aw_bits);
1015 level--;
1019 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
1022 * Constant information used during page walking
1024 * @hook_fn: hook func to be called when detected page
1025 * @private: private data to be passed into hook func
1026 * @notify_unmap: whether we should notify invalid entries
1027 * @as: VT-d address space of the device
1028 * @aw: maximum address width
1029 * @domain: domain ID of the page walk
1031 typedef struct {
1032 VTDAddressSpace *as;
1033 vtd_page_walk_hook hook_fn;
1034 void *private;
1035 bool notify_unmap;
1036 uint8_t aw;
1037 uint16_t domain_id;
1038 } vtd_page_walk_info;
1040 static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
1042 VTDAddressSpace *as = info->as;
1043 vtd_page_walk_hook hook_fn = info->hook_fn;
1044 void *private = info->private;
1045 DMAMap target = {
1046 .iova = entry->iova,
1047 .size = entry->addr_mask,
1048 .translated_addr = entry->translated_addr,
1049 .perm = entry->perm,
1051 DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1053 if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
1054 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1055 return 0;
1058 assert(hook_fn);
1060 /* Update local IOVA mapped ranges */
1061 if (entry->perm) {
1062 if (mapped) {
1063 /* If it's exactly the same translation, skip */
1064 if (!memcmp(mapped, &target, sizeof(target))) {
1065 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1066 entry->translated_addr);
1067 return 0;
1068 } else {
1070 * Translation changed. Normally this should not
1071 * happen, but it can happen when with buggy guest
1072 * OSes. Note that there will be a small window that
1073 * we don't have map at all. But that's the best
1074 * effort we can do. The ideal way to emulate this is
1075 * atomically modify the PTE to follow what has
1076 * changed, but we can't. One example is that vfio
1077 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1078 * interface to modify a mapping (meanwhile it seems
1079 * meaningless to even provide one). Anyway, let's
1080 * mark this as a TODO in case one day we'll have
1081 * a better solution.
1083 IOMMUAccessFlags cache_perm = entry->perm;
1084 int ret;
1086 /* Emulate an UNMAP */
1087 entry->perm = IOMMU_NONE;
1088 trace_vtd_page_walk_one(info->domain_id,
1089 entry->iova,
1090 entry->translated_addr,
1091 entry->addr_mask,
1092 entry->perm);
1093 ret = hook_fn(entry, private);
1094 if (ret) {
1095 return ret;
1097 /* Drop any existing mapping */
1098 iova_tree_remove(as->iova_tree, &target);
1099 /* Recover the correct permission */
1100 entry->perm = cache_perm;
1103 iova_tree_insert(as->iova_tree, &target);
1104 } else {
1105 if (!mapped) {
1106 /* Skip since we didn't map this range at all */
1107 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1108 return 0;
1110 iova_tree_remove(as->iova_tree, &target);
1113 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1114 entry->translated_addr, entry->addr_mask,
1115 entry->perm);
1116 return hook_fn(entry, private);
1120 * vtd_page_walk_level - walk over specific level for IOVA range
1122 * @addr: base GPA addr to start the walk
1123 * @start: IOVA range start address
1124 * @end: IOVA range end address (start <= addr < end)
1125 * @read: whether parent level has read permission
1126 * @write: whether parent level has write permission
1127 * @info: constant information for the page walk
1129 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1130 uint64_t end, uint32_t level, bool read,
1131 bool write, vtd_page_walk_info *info)
1133 bool read_cur, write_cur, entry_valid;
1134 uint32_t offset;
1135 uint64_t slpte;
1136 uint64_t subpage_size, subpage_mask;
1137 IOMMUTLBEntry entry;
1138 uint64_t iova = start;
1139 uint64_t iova_next;
1140 int ret = 0;
1142 trace_vtd_page_walk_level(addr, level, start, end);
1144 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1145 subpage_mask = vtd_slpt_level_page_mask(level);
1147 while (iova < end) {
1148 iova_next = (iova & subpage_mask) + subpage_size;
1150 offset = vtd_iova_level_offset(iova, level);
1151 slpte = vtd_get_slpte(addr, offset);
1153 if (slpte == (uint64_t)-1) {
1154 trace_vtd_page_walk_skip_read(iova, iova_next);
1155 goto next;
1158 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1159 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1160 goto next;
1163 /* Permissions are stacked with parents' */
1164 read_cur = read && (slpte & VTD_SL_R);
1165 write_cur = write && (slpte & VTD_SL_W);
1168 * As long as we have either read/write permission, this is a
1169 * valid entry. The rule works for both page entries and page
1170 * table entries.
1172 entry_valid = read_cur | write_cur;
1174 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1176 * This is a valid PDE (or even bigger than PDE). We need
1177 * to walk one further level.
1179 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1180 iova, MIN(iova_next, end), level - 1,
1181 read_cur, write_cur, info);
1182 } else {
1184 * This means we are either:
1186 * (1) the real page entry (either 4K page, or huge page)
1187 * (2) the whole range is invalid
1189 * In either case, we send an IOTLB notification down.
1191 entry.target_as = &address_space_memory;
1192 entry.iova = iova & subpage_mask;
1193 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1194 entry.addr_mask = ~subpage_mask;
1195 /* NOTE: this is only meaningful if entry_valid == true */
1196 entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1197 ret = vtd_page_walk_one(&entry, info);
1200 if (ret < 0) {
1201 return ret;
1204 next:
1205 iova = iova_next;
1208 return 0;
1212 * vtd_page_walk - walk specific IOVA range, and call the hook
1214 * @s: intel iommu state
1215 * @ce: context entry to walk upon
1216 * @start: IOVA address to start the walk
1217 * @end: IOVA range end address (start <= addr < end)
1218 * @info: page walking information struct
1220 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1221 uint64_t start, uint64_t end,
1222 vtd_page_walk_info *info)
1224 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1225 uint32_t level = vtd_get_iova_level(s, ce);
1227 if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1228 return -VTD_FR_ADDR_BEYOND_MGAW;
1231 if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1232 /* Fix end so that it reaches the maximum */
1233 end = vtd_iova_limit(s, ce, info->aw);
1236 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1239 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1240 VTDRootEntry *re)
1242 /* Legacy Mode reserved bits check */
1243 if (!s->root_scalable &&
1244 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1245 goto rsvd_err;
1247 /* Scalable Mode reserved bits check */
1248 if (s->root_scalable &&
1249 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1250 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1251 goto rsvd_err;
1253 return 0;
1255 rsvd_err:
1256 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1257 ", lo=0x%"PRIx64,
1258 __func__, re->hi, re->lo);
1259 return -VTD_FR_ROOT_ENTRY_RSVD;
1262 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1263 VTDContextEntry *ce)
1265 if (!s->root_scalable &&
1266 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1267 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1268 error_report_once("%s: invalid context entry: hi=%"PRIx64
1269 ", lo=%"PRIx64" (reserved nonzero)",
1270 __func__, ce->hi, ce->lo);
1271 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1274 if (s->root_scalable &&
1275 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1276 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1277 ce->val[2] ||
1278 ce->val[3])) {
1279 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1280 ", val[2]=%"PRIx64
1281 ", val[1]=%"PRIx64
1282 ", val[0]=%"PRIx64" (reserved nonzero)",
1283 __func__, ce->val[3], ce->val[2],
1284 ce->val[1], ce->val[0]);
1285 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1288 return 0;
1291 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1292 VTDContextEntry *ce)
1294 VTDPASIDEntry pe;
1297 * Make sure in Scalable Mode, a present context entry
1298 * has valid rid2pasid setting, which includes valid
1299 * rid2pasid field and corresponding pasid entry setting
1301 return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1304 /* Map a device to its corresponding domain (context-entry) */
1305 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1306 uint8_t devfn, VTDContextEntry *ce)
1308 VTDRootEntry re;
1309 int ret_fr;
1310 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1312 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1313 if (ret_fr) {
1314 return ret_fr;
1317 if (!vtd_root_entry_present(s, &re, devfn)) {
1318 /* Not error - it's okay we don't have root entry. */
1319 trace_vtd_re_not_present(bus_num);
1320 return -VTD_FR_ROOT_ENTRY_P;
1323 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1324 if (ret_fr) {
1325 return ret_fr;
1328 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1329 if (ret_fr) {
1330 return ret_fr;
1333 if (!vtd_ce_present(ce)) {
1334 /* Not error - it's okay we don't have context entry. */
1335 trace_vtd_ce_not_present(bus_num, devfn);
1336 return -VTD_FR_CONTEXT_ENTRY_P;
1339 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1340 if (ret_fr) {
1341 return ret_fr;
1344 /* Check if the programming of context-entry is valid */
1345 if (!s->root_scalable &&
1346 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1347 error_report_once("%s: invalid context entry: hi=%"PRIx64
1348 ", lo=%"PRIx64" (level %d not supported)",
1349 __func__, ce->hi, ce->lo,
1350 vtd_ce_get_level(ce));
1351 return -VTD_FR_CONTEXT_ENTRY_INV;
1354 if (!s->root_scalable) {
1355 /* Do translation type check */
1356 if (!vtd_ce_type_check(x86_iommu, ce)) {
1357 /* Errors dumped in vtd_ce_type_check() */
1358 return -VTD_FR_CONTEXT_ENTRY_INV;
1360 } else {
1362 * Check if the programming of context-entry.rid2pasid
1363 * and corresponding pasid setting is valid, and thus
1364 * avoids to check pasid entry fetching result in future
1365 * helper function calling.
1367 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1368 if (ret_fr) {
1369 return ret_fr;
1373 return 0;
1376 static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1377 void *private)
1379 memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
1380 return 0;
1383 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1384 VTDContextEntry *ce)
1386 VTDPASIDEntry pe;
1388 if (s->root_scalable) {
1389 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1390 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1393 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1396 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1397 VTDContextEntry *ce,
1398 hwaddr addr, hwaddr size)
1400 IntelIOMMUState *s = vtd_as->iommu_state;
1401 vtd_page_walk_info info = {
1402 .hook_fn = vtd_sync_shadow_page_hook,
1403 .private = (void *)&vtd_as->iommu,
1404 .notify_unmap = true,
1405 .aw = s->aw_bits,
1406 .as = vtd_as,
1407 .domain_id = vtd_get_domain_id(s, ce),
1410 return vtd_page_walk(s, ce, addr, addr + size, &info);
1413 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1415 int ret;
1416 VTDContextEntry ce;
1417 IOMMUNotifier *n;
1419 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1420 pci_bus_num(vtd_as->bus),
1421 vtd_as->devfn, &ce);
1422 if (ret) {
1423 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1425 * It's a valid scenario to have a context entry that is
1426 * not present. For example, when a device is removed
1427 * from an existing domain then the context entry will be
1428 * zeroed by the guest before it was put into another
1429 * domain. When this happens, instead of synchronizing
1430 * the shadow pages we should invalidate all existing
1431 * mappings and notify the backends.
1433 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1434 vtd_address_space_unmap(vtd_as, n);
1436 ret = 0;
1438 return ret;
1441 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1445 * Check if specific device is configed to bypass address
1446 * translation for DMA requests. In Scalable Mode, bypass
1447 * 1st-level translation or 2nd-level translation, it depends
1448 * on PGTT setting.
1450 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1452 IntelIOMMUState *s;
1453 VTDContextEntry ce;
1454 VTDPASIDEntry pe;
1455 int ret;
1457 assert(as);
1459 s = as->iommu_state;
1460 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1461 as->devfn, &ce);
1462 if (ret) {
1464 * Possibly failed to parse the context entry for some reason
1465 * (e.g., during init, or any guest configuration errors on
1466 * context entries). We should assume PT not enabled for
1467 * safety.
1469 return false;
1472 if (s->root_scalable) {
1473 ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1474 if (ret) {
1475 error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1476 __func__, ret);
1477 return false;
1479 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1482 return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1485 /* Return whether the device is using IOMMU translation. */
1486 static bool vtd_switch_address_space(VTDAddressSpace *as)
1488 bool use_iommu;
1489 /* Whether we need to take the BQL on our own */
1490 bool take_bql = !qemu_mutex_iothread_locked();
1492 assert(as);
1494 use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
1496 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1497 VTD_PCI_SLOT(as->devfn),
1498 VTD_PCI_FUNC(as->devfn),
1499 use_iommu);
1502 * It's possible that we reach here without BQL, e.g., when called
1503 * from vtd_pt_enable_fast_path(). However the memory APIs need
1504 * it. We'd better make sure we have had it already, or, take it.
1506 if (take_bql) {
1507 qemu_mutex_lock_iothread();
1510 /* Turn off first then on the other */
1511 if (use_iommu) {
1512 memory_region_set_enabled(&as->nodmar, false);
1513 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1514 } else {
1515 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1516 memory_region_set_enabled(&as->nodmar, true);
1519 if (take_bql) {
1520 qemu_mutex_unlock_iothread();
1523 return use_iommu;
1526 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1528 GHashTableIter iter;
1529 VTDBus *vtd_bus;
1530 int i;
1532 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1533 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1534 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1535 if (!vtd_bus->dev_as[i]) {
1536 continue;
1538 vtd_switch_address_space(vtd_bus->dev_as[i]);
1543 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1545 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1548 static const bool vtd_qualified_faults[] = {
1549 [VTD_FR_RESERVED] = false,
1550 [VTD_FR_ROOT_ENTRY_P] = false,
1551 [VTD_FR_CONTEXT_ENTRY_P] = true,
1552 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1553 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1554 [VTD_FR_WRITE] = true,
1555 [VTD_FR_READ] = true,
1556 [VTD_FR_PAGING_ENTRY_INV] = true,
1557 [VTD_FR_ROOT_TABLE_INV] = false,
1558 [VTD_FR_CONTEXT_TABLE_INV] = false,
1559 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1560 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1561 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1562 [VTD_FR_PASID_TABLE_INV] = false,
1563 [VTD_FR_RESERVED_ERR] = false,
1564 [VTD_FR_MAX] = false,
1567 /* To see if a fault condition is "qualified", which is reported to software
1568 * only if the FPD field in the context-entry used to process the faulting
1569 * request is 0.
1571 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1573 return vtd_qualified_faults[fault];
1576 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1578 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1581 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1583 VTDBus *vtd_bus;
1584 VTDAddressSpace *vtd_as;
1585 bool success = false;
1587 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1588 if (!vtd_bus) {
1589 goto out;
1592 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1593 if (!vtd_as) {
1594 goto out;
1597 if (vtd_switch_address_space(vtd_as) == false) {
1598 /* We switched off IOMMU region successfully. */
1599 success = true;
1602 out:
1603 trace_vtd_pt_enable_fast_path(source_id, success);
1606 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1607 * translation.
1609 * Called from RCU critical section.
1611 * @bus_num: The bus number
1612 * @devfn: The devfn, which is the combined of device and function number
1613 * @is_write: The access is a write operation
1614 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1616 * Returns true if translation is successful, otherwise false.
1618 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1619 uint8_t devfn, hwaddr addr, bool is_write,
1620 IOMMUTLBEntry *entry)
1622 IntelIOMMUState *s = vtd_as->iommu_state;
1623 VTDContextEntry ce;
1624 uint8_t bus_num = pci_bus_num(bus);
1625 VTDContextCacheEntry *cc_entry;
1626 uint64_t slpte, page_mask;
1627 uint32_t level;
1628 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1629 int ret_fr;
1630 bool is_fpd_set = false;
1631 bool reads = true;
1632 bool writes = true;
1633 uint8_t access_flags;
1634 VTDIOTLBEntry *iotlb_entry;
1637 * We have standalone memory region for interrupt addresses, we
1638 * should never receive translation requests in this region.
1640 assert(!vtd_is_interrupt_addr(addr));
1642 vtd_iommu_lock(s);
1644 cc_entry = &vtd_as->context_cache_entry;
1646 /* Try to fetch slpte form IOTLB */
1647 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1648 if (iotlb_entry) {
1649 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1650 iotlb_entry->domain_id);
1651 slpte = iotlb_entry->slpte;
1652 access_flags = iotlb_entry->access_flags;
1653 page_mask = iotlb_entry->mask;
1654 goto out;
1657 /* Try to fetch context-entry from cache first */
1658 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1659 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1660 cc_entry->context_entry.lo,
1661 cc_entry->context_cache_gen);
1662 ce = cc_entry->context_entry;
1663 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1664 if (!is_fpd_set && s->root_scalable) {
1665 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1666 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1668 } else {
1669 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1670 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1671 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1672 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1674 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1675 /* Update context-cache */
1676 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1677 cc_entry->context_cache_gen,
1678 s->context_cache_gen);
1679 cc_entry->context_entry = ce;
1680 cc_entry->context_cache_gen = s->context_cache_gen;
1684 * We don't need to translate for pass-through context entries.
1685 * Also, let's ignore IOTLB caching as well for PT devices.
1687 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1688 entry->iova = addr & VTD_PAGE_MASK_4K;
1689 entry->translated_addr = entry->iova;
1690 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1691 entry->perm = IOMMU_RW;
1692 trace_vtd_translate_pt(source_id, entry->iova);
1695 * When this happens, it means firstly caching-mode is not
1696 * enabled, and this is the first passthrough translation for
1697 * the device. Let's enable the fast path for passthrough.
1699 * When passthrough is disabled again for the device, we can
1700 * capture it via the context entry invalidation, then the
1701 * IOMMU region can be swapped back.
1703 vtd_pt_enable_fast_path(s, source_id);
1704 vtd_iommu_unlock(s);
1705 return true;
1708 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1709 &reads, &writes, s->aw_bits);
1710 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1712 page_mask = vtd_slpt_level_page_mask(level);
1713 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1714 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1715 access_flags, level);
1716 out:
1717 vtd_iommu_unlock(s);
1718 entry->iova = addr & page_mask;
1719 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1720 entry->addr_mask = ~page_mask;
1721 entry->perm = access_flags;
1722 return true;
1724 error:
1725 vtd_iommu_unlock(s);
1726 entry->iova = 0;
1727 entry->translated_addr = 0;
1728 entry->addr_mask = 0;
1729 entry->perm = IOMMU_NONE;
1730 return false;
1733 static void vtd_root_table_setup(IntelIOMMUState *s)
1735 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1736 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1738 vtd_update_scalable_state(s);
1740 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1743 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1744 uint32_t index, uint32_t mask)
1746 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1749 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1751 uint64_t value = 0;
1752 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1753 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1754 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1755 s->intr_eime = value & VTD_IRTA_EIME;
1757 /* Notify global invalidation */
1758 vtd_iec_notify_all(s, true, 0, 0);
1760 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1763 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1765 VTDAddressSpace *vtd_as;
1767 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1768 vtd_sync_shadow_page_table(vtd_as);
1772 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1774 trace_vtd_inv_desc_cc_global();
1775 /* Protects context cache */
1776 vtd_iommu_lock(s);
1777 s->context_cache_gen++;
1778 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1779 vtd_reset_context_cache_locked(s);
1781 vtd_iommu_unlock(s);
1782 vtd_address_space_refresh_all(s);
1784 * From VT-d spec 6.5.2.1, a global context entry invalidation
1785 * should be followed by a IOTLB global invalidation, so we should
1786 * be safe even without this. Hoewever, let's replay the region as
1787 * well to be safer, and go back here when we need finer tunes for
1788 * VT-d emulation codes.
1790 vtd_iommu_replay_all(s);
1793 /* Do a context-cache device-selective invalidation.
1794 * @func_mask: FM field after shifting
1796 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1797 uint16_t source_id,
1798 uint16_t func_mask)
1800 uint16_t mask;
1801 VTDBus *vtd_bus;
1802 VTDAddressSpace *vtd_as;
1803 uint8_t bus_n, devfn;
1804 uint16_t devfn_it;
1806 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1808 switch (func_mask & 3) {
1809 case 0:
1810 mask = 0; /* No bits in the SID field masked */
1811 break;
1812 case 1:
1813 mask = 4; /* Mask bit 2 in the SID field */
1814 break;
1815 case 2:
1816 mask = 6; /* Mask bit 2:1 in the SID field */
1817 break;
1818 case 3:
1819 mask = 7; /* Mask bit 2:0 in the SID field */
1820 break;
1822 mask = ~mask;
1824 bus_n = VTD_SID_TO_BUS(source_id);
1825 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1826 if (vtd_bus) {
1827 devfn = VTD_SID_TO_DEVFN(source_id);
1828 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1829 vtd_as = vtd_bus->dev_as[devfn_it];
1830 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1831 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1832 VTD_PCI_FUNC(devfn_it));
1833 vtd_iommu_lock(s);
1834 vtd_as->context_cache_entry.context_cache_gen = 0;
1835 vtd_iommu_unlock(s);
1837 * Do switch address space when needed, in case if the
1838 * device passthrough bit is switched.
1840 vtd_switch_address_space(vtd_as);
1842 * So a device is moving out of (or moving into) a
1843 * domain, resync the shadow page table.
1844 * This won't bring bad even if we have no such
1845 * notifier registered - the IOMMU notification
1846 * framework will skip MAP notifications if that
1847 * happened.
1849 vtd_sync_shadow_page_table(vtd_as);
1855 /* Context-cache invalidation
1856 * Returns the Context Actual Invalidation Granularity.
1857 * @val: the content of the CCMD_REG
1859 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1861 uint64_t caig;
1862 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1864 switch (type) {
1865 case VTD_CCMD_DOMAIN_INVL:
1866 /* Fall through */
1867 case VTD_CCMD_GLOBAL_INVL:
1868 caig = VTD_CCMD_GLOBAL_INVL_A;
1869 vtd_context_global_invalidate(s);
1870 break;
1872 case VTD_CCMD_DEVICE_INVL:
1873 caig = VTD_CCMD_DEVICE_INVL_A;
1874 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1875 break;
1877 default:
1878 error_report_once("%s: invalid context: 0x%" PRIx64,
1879 __func__, val);
1880 caig = 0;
1882 return caig;
1885 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1887 trace_vtd_inv_desc_iotlb_global();
1888 vtd_reset_iotlb(s);
1889 vtd_iommu_replay_all(s);
1892 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1894 VTDContextEntry ce;
1895 VTDAddressSpace *vtd_as;
1897 trace_vtd_inv_desc_iotlb_domain(domain_id);
1899 vtd_iommu_lock(s);
1900 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1901 &domain_id);
1902 vtd_iommu_unlock(s);
1904 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1905 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1906 vtd_as->devfn, &ce) &&
1907 domain_id == vtd_get_domain_id(s, &ce)) {
1908 vtd_sync_shadow_page_table(vtd_as);
1913 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1914 uint16_t domain_id, hwaddr addr,
1915 uint8_t am)
1917 VTDAddressSpace *vtd_as;
1918 VTDContextEntry ce;
1919 int ret;
1920 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1922 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1923 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1924 vtd_as->devfn, &ce);
1925 if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
1926 if (vtd_as_has_map_notifier(vtd_as)) {
1928 * As long as we have MAP notifications registered in
1929 * any of our IOMMU notifiers, we need to sync the
1930 * shadow page table.
1932 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1933 } else {
1935 * For UNMAP-only notifiers, we don't need to walk the
1936 * page tables. We just deliver the PSI down to
1937 * invalidate caches.
1939 IOMMUTLBEntry entry = {
1940 .target_as = &address_space_memory,
1941 .iova = addr,
1942 .translated_addr = 0,
1943 .addr_mask = size - 1,
1944 .perm = IOMMU_NONE,
1946 memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
1952 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1953 hwaddr addr, uint8_t am)
1955 VTDIOTLBPageInvInfo info;
1957 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1959 assert(am <= VTD_MAMV);
1960 info.domain_id = domain_id;
1961 info.addr = addr;
1962 info.mask = ~((1 << am) - 1);
1963 vtd_iommu_lock(s);
1964 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1965 vtd_iommu_unlock(s);
1966 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1969 /* Flush IOTLB
1970 * Returns the IOTLB Actual Invalidation Granularity.
1971 * @val: the content of the IOTLB_REG
1973 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1975 uint64_t iaig;
1976 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1977 uint16_t domain_id;
1978 hwaddr addr;
1979 uint8_t am;
1981 switch (type) {
1982 case VTD_TLB_GLOBAL_FLUSH:
1983 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1984 vtd_iotlb_global_invalidate(s);
1985 break;
1987 case VTD_TLB_DSI_FLUSH:
1988 domain_id = VTD_TLB_DID(val);
1989 iaig = VTD_TLB_DSI_FLUSH_A;
1990 vtd_iotlb_domain_invalidate(s, domain_id);
1991 break;
1993 case VTD_TLB_PSI_FLUSH:
1994 domain_id = VTD_TLB_DID(val);
1995 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1996 am = VTD_IVA_AM(addr);
1997 addr = VTD_IVA_ADDR(addr);
1998 if (am > VTD_MAMV) {
1999 error_report_once("%s: address mask overflow: 0x%" PRIx64,
2000 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2001 iaig = 0;
2002 break;
2004 iaig = VTD_TLB_PSI_FLUSH_A;
2005 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2006 break;
2008 default:
2009 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2010 __func__, val);
2011 iaig = 0;
2013 return iaig;
2016 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2018 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2020 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2021 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2024 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2026 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2028 trace_vtd_inv_qi_enable(en);
2030 if (en) {
2031 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2032 /* 2^(x+8) entries */
2033 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2034 s->qi_enabled = true;
2035 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2036 /* Ok - report back to driver */
2037 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2039 if (s->iq_tail != 0) {
2041 * This is a spec violation but Windows guests are known to set up
2042 * Queued Invalidation this way so we allow the write and process
2043 * Invalidation Descriptors right away.
2045 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2046 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2047 vtd_fetch_inv_desc(s);
2050 } else {
2051 if (vtd_queued_inv_disable_check(s)) {
2052 /* disable Queued Invalidation */
2053 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2054 s->iq_head = 0;
2055 s->qi_enabled = false;
2056 /* Ok - report back to driver */
2057 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2058 } else {
2059 error_report_once("%s: detected improper state when disable QI "
2060 "(head=0x%x, tail=0x%x, last_type=%d)",
2061 __func__,
2062 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2067 /* Set Root Table Pointer */
2068 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2070 vtd_root_table_setup(s);
2071 /* Ok - report back to driver */
2072 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2073 vtd_reset_caches(s);
2074 vtd_address_space_refresh_all(s);
2077 /* Set Interrupt Remap Table Pointer */
2078 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2080 vtd_interrupt_remap_table_setup(s);
2081 /* Ok - report back to driver */
2082 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2085 /* Handle Translation Enable/Disable */
2086 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2088 if (s->dmar_enabled == en) {
2089 return;
2092 trace_vtd_dmar_enable(en);
2094 if (en) {
2095 s->dmar_enabled = true;
2096 /* Ok - report back to driver */
2097 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2098 } else {
2099 s->dmar_enabled = false;
2101 /* Clear the index of Fault Recording Register */
2102 s->next_frcd_reg = 0;
2103 /* Ok - report back to driver */
2104 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2107 vtd_reset_caches(s);
2108 vtd_address_space_refresh_all(s);
2111 /* Handle Interrupt Remap Enable/Disable */
2112 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2114 trace_vtd_ir_enable(en);
2116 if (en) {
2117 s->intr_enabled = true;
2118 /* Ok - report back to driver */
2119 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2120 } else {
2121 s->intr_enabled = false;
2122 /* Ok - report back to driver */
2123 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2127 /* Handle write to Global Command Register */
2128 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2130 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2131 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2132 uint32_t changed = status ^ val;
2134 trace_vtd_reg_write_gcmd(status, val);
2135 if (changed & VTD_GCMD_TE) {
2136 /* Translation enable/disable */
2137 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2139 if (val & VTD_GCMD_SRTP) {
2140 /* Set/update the root-table pointer */
2141 vtd_handle_gcmd_srtp(s);
2143 if (changed & VTD_GCMD_QIE) {
2144 /* Queued Invalidation Enable */
2145 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2147 if (val & VTD_GCMD_SIRTP) {
2148 /* Set/update the interrupt remapping root-table pointer */
2149 vtd_handle_gcmd_sirtp(s);
2151 if (changed & VTD_GCMD_IRE) {
2152 /* Interrupt remap enable/disable */
2153 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2157 /* Handle write to Context Command Register */
2158 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2160 uint64_t ret;
2161 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2163 /* Context-cache invalidation request */
2164 if (val & VTD_CCMD_ICC) {
2165 if (s->qi_enabled) {
2166 error_report_once("Queued Invalidation enabled, "
2167 "should not use register-based invalidation");
2168 return;
2170 ret = vtd_context_cache_invalidate(s, val);
2171 /* Invalidation completed. Change something to show */
2172 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2173 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2174 ret);
2178 /* Handle write to IOTLB Invalidation Register */
2179 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2181 uint64_t ret;
2182 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2184 /* IOTLB invalidation request */
2185 if (val & VTD_TLB_IVT) {
2186 if (s->qi_enabled) {
2187 error_report_once("Queued Invalidation enabled, "
2188 "should not use register-based invalidation");
2189 return;
2191 ret = vtd_iotlb_flush(s, val);
2192 /* Invalidation completed. Change something to show */
2193 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2194 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2195 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2199 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2200 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2201 VTDInvDesc *inv_desc)
2203 dma_addr_t base_addr = s->iq;
2204 uint32_t offset = s->iq_head;
2205 uint32_t dw = s->iq_dw ? 32 : 16;
2206 dma_addr_t addr = base_addr + offset * dw;
2208 if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2209 error_report_once("Read INV DESC failed.");
2210 return false;
2212 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2213 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2214 if (dw == 32) {
2215 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2216 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2218 return true;
2221 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2223 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2224 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2225 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2226 " (reserved nonzero)", __func__, inv_desc->hi,
2227 inv_desc->lo);
2228 return false;
2230 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2231 /* Status Write */
2232 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2233 VTD_INV_DESC_WAIT_DATA_SHIFT);
2235 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2237 /* FIXME: need to be masked with HAW? */
2238 dma_addr_t status_addr = inv_desc->hi;
2239 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2240 status_data = cpu_to_le32(status_data);
2241 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2242 sizeof(status_data))) {
2243 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2244 return false;
2246 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2247 /* Interrupt flag */
2248 vtd_generate_completion_event(s);
2249 } else {
2250 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2251 " (unknown type)", __func__, inv_desc->hi,
2252 inv_desc->lo);
2253 return false;
2255 return true;
2258 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2259 VTDInvDesc *inv_desc)
2261 uint16_t sid, fmask;
2263 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2264 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2265 " (reserved nonzero)", __func__, inv_desc->hi,
2266 inv_desc->lo);
2267 return false;
2269 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2270 case VTD_INV_DESC_CC_DOMAIN:
2271 trace_vtd_inv_desc_cc_domain(
2272 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2273 /* Fall through */
2274 case VTD_INV_DESC_CC_GLOBAL:
2275 vtd_context_global_invalidate(s);
2276 break;
2278 case VTD_INV_DESC_CC_DEVICE:
2279 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2280 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2281 vtd_context_device_invalidate(s, sid, fmask);
2282 break;
2284 default:
2285 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2286 " (invalid type)", __func__, inv_desc->hi,
2287 inv_desc->lo);
2288 return false;
2290 return true;
2293 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2295 uint16_t domain_id;
2296 uint8_t am;
2297 hwaddr addr;
2299 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2300 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2301 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2302 ", lo=0x%"PRIx64" (reserved bits unzero)\n",
2303 __func__, inv_desc->hi, inv_desc->lo);
2304 return false;
2307 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2308 case VTD_INV_DESC_IOTLB_GLOBAL:
2309 vtd_iotlb_global_invalidate(s);
2310 break;
2312 case VTD_INV_DESC_IOTLB_DOMAIN:
2313 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2314 vtd_iotlb_domain_invalidate(s, domain_id);
2315 break;
2317 case VTD_INV_DESC_IOTLB_PAGE:
2318 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2319 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2320 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2321 if (am > VTD_MAMV) {
2322 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2323 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n",
2324 __func__, inv_desc->hi, inv_desc->lo,
2325 am, (unsigned)VTD_MAMV);
2326 return false;
2328 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2329 break;
2331 default:
2332 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2333 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n",
2334 __func__, inv_desc->hi, inv_desc->lo,
2335 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2336 return false;
2338 return true;
2341 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2342 VTDInvDesc *inv_desc)
2344 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2345 inv_desc->iec.index,
2346 inv_desc->iec.index_mask);
2348 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2349 inv_desc->iec.index,
2350 inv_desc->iec.index_mask);
2351 return true;
2354 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2355 VTDInvDesc *inv_desc)
2357 VTDAddressSpace *vtd_dev_as;
2358 IOMMUTLBEntry entry;
2359 struct VTDBus *vtd_bus;
2360 hwaddr addr;
2361 uint64_t sz;
2362 uint16_t sid;
2363 uint8_t devfn;
2364 bool size;
2365 uint8_t bus_num;
2367 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2368 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2369 devfn = sid & 0xff;
2370 bus_num = sid >> 8;
2371 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2373 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2374 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2375 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2376 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2377 inv_desc->hi, inv_desc->lo);
2378 return false;
2381 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2382 if (!vtd_bus) {
2383 goto done;
2386 vtd_dev_as = vtd_bus->dev_as[devfn];
2387 if (!vtd_dev_as) {
2388 goto done;
2391 /* According to ATS spec table 2.4:
2392 * S = 0, bits 15:12 = xxxx range size: 4K
2393 * S = 1, bits 15:12 = xxx0 range size: 8K
2394 * S = 1, bits 15:12 = xx01 range size: 16K
2395 * S = 1, bits 15:12 = x011 range size: 32K
2396 * S = 1, bits 15:12 = 0111 range size: 64K
2397 * ...
2399 if (size) {
2400 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2401 addr &= ~(sz - 1);
2402 } else {
2403 sz = VTD_PAGE_SIZE;
2406 entry.target_as = &vtd_dev_as->as;
2407 entry.addr_mask = sz - 1;
2408 entry.iova = addr;
2409 entry.perm = IOMMU_NONE;
2410 entry.translated_addr = 0;
2411 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
2413 done:
2414 return true;
2417 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2419 VTDInvDesc inv_desc;
2420 uint8_t desc_type;
2422 trace_vtd_inv_qi_head(s->iq_head);
2423 if (!vtd_get_inv_desc(s, &inv_desc)) {
2424 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2425 return false;
2428 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2429 /* FIXME: should update at first or at last? */
2430 s->iq_last_desc_type = desc_type;
2432 switch (desc_type) {
2433 case VTD_INV_DESC_CC:
2434 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2435 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2436 return false;
2438 break;
2440 case VTD_INV_DESC_IOTLB:
2441 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2442 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2443 return false;
2445 break;
2448 * TODO: the entity of below two cases will be implemented in future series.
2449 * To make guest (which integrates scalable mode support patch set in
2450 * iommu driver) work, just return true is enough so far.
2452 case VTD_INV_DESC_PC:
2453 break;
2455 case VTD_INV_DESC_PIOTLB:
2456 break;
2458 case VTD_INV_DESC_WAIT:
2459 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2460 if (!vtd_process_wait_desc(s, &inv_desc)) {
2461 return false;
2463 break;
2465 case VTD_INV_DESC_IEC:
2466 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2467 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2468 return false;
2470 break;
2472 case VTD_INV_DESC_DEVICE:
2473 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2474 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2475 return false;
2477 break;
2479 default:
2480 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2481 " (unknown type)", __func__, inv_desc.hi,
2482 inv_desc.lo);
2483 return false;
2485 s->iq_head++;
2486 if (s->iq_head == s->iq_size) {
2487 s->iq_head = 0;
2489 return true;
2492 /* Try to fetch and process more Invalidation Descriptors */
2493 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2495 trace_vtd_inv_qi_fetch();
2497 if (s->iq_tail >= s->iq_size) {
2498 /* Detects an invalid Tail pointer */
2499 error_report_once("%s: detected invalid QI tail "
2500 "(tail=0x%x, size=0x%x)",
2501 __func__, s->iq_tail, s->iq_size);
2502 vtd_handle_inv_queue_error(s);
2503 return;
2505 while (s->iq_head != s->iq_tail) {
2506 if (!vtd_process_inv_desc(s)) {
2507 /* Invalidation Queue Errors */
2508 vtd_handle_inv_queue_error(s);
2509 break;
2511 /* Must update the IQH_REG in time */
2512 vtd_set_quad_raw(s, DMAR_IQH_REG,
2513 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2514 VTD_IQH_QH_MASK);
2518 /* Handle write to Invalidation Queue Tail Register */
2519 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2521 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2523 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2524 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2525 __func__, val);
2526 return;
2528 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2529 trace_vtd_inv_qi_tail(s->iq_tail);
2531 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2532 /* Process Invalidation Queue here */
2533 vtd_fetch_inv_desc(s);
2537 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2539 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2540 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2541 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2543 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2544 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2545 trace_vtd_fsts_clear_ip();
2547 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2548 * Descriptors if there are any when Queued Invalidation is enabled?
2552 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2554 uint32_t fectl_reg;
2555 /* FIXME: when software clears the IM field, check the IP field. But do we
2556 * need to compare the old value and the new value to conclude that
2557 * software clears the IM field? Or just check if the IM field is zero?
2559 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2561 trace_vtd_reg_write_fectl(fectl_reg);
2563 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2564 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2565 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2569 static void vtd_handle_ics_write(IntelIOMMUState *s)
2571 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2572 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2574 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2575 trace_vtd_reg_ics_clear_ip();
2576 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2580 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2582 uint32_t iectl_reg;
2583 /* FIXME: when software clears the IM field, check the IP field. But do we
2584 * need to compare the old value and the new value to conclude that
2585 * software clears the IM field? Or just check if the IM field is zero?
2587 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2589 trace_vtd_reg_write_iectl(iectl_reg);
2591 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2592 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2593 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2597 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2599 IntelIOMMUState *s = opaque;
2600 uint64_t val;
2602 trace_vtd_reg_read(addr, size);
2604 if (addr + size > DMAR_REG_SIZE) {
2605 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2606 " size=0x%u", __func__, addr, size);
2607 return (uint64_t)-1;
2610 switch (addr) {
2611 /* Root Table Address Register, 64-bit */
2612 case DMAR_RTADDR_REG:
2613 if (size == 4) {
2614 val = s->root & ((1ULL << 32) - 1);
2615 } else {
2616 val = s->root;
2618 break;
2620 case DMAR_RTADDR_REG_HI:
2621 assert(size == 4);
2622 val = s->root >> 32;
2623 break;
2625 /* Invalidation Queue Address Register, 64-bit */
2626 case DMAR_IQA_REG:
2627 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2628 if (size == 4) {
2629 val = val & ((1ULL << 32) - 1);
2631 break;
2633 case DMAR_IQA_REG_HI:
2634 assert(size == 4);
2635 val = s->iq >> 32;
2636 break;
2638 default:
2639 if (size == 4) {
2640 val = vtd_get_long(s, addr);
2641 } else {
2642 val = vtd_get_quad(s, addr);
2646 return val;
2649 static void vtd_mem_write(void *opaque, hwaddr addr,
2650 uint64_t val, unsigned size)
2652 IntelIOMMUState *s = opaque;
2654 trace_vtd_reg_write(addr, size, val);
2656 if (addr + size > DMAR_REG_SIZE) {
2657 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2658 " size=0x%u", __func__, addr, size);
2659 return;
2662 switch (addr) {
2663 /* Global Command Register, 32-bit */
2664 case DMAR_GCMD_REG:
2665 vtd_set_long(s, addr, val);
2666 vtd_handle_gcmd_write(s);
2667 break;
2669 /* Context Command Register, 64-bit */
2670 case DMAR_CCMD_REG:
2671 if (size == 4) {
2672 vtd_set_long(s, addr, val);
2673 } else {
2674 vtd_set_quad(s, addr, val);
2675 vtd_handle_ccmd_write(s);
2677 break;
2679 case DMAR_CCMD_REG_HI:
2680 assert(size == 4);
2681 vtd_set_long(s, addr, val);
2682 vtd_handle_ccmd_write(s);
2683 break;
2685 /* IOTLB Invalidation Register, 64-bit */
2686 case DMAR_IOTLB_REG:
2687 if (size == 4) {
2688 vtd_set_long(s, addr, val);
2689 } else {
2690 vtd_set_quad(s, addr, val);
2691 vtd_handle_iotlb_write(s);
2693 break;
2695 case DMAR_IOTLB_REG_HI:
2696 assert(size == 4);
2697 vtd_set_long(s, addr, val);
2698 vtd_handle_iotlb_write(s);
2699 break;
2701 /* Invalidate Address Register, 64-bit */
2702 case DMAR_IVA_REG:
2703 if (size == 4) {
2704 vtd_set_long(s, addr, val);
2705 } else {
2706 vtd_set_quad(s, addr, val);
2708 break;
2710 case DMAR_IVA_REG_HI:
2711 assert(size == 4);
2712 vtd_set_long(s, addr, val);
2713 break;
2715 /* Fault Status Register, 32-bit */
2716 case DMAR_FSTS_REG:
2717 assert(size == 4);
2718 vtd_set_long(s, addr, val);
2719 vtd_handle_fsts_write(s);
2720 break;
2722 /* Fault Event Control Register, 32-bit */
2723 case DMAR_FECTL_REG:
2724 assert(size == 4);
2725 vtd_set_long(s, addr, val);
2726 vtd_handle_fectl_write(s);
2727 break;
2729 /* Fault Event Data Register, 32-bit */
2730 case DMAR_FEDATA_REG:
2731 assert(size == 4);
2732 vtd_set_long(s, addr, val);
2733 break;
2735 /* Fault Event Address Register, 32-bit */
2736 case DMAR_FEADDR_REG:
2737 if (size == 4) {
2738 vtd_set_long(s, addr, val);
2739 } else {
2741 * While the register is 32-bit only, some guests (Xen...) write to
2742 * it with 64-bit.
2744 vtd_set_quad(s, addr, val);
2746 break;
2748 /* Fault Event Upper Address Register, 32-bit */
2749 case DMAR_FEUADDR_REG:
2750 assert(size == 4);
2751 vtd_set_long(s, addr, val);
2752 break;
2754 /* Protected Memory Enable Register, 32-bit */
2755 case DMAR_PMEN_REG:
2756 assert(size == 4);
2757 vtd_set_long(s, addr, val);
2758 break;
2760 /* Root Table Address Register, 64-bit */
2761 case DMAR_RTADDR_REG:
2762 if (size == 4) {
2763 vtd_set_long(s, addr, val);
2764 } else {
2765 vtd_set_quad(s, addr, val);
2767 break;
2769 case DMAR_RTADDR_REG_HI:
2770 assert(size == 4);
2771 vtd_set_long(s, addr, val);
2772 break;
2774 /* Invalidation Queue Tail Register, 64-bit */
2775 case DMAR_IQT_REG:
2776 if (size == 4) {
2777 vtd_set_long(s, addr, val);
2778 } else {
2779 vtd_set_quad(s, addr, val);
2781 vtd_handle_iqt_write(s);
2782 break;
2784 case DMAR_IQT_REG_HI:
2785 assert(size == 4);
2786 vtd_set_long(s, addr, val);
2787 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2788 break;
2790 /* Invalidation Queue Address Register, 64-bit */
2791 case DMAR_IQA_REG:
2792 if (size == 4) {
2793 vtd_set_long(s, addr, val);
2794 } else {
2795 vtd_set_quad(s, addr, val);
2797 if (s->ecap & VTD_ECAP_SMTS &&
2798 val & VTD_IQA_DW_MASK) {
2799 s->iq_dw = true;
2800 } else {
2801 s->iq_dw = false;
2803 break;
2805 case DMAR_IQA_REG_HI:
2806 assert(size == 4);
2807 vtd_set_long(s, addr, val);
2808 break;
2810 /* Invalidation Completion Status Register, 32-bit */
2811 case DMAR_ICS_REG:
2812 assert(size == 4);
2813 vtd_set_long(s, addr, val);
2814 vtd_handle_ics_write(s);
2815 break;
2817 /* Invalidation Event Control Register, 32-bit */
2818 case DMAR_IECTL_REG:
2819 assert(size == 4);
2820 vtd_set_long(s, addr, val);
2821 vtd_handle_iectl_write(s);
2822 break;
2824 /* Invalidation Event Data Register, 32-bit */
2825 case DMAR_IEDATA_REG:
2826 assert(size == 4);
2827 vtd_set_long(s, addr, val);
2828 break;
2830 /* Invalidation Event Address Register, 32-bit */
2831 case DMAR_IEADDR_REG:
2832 assert(size == 4);
2833 vtd_set_long(s, addr, val);
2834 break;
2836 /* Invalidation Event Upper Address Register, 32-bit */
2837 case DMAR_IEUADDR_REG:
2838 assert(size == 4);
2839 vtd_set_long(s, addr, val);
2840 break;
2842 /* Fault Recording Registers, 128-bit */
2843 case DMAR_FRCD_REG_0_0:
2844 if (size == 4) {
2845 vtd_set_long(s, addr, val);
2846 } else {
2847 vtd_set_quad(s, addr, val);
2849 break;
2851 case DMAR_FRCD_REG_0_1:
2852 assert(size == 4);
2853 vtd_set_long(s, addr, val);
2854 break;
2856 case DMAR_FRCD_REG_0_2:
2857 if (size == 4) {
2858 vtd_set_long(s, addr, val);
2859 } else {
2860 vtd_set_quad(s, addr, val);
2861 /* May clear bit 127 (Fault), update PPF */
2862 vtd_update_fsts_ppf(s);
2864 break;
2866 case DMAR_FRCD_REG_0_3:
2867 assert(size == 4);
2868 vtd_set_long(s, addr, val);
2869 /* May clear bit 127 (Fault), update PPF */
2870 vtd_update_fsts_ppf(s);
2871 break;
2873 case DMAR_IRTA_REG:
2874 if (size == 4) {
2875 vtd_set_long(s, addr, val);
2876 } else {
2877 vtd_set_quad(s, addr, val);
2879 break;
2881 case DMAR_IRTA_REG_HI:
2882 assert(size == 4);
2883 vtd_set_long(s, addr, val);
2884 break;
2886 default:
2887 if (size == 4) {
2888 vtd_set_long(s, addr, val);
2889 } else {
2890 vtd_set_quad(s, addr, val);
2895 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2896 IOMMUAccessFlags flag, int iommu_idx)
2898 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2899 IntelIOMMUState *s = vtd_as->iommu_state;
2900 IOMMUTLBEntry iotlb = {
2901 /* We'll fill in the rest later. */
2902 .target_as = &address_space_memory,
2904 bool success;
2906 if (likely(s->dmar_enabled)) {
2907 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2908 addr, flag & IOMMU_WO, &iotlb);
2909 } else {
2910 /* DMAR disabled, passthrough, use 4k-page*/
2911 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2912 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2913 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2914 iotlb.perm = IOMMU_RW;
2915 success = true;
2918 if (likely(success)) {
2919 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2920 VTD_PCI_SLOT(vtd_as->devfn),
2921 VTD_PCI_FUNC(vtd_as->devfn),
2922 iotlb.iova, iotlb.translated_addr,
2923 iotlb.addr_mask);
2924 } else {
2925 error_report_once("%s: detected translation failure "
2926 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
2927 __func__, pci_bus_num(vtd_as->bus),
2928 VTD_PCI_SLOT(vtd_as->devfn),
2929 VTD_PCI_FUNC(vtd_as->devfn),
2930 addr);
2933 return iotlb;
2936 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2937 IOMMUNotifierFlag old,
2938 IOMMUNotifierFlag new,
2939 Error **errp)
2941 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2942 IntelIOMMUState *s = vtd_as->iommu_state;
2944 /* Update per-address-space notifier flags */
2945 vtd_as->notifier_flags = new;
2947 if (old == IOMMU_NOTIFIER_NONE) {
2948 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2949 } else if (new == IOMMU_NOTIFIER_NONE) {
2950 QLIST_REMOVE(vtd_as, next);
2952 return 0;
2955 static int vtd_post_load(void *opaque, int version_id)
2957 IntelIOMMUState *iommu = opaque;
2960 * Memory regions are dynamically turned on/off depending on
2961 * context entry configurations from the guest. After migration,
2962 * we need to make sure the memory regions are still correct.
2964 vtd_switch_address_space_all(iommu);
2967 * We don't need to migrate the root_scalable because we can
2968 * simply do the calculation after the loading is complete. We
2969 * can actually do similar things with root, dmar_enabled, etc.
2970 * however since we've had them already so we'd better keep them
2971 * for compatibility of migration.
2973 vtd_update_scalable_state(iommu);
2975 return 0;
2978 static const VMStateDescription vtd_vmstate = {
2979 .name = "iommu-intel",
2980 .version_id = 1,
2981 .minimum_version_id = 1,
2982 .priority = MIG_PRI_IOMMU,
2983 .post_load = vtd_post_load,
2984 .fields = (VMStateField[]) {
2985 VMSTATE_UINT64(root, IntelIOMMUState),
2986 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2987 VMSTATE_UINT64(iq, IntelIOMMUState),
2988 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2989 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2990 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2991 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2992 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2993 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2994 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2995 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
2996 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2997 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2998 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2999 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3000 VMSTATE_END_OF_LIST()
3004 static const MemoryRegionOps vtd_mem_ops = {
3005 .read = vtd_mem_read,
3006 .write = vtd_mem_write,
3007 .endianness = DEVICE_LITTLE_ENDIAN,
3008 .impl = {
3009 .min_access_size = 4,
3010 .max_access_size = 8,
3012 .valid = {
3013 .min_access_size = 4,
3014 .max_access_size = 8,
3018 static Property vtd_properties[] = {
3019 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3020 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3021 ON_OFF_AUTO_AUTO),
3022 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3023 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3024 VTD_HOST_ADDRESS_WIDTH),
3025 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3026 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3027 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3028 DEFINE_PROP_END_OF_LIST(),
3031 /* Read IRTE entry with specific index */
3032 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3033 VTD_IR_TableEntry *entry, uint16_t sid)
3035 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3036 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3037 dma_addr_t addr = 0x00;
3038 uint16_t mask, source_id;
3039 uint8_t bus, bus_max, bus_min;
3041 addr = iommu->intr_root + index * sizeof(*entry);
3042 if (dma_memory_read(&address_space_memory, addr, entry,
3043 sizeof(*entry))) {
3044 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3045 __func__, index, addr);
3046 return -VTD_FR_IR_ROOT_INVAL;
3049 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3050 le64_to_cpu(entry->data[0]));
3052 if (!entry->irte.present) {
3053 error_report_once("%s: detected non-present IRTE "
3054 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3055 __func__, index, le64_to_cpu(entry->data[1]),
3056 le64_to_cpu(entry->data[0]));
3057 return -VTD_FR_IR_ENTRY_P;
3060 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3061 entry->irte.__reserved_2) {
3062 error_report_once("%s: detected non-zero reserved IRTE "
3063 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3064 __func__, index, le64_to_cpu(entry->data[1]),
3065 le64_to_cpu(entry->data[0]));
3066 return -VTD_FR_IR_IRTE_RSVD;
3069 if (sid != X86_IOMMU_SID_INVALID) {
3070 /* Validate IRTE SID */
3071 source_id = le32_to_cpu(entry->irte.source_id);
3072 switch (entry->irte.sid_vtype) {
3073 case VTD_SVT_NONE:
3074 break;
3076 case VTD_SVT_ALL:
3077 mask = vtd_svt_mask[entry->irte.sid_q];
3078 if ((source_id & mask) != (sid & mask)) {
3079 error_report_once("%s: invalid IRTE SID "
3080 "(index=%u, sid=%u, source_id=%u)",
3081 __func__, index, sid, source_id);
3082 return -VTD_FR_IR_SID_ERR;
3084 break;
3086 case VTD_SVT_BUS:
3087 bus_max = source_id >> 8;
3088 bus_min = source_id & 0xff;
3089 bus = sid >> 8;
3090 if (bus > bus_max || bus < bus_min) {
3091 error_report_once("%s: invalid SVT_BUS "
3092 "(index=%u, bus=%u, min=%u, max=%u)",
3093 __func__, index, bus, bus_min, bus_max);
3094 return -VTD_FR_IR_SID_ERR;
3096 break;
3098 default:
3099 error_report_once("%s: detected invalid IRTE SVT "
3100 "(index=%u, type=%d)", __func__,
3101 index, entry->irte.sid_vtype);
3102 /* Take this as verification failure. */
3103 return -VTD_FR_IR_SID_ERR;
3104 break;
3108 return 0;
3111 /* Fetch IRQ information of specific IR index */
3112 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3113 X86IOMMUIrq *irq, uint16_t sid)
3115 VTD_IR_TableEntry irte = {};
3116 int ret = 0;
3118 ret = vtd_irte_get(iommu, index, &irte, sid);
3119 if (ret) {
3120 return ret;
3123 irq->trigger_mode = irte.irte.trigger_mode;
3124 irq->vector = irte.irte.vector;
3125 irq->delivery_mode = irte.irte.delivery_mode;
3126 irq->dest = le32_to_cpu(irte.irte.dest_id);
3127 if (!iommu->intr_eime) {
3128 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3129 #define VTD_IR_APIC_DEST_SHIFT (8)
3130 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3131 VTD_IR_APIC_DEST_SHIFT;
3133 irq->dest_mode = irte.irte.dest_mode;
3134 irq->redir_hint = irte.irte.redir_hint;
3136 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3137 irq->delivery_mode, irq->dest, irq->dest_mode);
3139 return 0;
3142 /* Interrupt remapping for MSI/MSI-X entry */
3143 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3144 MSIMessage *origin,
3145 MSIMessage *translated,
3146 uint16_t sid)
3148 int ret = 0;
3149 VTD_IR_MSIAddress addr;
3150 uint16_t index;
3151 X86IOMMUIrq irq = {};
3153 assert(origin && translated);
3155 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3157 if (!iommu || !iommu->intr_enabled) {
3158 memcpy(translated, origin, sizeof(*origin));
3159 goto out;
3162 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3163 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3164 "address=0x%" PRIx64, __func__, origin->address);
3165 return -VTD_FR_IR_REQ_RSVD;
3168 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3169 if (addr.addr.__head != 0xfee) {
3170 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3171 __func__, addr.data);
3172 return -VTD_FR_IR_REQ_RSVD;
3175 /* This is compatible mode. */
3176 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3177 memcpy(translated, origin, sizeof(*origin));
3178 goto out;
3181 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3183 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3184 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3186 if (addr.addr.sub_valid) {
3187 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3188 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3191 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3192 if (ret) {
3193 return ret;
3196 if (addr.addr.sub_valid) {
3197 trace_vtd_ir_remap_type("MSI");
3198 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3199 error_report_once("%s: invalid IR MSI "
3200 "(sid=%u, address=0x%" PRIx64
3201 ", data=0x%" PRIx32 ")",
3202 __func__, sid, origin->address, origin->data);
3203 return -VTD_FR_IR_REQ_RSVD;
3205 } else {
3206 uint8_t vector = origin->data & 0xff;
3207 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3209 trace_vtd_ir_remap_type("IOAPIC");
3210 /* IOAPIC entry vector should be aligned with IRTE vector
3211 * (see vt-d spec 5.1.5.1). */
3212 if (vector != irq.vector) {
3213 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3216 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3217 * (see vt-d spec 5.1.5.1). */
3218 if (trigger_mode != irq.trigger_mode) {
3219 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3220 irq.trigger_mode);
3225 * We'd better keep the last two bits, assuming that guest OS
3226 * might modify it. Keep it does not hurt after all.
3228 irq.msi_addr_last_bits = addr.addr.__not_care;
3230 /* Translate X86IOMMUIrq to MSI message */
3231 x86_iommu_irq_to_msi_message(&irq, translated);
3233 out:
3234 trace_vtd_ir_remap_msi(origin->address, origin->data,
3235 translated->address, translated->data);
3236 return 0;
3239 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3240 MSIMessage *dst, uint16_t sid)
3242 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3243 src, dst, sid);
3246 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3247 uint64_t *data, unsigned size,
3248 MemTxAttrs attrs)
3250 return MEMTX_OK;
3253 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3254 uint64_t value, unsigned size,
3255 MemTxAttrs attrs)
3257 int ret = 0;
3258 MSIMessage from = {}, to = {};
3259 uint16_t sid = X86_IOMMU_SID_INVALID;
3261 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3262 from.data = (uint32_t) value;
3264 if (!attrs.unspecified) {
3265 /* We have explicit Source ID */
3266 sid = attrs.requester_id;
3269 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3270 if (ret) {
3271 /* TODO: report error */
3272 /* Drop this interrupt */
3273 return MEMTX_ERROR;
3276 apic_get_class()->send_msi(&to);
3278 return MEMTX_OK;
3281 static const MemoryRegionOps vtd_mem_ir_ops = {
3282 .read_with_attrs = vtd_mem_ir_read,
3283 .write_with_attrs = vtd_mem_ir_write,
3284 .endianness = DEVICE_LITTLE_ENDIAN,
3285 .impl = {
3286 .min_access_size = 4,
3287 .max_access_size = 4,
3289 .valid = {
3290 .min_access_size = 4,
3291 .max_access_size = 4,
3295 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3297 uintptr_t key = (uintptr_t)bus;
3298 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3299 VTDAddressSpace *vtd_dev_as;
3300 char name[128];
3302 if (!vtd_bus) {
3303 uintptr_t *new_key = g_malloc(sizeof(*new_key));
3304 *new_key = (uintptr_t)bus;
3305 /* No corresponding free() */
3306 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3307 PCI_DEVFN_MAX);
3308 vtd_bus->bus = bus;
3309 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3312 vtd_dev_as = vtd_bus->dev_as[devfn];
3314 if (!vtd_dev_as) {
3315 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3316 PCI_FUNC(devfn));
3317 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3319 vtd_dev_as->bus = bus;
3320 vtd_dev_as->devfn = (uint8_t)devfn;
3321 vtd_dev_as->iommu_state = s;
3322 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3323 vtd_dev_as->iova_tree = iova_tree_new();
3325 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3326 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3329 * Build the DMAR-disabled container with aliases to the
3330 * shared MRs. Note that aliasing to a shared memory region
3331 * could help the memory API to detect same FlatViews so we
3332 * can have devices to share the same FlatView when DMAR is
3333 * disabled (either by not providing "intel_iommu=on" or with
3334 * "iommu=pt"). It will greatly reduce the total number of
3335 * FlatViews of the system hence VM runs faster.
3337 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3338 "vtd-nodmar", &s->mr_nodmar, 0,
3339 memory_region_size(&s->mr_nodmar));
3342 * Build the per-device DMAR-enabled container.
3344 * TODO: currently we have per-device IOMMU memory region only
3345 * because we have per-device IOMMU notifiers for devices. If
3346 * one day we can abstract the IOMMU notifiers out of the
3347 * memory regions then we can also share the same memory
3348 * region here just like what we've done above with the nodmar
3349 * region.
3351 strcat(name, "-dmar");
3352 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3353 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3354 name, UINT64_MAX);
3355 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3356 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3357 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3358 VTD_INTERRUPT_ADDR_FIRST,
3359 &vtd_dev_as->iommu_ir, 1);
3362 * Hook both the containers under the root container, we
3363 * switch between DMAR & noDMAR by enable/disable
3364 * corresponding sub-containers
3366 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3367 MEMORY_REGION(&vtd_dev_as->iommu),
3369 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3370 &vtd_dev_as->nodmar, 0);
3372 vtd_switch_address_space(vtd_dev_as);
3374 return vtd_dev_as;
3377 static uint64_t get_naturally_aligned_size(uint64_t start,
3378 uint64_t size, int gaw)
3380 uint64_t max_mask = 1ULL << gaw;
3381 uint64_t alignment = start ? start & -start : max_mask;
3383 alignment = MIN(alignment, max_mask);
3384 size = MIN(size, max_mask);
3386 if (alignment <= size) {
3387 /* Increase the alignment of start */
3388 return alignment;
3389 } else {
3390 /* Find the largest page mask from size */
3391 return 1ULL << (63 - clz64(size));
3395 /* Unmap the whole range in the notifier's scope. */
3396 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3398 hwaddr size, remain;
3399 hwaddr start = n->start;
3400 hwaddr end = n->end;
3401 IntelIOMMUState *s = as->iommu_state;
3402 DMAMap map;
3405 * Note: all the codes in this function has a assumption that IOVA
3406 * bits are no more than VTD_MGAW bits (which is restricted by
3407 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3410 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3412 * Don't need to unmap regions that is bigger than the whole
3413 * VT-d supported address space size
3415 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3418 assert(start <= end);
3419 size = remain = end - start + 1;
3421 while (remain >= VTD_PAGE_SIZE) {
3422 IOMMUTLBEntry entry;
3423 uint64_t mask = get_naturally_aligned_size(start, remain, s->aw_bits);
3425 assert(mask);
3427 entry.iova = start;
3428 entry.addr_mask = mask - 1;
3429 entry.target_as = &address_space_memory;
3430 entry.perm = IOMMU_NONE;
3431 /* This field is meaningless for unmap */
3432 entry.translated_addr = 0;
3434 memory_region_notify_one(n, &entry);
3436 start += mask;
3437 remain -= mask;
3440 assert(!remain);
3442 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3443 VTD_PCI_SLOT(as->devfn),
3444 VTD_PCI_FUNC(as->devfn),
3445 n->start, size);
3447 map.iova = n->start;
3448 map.size = size;
3449 iova_tree_remove(as->iova_tree, &map);
3452 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3454 VTDAddressSpace *vtd_as;
3455 IOMMUNotifier *n;
3457 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3458 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3459 vtd_address_space_unmap(vtd_as, n);
3464 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3466 vtd_address_space_unmap_all(s);
3467 vtd_switch_address_space_all(s);
3470 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3472 memory_region_notify_one((IOMMUNotifier *)private, entry);
3473 return 0;
3476 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3478 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3479 IntelIOMMUState *s = vtd_as->iommu_state;
3480 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3481 VTDContextEntry ce;
3484 * The replay can be triggered by either a invalidation or a newly
3485 * created entry. No matter what, we release existing mappings
3486 * (it means flushing caches for UNMAP-only registers).
3488 vtd_address_space_unmap(vtd_as, n);
3490 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3491 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3492 "legacy mode",
3493 bus_n, PCI_SLOT(vtd_as->devfn),
3494 PCI_FUNC(vtd_as->devfn),
3495 vtd_get_domain_id(s, &ce),
3496 ce.hi, ce.lo);
3497 if (vtd_as_has_map_notifier(vtd_as)) {
3498 /* This is required only for MAP typed notifiers */
3499 vtd_page_walk_info info = {
3500 .hook_fn = vtd_replay_hook,
3501 .private = (void *)n,
3502 .notify_unmap = false,
3503 .aw = s->aw_bits,
3504 .as = vtd_as,
3505 .domain_id = vtd_get_domain_id(s, &ce),
3508 vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3510 } else {
3511 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3512 PCI_FUNC(vtd_as->devfn));
3515 return;
3518 /* Do the initialization. It will also be called when reset, so pay
3519 * attention when adding new initialization stuff.
3521 static void vtd_init(IntelIOMMUState *s)
3523 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3525 memset(s->csr, 0, DMAR_REG_SIZE);
3526 memset(s->wmask, 0, DMAR_REG_SIZE);
3527 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3528 memset(s->womask, 0, DMAR_REG_SIZE);
3530 s->root = 0;
3531 s->root_scalable = false;
3532 s->dmar_enabled = false;
3533 s->intr_enabled = false;
3534 s->iq_head = 0;
3535 s->iq_tail = 0;
3536 s->iq = 0;
3537 s->iq_size = 0;
3538 s->qi_enabled = false;
3539 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3540 s->iq_dw = false;
3541 s->next_frcd_reg = 0;
3542 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3543 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3544 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3545 if (s->dma_drain) {
3546 s->cap |= VTD_CAP_DRAIN;
3548 if (s->aw_bits == VTD_HOST_AW_48BIT) {
3549 s->cap |= VTD_CAP_SAGAW_48bit;
3551 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3554 * Rsvd field masks for spte
3556 vtd_spte_rsvd[0] = ~0ULL;
3557 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3558 x86_iommu->dt_supported);
3559 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3560 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3561 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3563 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3564 x86_iommu->dt_supported);
3565 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3566 x86_iommu->dt_supported);
3568 if (x86_iommu_ir_supported(x86_iommu)) {
3569 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3570 if (s->intr_eim == ON_OFF_AUTO_ON) {
3571 s->ecap |= VTD_ECAP_EIM;
3573 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3576 if (x86_iommu->dt_supported) {
3577 s->ecap |= VTD_ECAP_DT;
3580 if (x86_iommu->pt_supported) {
3581 s->ecap |= VTD_ECAP_PT;
3584 if (s->caching_mode) {
3585 s->cap |= VTD_CAP_CM;
3588 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3589 if (s->scalable_mode) {
3590 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3593 vtd_reset_caches(s);
3595 /* Define registers with default values and bit semantics */
3596 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3597 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3598 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3599 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3600 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3601 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3602 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3603 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3604 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3606 /* Advanced Fault Logging not supported */
3607 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3608 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3609 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3610 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3612 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3613 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3615 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3617 /* Treated as RO for implementations that PLMR and PHMR fields reported
3618 * as Clear in the CAP_REG.
3619 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3621 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3623 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3624 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3625 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3626 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3627 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3628 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3629 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3630 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3631 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3633 /* IOTLB registers */
3634 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3635 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3636 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3638 /* Fault Recording Registers, 128-bit */
3639 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3640 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3643 * Interrupt remapping registers.
3645 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3648 /* Should not reset address_spaces when reset because devices will still use
3649 * the address space they got at first (won't ask the bus again).
3651 static void vtd_reset(DeviceState *dev)
3653 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3655 vtd_init(s);
3656 vtd_address_space_refresh_all(s);
3659 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3661 IntelIOMMUState *s = opaque;
3662 VTDAddressSpace *vtd_as;
3664 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3666 vtd_as = vtd_find_add_as(s, bus, devfn);
3667 return &vtd_as->as;
3670 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3672 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3674 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3675 error_setg(errp, "eim=on cannot be selected without intremap=on");
3676 return false;
3679 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3680 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3681 && x86_iommu_ir_supported(x86_iommu) ?
3682 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3684 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3685 if (!kvm_irqchip_in_kernel()) {
3686 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3687 return false;
3689 if (!kvm_enable_x2apic()) {
3690 error_setg(errp, "eim=on requires support on the KVM side"
3691 "(X2APIC_API, first shipped in v4.7)");
3692 return false;
3696 /* Currently only address widths supported are 39 and 48 bits */
3697 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3698 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3699 error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3700 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3701 return false;
3704 if (s->scalable_mode && !s->dma_drain) {
3705 error_setg(errp, "Need to set dma_drain for scalable mode");
3706 return false;
3709 return true;
3712 static int vtd_machine_done_notify_one(Object *child, void *unused)
3714 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3717 * We hard-coded here because vfio-pci is the only special case
3718 * here. Let's be more elegant in the future when we can, but so
3719 * far there seems to be no better way.
3721 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
3722 vtd_panic_require_caching_mode();
3725 return 0;
3728 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
3730 object_child_foreach_recursive(object_get_root(),
3731 vtd_machine_done_notify_one, NULL);
3734 static Notifier vtd_machine_done_notify = {
3735 .notify = vtd_machine_done_hook,
3738 static void vtd_realize(DeviceState *dev, Error **errp)
3740 MachineState *ms = MACHINE(qdev_get_machine());
3741 PCMachineState *pcms = PC_MACHINE(ms);
3742 X86MachineState *x86ms = X86_MACHINE(ms);
3743 PCIBus *bus = pcms->bus;
3744 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3745 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3747 x86_iommu->type = TYPE_INTEL;
3749 if (!vtd_decide_config(s, errp)) {
3750 return;
3753 QLIST_INIT(&s->vtd_as_with_notifiers);
3754 qemu_mutex_init(&s->iommu_lock);
3755 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3756 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3757 "intel_iommu", DMAR_REG_SIZE);
3759 /* Create the shared memory regions by all devices */
3760 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3761 UINT64_MAX);
3762 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3763 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3764 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3765 "vtd-sys-alias", get_system_memory(), 0,
3766 memory_region_size(get_system_memory()));
3767 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3768 &s->mr_sys_alias, 0);
3769 memory_region_add_subregion_overlap(&s->mr_nodmar,
3770 VTD_INTERRUPT_ADDR_FIRST,
3771 &s->mr_ir, 1);
3773 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3774 /* No corresponding destroy */
3775 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3776 g_free, g_free);
3777 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3778 g_free, g_free);
3779 vtd_init(s);
3780 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3781 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3782 /* Pseudo address space under root PCI bus. */
3783 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3784 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
3787 static void vtd_class_init(ObjectClass *klass, void *data)
3789 DeviceClass *dc = DEVICE_CLASS(klass);
3790 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3792 dc->reset = vtd_reset;
3793 dc->vmsd = &vtd_vmstate;
3794 dc->props = vtd_properties;
3795 dc->hotpluggable = false;
3796 x86_class->realize = vtd_realize;
3797 x86_class->int_remap = vtd_int_remap;
3798 /* Supported by the pc-q35-* machine types */
3799 dc->user_creatable = true;
3800 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3801 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
3804 static const TypeInfo vtd_info = {
3805 .name = TYPE_INTEL_IOMMU_DEVICE,
3806 .parent = TYPE_X86_IOMMU_DEVICE,
3807 .instance_size = sizeof(IntelIOMMUState),
3808 .class_init = vtd_class_init,
3811 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3812 void *data)
3814 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3816 imrc->translate = vtd_iommu_translate;
3817 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3818 imrc->replay = vtd_iommu_replay;
3821 static const TypeInfo vtd_iommu_memory_region_info = {
3822 .parent = TYPE_IOMMU_MEMORY_REGION,
3823 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3824 .class_init = vtd_iommu_memory_region_class_init,
3827 static void vtd_register_types(void)
3829 type_register_static(&vtd_info);
3830 type_register_static(&vtd_iommu_memory_region_info);
3833 type_init(vtd_register_types)