2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "qapi/error.h"
37 #include "hw/sysbus.h"
38 #include "hw/boards.h"
39 #include "hw/arm/boot.h"
40 #include "hw/arm/primecell.h"
41 #include "hw/arm/virt.h"
42 #include "hw/block/flash.h"
43 #include "hw/vfio/vfio-calxeda-xgmac.h"
44 #include "hw/vfio/vfio-amd-xgbe.h"
45 #include "hw/display/ramfb.h"
47 #include "sysemu/device_tree.h"
48 #include "sysemu/numa.h"
49 #include "sysemu/runstate.h"
50 #include "sysemu/sysemu.h"
51 #include "sysemu/tpm.h"
52 #include "sysemu/kvm.h"
53 #include "hw/loader.h"
54 #include "exec/address-spaces.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/arm/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
68 #include "hw/firmware/smbios.h"
69 #include "qapi/visitor.h"
70 #include "qapi/qapi-visit-common.h"
71 #include "standard-headers/linux/input.h"
72 #include "hw/arm/smmuv3.h"
73 #include "hw/acpi/acpi.h"
74 #include "target/arm/internals.h"
75 #include "hw/mem/pc-dimm.h"
76 #include "hw/mem/nvdimm.h"
77 #include "hw/acpi/generic_event_device.h"
78 #include "hw/virtio/virtio-iommu.h"
79 #include "hw/char/pl011.h"
80 #include "qemu/guest-random.h"
82 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
83 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
86 MachineClass *mc = MACHINE_CLASS(oc); \
87 virt_machine_##major##_##minor##_options(mc); \
88 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
93 static const TypeInfo machvirt_##major##_##minor##_info = { \
94 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
95 .parent = TYPE_VIRT_MACHINE, \
96 .class_init = virt_##major##_##minor##_class_init, \
98 static void machvirt_machine_##major##_##minor##_init(void) \
100 type_register_static(&machvirt_##major##_##minor##_info); \
102 type_init(machvirt_machine_##major##_##minor##_init);
104 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
105 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
106 #define DEFINE_VIRT_MACHINE(major, minor) \
107 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
110 /* Number of external interrupt lines to configure the GIC with */
113 #define PLATFORM_BUS_NUM_IRQS 64
115 /* Legacy RAM limit in GB (< version 4.0) */
116 #define LEGACY_RAMLIMIT_GB 255
117 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
119 /* Addresses and sizes of our components.
120 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
121 * 128MB..256MB is used for miscellaneous device I/O.
122 * 256MB..1GB is reserved for possible future PCI support (ie where the
123 * PCI memory window will go if we add a PCI host controller).
124 * 1GB and up is RAM (which may happily spill over into the
125 * high memory region beyond 4GB).
126 * This represents a compromise between how much RAM can be given to
127 * a 32 bit VM and leaving space for expansion and in particular for PCI.
128 * Note that devices should generally be placed at multiples of 0x10000,
129 * to accommodate guests using 64K pages.
131 static const MemMapEntry base_memmap
[] = {
132 /* Space up to 0x8000000 is reserved for a boot ROM */
133 [VIRT_FLASH
] = { 0, 0x08000000 },
134 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
135 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
136 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
137 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
138 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
139 [VIRT_GIC_HYP
] = { 0x08030000, 0x00010000 },
140 [VIRT_GIC_VCPU
] = { 0x08040000, 0x00010000 },
141 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
142 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
143 /* This redistributor space allows up to 2*64kB*123 CPUs */
144 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
145 [VIRT_UART
] = { 0x09000000, 0x00001000 },
146 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
147 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
148 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
149 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
150 [VIRT_SMMU
] = { 0x09050000, 0x00020000 },
151 [VIRT_PCDIMM_ACPI
] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN
},
152 [VIRT_ACPI_GED
] = { 0x09080000, ACPI_GED_EVT_SEL_LEN
},
153 [VIRT_NVDIMM_ACPI
] = { 0x09090000, NVDIMM_ACPI_IO_LEN
},
154 [VIRT_PVTIME
] = { 0x090a0000, 0x00010000 },
155 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
156 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
157 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
158 [VIRT_SECURE_MEM
] = { 0x0e000000, 0x01000000 },
159 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
160 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
161 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
162 /* Actual RAM size depends on initial RAM and device memory settings */
163 [VIRT_MEM
] = { GiB
, LEGACY_RAMLIMIT_BYTES
},
167 * Highmem IO Regions: This memory map is floating, located after the RAM.
168 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
169 * top of the RAM, so that its base get the same alignment as the size,
170 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
171 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
172 * Note the extended_memmap is sized so that it eventually also includes the
173 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
174 * index of base_memmap).
176 static MemMapEntry extended_memmap
[] = {
177 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
178 [VIRT_HIGH_GIC_REDIST2
] = { 0x0, 64 * MiB
},
179 [VIRT_HIGH_PCIE_ECAM
] = { 0x0, 256 * MiB
},
180 /* Second PCIe window */
181 [VIRT_HIGH_PCIE_MMIO
] = { 0x0, 512 * GiB
},
184 static const int a15irqmap
[] = {
187 [VIRT_PCIE
] = 3, /* ... to 6 */
189 [VIRT_SECURE_UART
] = 8,
191 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
192 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
193 [VIRT_SMMU
] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
194 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
197 static const char *valid_cpus
[] = {
198 ARM_CPU_TYPE_NAME("cortex-a7"),
199 ARM_CPU_TYPE_NAME("cortex-a15"),
200 ARM_CPU_TYPE_NAME("cortex-a53"),
201 ARM_CPU_TYPE_NAME("cortex-a57"),
202 ARM_CPU_TYPE_NAME("cortex-a72"),
203 ARM_CPU_TYPE_NAME("host"),
204 ARM_CPU_TYPE_NAME("max"),
207 static bool cpu_type_valid(const char *cpu
)
211 for (i
= 0; i
< ARRAY_SIZE(valid_cpus
); i
++) {
212 if (strcmp(cpu
, valid_cpus
[i
]) == 0) {
219 static void create_kaslr_seed(VirtMachineState
*vms
, const char *node
)
223 if (qemu_guest_getrandom(&seed
, sizeof(seed
), NULL
)) {
226 qemu_fdt_setprop_u64(vms
->fdt
, node
, "kaslr-seed", seed
);
229 static void create_fdt(VirtMachineState
*vms
)
231 MachineState
*ms
= MACHINE(vms
);
232 int nb_numa_nodes
= ms
->numa_state
->num_nodes
;
233 void *fdt
= create_device_tree(&vms
->fdt_size
);
236 error_report("create_device_tree() failed");
243 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
244 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
245 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
247 /* /chosen must exist for load_dtb to fill in necessary properties later */
248 qemu_fdt_add_subnode(fdt
, "/chosen");
249 create_kaslr_seed(vms
, "/chosen");
252 qemu_fdt_add_subnode(fdt
, "/secure-chosen");
253 create_kaslr_seed(vms
, "/secure-chosen");
256 /* Clock node, for the benefit of the UART. The kernel device tree
257 * binding documentation claims the PL011 node clock properties are
258 * optional but in practice if you omit them the kernel refuses to
259 * probe for the device.
261 vms
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
262 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
263 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
264 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
265 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
266 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
268 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vms
->clock_phandle
);
270 if (nb_numa_nodes
> 0 && ms
->numa_state
->have_numa_distance
) {
271 int size
= nb_numa_nodes
* nb_numa_nodes
* 3 * sizeof(uint32_t);
272 uint32_t *matrix
= g_malloc0(size
);
275 for (i
= 0; i
< nb_numa_nodes
; i
++) {
276 for (j
= 0; j
< nb_numa_nodes
; j
++) {
277 idx
= (i
* nb_numa_nodes
+ j
) * 3;
278 matrix
[idx
+ 0] = cpu_to_be32(i
);
279 matrix
[idx
+ 1] = cpu_to_be32(j
);
281 cpu_to_be32(ms
->numa_state
->nodes
[i
].distance
[j
]);
285 qemu_fdt_add_subnode(fdt
, "/distance-map");
286 qemu_fdt_setprop_string(fdt
, "/distance-map", "compatible",
287 "numa-distance-map-v1");
288 qemu_fdt_setprop(fdt
, "/distance-map", "distance-matrix",
294 static void fdt_add_timer_nodes(const VirtMachineState
*vms
)
296 /* On real hardware these interrupts are level-triggered.
297 * On KVM they were edge-triggered before host kernel version 4.4,
298 * and level-triggered afterwards.
299 * On emulated QEMU they are level-triggered.
301 * Getting the DTB info about them wrong is awkward for some
303 * pre-4.8 ignore the DT and leave the interrupt configured
304 * with whatever the GIC reset value (or the bootloader) left it at
305 * 4.8 before rc6 honour the incorrect data by programming it back
306 * into the GIC, causing problems
307 * 4.8rc6 and later ignore the DT and always write "level triggered"
310 * For backwards-compatibility, virt-2.8 and earlier will continue
311 * to say these are edge-triggered, but later machines will report
312 * the correct information.
315 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
316 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
318 if (vmc
->claim_edge_triggered_timers
) {
319 irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
322 if (vms
->gic_version
== VIRT_GIC_VERSION_2
) {
323 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
324 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
325 (1 << vms
->smp_cpus
) - 1);
328 qemu_fdt_add_subnode(vms
->fdt
, "/timer");
330 armcpu
= ARM_CPU(qemu_get_cpu(0));
331 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
332 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
333 qemu_fdt_setprop(vms
->fdt
, "/timer", "compatible",
334 compat
, sizeof(compat
));
336 qemu_fdt_setprop_string(vms
->fdt
, "/timer", "compatible",
339 qemu_fdt_setprop(vms
->fdt
, "/timer", "always-on", NULL
, 0);
340 qemu_fdt_setprop_cells(vms
->fdt
, "/timer", "interrupts",
341 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
342 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
343 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
344 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
347 static void fdt_add_cpu_nodes(const VirtMachineState
*vms
)
351 const MachineState
*ms
= MACHINE(vms
);
354 * From Documentation/devicetree/bindings/arm/cpus.txt
355 * On ARM v8 64-bit systems value should be set to 2,
356 * that corresponds to the MPIDR_EL1 register size.
357 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
358 * in the system, #address-cells can be set to 1, since
359 * MPIDR_EL1[63:32] bits are not used for CPUs
362 * Here we actually don't know whether our system is 32- or 64-bit one.
363 * The simplest way to go is to examine affinity IDs of all our CPUs. If
364 * at least one of them has Aff3 populated, we set #address-cells to 2.
366 for (cpu
= 0; cpu
< vms
->smp_cpus
; cpu
++) {
367 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
369 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
375 qemu_fdt_add_subnode(vms
->fdt
, "/cpus");
376 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#address-cells", addr_cells
);
377 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#size-cells", 0x0);
379 for (cpu
= vms
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
380 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
381 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
382 CPUState
*cs
= CPU(armcpu
);
384 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
385 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "cpu");
386 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
387 armcpu
->dtb_compatible
);
389 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
390 && vms
->smp_cpus
> 1) {
391 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
392 "enable-method", "psci");
395 if (addr_cells
== 2) {
396 qemu_fdt_setprop_u64(vms
->fdt
, nodename
, "reg",
397 armcpu
->mp_affinity
);
399 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "reg",
400 armcpu
->mp_affinity
);
403 if (ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.has_node_id
) {
404 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "numa-node-id",
405 ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.node_id
);
412 static void fdt_add_its_gic_node(VirtMachineState
*vms
)
416 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
417 nodename
= g_strdup_printf("/intc/its@%" PRIx64
,
418 vms
->memmap
[VIRT_GIC_ITS
].base
);
419 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
420 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
422 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
423 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
424 2, vms
->memmap
[VIRT_GIC_ITS
].base
,
425 2, vms
->memmap
[VIRT_GIC_ITS
].size
);
426 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
430 static void fdt_add_v2m_gic_node(VirtMachineState
*vms
)
434 nodename
= g_strdup_printf("/intc/v2m@%" PRIx64
,
435 vms
->memmap
[VIRT_GIC_V2M
].base
);
436 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
437 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
438 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
439 "arm,gic-v2m-frame");
440 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
441 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
442 2, vms
->memmap
[VIRT_GIC_V2M
].base
,
443 2, vms
->memmap
[VIRT_GIC_V2M
].size
);
444 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
448 static void fdt_add_gic_node(VirtMachineState
*vms
)
452 vms
->gic_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
453 qemu_fdt_setprop_cell(vms
->fdt
, "/", "interrupt-parent", vms
->gic_phandle
);
455 nodename
= g_strdup_printf("/intc@%" PRIx64
,
456 vms
->memmap
[VIRT_GIC_DIST
].base
);
457 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
458 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 3);
459 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-controller", NULL
, 0);
460 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 0x2);
461 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 0x2);
462 qemu_fdt_setprop(vms
->fdt
, nodename
, "ranges", NULL
, 0);
463 if (vms
->gic_version
== VIRT_GIC_VERSION_3
) {
464 int nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
466 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
469 qemu_fdt_setprop_cell(vms
->fdt
, nodename
,
470 "#redistributor-regions", nb_redist_regions
);
472 if (nb_redist_regions
== 1) {
473 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
474 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
475 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
476 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
477 2, vms
->memmap
[VIRT_GIC_REDIST
].size
);
479 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
480 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
481 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
482 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
483 2, vms
->memmap
[VIRT_GIC_REDIST
].size
,
484 2, vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].base
,
485 2, vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
);
489 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
490 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
491 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
494 /* 'cortex-a15-gic' means 'GIC v2' */
495 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
496 "arm,cortex-a15-gic");
498 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
499 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
500 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
501 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
502 2, vms
->memmap
[VIRT_GIC_CPU
].size
);
504 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
505 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
506 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
507 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
508 2, vms
->memmap
[VIRT_GIC_CPU
].size
,
509 2, vms
->memmap
[VIRT_GIC_HYP
].base
,
510 2, vms
->memmap
[VIRT_GIC_HYP
].size
,
511 2, vms
->memmap
[VIRT_GIC_VCPU
].base
,
512 2, vms
->memmap
[VIRT_GIC_VCPU
].size
);
513 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
514 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
515 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
519 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->gic_phandle
);
523 static void fdt_add_pmu_nodes(const VirtMachineState
*vms
)
525 ARMCPU
*armcpu
= ARM_CPU(first_cpu
);
526 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
528 if (!arm_feature(&armcpu
->env
, ARM_FEATURE_PMU
)) {
529 assert(!object_property_get_bool(OBJECT(armcpu
), "pmu", NULL
));
533 if (vms
->gic_version
== VIRT_GIC_VERSION_2
) {
534 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
535 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
536 (1 << vms
->smp_cpus
) - 1);
539 qemu_fdt_add_subnode(vms
->fdt
, "/pmu");
540 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
541 const char compat
[] = "arm,armv8-pmuv3";
542 qemu_fdt_setprop(vms
->fdt
, "/pmu", "compatible",
543 compat
, sizeof(compat
));
544 qemu_fdt_setprop_cells(vms
->fdt
, "/pmu", "interrupts",
545 GIC_FDT_IRQ_TYPE_PPI
, VIRTUAL_PMU_IRQ
, irqflags
);
549 static inline DeviceState
*create_acpi_ged(VirtMachineState
*vms
)
552 MachineState
*ms
= MACHINE(vms
);
553 int irq
= vms
->irqmap
[VIRT_ACPI_GED
];
554 uint32_t event
= ACPI_GED_PWR_DOWN_EVT
;
557 event
|= ACPI_GED_MEM_HOTPLUG_EVT
;
560 if (ms
->nvdimms_state
->is_enabled
) {
561 event
|= ACPI_GED_NVDIMM_HOTPLUG_EVT
;
564 dev
= qdev_new(TYPE_ACPI_GED
);
565 qdev_prop_set_uint32(dev
, "ged-event", event
);
567 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_ACPI_GED
].base
);
568 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 1, vms
->memmap
[VIRT_PCDIMM_ACPI
].base
);
569 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), 0, qdev_get_gpio_in(vms
->gic
, irq
));
571 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
576 static void create_its(VirtMachineState
*vms
)
578 const char *itsclass
= its_class_name();
582 /* Do nothing if not supported */
586 dev
= qdev_new(itsclass
);
588 object_property_set_link(OBJECT(dev
), "parent-gicv3", OBJECT(vms
->gic
),
590 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
591 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_ITS
].base
);
593 fdt_add_its_gic_node(vms
);
594 vms
->msi_controller
= VIRT_MSI_CTRL_ITS
;
597 static void create_v2m(VirtMachineState
*vms
)
600 int irq
= vms
->irqmap
[VIRT_GIC_V2M
];
603 dev
= qdev_new("arm-gicv2m");
604 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_V2M
].base
);
605 qdev_prop_set_uint32(dev
, "base-spi", irq
);
606 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
607 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
609 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
610 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
,
611 qdev_get_gpio_in(vms
->gic
, irq
+ i
));
614 fdt_add_v2m_gic_node(vms
);
615 vms
->msi_controller
= VIRT_MSI_CTRL_GICV2M
;
618 static void create_gic(VirtMachineState
*vms
)
620 MachineState
*ms
= MACHINE(vms
);
621 /* We create a standalone GIC */
622 SysBusDevice
*gicbusdev
;
624 int type
= vms
->gic_version
, i
;
625 unsigned int smp_cpus
= ms
->smp
.cpus
;
626 uint32_t nb_redist_regions
= 0;
628 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
630 vms
->gic
= qdev_new(gictype
);
631 qdev_prop_set_uint32(vms
->gic
, "revision", type
);
632 qdev_prop_set_uint32(vms
->gic
, "num-cpu", smp_cpus
);
633 /* Note that the num-irq property counts both internal and external
634 * interrupts; there are always 32 of the former (mandated by GIC spec).
636 qdev_prop_set_uint32(vms
->gic
, "num-irq", NUM_IRQS
+ 32);
637 if (!kvm_irqchip_in_kernel()) {
638 qdev_prop_set_bit(vms
->gic
, "has-security-extensions", vms
->secure
);
642 uint32_t redist0_capacity
=
643 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
644 uint32_t redist0_count
= MIN(smp_cpus
, redist0_capacity
);
646 nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
648 qdev_prop_set_uint32(vms
->gic
, "len-redist-region-count",
650 qdev_prop_set_uint32(vms
->gic
, "redist-region-count[0]", redist0_count
);
652 if (nb_redist_regions
== 2) {
653 uint32_t redist1_capacity
=
654 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
656 qdev_prop_set_uint32(vms
->gic
, "redist-region-count[1]",
657 MIN(smp_cpus
- redist0_count
, redist1_capacity
));
660 if (!kvm_irqchip_in_kernel()) {
661 qdev_prop_set_bit(vms
->gic
, "has-virtualization-extensions",
665 gicbusdev
= SYS_BUS_DEVICE(vms
->gic
);
666 sysbus_realize_and_unref(gicbusdev
, &error_fatal
);
667 sysbus_mmio_map(gicbusdev
, 0, vms
->memmap
[VIRT_GIC_DIST
].base
);
669 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_REDIST
].base
);
670 if (nb_redist_regions
== 2) {
671 sysbus_mmio_map(gicbusdev
, 2,
672 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].base
);
675 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_CPU
].base
);
677 sysbus_mmio_map(gicbusdev
, 2, vms
->memmap
[VIRT_GIC_HYP
].base
);
678 sysbus_mmio_map(gicbusdev
, 3, vms
->memmap
[VIRT_GIC_VCPU
].base
);
682 /* Wire the outputs from each CPU's generic timer and the GICv3
683 * maintenance interrupt signal to the appropriate GIC PPI inputs,
684 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
686 for (i
= 0; i
< smp_cpus
; i
++) {
687 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
688 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
690 /* Mapping from the output timer irq lines from the CPU to the
691 * GIC PPI inputs we use for the virt board.
693 const int timer_irq
[] = {
694 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
695 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
696 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
697 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
700 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
701 qdev_connect_gpio_out(cpudev
, irq
,
702 qdev_get_gpio_in(vms
->gic
,
703 ppibase
+ timer_irq
[irq
]));
707 qemu_irq irq
= qdev_get_gpio_in(vms
->gic
,
708 ppibase
+ ARCH_GIC_MAINT_IRQ
);
709 qdev_connect_gpio_out_named(cpudev
, "gicv3-maintenance-interrupt",
711 } else if (vms
->virt
) {
712 qemu_irq irq
= qdev_get_gpio_in(vms
->gic
,
713 ppibase
+ ARCH_GIC_MAINT_IRQ
);
714 sysbus_connect_irq(gicbusdev
, i
+ 4 * smp_cpus
, irq
);
717 qdev_connect_gpio_out_named(cpudev
, "pmu-interrupt", 0,
718 qdev_get_gpio_in(vms
->gic
, ppibase
721 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
722 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
723 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
724 sysbus_connect_irq(gicbusdev
, i
+ 2 * smp_cpus
,
725 qdev_get_gpio_in(cpudev
, ARM_CPU_VIRQ
));
726 sysbus_connect_irq(gicbusdev
, i
+ 3 * smp_cpus
,
727 qdev_get_gpio_in(cpudev
, ARM_CPU_VFIQ
));
730 fdt_add_gic_node(vms
);
732 if (type
== 3 && vms
->its
) {
734 } else if (type
== 2) {
739 static void create_uart(const VirtMachineState
*vms
, int uart
,
740 MemoryRegion
*mem
, Chardev
*chr
)
743 hwaddr base
= vms
->memmap
[uart
].base
;
744 hwaddr size
= vms
->memmap
[uart
].size
;
745 int irq
= vms
->irqmap
[uart
];
746 const char compat
[] = "arm,pl011\0arm,primecell";
747 const char clocknames
[] = "uartclk\0apb_pclk";
748 DeviceState
*dev
= qdev_new(TYPE_PL011
);
749 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
751 qdev_prop_set_chr(dev
, "chardev", chr
);
752 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
753 memory_region_add_subregion(mem
, base
,
754 sysbus_mmio_get_region(s
, 0));
755 sysbus_connect_irq(s
, 0, qdev_get_gpio_in(vms
->gic
, irq
));
757 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
758 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
759 /* Note that we can't use setprop_string because of the embedded NUL */
760 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible",
761 compat
, sizeof(compat
));
762 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
764 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
765 GIC_FDT_IRQ_TYPE_SPI
, irq
,
766 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
767 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "clocks",
768 vms
->clock_phandle
, vms
->clock_phandle
);
769 qemu_fdt_setprop(vms
->fdt
, nodename
, "clock-names",
770 clocknames
, sizeof(clocknames
));
772 if (uart
== VIRT_UART
) {
773 qemu_fdt_setprop_string(vms
->fdt
, "/chosen", "stdout-path", nodename
);
775 /* Mark as not usable by the normal world */
776 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
777 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
779 qemu_fdt_setprop_string(vms
->fdt
, "/secure-chosen", "stdout-path",
786 static void create_rtc(const VirtMachineState
*vms
)
789 hwaddr base
= vms
->memmap
[VIRT_RTC
].base
;
790 hwaddr size
= vms
->memmap
[VIRT_RTC
].size
;
791 int irq
= vms
->irqmap
[VIRT_RTC
];
792 const char compat
[] = "arm,pl031\0arm,primecell";
794 sysbus_create_simple("pl031", base
, qdev_get_gpio_in(vms
->gic
, irq
));
796 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
797 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
798 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
799 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
801 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
802 GIC_FDT_IRQ_TYPE_SPI
, irq
,
803 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
804 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
805 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
809 static DeviceState
*gpio_key_dev
;
810 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
812 VirtMachineState
*s
= container_of(n
, VirtMachineState
, powerdown_notifier
);
815 acpi_send_event(s
->acpi_dev
, ACPI_POWER_DOWN_STATUS
);
817 /* use gpio Pin 3 for power button event */
818 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
822 static void create_gpio(const VirtMachineState
*vms
)
825 DeviceState
*pl061_dev
;
826 hwaddr base
= vms
->memmap
[VIRT_GPIO
].base
;
827 hwaddr size
= vms
->memmap
[VIRT_GPIO
].size
;
828 int irq
= vms
->irqmap
[VIRT_GPIO
];
829 const char compat
[] = "arm,pl061\0arm,primecell";
831 pl061_dev
= sysbus_create_simple("pl061", base
,
832 qdev_get_gpio_in(vms
->gic
, irq
));
834 uint32_t phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
835 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
836 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
837 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
839 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
840 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#gpio-cells", 2);
841 qemu_fdt_setprop(vms
->fdt
, nodename
, "gpio-controller", NULL
, 0);
842 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
843 GIC_FDT_IRQ_TYPE_SPI
, irq
,
844 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
845 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
846 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
847 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", phandle
);
849 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
850 qdev_get_gpio_in(pl061_dev
, 3));
851 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys");
852 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys", "compatible", "gpio-keys");
853 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#size-cells", 0);
854 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#address-cells", 1);
856 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys/poweroff");
857 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys/poweroff",
858 "label", "GPIO Key Poweroff");
859 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys/poweroff", "linux,code",
861 qemu_fdt_setprop_cells(vms
->fdt
, "/gpio-keys/poweroff",
862 "gpios", phandle
, 3, 0);
866 static void create_virtio_devices(const VirtMachineState
*vms
)
869 hwaddr size
= vms
->memmap
[VIRT_MMIO
].size
;
871 /* We create the transports in forwards order. Since qbus_realize()
872 * prepends (not appends) new child buses, the incrementing loop below will
873 * create a list of virtio-mmio buses with decreasing base addresses.
875 * When a -device option is processed from the command line,
876 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
877 * order. The upshot is that -device options in increasing command line
878 * order are mapped to virtio-mmio buses with decreasing base addresses.
880 * When this code was originally written, that arrangement ensured that the
881 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
882 * the first -device on the command line. (The end-to-end order is a
883 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
884 * guest kernel's name-to-address assignment strategy.)
886 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
887 * the message, if not necessarily the code, of commit 70161ff336.
888 * Therefore the loop now establishes the inverse of the original intent.
890 * Unfortunately, we can't counteract the kernel change by reversing the
891 * loop; it would break existing command lines.
893 * In any case, the kernel makes no guarantee about the stability of
894 * enumeration order of virtio devices (as demonstrated by it changing
895 * between kernel versions). For reliable and stable identification
896 * of disks users must use UUIDs or similar mechanisms.
898 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
899 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
900 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
902 sysbus_create_simple("virtio-mmio", base
,
903 qdev_get_gpio_in(vms
->gic
, irq
));
906 /* We add dtb nodes in reverse order so that they appear in the finished
907 * device tree lowest address first.
909 * Note that this mapping is independent of the loop above. The previous
910 * loop influences virtio device to virtio transport assignment, whereas
911 * this loop controls how virtio transports are laid out in the dtb.
913 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
915 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
916 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
918 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
919 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
920 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
921 "compatible", "virtio,mmio");
922 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
924 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
925 GIC_FDT_IRQ_TYPE_SPI
, irq
,
926 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
927 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
932 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
934 static PFlashCFI01
*virt_flash_create1(VirtMachineState
*vms
,
936 const char *alias_prop_name
)
939 * Create a single flash device. We use the same parameters as
940 * the flash devices on the Versatile Express board.
942 DeviceState
*dev
= qdev_new(TYPE_PFLASH_CFI01
);
944 qdev_prop_set_uint64(dev
, "sector-length", VIRT_FLASH_SECTOR_SIZE
);
945 qdev_prop_set_uint8(dev
, "width", 4);
946 qdev_prop_set_uint8(dev
, "device-width", 2);
947 qdev_prop_set_bit(dev
, "big-endian", false);
948 qdev_prop_set_uint16(dev
, "id0", 0x89);
949 qdev_prop_set_uint16(dev
, "id1", 0x18);
950 qdev_prop_set_uint16(dev
, "id2", 0x00);
951 qdev_prop_set_uint16(dev
, "id3", 0x00);
952 qdev_prop_set_string(dev
, "name", name
);
953 object_property_add_child(OBJECT(vms
), name
, OBJECT(dev
));
954 object_property_add_alias(OBJECT(vms
), alias_prop_name
,
955 OBJECT(dev
), "drive");
956 return PFLASH_CFI01(dev
);
959 static void virt_flash_create(VirtMachineState
*vms
)
961 vms
->flash
[0] = virt_flash_create1(vms
, "virt.flash0", "pflash0");
962 vms
->flash
[1] = virt_flash_create1(vms
, "virt.flash1", "pflash1");
965 static void virt_flash_map1(PFlashCFI01
*flash
,
966 hwaddr base
, hwaddr size
,
967 MemoryRegion
*sysmem
)
969 DeviceState
*dev
= DEVICE(flash
);
971 assert(QEMU_IS_ALIGNED(size
, VIRT_FLASH_SECTOR_SIZE
));
972 assert(size
/ VIRT_FLASH_SECTOR_SIZE
<= UINT32_MAX
);
973 qdev_prop_set_uint32(dev
, "num-blocks", size
/ VIRT_FLASH_SECTOR_SIZE
);
974 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
976 memory_region_add_subregion(sysmem
, base
,
977 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
),
981 static void virt_flash_map(VirtMachineState
*vms
,
982 MemoryRegion
*sysmem
,
983 MemoryRegion
*secure_sysmem
)
986 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
987 * sysmem is the system memory space. secure_sysmem is the secure view
988 * of the system, and the first flash device should be made visible only
989 * there. The second flash device is visible to both secure and nonsecure.
990 * If sysmem == secure_sysmem this means there is no separate Secure
991 * address space and both flash devices are generally visible.
993 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
994 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
996 virt_flash_map1(vms
->flash
[0], flashbase
, flashsize
,
998 virt_flash_map1(vms
->flash
[1], flashbase
+ flashsize
, flashsize
,
1002 static void virt_flash_fdt(VirtMachineState
*vms
,
1003 MemoryRegion
*sysmem
,
1004 MemoryRegion
*secure_sysmem
)
1006 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
1007 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
1010 if (sysmem
== secure_sysmem
) {
1011 /* Report both flash devices as a single node in the DT */
1012 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
1013 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1014 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
1015 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1016 2, flashbase
, 2, flashsize
,
1017 2, flashbase
+ flashsize
, 2, flashsize
);
1018 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
1022 * Report the devices as separate nodes so we can mark one as
1023 * only visible to the secure world.
1025 nodename
= g_strdup_printf("/secflash@%" PRIx64
, flashbase
);
1026 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1027 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
1028 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1029 2, flashbase
, 2, flashsize
);
1030 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
1031 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
1032 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
1035 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
1036 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1037 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
1038 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1039 2, flashbase
+ flashsize
, 2, flashsize
);
1040 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
1045 static bool virt_firmware_init(VirtMachineState
*vms
,
1046 MemoryRegion
*sysmem
,
1047 MemoryRegion
*secure_sysmem
)
1050 BlockBackend
*pflash_blk0
;
1052 /* Map legacy -drive if=pflash to machine properties */
1053 for (i
= 0; i
< ARRAY_SIZE(vms
->flash
); i
++) {
1054 pflash_cfi01_legacy_drive(vms
->flash
[i
],
1055 drive_get(IF_PFLASH
, 0, i
));
1058 virt_flash_map(vms
, sysmem
, secure_sysmem
);
1060 pflash_blk0
= pflash_cfi01_get_blk(vms
->flash
[0]);
1068 error_report("The contents of the first flash device may be "
1069 "specified with -bios or with -drive if=pflash... "
1070 "but you cannot use both options at once");
1074 /* Fall back to -bios */
1076 fname
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
1078 error_report("Could not find ROM image '%s'", bios_name
);
1081 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(vms
->flash
[0]), 0);
1082 image_size
= load_image_mr(fname
, mr
);
1084 if (image_size
< 0) {
1085 error_report("Could not load ROM image '%s'", bios_name
);
1090 return pflash_blk0
|| bios_name
;
1093 static FWCfgState
*create_fw_cfg(const VirtMachineState
*vms
, AddressSpace
*as
)
1095 MachineState
*ms
= MACHINE(vms
);
1096 hwaddr base
= vms
->memmap
[VIRT_FW_CFG
].base
;
1097 hwaddr size
= vms
->memmap
[VIRT_FW_CFG
].size
;
1101 fw_cfg
= fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
1102 fw_cfg_add_i16(fw_cfg
, FW_CFG_NB_CPUS
, (uint16_t)ms
->smp
.cpus
);
1104 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
1105 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1106 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1107 "compatible", "qemu,fw-cfg-mmio");
1108 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1110 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1115 static void create_pcie_irq_map(const VirtMachineState
*vms
,
1116 uint32_t gic_phandle
,
1117 int first_irq
, const char *nodename
)
1120 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
1121 uint32_t *irq_map
= full_irq_map
;
1123 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
1124 for (pin
= 0; pin
< 4; pin
++) {
1125 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
1126 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
1127 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
1131 devfn
<< 8, 0, 0, /* devfn */
1132 pin
+ 1, /* PCI pin */
1133 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
1135 /* Convert map to big endian */
1136 for (i
= 0; i
< 10; i
++) {
1137 irq_map
[i
] = cpu_to_be32(map
[i
]);
1143 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-map",
1144 full_irq_map
, sizeof(full_irq_map
));
1146 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupt-map-mask",
1147 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1151 static void create_smmu(const VirtMachineState
*vms
,
1155 const char compat
[] = "arm,smmu-v3";
1156 int irq
= vms
->irqmap
[VIRT_SMMU
];
1158 hwaddr base
= vms
->memmap
[VIRT_SMMU
].base
;
1159 hwaddr size
= vms
->memmap
[VIRT_SMMU
].size
;
1160 const char irq_names
[] = "eventq\0priq\0cmdq-sync\0gerror";
1163 if (vms
->iommu
!= VIRT_IOMMU_SMMUV3
|| !vms
->iommu_phandle
) {
1167 dev
= qdev_new("arm-smmuv3");
1169 object_property_set_link(OBJECT(dev
), "primary-bus", OBJECT(bus
),
1171 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
1172 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, base
);
1173 for (i
= 0; i
< NUM_SMMU_IRQS
; i
++) {
1174 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
,
1175 qdev_get_gpio_in(vms
->gic
, irq
+ i
));
1178 node
= g_strdup_printf("/smmuv3@%" PRIx64
, base
);
1179 qemu_fdt_add_subnode(vms
->fdt
, node
);
1180 qemu_fdt_setprop(vms
->fdt
, node
, "compatible", compat
, sizeof(compat
));
1181 qemu_fdt_setprop_sized_cells(vms
->fdt
, node
, "reg", 2, base
, 2, size
);
1183 qemu_fdt_setprop_cells(vms
->fdt
, node
, "interrupts",
1184 GIC_FDT_IRQ_TYPE_SPI
, irq
, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1185 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1186 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1187 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
1189 qemu_fdt_setprop(vms
->fdt
, node
, "interrupt-names", irq_names
,
1192 qemu_fdt_setprop_cell(vms
->fdt
, node
, "clocks", vms
->clock_phandle
);
1193 qemu_fdt_setprop_string(vms
->fdt
, node
, "clock-names", "apb_pclk");
1194 qemu_fdt_setprop(vms
->fdt
, node
, "dma-coherent", NULL
, 0);
1196 qemu_fdt_setprop_cell(vms
->fdt
, node
, "#iommu-cells", 1);
1198 qemu_fdt_setprop_cell(vms
->fdt
, node
, "phandle", vms
->iommu_phandle
);
1202 static void create_virtio_iommu_dt_bindings(VirtMachineState
*vms
)
1204 const char compat
[] = "virtio,pci-iommu";
1205 uint16_t bdf
= vms
->virtio_iommu_bdf
;
1208 vms
->iommu_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
1210 node
= g_strdup_printf("%s/virtio_iommu@%d", vms
->pciehb_nodename
, bdf
);
1211 qemu_fdt_add_subnode(vms
->fdt
, node
);
1212 qemu_fdt_setprop(vms
->fdt
, node
, "compatible", compat
, sizeof(compat
));
1213 qemu_fdt_setprop_sized_cells(vms
->fdt
, node
, "reg",
1214 1, bdf
<< 8, 1, 0, 1, 0,
1217 qemu_fdt_setprop_cell(vms
->fdt
, node
, "#iommu-cells", 1);
1218 qemu_fdt_setprop_cell(vms
->fdt
, node
, "phandle", vms
->iommu_phandle
);
1221 qemu_fdt_setprop_cells(vms
->fdt
, vms
->pciehb_nodename
, "iommu-map",
1222 0x0, vms
->iommu_phandle
, 0x0, bdf
,
1223 bdf
+ 1, vms
->iommu_phandle
, bdf
+ 1, 0xffff - bdf
);
1226 static void create_pcie(VirtMachineState
*vms
)
1228 hwaddr base_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].base
;
1229 hwaddr size_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].size
;
1230 hwaddr base_mmio_high
= vms
->memmap
[VIRT_HIGH_PCIE_MMIO
].base
;
1231 hwaddr size_mmio_high
= vms
->memmap
[VIRT_HIGH_PCIE_MMIO
].size
;
1232 hwaddr base_pio
= vms
->memmap
[VIRT_PCIE_PIO
].base
;
1233 hwaddr size_pio
= vms
->memmap
[VIRT_PCIE_PIO
].size
;
1234 hwaddr base_ecam
, size_ecam
;
1235 hwaddr base
= base_mmio
;
1237 int irq
= vms
->irqmap
[VIRT_PCIE
];
1238 MemoryRegion
*mmio_alias
;
1239 MemoryRegion
*mmio_reg
;
1240 MemoryRegion
*ecam_alias
;
1241 MemoryRegion
*ecam_reg
;
1247 dev
= qdev_new(TYPE_GPEX_HOST
);
1248 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
1250 ecam_id
= VIRT_ECAM_ID(vms
->highmem_ecam
);
1251 base_ecam
= vms
->memmap
[ecam_id
].base
;
1252 size_ecam
= vms
->memmap
[ecam_id
].size
;
1253 nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
1254 /* Map only the first size_ecam bytes of ECAM space */
1255 ecam_alias
= g_new0(MemoryRegion
, 1);
1256 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
1257 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
1258 ecam_reg
, 0, size_ecam
);
1259 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
1261 /* Map the MMIO window into system address space so as to expose
1262 * the section of PCI MMIO space which starts at the same base address
1263 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1266 mmio_alias
= g_new0(MemoryRegion
, 1);
1267 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
1268 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
1269 mmio_reg
, base_mmio
, size_mmio
);
1270 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
1273 /* Map high MMIO space */
1274 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
1276 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
1277 mmio_reg
, base_mmio_high
, size_mmio_high
);
1278 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
1282 /* Map IO port space */
1283 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
1285 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
1286 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
,
1287 qdev_get_gpio_in(vms
->gic
, irq
+ i
));
1288 gpex_set_irq_num(GPEX_HOST(dev
), i
, irq
+ i
);
1291 pci
= PCI_HOST_BRIDGE(dev
);
1293 for (i
= 0; i
< nb_nics
; i
++) {
1294 NICInfo
*nd
= &nd_table
[i
];
1297 nd
->model
= g_strdup("virtio");
1300 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
1304 nodename
= vms
->pciehb_nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
1305 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1306 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1307 "compatible", "pci-host-ecam-generic");
1308 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "pci");
1309 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 3);
1310 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 2);
1311 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "linux,pci-domain", 0);
1312 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "bus-range", 0,
1314 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1316 if (vms
->msi_phandle
) {
1317 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "msi-parent",
1321 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1322 2, base_ecam
, 2, size_ecam
);
1325 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1326 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1327 2, base_pio
, 2, size_pio
,
1328 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1329 2, base_mmio
, 2, size_mmio
,
1330 1, FDT_PCI_RANGE_MMIO_64BIT
,
1332 2, base_mmio_high
, 2, size_mmio_high
);
1334 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1335 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1336 2, base_pio
, 2, size_pio
,
1337 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1338 2, base_mmio
, 2, size_mmio
);
1341 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 1);
1342 create_pcie_irq_map(vms
, vms
->gic_phandle
, irq
, nodename
);
1345 vms
->iommu_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
1347 switch (vms
->iommu
) {
1348 case VIRT_IOMMU_SMMUV3
:
1349 create_smmu(vms
, pci
->bus
);
1350 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "iommu-map",
1351 0x0, vms
->iommu_phandle
, 0x0, 0x10000);
1354 g_assert_not_reached();
1359 static void create_platform_bus(VirtMachineState
*vms
)
1364 MemoryRegion
*sysmem
= get_system_memory();
1366 dev
= qdev_new(TYPE_PLATFORM_BUS_DEVICE
);
1367 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
1368 qdev_prop_set_uint32(dev
, "num_irqs", PLATFORM_BUS_NUM_IRQS
);
1369 qdev_prop_set_uint32(dev
, "mmio_size", vms
->memmap
[VIRT_PLATFORM_BUS
].size
);
1370 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
1371 vms
->platform_bus_dev
= dev
;
1373 s
= SYS_BUS_DEVICE(dev
);
1374 for (i
= 0; i
< PLATFORM_BUS_NUM_IRQS
; i
++) {
1375 int irq
= vms
->irqmap
[VIRT_PLATFORM_BUS
] + i
;
1376 sysbus_connect_irq(s
, i
, qdev_get_gpio_in(vms
->gic
, irq
));
1379 memory_region_add_subregion(sysmem
,
1380 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1381 sysbus_mmio_get_region(s
, 0));
1384 static void create_tag_ram(MemoryRegion
*tag_sysmem
,
1385 hwaddr base
, hwaddr size
,
1388 MemoryRegion
*tagram
= g_new(MemoryRegion
, 1);
1390 memory_region_init_ram(tagram
, NULL
, name
, size
/ 32, &error_fatal
);
1391 memory_region_add_subregion(tag_sysmem
, base
/ 32, tagram
);
1394 static void create_secure_ram(VirtMachineState
*vms
,
1395 MemoryRegion
*secure_sysmem
,
1396 MemoryRegion
*secure_tag_sysmem
)
1398 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
1400 hwaddr base
= vms
->memmap
[VIRT_SECURE_MEM
].base
;
1401 hwaddr size
= vms
->memmap
[VIRT_SECURE_MEM
].size
;
1403 memory_region_init_ram(secram
, NULL
, "virt.secure-ram", size
,
1405 memory_region_add_subregion(secure_sysmem
, base
, secram
);
1407 nodename
= g_strdup_printf("/secram@%" PRIx64
, base
);
1408 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1409 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "memory");
1410 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg", 2, base
, 2, size
);
1411 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
1412 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
1414 if (secure_tag_sysmem
) {
1415 create_tag_ram(secure_tag_sysmem
, base
, size
, "mach-virt.secure-tag");
1421 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
1423 const VirtMachineState
*board
= container_of(binfo
, VirtMachineState
,
1426 *fdt_size
= board
->fdt_size
;
1430 static void virt_build_smbios(VirtMachineState
*vms
)
1432 MachineClass
*mc
= MACHINE_GET_CLASS(vms
);
1433 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1434 uint8_t *smbios_tables
, *smbios_anchor
;
1435 size_t smbios_tables_len
, smbios_anchor_len
;
1436 const char *product
= "QEMU Virtual Machine";
1438 if (kvm_enabled()) {
1439 product
= "KVM Virtual Machine";
1442 smbios_set_defaults("QEMU", product
,
1443 vmc
->smbios_old_sys_ver
? "1.0" : mc
->name
, false,
1444 true, SMBIOS_ENTRY_POINT_30
);
1446 smbios_get_tables(MACHINE(vms
), NULL
, 0, &smbios_tables
, &smbios_tables_len
,
1447 &smbios_anchor
, &smbios_anchor_len
);
1449 if (smbios_anchor
) {
1450 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-tables",
1451 smbios_tables
, smbios_tables_len
);
1452 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-anchor",
1453 smbios_anchor
, smbios_anchor_len
);
1458 void virt_machine_done(Notifier
*notifier
, void *data
)
1460 VirtMachineState
*vms
= container_of(notifier
, VirtMachineState
,
1462 MachineState
*ms
= MACHINE(vms
);
1463 ARMCPU
*cpu
= ARM_CPU(first_cpu
);
1464 struct arm_boot_info
*info
= &vms
->bootinfo
;
1465 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
1468 * If the user provided a dtb, we assume the dynamic sysbus nodes
1469 * already are integrated there. This corresponds to a use case where
1470 * the dynamic sysbus nodes are complex and their generation is not yet
1471 * supported. In that case the user can take charge of the guest dt
1472 * while qemu takes charge of the qom stuff.
1474 if (info
->dtb_filename
== NULL
) {
1475 platform_bus_add_all_fdt_nodes(vms
->fdt
, "/intc",
1476 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1477 vms
->memmap
[VIRT_PLATFORM_BUS
].size
,
1478 vms
->irqmap
[VIRT_PLATFORM_BUS
]);
1480 if (arm_load_dtb(info
->dtb_start
, info
, info
->dtb_limit
, as
, ms
) < 0) {
1484 virt_acpi_setup(vms
);
1485 virt_build_smbios(vms
);
1488 static uint64_t virt_cpu_mp_affinity(VirtMachineState
*vms
, int idx
)
1490 uint8_t clustersz
= ARM_DEFAULT_CPUS_PER_CLUSTER
;
1491 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1493 if (!vmc
->disallow_affinity_adjustment
) {
1494 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1495 * GIC's target-list limitations. 32-bit KVM hosts currently
1496 * always create clusters of 4 CPUs, but that is expected to
1497 * change when they gain support for gicv3. When KVM is enabled
1498 * it will override the changes we make here, therefore our
1499 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1500 * and to improve SGI efficiency.
1502 if (vms
->gic_version
== VIRT_GIC_VERSION_3
) {
1503 clustersz
= GICV3_TARGETLIST_BITS
;
1505 clustersz
= GIC_TARGETLIST_BITS
;
1508 return arm_cpu_mp_affinity(idx
, clustersz
);
1511 static void virt_set_memmap(VirtMachineState
*vms
)
1513 MachineState
*ms
= MACHINE(vms
);
1514 hwaddr base
, device_memory_base
, device_memory_size
;
1517 vms
->memmap
= extended_memmap
;
1519 for (i
= 0; i
< ARRAY_SIZE(base_memmap
); i
++) {
1520 vms
->memmap
[i
] = base_memmap
[i
];
1523 if (ms
->ram_slots
> ACPI_MAX_RAM_SLOTS
) {
1524 error_report("unsupported number of memory slots: %"PRIu64
,
1530 * We compute the base of the high IO region depending on the
1531 * amount of initial and device memory. The device memory start/size
1532 * is aligned on 1GiB. We never put the high IO region below 256GiB
1533 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1534 * The device region size assumes 1GiB page max alignment per slot.
1536 device_memory_base
=
1537 ROUND_UP(vms
->memmap
[VIRT_MEM
].base
+ ms
->ram_size
, GiB
);
1538 device_memory_size
= ms
->maxram_size
- ms
->ram_size
+ ms
->ram_slots
* GiB
;
1540 /* Base address of the high IO region */
1541 base
= device_memory_base
+ ROUND_UP(device_memory_size
, GiB
);
1542 if (base
< device_memory_base
) {
1543 error_report("maxmem/slots too huge");
1546 if (base
< vms
->memmap
[VIRT_MEM
].base
+ LEGACY_RAMLIMIT_BYTES
) {
1547 base
= vms
->memmap
[VIRT_MEM
].base
+ LEGACY_RAMLIMIT_BYTES
;
1550 for (i
= VIRT_LOWMEMMAP_LAST
; i
< ARRAY_SIZE(extended_memmap
); i
++) {
1551 hwaddr size
= extended_memmap
[i
].size
;
1553 base
= ROUND_UP(base
, size
);
1554 vms
->memmap
[i
].base
= base
;
1555 vms
->memmap
[i
].size
= size
;
1558 vms
->highest_gpa
= base
- 1;
1559 if (device_memory_size
> 0) {
1560 ms
->device_memory
= g_malloc0(sizeof(*ms
->device_memory
));
1561 ms
->device_memory
->base
= device_memory_base
;
1562 memory_region_init(&ms
->device_memory
->mr
, OBJECT(vms
),
1563 "device-memory", device_memory_size
);
1568 * finalize_gic_version - Determines the final gic_version
1569 * according to the gic-version property
1571 * Default GIC type is v2
1573 static void finalize_gic_version(VirtMachineState
*vms
)
1575 unsigned int max_cpus
= MACHINE(vms
)->smp
.max_cpus
;
1577 if (kvm_enabled()) {
1580 if (!kvm_irqchip_in_kernel()) {
1581 switch (vms
->gic_version
) {
1582 case VIRT_GIC_VERSION_HOST
:
1584 "gic-version=host not relevant with kernel-irqchip=off "
1585 "as only userspace GICv2 is supported. Using v2 ...");
1587 case VIRT_GIC_VERSION_MAX
:
1588 case VIRT_GIC_VERSION_NOSEL
:
1589 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1591 case VIRT_GIC_VERSION_2
:
1593 case VIRT_GIC_VERSION_3
:
1595 "gic-version=3 is not supported with kernel-irqchip=off");
1600 probe_bitmap
= kvm_arm_vgic_probe();
1601 if (!probe_bitmap
) {
1602 error_report("Unable to determine GIC version supported by host");
1606 switch (vms
->gic_version
) {
1607 case VIRT_GIC_VERSION_HOST
:
1608 case VIRT_GIC_VERSION_MAX
:
1609 if (probe_bitmap
& KVM_ARM_VGIC_V3
) {
1610 vms
->gic_version
= VIRT_GIC_VERSION_3
;
1612 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1615 case VIRT_GIC_VERSION_NOSEL
:
1616 if ((probe_bitmap
& KVM_ARM_VGIC_V2
) && max_cpus
<= GIC_NCPU
) {
1617 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1618 } else if (probe_bitmap
& KVM_ARM_VGIC_V3
) {
1620 * in case the host does not support v2 in-kernel emulation or
1621 * the end-user requested more than 8 VCPUs we now default
1622 * to v3. In any case defaulting to v2 would be broken.
1624 vms
->gic_version
= VIRT_GIC_VERSION_3
;
1625 } else if (max_cpus
> GIC_NCPU
) {
1626 error_report("host only supports in-kernel GICv2 emulation "
1627 "but more than 8 vcpus are requested");
1631 case VIRT_GIC_VERSION_2
:
1632 case VIRT_GIC_VERSION_3
:
1636 /* Check chosen version is effectively supported by the host */
1637 if (vms
->gic_version
== VIRT_GIC_VERSION_2
&&
1638 !(probe_bitmap
& KVM_ARM_VGIC_V2
)) {
1639 error_report("host does not support in-kernel GICv2 emulation");
1641 } else if (vms
->gic_version
== VIRT_GIC_VERSION_3
&&
1642 !(probe_bitmap
& KVM_ARM_VGIC_V3
)) {
1643 error_report("host does not support in-kernel GICv3 emulation");
1650 switch (vms
->gic_version
) {
1651 case VIRT_GIC_VERSION_NOSEL
:
1652 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1654 case VIRT_GIC_VERSION_MAX
:
1655 vms
->gic_version
= VIRT_GIC_VERSION_3
;
1657 case VIRT_GIC_VERSION_HOST
:
1658 error_report("gic-version=host requires KVM");
1660 case VIRT_GIC_VERSION_2
:
1661 case VIRT_GIC_VERSION_3
:
1667 * virt_cpu_post_init() must be called after the CPUs have
1668 * been realized and the GIC has been created.
1670 static void virt_cpu_post_init(VirtMachineState
*vms
, int max_cpus
,
1671 MemoryRegion
*sysmem
)
1673 bool aarch64
, pmu
, steal_time
;
1676 aarch64
= object_property_get_bool(OBJECT(first_cpu
), "aarch64", NULL
);
1677 pmu
= object_property_get_bool(OBJECT(first_cpu
), "pmu", NULL
);
1678 steal_time
= object_property_get_bool(OBJECT(first_cpu
),
1679 "kvm-steal-time", NULL
);
1681 if (kvm_enabled()) {
1682 hwaddr pvtime_reg_base
= vms
->memmap
[VIRT_PVTIME
].base
;
1683 hwaddr pvtime_reg_size
= vms
->memmap
[VIRT_PVTIME
].size
;
1686 MemoryRegion
*pvtime
= g_new(MemoryRegion
, 1);
1687 hwaddr pvtime_size
= max_cpus
* PVTIME_SIZE_PER_CPU
;
1689 /* The memory region size must be a multiple of host page size. */
1690 pvtime_size
= REAL_HOST_PAGE_ALIGN(pvtime_size
);
1692 if (pvtime_size
> pvtime_reg_size
) {
1693 error_report("pvtime requires a %" HWADDR_PRId
1694 " byte memory region for %d CPUs,"
1695 " but only %" HWADDR_PRId
" has been reserved",
1696 pvtime_size
, max_cpus
, pvtime_reg_size
);
1700 memory_region_init_ram(pvtime
, NULL
, "pvtime", pvtime_size
, NULL
);
1701 memory_region_add_subregion(sysmem
, pvtime_reg_base
, pvtime
);
1706 assert(arm_feature(&ARM_CPU(cpu
)->env
, ARM_FEATURE_PMU
));
1707 if (kvm_irqchip_in_kernel()) {
1708 kvm_arm_pmu_set_irq(cpu
, PPI(VIRTUAL_PMU_IRQ
));
1710 kvm_arm_pmu_init(cpu
);
1713 kvm_arm_pvtime_init(cpu
, pvtime_reg_base
+
1714 cpu
->cpu_index
* PVTIME_SIZE_PER_CPU
);
1718 if (aarch64
&& vms
->highmem
) {
1719 int requested_pa_size
= 64 - clz64(vms
->highest_gpa
);
1720 int pamax
= arm_pamax(ARM_CPU(first_cpu
));
1722 if (pamax
< requested_pa_size
) {
1723 error_report("VCPU supports less PA bits (%d) than "
1724 "requested by the memory map (%d)",
1725 pamax
, requested_pa_size
);
1732 static void machvirt_init(MachineState
*machine
)
1734 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1735 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(machine
);
1736 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1737 const CPUArchIdList
*possible_cpus
;
1738 MemoryRegion
*sysmem
= get_system_memory();
1739 MemoryRegion
*secure_sysmem
= NULL
;
1740 MemoryRegion
*tag_sysmem
= NULL
;
1741 MemoryRegion
*secure_tag_sysmem
= NULL
;
1742 int n
, virt_max_cpus
;
1743 bool firmware_loaded
;
1744 bool aarch64
= true;
1745 bool has_ged
= !vmc
->no_ged
;
1746 unsigned int smp_cpus
= machine
->smp
.cpus
;
1747 unsigned int max_cpus
= machine
->smp
.max_cpus
;
1750 * In accelerated mode, the memory map is computed earlier in kvm_type()
1751 * to create a VM with the right number of IPA bits.
1754 virt_set_memmap(vms
);
1757 /* We can probe only here because during property set
1758 * KVM is not available yet
1760 finalize_gic_version(vms
);
1762 if (!cpu_type_valid(machine
->cpu_type
)) {
1763 error_report("mach-virt: CPU type %s not supported", machine
->cpu_type
);
1768 if (kvm_enabled()) {
1769 error_report("mach-virt: KVM does not support Security extensions");
1774 * The Secure view of the world is the same as the NonSecure,
1775 * but with a few extra devices. Create it as a container region
1776 * containing the system memory at low priority; any secure-only
1777 * devices go in at higher priority and take precedence.
1779 secure_sysmem
= g_new(MemoryRegion
, 1);
1780 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1782 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1785 firmware_loaded
= virt_firmware_init(vms
, sysmem
,
1786 secure_sysmem
?: sysmem
);
1788 /* If we have an EL3 boot ROM then the assumption is that it will
1789 * implement PSCI itself, so disable QEMU's internal implementation
1790 * so it doesn't get in the way. Instead of starting secondary
1791 * CPUs in PSCI powerdown state we will start them all running and
1792 * let the boot ROM sort them out.
1793 * The usual case is that we do use QEMU's PSCI implementation;
1794 * if the guest has EL2 then we will use SMC as the conduit,
1795 * and otherwise we will use HVC (for backwards compatibility and
1796 * because if we're using KVM then we must use HVC).
1798 if (vms
->secure
&& firmware_loaded
) {
1799 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_DISABLED
;
1800 } else if (vms
->virt
) {
1801 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_SMC
;
1803 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_HVC
;
1806 /* The maximum number of CPUs depends on the GIC version, or on how
1807 * many redistributors we can fit into the memory map.
1809 if (vms
->gic_version
== VIRT_GIC_VERSION_3
) {
1811 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
1813 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
1815 virt_max_cpus
= GIC_NCPU
;
1818 if (max_cpus
> virt_max_cpus
) {
1819 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1820 "supported by machine 'mach-virt' (%d)",
1821 max_cpus
, virt_max_cpus
);
1825 vms
->smp_cpus
= smp_cpus
;
1827 if (vms
->virt
&& kvm_enabled()) {
1828 error_report("mach-virt: KVM does not support providing "
1829 "Virtualization extensions to the guest CPU");
1833 if (vms
->mte
&& kvm_enabled()) {
1834 error_report("mach-virt: KVM does not support providing "
1835 "MTE to the guest CPU");
1841 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
1842 for (n
= 0; n
< possible_cpus
->len
; n
++) {
1846 if (n
>= smp_cpus
) {
1850 cpuobj
= object_new(possible_cpus
->cpus
[n
].type
);
1851 object_property_set_int(cpuobj
, "mp-affinity",
1852 possible_cpus
->cpus
[n
].arch_id
, NULL
);
1857 numa_cpu_pre_plug(&possible_cpus
->cpus
[cs
->cpu_index
], DEVICE(cpuobj
),
1860 aarch64
&= object_property_get_bool(cpuobj
, "aarch64", NULL
);
1863 object_property_set_bool(cpuobj
, "has_el3", false, NULL
);
1866 if (!vms
->virt
&& object_property_find(cpuobj
, "has_el2")) {
1867 object_property_set_bool(cpuobj
, "has_el2", false, NULL
);
1870 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
) {
1871 object_property_set_int(cpuobj
, "psci-conduit", vms
->psci_conduit
,
1874 /* Secondary CPUs start in PSCI powered-down state */
1876 object_property_set_bool(cpuobj
, "start-powered-off", true,
1881 if (vmc
->kvm_no_adjvtime
&&
1882 object_property_find(cpuobj
, "kvm-no-adjvtime")) {
1883 object_property_set_bool(cpuobj
, "kvm-no-adjvtime", true, NULL
);
1886 if (vmc
->no_kvm_steal_time
&&
1887 object_property_find(cpuobj
, "kvm-steal-time")) {
1888 object_property_set_bool(cpuobj
, "kvm-steal-time", false, NULL
);
1891 if (vmc
->no_pmu
&& object_property_find(cpuobj
, "pmu")) {
1892 object_property_set_bool(cpuobj
, "pmu", false, NULL
);
1895 if (object_property_find(cpuobj
, "reset-cbar")) {
1896 object_property_set_int(cpuobj
, "reset-cbar",
1897 vms
->memmap
[VIRT_CPUPERIPHS
].base
,
1901 object_property_set_link(cpuobj
, "memory", OBJECT(sysmem
),
1904 object_property_set_link(cpuobj
, "secure-memory",
1905 OBJECT(secure_sysmem
), &error_abort
);
1909 /* Create the memory region only once, but link to all cpus. */
1912 * The property exists only if MemTag is supported.
1913 * If it is, we must allocate the ram to back that up.
1915 if (!object_property_find(cpuobj
, "tag-memory")) {
1916 error_report("MTE requested, but not supported "
1917 "by the guest CPU");
1921 tag_sysmem
= g_new(MemoryRegion
, 1);
1922 memory_region_init(tag_sysmem
, OBJECT(machine
),
1923 "tag-memory", UINT64_MAX
/ 32);
1926 secure_tag_sysmem
= g_new(MemoryRegion
, 1);
1927 memory_region_init(secure_tag_sysmem
, OBJECT(machine
),
1928 "secure-tag-memory", UINT64_MAX
/ 32);
1930 /* As with ram, secure-tag takes precedence over tag. */
1931 memory_region_add_subregion_overlap(secure_tag_sysmem
, 0,
1936 object_property_set_link(cpuobj
, "tag-memory", OBJECT(tag_sysmem
),
1939 object_property_set_link(cpuobj
, "secure-tag-memory",
1940 OBJECT(secure_tag_sysmem
),
1945 qdev_realize(DEVICE(cpuobj
), NULL
, &error_fatal
);
1946 object_unref(cpuobj
);
1948 fdt_add_timer_nodes(vms
);
1949 fdt_add_cpu_nodes(vms
);
1951 memory_region_add_subregion(sysmem
, vms
->memmap
[VIRT_MEM
].base
,
1953 if (machine
->device_memory
) {
1954 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
1955 &machine
->device_memory
->mr
);
1958 virt_flash_fdt(vms
, sysmem
, secure_sysmem
?: sysmem
);
1962 virt_cpu_post_init(vms
, possible_cpus
->len
, sysmem
);
1964 fdt_add_pmu_nodes(vms
);
1966 create_uart(vms
, VIRT_UART
, sysmem
, serial_hd(0));
1969 create_secure_ram(vms
, secure_sysmem
, secure_tag_sysmem
);
1970 create_uart(vms
, VIRT_SECURE_UART
, secure_sysmem
, serial_hd(1));
1974 create_tag_ram(tag_sysmem
, vms
->memmap
[VIRT_MEM
].base
,
1975 machine
->ram_size
, "mach-virt.tag");
1978 vms
->highmem_ecam
&= vms
->highmem
&& (!firmware_loaded
|| aarch64
);
1984 if (has_ged
&& aarch64
&& firmware_loaded
&& virt_is_acpi_enabled(vms
)) {
1985 vms
->acpi_dev
= create_acpi_ged(vms
);
1990 /* connect powerdown request */
1991 vms
->powerdown_notifier
.notify
= virt_powerdown_req
;
1992 qemu_register_powerdown_notifier(&vms
->powerdown_notifier
);
1994 /* Create mmio transports, so the user can create virtio backends
1995 * (which will be automatically plugged in to the transports). If
1996 * no backend is created the transport will just sit harmlessly idle.
1998 create_virtio_devices(vms
);
2000 vms
->fw_cfg
= create_fw_cfg(vms
, &address_space_memory
);
2001 rom_set_fw(vms
->fw_cfg
);
2003 create_platform_bus(vms
);
2005 if (machine
->nvdimms_state
->is_enabled
) {
2006 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio
= {
2007 .space_id
= AML_AS_SYSTEM_MEMORY
,
2008 .address
= vms
->memmap
[VIRT_NVDIMM_ACPI
].base
,
2009 .bit_width
= NVDIMM_ACPI_IO_LEN
<< 3
2012 nvdimm_init_acpi_state(machine
->nvdimms_state
, sysmem
,
2013 arm_virt_nvdimm_acpi_dsmio
,
2014 vms
->fw_cfg
, OBJECT(vms
));
2017 vms
->bootinfo
.ram_size
= machine
->ram_size
;
2018 vms
->bootinfo
.nb_cpus
= smp_cpus
;
2019 vms
->bootinfo
.board_id
= -1;
2020 vms
->bootinfo
.loader_start
= vms
->memmap
[VIRT_MEM
].base
;
2021 vms
->bootinfo
.get_dtb
= machvirt_dtb
;
2022 vms
->bootinfo
.skip_dtb_autoload
= true;
2023 vms
->bootinfo
.firmware_loaded
= firmware_loaded
;
2024 arm_load_kernel(ARM_CPU(first_cpu
), machine
, &vms
->bootinfo
);
2026 vms
->machine_done
.notify
= virt_machine_done
;
2027 qemu_add_machine_init_done_notifier(&vms
->machine_done
);
2030 static bool virt_get_secure(Object
*obj
, Error
**errp
)
2032 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2037 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
2039 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2041 vms
->secure
= value
;
2044 static bool virt_get_virt(Object
*obj
, Error
**errp
)
2046 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2051 static void virt_set_virt(Object
*obj
, bool value
, Error
**errp
)
2053 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2058 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
2060 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2062 return vms
->highmem
;
2065 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
2067 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2069 vms
->highmem
= value
;
2072 static bool virt_get_its(Object
*obj
, Error
**errp
)
2074 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2079 static void virt_set_its(Object
*obj
, bool value
, Error
**errp
)
2081 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2086 bool virt_is_acpi_enabled(VirtMachineState
*vms
)
2088 if (vms
->acpi
== ON_OFF_AUTO_OFF
) {
2094 static void virt_get_acpi(Object
*obj
, Visitor
*v
, const char *name
,
2095 void *opaque
, Error
**errp
)
2097 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2098 OnOffAuto acpi
= vms
->acpi
;
2100 visit_type_OnOffAuto(v
, name
, &acpi
, errp
);
2103 static void virt_set_acpi(Object
*obj
, Visitor
*v
, const char *name
,
2104 void *opaque
, Error
**errp
)
2106 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2108 visit_type_OnOffAuto(v
, name
, &vms
->acpi
, errp
);
2111 static bool virt_get_ras(Object
*obj
, Error
**errp
)
2113 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2118 static void virt_set_ras(Object
*obj
, bool value
, Error
**errp
)
2120 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2125 static bool virt_get_mte(Object
*obj
, Error
**errp
)
2127 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2132 static void virt_set_mte(Object
*obj
, bool value
, Error
**errp
)
2134 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2139 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
2141 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2142 const char *val
= vms
->gic_version
== VIRT_GIC_VERSION_3
? "3" : "2";
2144 return g_strdup(val
);
2147 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
2149 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2151 if (!strcmp(value
, "3")) {
2152 vms
->gic_version
= VIRT_GIC_VERSION_3
;
2153 } else if (!strcmp(value
, "2")) {
2154 vms
->gic_version
= VIRT_GIC_VERSION_2
;
2155 } else if (!strcmp(value
, "host")) {
2156 vms
->gic_version
= VIRT_GIC_VERSION_HOST
; /* Will probe later */
2157 } else if (!strcmp(value
, "max")) {
2158 vms
->gic_version
= VIRT_GIC_VERSION_MAX
; /* Will probe later */
2160 error_setg(errp
, "Invalid gic-version value");
2161 error_append_hint(errp
, "Valid values are 3, 2, host, max.\n");
2165 static char *virt_get_iommu(Object
*obj
, Error
**errp
)
2167 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2169 switch (vms
->iommu
) {
2170 case VIRT_IOMMU_NONE
:
2171 return g_strdup("none");
2172 case VIRT_IOMMU_SMMUV3
:
2173 return g_strdup("smmuv3");
2175 g_assert_not_reached();
2179 static void virt_set_iommu(Object
*obj
, const char *value
, Error
**errp
)
2181 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2183 if (!strcmp(value
, "smmuv3")) {
2184 vms
->iommu
= VIRT_IOMMU_SMMUV3
;
2185 } else if (!strcmp(value
, "none")) {
2186 vms
->iommu
= VIRT_IOMMU_NONE
;
2188 error_setg(errp
, "Invalid iommu value");
2189 error_append_hint(errp
, "Valid values are none, smmuv3.\n");
2193 static CpuInstanceProperties
2194 virt_cpu_index_to_props(MachineState
*ms
, unsigned cpu_index
)
2196 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
2197 const CPUArchIdList
*possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
2199 assert(cpu_index
< possible_cpus
->len
);
2200 return possible_cpus
->cpus
[cpu_index
].props
;
2203 static int64_t virt_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
2205 return idx
% ms
->numa_state
->num_nodes
;
2208 static const CPUArchIdList
*virt_possible_cpu_arch_ids(MachineState
*ms
)
2211 unsigned int max_cpus
= ms
->smp
.max_cpus
;
2212 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
2214 if (ms
->possible_cpus
) {
2215 assert(ms
->possible_cpus
->len
== max_cpus
);
2216 return ms
->possible_cpus
;
2219 ms
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
2220 sizeof(CPUArchId
) * max_cpus
);
2221 ms
->possible_cpus
->len
= max_cpus
;
2222 for (n
= 0; n
< ms
->possible_cpus
->len
; n
++) {
2223 ms
->possible_cpus
->cpus
[n
].type
= ms
->cpu_type
;
2224 ms
->possible_cpus
->cpus
[n
].arch_id
=
2225 virt_cpu_mp_affinity(vms
, n
);
2226 ms
->possible_cpus
->cpus
[n
].props
.has_thread_id
= true;
2227 ms
->possible_cpus
->cpus
[n
].props
.thread_id
= n
;
2229 return ms
->possible_cpus
;
2232 static void virt_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2235 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2236 const MachineState
*ms
= MACHINE(hotplug_dev
);
2237 const bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
2239 if (!vms
->acpi_dev
) {
2241 "memory hotplug is not enabled: missing acpi-ged device");
2246 error_setg(errp
, "memory hotplug is not enabled: MTE is enabled");
2250 if (is_nvdimm
&& !ms
->nvdimms_state
->is_enabled
) {
2251 error_setg(errp
, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2255 pc_dimm_pre_plug(PC_DIMM(dev
), MACHINE(hotplug_dev
), NULL
, errp
);
2258 static void virt_memory_plug(HotplugHandler
*hotplug_dev
,
2259 DeviceState
*dev
, Error
**errp
)
2261 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2262 MachineState
*ms
= MACHINE(hotplug_dev
);
2263 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
2265 pc_dimm_plug(PC_DIMM(dev
), MACHINE(vms
));
2268 nvdimm_plug(ms
->nvdimms_state
);
2271 hotplug_handler_plug(HOTPLUG_HANDLER(vms
->acpi_dev
),
2275 static void virt_machine_device_pre_plug_cb(HotplugHandler
*hotplug_dev
,
2276 DeviceState
*dev
, Error
**errp
)
2278 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2280 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2281 virt_memory_pre_plug(hotplug_dev
, dev
, errp
);
2282 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_VIRTIO_IOMMU_PCI
)) {
2283 hwaddr db_start
= 0, db_end
= 0;
2284 char *resv_prop_str
;
2286 switch (vms
->msi_controller
) {
2287 case VIRT_MSI_CTRL_NONE
:
2289 case VIRT_MSI_CTRL_ITS
:
2290 /* GITS_TRANSLATER page */
2291 db_start
= base_memmap
[VIRT_GIC_ITS
].base
+ 0x10000;
2292 db_end
= base_memmap
[VIRT_GIC_ITS
].base
+
2293 base_memmap
[VIRT_GIC_ITS
].size
- 1;
2295 case VIRT_MSI_CTRL_GICV2M
:
2296 /* MSI_SETSPI_NS page */
2297 db_start
= base_memmap
[VIRT_GIC_V2M
].base
;
2298 db_end
= db_start
+ base_memmap
[VIRT_GIC_V2M
].size
- 1;
2301 resv_prop_str
= g_strdup_printf("0x%"PRIx64
":0x%"PRIx64
":%u",
2303 VIRTIO_IOMMU_RESV_MEM_T_MSI
);
2305 qdev_prop_set_uint32(dev
, "len-reserved-regions", 1);
2306 qdev_prop_set_string(dev
, "reserved-regions[0]", resv_prop_str
);
2307 g_free(resv_prop_str
);
2311 static void virt_machine_device_plug_cb(HotplugHandler
*hotplug_dev
,
2312 DeviceState
*dev
, Error
**errp
)
2314 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2316 if (vms
->platform_bus_dev
) {
2317 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
)) {
2318 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms
->platform_bus_dev
),
2319 SYS_BUS_DEVICE(dev
));
2322 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2323 virt_memory_plug(hotplug_dev
, dev
, errp
);
2325 if (object_dynamic_cast(OBJECT(dev
), TYPE_VIRTIO_IOMMU_PCI
)) {
2326 PCIDevice
*pdev
= PCI_DEVICE(dev
);
2328 vms
->iommu
= VIRT_IOMMU_VIRTIO
;
2329 vms
->virtio_iommu_bdf
= pci_get_bdf(pdev
);
2330 create_virtio_iommu_dt_bindings(vms
);
2334 static void virt_dimm_unplug_request(HotplugHandler
*hotplug_dev
,
2335 DeviceState
*dev
, Error
**errp
)
2337 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2338 Error
*local_err
= NULL
;
2340 if (!vms
->acpi_dev
) {
2341 error_setg(&local_err
,
2342 "memory hotplug is not enabled: missing acpi-ged device");
2346 if (object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
)) {
2347 error_setg(&local_err
,
2348 "nvdimm device hot unplug is not supported yet.");
2352 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms
->acpi_dev
), dev
,
2355 error_propagate(errp
, local_err
);
2358 static void virt_dimm_unplug(HotplugHandler
*hotplug_dev
,
2359 DeviceState
*dev
, Error
**errp
)
2361 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2362 Error
*local_err
= NULL
;
2364 hotplug_handler_unplug(HOTPLUG_HANDLER(vms
->acpi_dev
), dev
, &local_err
);
2369 pc_dimm_unplug(PC_DIMM(dev
), MACHINE(vms
));
2370 qdev_unrealize(dev
);
2373 error_propagate(errp
, local_err
);
2376 static void virt_machine_device_unplug_request_cb(HotplugHandler
*hotplug_dev
,
2377 DeviceState
*dev
, Error
**errp
)
2379 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2380 virt_dimm_unplug_request(hotplug_dev
, dev
, errp
);
2382 error_setg(errp
, "device unplug request for unsupported device"
2383 " type: %s", object_get_typename(OBJECT(dev
)));
2387 static void virt_machine_device_unplug_cb(HotplugHandler
*hotplug_dev
,
2388 DeviceState
*dev
, Error
**errp
)
2390 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2391 virt_dimm_unplug(hotplug_dev
, dev
, errp
);
2393 error_setg(errp
, "virt: device unplug for unsupported device"
2394 " type: %s", object_get_typename(OBJECT(dev
)));
2398 static HotplugHandler
*virt_machine_get_hotplug_handler(MachineState
*machine
,
2401 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
) ||
2402 (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
))) {
2403 return HOTPLUG_HANDLER(machine
);
2405 if (object_dynamic_cast(OBJECT(dev
), TYPE_VIRTIO_IOMMU_PCI
)) {
2406 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
2408 if (!vms
->bootinfo
.firmware_loaded
|| !virt_is_acpi_enabled(vms
)) {
2409 return HOTPLUG_HANDLER(machine
);
2416 * for arm64 kvm_type [7-0] encodes the requested number of bits
2417 * in the IPA address space
2419 static int virt_kvm_type(MachineState
*ms
, const char *type_str
)
2421 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
2422 int max_vm_pa_size
= kvm_arm_get_max_vm_ipa_size(ms
);
2423 int requested_pa_size
;
2425 /* we freeze the memory map to compute the highest gpa */
2426 virt_set_memmap(vms
);
2428 requested_pa_size
= 64 - clz64(vms
->highest_gpa
);
2430 if (requested_pa_size
> max_vm_pa_size
) {
2431 error_report("-m and ,maxmem option values "
2432 "require an IPA range (%d bits) larger than "
2433 "the one supported by the host (%d bits)",
2434 requested_pa_size
, max_vm_pa_size
);
2438 * By default we return 0 which corresponds to an implicit legacy
2439 * 40b IPA setting. Otherwise we return the actual requested PA
2442 return requested_pa_size
> 40 ? requested_pa_size
: 0;
2445 static void virt_machine_class_init(ObjectClass
*oc
, void *data
)
2447 MachineClass
*mc
= MACHINE_CLASS(oc
);
2448 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
2450 mc
->init
= machvirt_init
;
2451 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2452 * The value may be reduced later when we have more information about the
2453 * configuration of the particular instance.
2456 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_CALXEDA_XGMAC
);
2457 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_AMD_XGBE
);
2458 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_RAMFB_DEVICE
);
2459 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_PLATFORM
);
2460 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_TPM_TIS_SYSBUS
);
2461 mc
->block_default_type
= IF_VIRTIO
;
2463 mc
->pci_allow_0_address
= true;
2464 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2465 mc
->minimum_page_bits
= 12;
2466 mc
->possible_cpu_arch_ids
= virt_possible_cpu_arch_ids
;
2467 mc
->cpu_index_to_instance_props
= virt_cpu_index_to_props
;
2468 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-a15");
2469 mc
->get_default_cpu_node_id
= virt_get_default_cpu_node_id
;
2470 mc
->kvm_type
= virt_kvm_type
;
2471 assert(!mc
->get_hotplug_handler
);
2472 mc
->get_hotplug_handler
= virt_machine_get_hotplug_handler
;
2473 hc
->pre_plug
= virt_machine_device_pre_plug_cb
;
2474 hc
->plug
= virt_machine_device_plug_cb
;
2475 hc
->unplug_request
= virt_machine_device_unplug_request_cb
;
2476 hc
->unplug
= virt_machine_device_unplug_cb
;
2477 mc
->nvdimm_supported
= true;
2478 mc
->auto_enable_numa_with_memhp
= true;
2479 mc
->auto_enable_numa_with_memdev
= true;
2480 mc
->default_ram_id
= "mach-virt.ram";
2482 object_class_property_add(oc
, "acpi", "OnOffAuto",
2483 virt_get_acpi
, virt_set_acpi
,
2485 object_class_property_set_description(oc
, "acpi",
2489 static void virt_instance_init(Object
*obj
)
2491 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2492 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
2494 /* EL3 is disabled by default on virt: this makes us consistent
2495 * between KVM and TCG for this board, and it also allows us to
2496 * boot UEFI blobs which assume no TrustZone support.
2498 vms
->secure
= false;
2499 object_property_add_bool(obj
, "secure", virt_get_secure
,
2501 object_property_set_description(obj
, "secure",
2502 "Set on/off to enable/disable the ARM "
2503 "Security Extensions (TrustZone)");
2505 /* EL2 is also disabled by default, for similar reasons */
2507 object_property_add_bool(obj
, "virtualization", virt_get_virt
,
2509 object_property_set_description(obj
, "virtualization",
2510 "Set on/off to enable/disable emulating a "
2511 "guest CPU which implements the ARM "
2512 "Virtualization Extensions");
2514 /* High memory is enabled by default */
2515 vms
->highmem
= true;
2516 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
2518 object_property_set_description(obj
, "highmem",
2519 "Set on/off to enable/disable using "
2520 "physical address space above 32 bits");
2521 vms
->gic_version
= VIRT_GIC_VERSION_NOSEL
;
2522 object_property_add_str(obj
, "gic-version", virt_get_gic_version
,
2523 virt_set_gic_version
);
2524 object_property_set_description(obj
, "gic-version",
2526 "Valid values are 2, 3, host and max");
2528 vms
->highmem_ecam
= !vmc
->no_highmem_ecam
;
2533 /* Default allows ITS instantiation */
2535 object_property_add_bool(obj
, "its", virt_get_its
,
2537 object_property_set_description(obj
, "its",
2538 "Set on/off to enable/disable "
2539 "ITS instantiation");
2542 /* Default disallows iommu instantiation */
2543 vms
->iommu
= VIRT_IOMMU_NONE
;
2544 object_property_add_str(obj
, "iommu", virt_get_iommu
, virt_set_iommu
);
2545 object_property_set_description(obj
, "iommu",
2546 "Set the IOMMU type. "
2547 "Valid values are none and smmuv3");
2549 /* Default disallows RAS instantiation */
2551 object_property_add_bool(obj
, "ras", virt_get_ras
,
2553 object_property_set_description(obj
, "ras",
2554 "Set on/off to enable/disable reporting host memory errors "
2555 "to a KVM guest using ACPI and guest external abort exceptions");
2557 /* MTE is disabled by default. */
2559 object_property_add_bool(obj
, "mte", virt_get_mte
, virt_set_mte
);
2560 object_property_set_description(obj
, "mte",
2561 "Set on/off to enable/disable emulating a "
2562 "guest CPU which implements the ARM "
2563 "Memory Tagging Extension");
2565 vms
->irqmap
= a15irqmap
;
2567 virt_flash_create(vms
);
2570 static const TypeInfo virt_machine_info
= {
2571 .name
= TYPE_VIRT_MACHINE
,
2572 .parent
= TYPE_MACHINE
,
2574 .instance_size
= sizeof(VirtMachineState
),
2575 .class_size
= sizeof(VirtMachineClass
),
2576 .class_init
= virt_machine_class_init
,
2577 .instance_init
= virt_instance_init
,
2578 .interfaces
= (InterfaceInfo
[]) {
2579 { TYPE_HOTPLUG_HANDLER
},
2584 static void machvirt_machine_init(void)
2586 type_register_static(&virt_machine_info
);
2588 type_init(machvirt_machine_init
);
2590 static void virt_machine_5_2_options(MachineClass
*mc
)
2593 DEFINE_VIRT_MACHINE_AS_LATEST(5, 2)
2595 static void virt_machine_5_1_options(MachineClass
*mc
)
2597 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2599 virt_machine_5_2_options(mc
);
2600 compat_props_add(mc
->compat_props
, hw_compat_5_1
, hw_compat_5_1_len
);
2601 vmc
->no_kvm_steal_time
= true;
2603 DEFINE_VIRT_MACHINE(5, 1)
2605 static void virt_machine_5_0_options(MachineClass
*mc
)
2607 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2609 virt_machine_5_1_options(mc
);
2610 compat_props_add(mc
->compat_props
, hw_compat_5_0
, hw_compat_5_0_len
);
2611 mc
->numa_mem_supported
= true;
2612 vmc
->acpi_expose_flash
= true;
2613 mc
->auto_enable_numa_with_memdev
= false;
2615 DEFINE_VIRT_MACHINE(5, 0)
2617 static void virt_machine_4_2_options(MachineClass
*mc
)
2619 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2621 virt_machine_5_0_options(mc
);
2622 compat_props_add(mc
->compat_props
, hw_compat_4_2
, hw_compat_4_2_len
);
2623 vmc
->kvm_no_adjvtime
= true;
2625 DEFINE_VIRT_MACHINE(4, 2)
2627 static void virt_machine_4_1_options(MachineClass
*mc
)
2629 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2631 virt_machine_4_2_options(mc
);
2632 compat_props_add(mc
->compat_props
, hw_compat_4_1
, hw_compat_4_1_len
);
2634 mc
->auto_enable_numa_with_memhp
= false;
2636 DEFINE_VIRT_MACHINE(4, 1)
2638 static void virt_machine_4_0_options(MachineClass
*mc
)
2640 virt_machine_4_1_options(mc
);
2641 compat_props_add(mc
->compat_props
, hw_compat_4_0
, hw_compat_4_0_len
);
2643 DEFINE_VIRT_MACHINE(4, 0)
2645 static void virt_machine_3_1_options(MachineClass
*mc
)
2647 virt_machine_4_0_options(mc
);
2648 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
2650 DEFINE_VIRT_MACHINE(3, 1)
2652 static void virt_machine_3_0_options(MachineClass
*mc
)
2654 virt_machine_3_1_options(mc
);
2655 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
2657 DEFINE_VIRT_MACHINE(3, 0)
2659 static void virt_machine_2_12_options(MachineClass
*mc
)
2661 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2663 virt_machine_3_0_options(mc
);
2664 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
2665 vmc
->no_highmem_ecam
= true;
2668 DEFINE_VIRT_MACHINE(2, 12)
2670 static void virt_machine_2_11_options(MachineClass
*mc
)
2672 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2674 virt_machine_2_12_options(mc
);
2675 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
2676 vmc
->smbios_old_sys_ver
= true;
2678 DEFINE_VIRT_MACHINE(2, 11)
2680 static void virt_machine_2_10_options(MachineClass
*mc
)
2682 virt_machine_2_11_options(mc
);
2683 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
2684 /* before 2.11 we never faulted accesses to bad addresses */
2685 mc
->ignore_memory_transaction_failures
= true;
2687 DEFINE_VIRT_MACHINE(2, 10)
2689 static void virt_machine_2_9_options(MachineClass
*mc
)
2691 virt_machine_2_10_options(mc
);
2692 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
2694 DEFINE_VIRT_MACHINE(2, 9)
2696 static void virt_machine_2_8_options(MachineClass
*mc
)
2698 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2700 virt_machine_2_9_options(mc
);
2701 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
2702 /* For 2.8 and earlier we falsely claimed in the DT that
2703 * our timers were edge-triggered, not level-triggered.
2705 vmc
->claim_edge_triggered_timers
= true;
2707 DEFINE_VIRT_MACHINE(2, 8)
2709 static void virt_machine_2_7_options(MachineClass
*mc
)
2711 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2713 virt_machine_2_8_options(mc
);
2714 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
2715 /* ITS was introduced with 2.8 */
2717 /* Stick with 1K pages for migration compatibility */
2718 mc
->minimum_page_bits
= 0;
2720 DEFINE_VIRT_MACHINE(2, 7)
2722 static void virt_machine_2_6_options(MachineClass
*mc
)
2724 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2726 virt_machine_2_7_options(mc
);
2727 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
2728 vmc
->disallow_affinity_adjustment
= true;
2729 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2732 DEFINE_VIRT_MACHINE(2, 6)