1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
4 #include "exec/exec-all.h"
7 #include "sysemu/kvm.h"
8 #include "helper_regs.h"
9 #include "mmu-hash64.h"
10 #include "migration/cpu.h"
11 #include "qapi/error.h"
13 #include "exec/helper-proto.h"
15 static int cpu_load_old(QEMUFile
*f
, void *opaque
, int version_id
)
17 PowerPCCPU
*cpu
= opaque
;
18 CPUPPCState
*env
= &cpu
->env
;
22 #if defined(TARGET_PPC64)
27 for (i
= 0; i
< 32; i
++) {
28 qemu_get_betls(f
, &env
->gpr
[i
]);
30 #if !defined(TARGET_PPC64)
31 for (i
= 0; i
< 32; i
++) {
32 qemu_get_betls(f
, &env
->gprh
[i
]);
35 qemu_get_betls(f
, &env
->lr
);
36 qemu_get_betls(f
, &env
->ctr
);
37 for (i
= 0; i
< 8; i
++) {
38 qemu_get_be32s(f
, &env
->crf
[i
]);
40 qemu_get_betls(f
, &xer
);
41 cpu_write_xer(env
, xer
);
42 qemu_get_betls(f
, &env
->reserve_addr
);
43 qemu_get_betls(f
, &env
->msr
);
44 for (i
= 0; i
< 4; i
++) {
45 qemu_get_betls(f
, &env
->tgpr
[i
]);
47 for (i
= 0; i
< 32; i
++) {
52 u
.l
= qemu_get_be64(f
);
53 *cpu_fpr_ptr(env
, i
) = u
.d
;
55 qemu_get_be32s(f
, &fpscr
);
57 qemu_get_sbe32s(f
, &env
->access_type
);
58 #if defined(TARGET_PPC64)
59 qemu_get_betls(f
, &env
->spr
[SPR_ASR
]);
60 qemu_get_sbe32s(f
, &slb_nr
);
62 qemu_get_betls(f
, &sdr1
);
63 for (i
= 0; i
< 32; i
++) {
64 qemu_get_betls(f
, &env
->sr
[i
]);
66 for (i
= 0; i
< 2; i
++) {
67 for (j
= 0; j
< 8; j
++) {
68 qemu_get_betls(f
, &env
->DBAT
[i
][j
]);
71 for (i
= 0; i
< 2; i
++) {
72 for (j
= 0; j
< 8; j
++) {
73 qemu_get_betls(f
, &env
->IBAT
[i
][j
]);
76 qemu_get_sbe32s(f
, &env
->nb_tlb
);
77 qemu_get_sbe32s(f
, &env
->tlb_per_way
);
78 qemu_get_sbe32s(f
, &env
->nb_ways
);
79 qemu_get_sbe32s(f
, &env
->last_way
);
80 qemu_get_sbe32s(f
, &env
->id_tlbs
);
81 qemu_get_sbe32s(f
, &env
->nb_pids
);
84 for (i
= 0; i
< env
->nb_tlb
; i
++) {
85 qemu_get_betls(f
, &env
->tlb
.tlb6
[i
].pte0
);
86 qemu_get_betls(f
, &env
->tlb
.tlb6
[i
].pte1
);
87 qemu_get_betls(f
, &env
->tlb
.tlb6
[i
].EPN
);
90 for (i
= 0; i
< 4; i
++) {
91 qemu_get_betls(f
, &env
->pb
[i
]);
93 for (i
= 0; i
< 1024; i
++) {
94 qemu_get_betls(f
, &env
->spr
[i
]);
97 ppc_store_sdr1(env
, sdr1
);
99 qemu_get_be32s(f
, &vscr
);
100 helper_mtvscr(env
, vscr
);
101 qemu_get_be64s(f
, &env
->spe_acc
);
102 qemu_get_be32s(f
, &env
->spe_fscr
);
103 qemu_get_betls(f
, &env
->msr_mask
);
104 qemu_get_be32s(f
, &env
->flags
);
105 qemu_get_sbe32s(f
, &env
->error_code
);
106 qemu_get_be32s(f
, &env
->pending_interrupts
);
107 qemu_get_be32s(f
, &env
->irq_input_state
);
108 for (i
= 0; i
< POWERPC_EXCP_NB
; i
++) {
109 qemu_get_betls(f
, &env
->excp_vectors
[i
]);
111 qemu_get_betls(f
, &env
->excp_prefix
);
112 qemu_get_betls(f
, &env
->ivor_mask
);
113 qemu_get_betls(f
, &env
->ivpr_mask
);
114 qemu_get_betls(f
, &env
->hreset_vector
);
115 qemu_get_betls(f
, &env
->nip
);
116 qemu_get_betls(f
, &env
->hflags
);
117 qemu_get_betls(f
, &env
->hflags_nmsr
);
118 qemu_get_sbe32(f
); /* Discard unused mmu_idx */
119 qemu_get_sbe32(f
); /* Discard unused power_mode */
121 /* Recompute mmu indices */
122 hreg_compute_mem_idx(env
);
127 static int get_avr(QEMUFile
*f
, void *pv
, size_t size
,
128 const VMStateField
*field
)
132 v
->u64
[0] = qemu_get_be64(f
);
133 v
->u64
[1] = qemu_get_be64(f
);
138 static int put_avr(QEMUFile
*f
, void *pv
, size_t size
,
139 const VMStateField
*field
, QJSON
*vmdesc
)
143 qemu_put_be64(f
, v
->u64
[0]);
144 qemu_put_be64(f
, v
->u64
[1]);
148 static const VMStateInfo vmstate_info_avr
= {
154 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
155 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
157 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \
158 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
160 static int get_fpr(QEMUFile
*f
, void *pv
, size_t size
,
161 const VMStateField
*field
)
165 v
->VsrD(0) = qemu_get_be64(f
);
170 static int put_fpr(QEMUFile
*f
, void *pv
, size_t size
,
171 const VMStateField
*field
, QJSON
*vmdesc
)
175 qemu_put_be64(f
, v
->VsrD(0));
179 static const VMStateInfo vmstate_info_fpr
= {
185 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \
186 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
188 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \
189 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
191 static int get_vsr(QEMUFile
*f
, void *pv
, size_t size
,
192 const VMStateField
*field
)
196 v
->VsrD(1) = qemu_get_be64(f
);
201 static int put_vsr(QEMUFile
*f
, void *pv
, size_t size
,
202 const VMStateField
*field
, QJSON
*vmdesc
)
206 qemu_put_be64(f
, v
->VsrD(1));
210 static const VMStateInfo vmstate_info_vsr
= {
216 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \
217 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
219 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \
220 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
222 static bool cpu_pre_2_8_migration(void *opaque
, int version_id
)
224 PowerPCCPU
*cpu
= opaque
;
226 return cpu
->pre_2_8_migration
;
229 #if defined(TARGET_PPC64)
230 static bool cpu_pre_3_0_migration(void *opaque
, int version_id
)
232 PowerPCCPU
*cpu
= opaque
;
234 return cpu
->pre_3_0_migration
;
238 static int cpu_pre_save(void *opaque
)
240 PowerPCCPU
*cpu
= opaque
;
241 CPUPPCState
*env
= &cpu
->env
;
243 uint64_t insns_compat_mask
=
244 PPC_INSNS_BASE
| PPC_ISEL
| PPC_STRING
| PPC_MFTB
245 | PPC_FLOAT
| PPC_FLOAT_FSEL
| PPC_FLOAT_FRES
246 | PPC_FLOAT_FSQRT
| PPC_FLOAT_FRSQRTE
| PPC_FLOAT_FRSQRTES
247 | PPC_FLOAT_STFIWX
| PPC_FLOAT_EXT
248 | PPC_CACHE
| PPC_CACHE_ICBI
| PPC_CACHE_DCBZ
249 | PPC_MEM_SYNC
| PPC_MEM_EIEIO
| PPC_MEM_TLBIE
| PPC_MEM_TLBSYNC
250 | PPC_64B
| PPC_64BX
| PPC_ALTIVEC
251 | PPC_SEGMENT_64B
| PPC_SLBI
| PPC_POPCNTB
| PPC_POPCNTWD
;
252 uint64_t insns_compat_mask2
= PPC2_VSX
| PPC2_VSX207
| PPC2_DFP
| PPC2_DBRX
253 | PPC2_PERM_ISA206
| PPC2_DIVE_ISA206
254 | PPC2_ATOMIC_ISA206
| PPC2_FP_CVT_ISA206
255 | PPC2_FP_TST_ISA206
| PPC2_BCTAR_ISA207
256 | PPC2_LSQ_ISA207
| PPC2_ALTIVEC_207
257 | PPC2_ISA205
| PPC2_ISA207S
| PPC2_FP_CVT_S64
| PPC2_TM
;
259 env
->spr
[SPR_LR
] = env
->lr
;
260 env
->spr
[SPR_CTR
] = env
->ctr
;
261 env
->spr
[SPR_XER
] = cpu_read_xer(env
);
262 #if defined(TARGET_PPC64)
263 env
->spr
[SPR_CFAR
] = env
->cfar
;
265 env
->spr
[SPR_BOOKE_SPEFSCR
] = env
->spe_fscr
;
267 for (i
= 0; (i
< 4) && (i
< env
->nb_BATs
); i
++) {
268 env
->spr
[SPR_DBAT0U
+ 2 * i
] = env
->DBAT
[0][i
];
269 env
->spr
[SPR_DBAT0U
+ 2 * i
+ 1] = env
->DBAT
[1][i
];
270 env
->spr
[SPR_IBAT0U
+ 2 * i
] = env
->IBAT
[0][i
];
271 env
->spr
[SPR_IBAT0U
+ 2 * i
+ 1] = env
->IBAT
[1][i
];
273 for (i
= 0; (i
< 4) && ((i
+ 4) < env
->nb_BATs
); i
++) {
274 env
->spr
[SPR_DBAT4U
+ 2 * i
] = env
->DBAT
[0][i
+ 4];
275 env
->spr
[SPR_DBAT4U
+ 2 * i
+ 1] = env
->DBAT
[1][i
+ 4];
276 env
->spr
[SPR_IBAT4U
+ 2 * i
] = env
->IBAT
[0][i
+ 4];
277 env
->spr
[SPR_IBAT4U
+ 2 * i
+ 1] = env
->IBAT
[1][i
+ 4];
280 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
281 if (cpu
->pre_2_8_migration
) {
283 * Mask out bits that got added to msr_mask since the versions
284 * which stupidly included it in the migration stream.
286 target_ulong metamask
= 0
287 #if defined(TARGET_PPC64)
292 cpu
->mig_msr_mask
= env
->msr_mask
& ~metamask
;
293 cpu
->mig_insns_flags
= env
->insns_flags
& insns_compat_mask
;
295 * CPU models supported by old machines all have
296 * PPC_MEM_TLBIE, so we set it unconditionally to allow
297 * backward migration from a POWER9 host to a POWER8 host.
299 cpu
->mig_insns_flags
|= PPC_MEM_TLBIE
;
300 cpu
->mig_insns_flags2
= env
->insns_flags2
& insns_compat_mask2
;
301 cpu
->mig_nb_BATs
= env
->nb_BATs
;
303 if (cpu
->pre_3_0_migration
) {
304 if (cpu
->hash64_opts
) {
305 cpu
->mig_slb_nr
= cpu
->hash64_opts
->slb_size
;
313 * Determine if a given PVR is a "close enough" match to the CPU
314 * object. For TCG and KVM PR it would probably be sufficient to
315 * require an exact PVR match. However for KVM HV the user is
316 * restricted to a PVR exactly matching the host CPU. The correct way
317 * to handle this is to put the guest into an architected
318 * compatibility mode. However, to allow a more forgiving transition
319 * and migration from before this was widely done, we allow migration
320 * between sufficiently similar PVRs, as determined by the CPU class's
323 static bool pvr_match(PowerPCCPU
*cpu
, uint32_t pvr
)
325 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
327 if (pvr
== pcc
->pvr
) {
330 return pcc
->pvr_match(pcc
, pvr
);
333 static int cpu_post_load(void *opaque
, int version_id
)
335 PowerPCCPU
*cpu
= opaque
;
336 CPUPPCState
*env
= &cpu
->env
;
341 * If we're operating in compat mode, we should be ok as long as
342 * the destination supports the same compatiblity mode.
344 * Otherwise, however, we require that the destination has exactly
345 * the same CPU model as the source.
348 #if defined(TARGET_PPC64)
349 if (cpu
->compat_pvr
) {
350 uint32_t compat_pvr
= cpu
->compat_pvr
;
351 Error
*local_err
= NULL
;
354 ppc_set_compat(cpu
, compat_pvr
, &local_err
);
356 error_report_err(local_err
);
362 if (!pvr_match(cpu
, env
->spr
[SPR_PVR
])) {
368 * If we're running with KVM HV, there is a chance that the guest
369 * is running with KVM HV and its kernel does not have the
370 * capability of dealing with a different PVR other than this
371 * exact host PVR in KVM_SET_SREGS. If that happens, the
372 * guest freezes after migration.
374 * The function kvmppc_pvr_workaround_required does this verification
375 * by first checking if the kernel has the cap, returning true immediately
376 * if that is the case. Otherwise, it checks if we're running in KVM PR.
377 * If the guest kernel does not have the cap and we're not running KVM-PR
378 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
379 * receive the PVR it expects as a workaround.
382 #if defined(CONFIG_KVM)
383 if (kvmppc_pvr_workaround_required(cpu
)) {
384 env
->spr
[SPR_PVR
] = env
->spr_cb
[SPR_PVR
].default_value
;
388 env
->lr
= env
->spr
[SPR_LR
];
389 env
->ctr
= env
->spr
[SPR_CTR
];
390 cpu_write_xer(env
, env
->spr
[SPR_XER
]);
391 #if defined(TARGET_PPC64)
392 env
->cfar
= env
->spr
[SPR_CFAR
];
394 env
->spe_fscr
= env
->spr
[SPR_BOOKE_SPEFSCR
];
396 for (i
= 0; (i
< 4) && (i
< env
->nb_BATs
); i
++) {
397 env
->DBAT
[0][i
] = env
->spr
[SPR_DBAT0U
+ 2 * i
];
398 env
->DBAT
[1][i
] = env
->spr
[SPR_DBAT0U
+ 2 * i
+ 1];
399 env
->IBAT
[0][i
] = env
->spr
[SPR_IBAT0U
+ 2 * i
];
400 env
->IBAT
[1][i
] = env
->spr
[SPR_IBAT0U
+ 2 * i
+ 1];
402 for (i
= 0; (i
< 4) && ((i
+ 4) < env
->nb_BATs
); i
++) {
403 env
->DBAT
[0][i
+ 4] = env
->spr
[SPR_DBAT4U
+ 2 * i
];
404 env
->DBAT
[1][i
+ 4] = env
->spr
[SPR_DBAT4U
+ 2 * i
+ 1];
405 env
->IBAT
[0][i
+ 4] = env
->spr
[SPR_IBAT4U
+ 2 * i
];
406 env
->IBAT
[1][i
+ 4] = env
->spr
[SPR_IBAT4U
+ 2 * i
+ 1];
410 ppc_store_sdr1(env
, env
->spr
[SPR_SDR1
]);
414 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
418 env
->msr
^= env
->msr_mask
& ~((1ULL << MSR_TGPR
) | MSR_HVB
);
419 ppc_store_msr(env
, msr
);
421 hreg_compute_mem_idx(env
);
426 static bool fpu_needed(void *opaque
)
428 PowerPCCPU
*cpu
= opaque
;
430 return cpu
->env
.insns_flags
& PPC_FLOAT
;
433 static const VMStateDescription vmstate_fpu
= {
436 .minimum_version_id
= 1,
437 .needed
= fpu_needed
,
438 .fields
= (VMStateField
[]) {
439 VMSTATE_FPR_ARRAY(env
.vsr
, PowerPCCPU
, 32),
440 VMSTATE_UINTTL(env
.fpscr
, PowerPCCPU
),
441 VMSTATE_END_OF_LIST()
445 static bool altivec_needed(void *opaque
)
447 PowerPCCPU
*cpu
= opaque
;
449 return cpu
->env
.insns_flags
& PPC_ALTIVEC
;
452 static int get_vscr(QEMUFile
*f
, void *opaque
, size_t size
,
453 const VMStateField
*field
)
455 PowerPCCPU
*cpu
= opaque
;
456 helper_mtvscr(&cpu
->env
, qemu_get_be32(f
));
460 static int put_vscr(QEMUFile
*f
, void *opaque
, size_t size
,
461 const VMStateField
*field
, QJSON
*vmdesc
)
463 PowerPCCPU
*cpu
= opaque
;
464 qemu_put_be32(f
, helper_mfvscr(&cpu
->env
));
468 static const VMStateInfo vmstate_vscr
= {
469 .name
= "cpu/altivec/vscr",
474 static const VMStateDescription vmstate_altivec
= {
475 .name
= "cpu/altivec",
477 .minimum_version_id
= 1,
478 .needed
= altivec_needed
,
479 .fields
= (VMStateField
[]) {
480 VMSTATE_AVR_ARRAY(env
.vsr
, PowerPCCPU
, 32),
482 * Save the architecture value of the vscr, not the internally
483 * expanded version. Since this architecture value does not
484 * exist in memory to be stored, this requires a but of hoop
485 * jumping. We want OFFSET=0 so that we effectively pass CPU
486 * to the helper functions.
491 .size
= sizeof(uint32_t),
492 .info
= &vmstate_vscr
,
496 VMSTATE_END_OF_LIST()
500 static bool vsx_needed(void *opaque
)
502 PowerPCCPU
*cpu
= opaque
;
504 return cpu
->env
.insns_flags2
& PPC2_VSX
;
507 static const VMStateDescription vmstate_vsx
= {
510 .minimum_version_id
= 1,
511 .needed
= vsx_needed
,
512 .fields
= (VMStateField
[]) {
513 VMSTATE_VSR_ARRAY(env
.vsr
, PowerPCCPU
, 32),
514 VMSTATE_END_OF_LIST()
519 /* Transactional memory state */
520 static bool tm_needed(void *opaque
)
522 PowerPCCPU
*cpu
= opaque
;
523 CPUPPCState
*env
= &cpu
->env
;
527 static const VMStateDescription vmstate_tm
= {
530 .minimum_version_id
= 1,
531 .minimum_version_id_old
= 1,
533 .fields
= (VMStateField
[]) {
534 VMSTATE_UINTTL_ARRAY(env
.tm_gpr
, PowerPCCPU
, 32),
535 VMSTATE_AVR_ARRAY(env
.tm_vsr
, PowerPCCPU
, 64),
536 VMSTATE_UINT64(env
.tm_cr
, PowerPCCPU
),
537 VMSTATE_UINT64(env
.tm_lr
, PowerPCCPU
),
538 VMSTATE_UINT64(env
.tm_ctr
, PowerPCCPU
),
539 VMSTATE_UINT64(env
.tm_fpscr
, PowerPCCPU
),
540 VMSTATE_UINT64(env
.tm_amr
, PowerPCCPU
),
541 VMSTATE_UINT64(env
.tm_ppr
, PowerPCCPU
),
542 VMSTATE_UINT64(env
.tm_vrsave
, PowerPCCPU
),
543 VMSTATE_UINT32(env
.tm_vscr
, PowerPCCPU
),
544 VMSTATE_UINT64(env
.tm_dscr
, PowerPCCPU
),
545 VMSTATE_UINT64(env
.tm_tar
, PowerPCCPU
),
546 VMSTATE_END_OF_LIST()
551 static bool sr_needed(void *opaque
)
554 PowerPCCPU
*cpu
= opaque
;
556 return !(cpu
->env
.mmu_model
& POWERPC_MMU_64
);
562 static const VMStateDescription vmstate_sr
= {
565 .minimum_version_id
= 1,
567 .fields
= (VMStateField
[]) {
568 VMSTATE_UINTTL_ARRAY(env
.sr
, PowerPCCPU
, 32),
569 VMSTATE_END_OF_LIST()
574 static int get_slbe(QEMUFile
*f
, void *pv
, size_t size
,
575 const VMStateField
*field
)
579 v
->esid
= qemu_get_be64(f
);
580 v
->vsid
= qemu_get_be64(f
);
585 static int put_slbe(QEMUFile
*f
, void *pv
, size_t size
,
586 const VMStateField
*field
, QJSON
*vmdesc
)
590 qemu_put_be64(f
, v
->esid
);
591 qemu_put_be64(f
, v
->vsid
);
595 static const VMStateInfo vmstate_info_slbe
= {
601 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
602 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
604 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \
605 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
607 static bool slb_needed(void *opaque
)
609 PowerPCCPU
*cpu
= opaque
;
611 /* We don't support any of the old segment table based 64-bit CPUs */
612 return cpu
->env
.mmu_model
& POWERPC_MMU_64
;
615 static int slb_post_load(void *opaque
, int version_id
)
617 PowerPCCPU
*cpu
= opaque
;
618 CPUPPCState
*env
= &cpu
->env
;
622 * We've pulled in the raw esid and vsid values from the migration
623 * stream, but we need to recompute the page size pointers
625 for (i
= 0; i
< cpu
->hash64_opts
->slb_size
; i
++) {
626 if (ppc_store_slb(cpu
, i
, env
->slb
[i
].esid
, env
->slb
[i
].vsid
) < 0) {
627 /* Migration source had bad values in its SLB */
635 static const VMStateDescription vmstate_slb
= {
638 .minimum_version_id
= 1,
639 .needed
= slb_needed
,
640 .post_load
= slb_post_load
,
641 .fields
= (VMStateField
[]) {
642 VMSTATE_INT32_TEST(mig_slb_nr
, PowerPCCPU
, cpu_pre_3_0_migration
),
643 VMSTATE_SLB_ARRAY(env
.slb
, PowerPCCPU
, MAX_SLB_ENTRIES
),
644 VMSTATE_END_OF_LIST()
647 #endif /* TARGET_PPC64 */
649 static const VMStateDescription vmstate_tlb6xx_entry
= {
650 .name
= "cpu/tlb6xx_entry",
652 .minimum_version_id
= 1,
653 .fields
= (VMStateField
[]) {
654 VMSTATE_UINTTL(pte0
, ppc6xx_tlb_t
),
655 VMSTATE_UINTTL(pte1
, ppc6xx_tlb_t
),
656 VMSTATE_UINTTL(EPN
, ppc6xx_tlb_t
),
657 VMSTATE_END_OF_LIST()
661 static bool tlb6xx_needed(void *opaque
)
663 PowerPCCPU
*cpu
= opaque
;
664 CPUPPCState
*env
= &cpu
->env
;
666 return env
->nb_tlb
&& (env
->tlb_type
== TLB_6XX
);
669 static const VMStateDescription vmstate_tlb6xx
= {
670 .name
= "cpu/tlb6xx",
672 .minimum_version_id
= 1,
673 .needed
= tlb6xx_needed
,
674 .fields
= (VMStateField
[]) {
675 VMSTATE_INT32_EQUAL(env
.nb_tlb
, PowerPCCPU
, NULL
),
676 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env
.tlb
.tlb6
, PowerPCCPU
,
678 vmstate_tlb6xx_entry
,
680 VMSTATE_UINTTL_ARRAY(env
.tgpr
, PowerPCCPU
, 4),
681 VMSTATE_END_OF_LIST()
685 static const VMStateDescription vmstate_tlbemb_entry
= {
686 .name
= "cpu/tlbemb_entry",
688 .minimum_version_id
= 1,
689 .fields
= (VMStateField
[]) {
690 VMSTATE_UINT64(RPN
, ppcemb_tlb_t
),
691 VMSTATE_UINTTL(EPN
, ppcemb_tlb_t
),
692 VMSTATE_UINTTL(PID
, ppcemb_tlb_t
),
693 VMSTATE_UINTTL(size
, ppcemb_tlb_t
),
694 VMSTATE_UINT32(prot
, ppcemb_tlb_t
),
695 VMSTATE_UINT32(attr
, ppcemb_tlb_t
),
696 VMSTATE_END_OF_LIST()
700 static bool tlbemb_needed(void *opaque
)
702 PowerPCCPU
*cpu
= opaque
;
703 CPUPPCState
*env
= &cpu
->env
;
705 return env
->nb_tlb
&& (env
->tlb_type
== TLB_EMB
);
708 static bool pbr403_needed(void *opaque
)
710 PowerPCCPU
*cpu
= opaque
;
711 uint32_t pvr
= cpu
->env
.spr
[SPR_PVR
];
713 return (pvr
& 0xffff0000) == 0x00200000;
716 static const VMStateDescription vmstate_pbr403
= {
717 .name
= "cpu/pbr403",
719 .minimum_version_id
= 1,
720 .needed
= pbr403_needed
,
721 .fields
= (VMStateField
[]) {
722 VMSTATE_UINTTL_ARRAY(env
.pb
, PowerPCCPU
, 4),
723 VMSTATE_END_OF_LIST()
727 static const VMStateDescription vmstate_tlbemb
= {
728 .name
= "cpu/tlb6xx",
730 .minimum_version_id
= 1,
731 .needed
= tlbemb_needed
,
732 .fields
= (VMStateField
[]) {
733 VMSTATE_INT32_EQUAL(env
.nb_tlb
, PowerPCCPU
, NULL
),
734 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env
.tlb
.tlbe
, PowerPCCPU
,
736 vmstate_tlbemb_entry
,
738 /* 403 protection registers */
739 VMSTATE_END_OF_LIST()
741 .subsections
= (const VMStateDescription
*[]) {
747 static const VMStateDescription vmstate_tlbmas_entry
= {
748 .name
= "cpu/tlbmas_entry",
750 .minimum_version_id
= 1,
751 .fields
= (VMStateField
[]) {
752 VMSTATE_UINT32(mas8
, ppcmas_tlb_t
),
753 VMSTATE_UINT32(mas1
, ppcmas_tlb_t
),
754 VMSTATE_UINT64(mas2
, ppcmas_tlb_t
),
755 VMSTATE_UINT64(mas7_3
, ppcmas_tlb_t
),
756 VMSTATE_END_OF_LIST()
760 static bool tlbmas_needed(void *opaque
)
762 PowerPCCPU
*cpu
= opaque
;
763 CPUPPCState
*env
= &cpu
->env
;
765 return env
->nb_tlb
&& (env
->tlb_type
== TLB_MAS
);
768 static const VMStateDescription vmstate_tlbmas
= {
769 .name
= "cpu/tlbmas",
771 .minimum_version_id
= 1,
772 .needed
= tlbmas_needed
,
773 .fields
= (VMStateField
[]) {
774 VMSTATE_INT32_EQUAL(env
.nb_tlb
, PowerPCCPU
, NULL
),
775 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env
.tlb
.tlbm
, PowerPCCPU
,
777 vmstate_tlbmas_entry
,
779 VMSTATE_END_OF_LIST()
783 static bool compat_needed(void *opaque
)
785 PowerPCCPU
*cpu
= opaque
;
787 assert(!(cpu
->compat_pvr
&& !cpu
->vhyp
));
788 return !cpu
->pre_2_10_migration
&& cpu
->compat_pvr
!= 0;
791 static const VMStateDescription vmstate_compat
= {
792 .name
= "cpu/compat",
794 .minimum_version_id
= 1,
795 .needed
= compat_needed
,
796 .fields
= (VMStateField
[]) {
797 VMSTATE_UINT32(compat_pvr
, PowerPCCPU
),
798 VMSTATE_END_OF_LIST()
802 const VMStateDescription vmstate_ppc_cpu
= {
805 .minimum_version_id
= 5,
806 .minimum_version_id_old
= 4,
807 .load_state_old
= cpu_load_old
,
808 .pre_save
= cpu_pre_save
,
809 .post_load
= cpu_post_load
,
810 .fields
= (VMStateField
[]) {
811 VMSTATE_UNUSED(sizeof(target_ulong
)), /* was _EQUAL(env.spr[SPR_PVR]) */
813 /* User mode architected state */
814 VMSTATE_UINTTL_ARRAY(env
.gpr
, PowerPCCPU
, 32),
815 #if !defined(TARGET_PPC64)
816 VMSTATE_UINTTL_ARRAY(env
.gprh
, PowerPCCPU
, 32),
818 VMSTATE_UINT32_ARRAY(env
.crf
, PowerPCCPU
, 8),
819 VMSTATE_UINTTL(env
.nip
, PowerPCCPU
),
822 VMSTATE_UINTTL_ARRAY(env
.spr
, PowerPCCPU
, 1024),
823 VMSTATE_UINT64(env
.spe_acc
, PowerPCCPU
),
826 VMSTATE_UINTTL(env
.reserve_addr
, PowerPCCPU
),
828 /* Supervisor mode architected state */
829 VMSTATE_UINTTL(env
.msr
, PowerPCCPU
),
832 VMSTATE_UINTTL(env
.hflags_nmsr
, PowerPCCPU
),
833 /* FIXME: access_type? */
835 /* Sanity checking */
836 VMSTATE_UINTTL_TEST(mig_msr_mask
, PowerPCCPU
, cpu_pre_2_8_migration
),
837 VMSTATE_UINT64_TEST(mig_insns_flags
, PowerPCCPU
, cpu_pre_2_8_migration
),
838 VMSTATE_UINT64_TEST(mig_insns_flags2
, PowerPCCPU
,
839 cpu_pre_2_8_migration
),
840 VMSTATE_UINT32_TEST(mig_nb_BATs
, PowerPCCPU
, cpu_pre_2_8_migration
),
841 VMSTATE_END_OF_LIST()
843 .subsections
= (const VMStateDescription
*[]) {
851 #endif /* TARGET_PPC64 */