block/iscsi: cancel libiscsi task when ABORT TASK TMF completes
[qemu/ar7.git] / target / ppc / machine.c
blobeff30053b030eb1fe112bbf3eb05df1bfa8e4253
1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
3 #include "cpu.h"
4 #include "exec/exec-all.h"
5 #include "hw/hw.h"
6 #include "hw/boards.h"
7 #include "sysemu/kvm.h"
8 #include "helper_regs.h"
9 #include "mmu-hash64.h"
10 #include "migration/cpu.h"
11 #include "qapi/error.h"
12 #include "kvm_ppc.h"
14 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
16 PowerPCCPU *cpu = opaque;
17 CPUPPCState *env = &cpu->env;
18 unsigned int i, j;
19 target_ulong sdr1;
20 uint32_t fpscr;
21 #if defined(TARGET_PPC64)
22 int32_t slb_nr;
23 #endif
24 target_ulong xer;
26 for (i = 0; i < 32; i++)
27 qemu_get_betls(f, &env->gpr[i]);
28 #if !defined(TARGET_PPC64)
29 for (i = 0; i < 32; i++)
30 qemu_get_betls(f, &env->gprh[i]);
31 #endif
32 qemu_get_betls(f, &env->lr);
33 qemu_get_betls(f, &env->ctr);
34 for (i = 0; i < 8; i++)
35 qemu_get_be32s(f, &env->crf[i]);
36 qemu_get_betls(f, &xer);
37 cpu_write_xer(env, xer);
38 qemu_get_betls(f, &env->reserve_addr);
39 qemu_get_betls(f, &env->msr);
40 for (i = 0; i < 4; i++)
41 qemu_get_betls(f, &env->tgpr[i]);
42 for (i = 0; i < 32; i++) {
43 union {
44 float64 d;
45 uint64_t l;
46 } u;
47 u.l = qemu_get_be64(f);
48 *cpu_fpr_ptr(env, i) = u.d;
50 qemu_get_be32s(f, &fpscr);
51 env->fpscr = fpscr;
52 qemu_get_sbe32s(f, &env->access_type);
53 #if defined(TARGET_PPC64)
54 qemu_get_betls(f, &env->spr[SPR_ASR]);
55 qemu_get_sbe32s(f, &slb_nr);
56 #endif
57 qemu_get_betls(f, &sdr1);
58 for (i = 0; i < 32; i++)
59 qemu_get_betls(f, &env->sr[i]);
60 for (i = 0; i < 2; i++)
61 for (j = 0; j < 8; j++)
62 qemu_get_betls(f, &env->DBAT[i][j]);
63 for (i = 0; i < 2; i++)
64 for (j = 0; j < 8; j++)
65 qemu_get_betls(f, &env->IBAT[i][j]);
66 qemu_get_sbe32s(f, &env->nb_tlb);
67 qemu_get_sbe32s(f, &env->tlb_per_way);
68 qemu_get_sbe32s(f, &env->nb_ways);
69 qemu_get_sbe32s(f, &env->last_way);
70 qemu_get_sbe32s(f, &env->id_tlbs);
71 qemu_get_sbe32s(f, &env->nb_pids);
72 if (env->tlb.tlb6) {
73 // XXX assumes 6xx
74 for (i = 0; i < env->nb_tlb; i++) {
75 qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
76 qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
77 qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
80 for (i = 0; i < 4; i++)
81 qemu_get_betls(f, &env->pb[i]);
82 for (i = 0; i < 1024; i++)
83 qemu_get_betls(f, &env->spr[i]);
84 if (!cpu->vhyp) {
85 ppc_store_sdr1(env, sdr1);
87 qemu_get_be32s(f, &env->vscr);
88 qemu_get_be64s(f, &env->spe_acc);
89 qemu_get_be32s(f, &env->spe_fscr);
90 qemu_get_betls(f, &env->msr_mask);
91 qemu_get_be32s(f, &env->flags);
92 qemu_get_sbe32s(f, &env->error_code);
93 qemu_get_be32s(f, &env->pending_interrupts);
94 qemu_get_be32s(f, &env->irq_input_state);
95 for (i = 0; i < POWERPC_EXCP_NB; i++)
96 qemu_get_betls(f, &env->excp_vectors[i]);
97 qemu_get_betls(f, &env->excp_prefix);
98 qemu_get_betls(f, &env->ivor_mask);
99 qemu_get_betls(f, &env->ivpr_mask);
100 qemu_get_betls(f, &env->hreset_vector);
101 qemu_get_betls(f, &env->nip);
102 qemu_get_betls(f, &env->hflags);
103 qemu_get_betls(f, &env->hflags_nmsr);
104 qemu_get_sbe32(f); /* Discard unused mmu_idx */
105 qemu_get_sbe32(f); /* Discard unused power_mode */
107 /* Recompute mmu indices */
108 hreg_compute_mem_idx(env);
110 return 0;
113 static int get_avr(QEMUFile *f, void *pv, size_t size,
114 const VMStateField *field)
116 ppc_avr_t *v = pv;
118 v->u64[0] = qemu_get_be64(f);
119 v->u64[1] = qemu_get_be64(f);
121 return 0;
124 static int put_avr(QEMUFile *f, void *pv, size_t size,
125 const VMStateField *field, QJSON *vmdesc)
127 ppc_avr_t *v = pv;
129 qemu_put_be64(f, v->u64[0]);
130 qemu_put_be64(f, v->u64[1]);
131 return 0;
134 static const VMStateInfo vmstate_info_avr = {
135 .name = "avr",
136 .get = get_avr,
137 .put = put_avr,
140 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
141 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
143 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \
144 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
146 static int get_fpr(QEMUFile *f, void *pv, size_t size,
147 const VMStateField *field)
149 ppc_vsr_t *v = pv;
151 v->u64[0] = qemu_get_be64(f);
153 return 0;
156 static int put_fpr(QEMUFile *f, void *pv, size_t size,
157 const VMStateField *field, QJSON *vmdesc)
159 ppc_vsr_t *v = pv;
161 qemu_put_be64(f, v->u64[0]);
162 return 0;
165 static const VMStateInfo vmstate_info_fpr = {
166 .name = "fpr",
167 .get = get_fpr,
168 .put = put_fpr,
171 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \
172 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
174 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \
175 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
177 static int get_vsr(QEMUFile *f, void *pv, size_t size,
178 const VMStateField *field)
180 ppc_vsr_t *v = pv;
182 v->u64[1] = qemu_get_be64(f);
184 return 0;
187 static int put_vsr(QEMUFile *f, void *pv, size_t size,
188 const VMStateField *field, QJSON *vmdesc)
190 ppc_vsr_t *v = pv;
192 qemu_put_be64(f, v->u64[1]);
193 return 0;
196 static const VMStateInfo vmstate_info_vsr = {
197 .name = "vsr",
198 .get = get_vsr,
199 .put = put_vsr,
202 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \
203 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
205 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \
206 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
208 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
210 PowerPCCPU *cpu = opaque;
212 return cpu->pre_2_8_migration;
215 #if defined(TARGET_PPC64)
216 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
218 PowerPCCPU *cpu = opaque;
220 return cpu->pre_3_0_migration;
222 #endif
224 static int cpu_pre_save(void *opaque)
226 PowerPCCPU *cpu = opaque;
227 CPUPPCState *env = &cpu->env;
228 int i;
229 uint64_t insns_compat_mask =
230 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
231 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
232 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
233 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
234 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
235 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
236 | PPC_64B | PPC_64BX | PPC_ALTIVEC
237 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
238 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
239 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
240 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
241 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
242 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
243 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
245 env->spr[SPR_LR] = env->lr;
246 env->spr[SPR_CTR] = env->ctr;
247 env->spr[SPR_XER] = cpu_read_xer(env);
248 #if defined(TARGET_PPC64)
249 env->spr[SPR_CFAR] = env->cfar;
250 #endif
251 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
253 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
254 env->spr[SPR_DBAT0U + 2*i] = env->DBAT[0][i];
255 env->spr[SPR_DBAT0U + 2*i + 1] = env->DBAT[1][i];
256 env->spr[SPR_IBAT0U + 2*i] = env->IBAT[0][i];
257 env->spr[SPR_IBAT0U + 2*i + 1] = env->IBAT[1][i];
259 for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
260 env->spr[SPR_DBAT4U + 2*i] = env->DBAT[0][i+4];
261 env->spr[SPR_DBAT4U + 2*i + 1] = env->DBAT[1][i+4];
262 env->spr[SPR_IBAT4U + 2*i] = env->IBAT[0][i+4];
263 env->spr[SPR_IBAT4U + 2*i + 1] = env->IBAT[1][i+4];
266 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
267 if (cpu->pre_2_8_migration) {
268 /* Mask out bits that got added to msr_mask since the versions
269 * which stupidly included it in the migration stream. */
270 target_ulong metamask = 0
271 #if defined(TARGET_PPC64)
272 | (1ULL << MSR_TS0)
273 | (1ULL << MSR_TS1)
274 #endif
276 cpu->mig_msr_mask = env->msr_mask & ~metamask;
277 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
278 /* CPU models supported by old machines all have PPC_MEM_TLBIE,
279 * so we set it unconditionally to allow backward migration from
280 * a POWER9 host to a POWER8 host.
282 cpu->mig_insns_flags |= PPC_MEM_TLBIE;
283 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
284 cpu->mig_nb_BATs = env->nb_BATs;
286 if (cpu->pre_3_0_migration) {
287 if (cpu->hash64_opts) {
288 cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
292 return 0;
296 * Determine if a given PVR is a "close enough" match to the CPU
297 * object. For TCG and KVM PR it would probably be sufficient to
298 * require an exact PVR match. However for KVM HV the user is
299 * restricted to a PVR exactly matching the host CPU. The correct way
300 * to handle this is to put the guest into an architected
301 * compatibility mode. However, to allow a more forgiving transition
302 * and migration from before this was widely done, we allow migration
303 * between sufficiently similar PVRs, as determined by the CPU class's
304 * pvr_match() hook.
306 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
308 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
310 if (pvr == pcc->pvr) {
311 return true;
313 return pcc->pvr_match(pcc, pvr);
316 static int cpu_post_load(void *opaque, int version_id)
318 PowerPCCPU *cpu = opaque;
319 CPUPPCState *env = &cpu->env;
320 int i;
321 target_ulong msr;
324 * If we're operating in compat mode, we should be ok as long as
325 * the destination supports the same compatiblity mode.
327 * Otherwise, however, we require that the destination has exactly
328 * the same CPU model as the source.
331 #if defined(TARGET_PPC64)
332 if (cpu->compat_pvr) {
333 uint32_t compat_pvr = cpu->compat_pvr;
334 Error *local_err = NULL;
336 cpu->compat_pvr = 0;
337 ppc_set_compat(cpu, compat_pvr, &local_err);
338 if (local_err) {
339 error_report_err(local_err);
340 return -1;
342 } else
343 #endif
345 if (!pvr_match(cpu, env->spr[SPR_PVR])) {
346 return -1;
351 * If we're running with KVM HV, there is a chance that the guest
352 * is running with KVM HV and its kernel does not have the
353 * capability of dealing with a different PVR other than this
354 * exact host PVR in KVM_SET_SREGS. If that happens, the
355 * guest freezes after migration.
357 * The function kvmppc_pvr_workaround_required does this verification
358 * by first checking if the kernel has the cap, returning true immediately
359 * if that is the case. Otherwise, it checks if we're running in KVM PR.
360 * If the guest kernel does not have the cap and we're not running KVM-PR
361 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
362 * receive the PVR it expects as a workaround.
365 #if defined(CONFIG_KVM)
366 if (kvmppc_pvr_workaround_required(cpu)) {
367 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
369 #endif
371 env->lr = env->spr[SPR_LR];
372 env->ctr = env->spr[SPR_CTR];
373 cpu_write_xer(env, env->spr[SPR_XER]);
374 #if defined(TARGET_PPC64)
375 env->cfar = env->spr[SPR_CFAR];
376 #endif
377 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
379 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
380 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2*i];
381 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2*i + 1];
382 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2*i];
383 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2*i + 1];
385 for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
386 env->DBAT[0][i+4] = env->spr[SPR_DBAT4U + 2*i];
387 env->DBAT[1][i+4] = env->spr[SPR_DBAT4U + 2*i + 1];
388 env->IBAT[0][i+4] = env->spr[SPR_IBAT4U + 2*i];
389 env->IBAT[1][i+4] = env->spr[SPR_IBAT4U + 2*i + 1];
392 if (!cpu->vhyp) {
393 ppc_store_sdr1(env, env->spr[SPR_SDR1]);
396 /* Invalidate all supported msr bits except MSR_TGPR/MSR_HVB before restoring */
397 msr = env->msr;
398 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
399 ppc_store_msr(env, msr);
401 hreg_compute_mem_idx(env);
403 return 0;
406 static bool fpu_needed(void *opaque)
408 PowerPCCPU *cpu = opaque;
410 return (cpu->env.insns_flags & PPC_FLOAT);
413 static const VMStateDescription vmstate_fpu = {
414 .name = "cpu/fpu",
415 .version_id = 1,
416 .minimum_version_id = 1,
417 .needed = fpu_needed,
418 .fields = (VMStateField[]) {
419 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
420 VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
421 VMSTATE_END_OF_LIST()
425 static bool altivec_needed(void *opaque)
427 PowerPCCPU *cpu = opaque;
429 return (cpu->env.insns_flags & PPC_ALTIVEC);
432 static const VMStateDescription vmstate_altivec = {
433 .name = "cpu/altivec",
434 .version_id = 1,
435 .minimum_version_id = 1,
436 .needed = altivec_needed,
437 .fields = (VMStateField[]) {
438 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
439 VMSTATE_UINT32(env.vscr, PowerPCCPU),
440 VMSTATE_END_OF_LIST()
444 static bool vsx_needed(void *opaque)
446 PowerPCCPU *cpu = opaque;
448 return (cpu->env.insns_flags2 & PPC2_VSX);
451 static const VMStateDescription vmstate_vsx = {
452 .name = "cpu/vsx",
453 .version_id = 1,
454 .minimum_version_id = 1,
455 .needed = vsx_needed,
456 .fields = (VMStateField[]) {
457 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
458 VMSTATE_END_OF_LIST()
462 #ifdef TARGET_PPC64
463 /* Transactional memory state */
464 static bool tm_needed(void *opaque)
466 PowerPCCPU *cpu = opaque;
467 CPUPPCState *env = &cpu->env;
468 return msr_ts;
471 static const VMStateDescription vmstate_tm = {
472 .name = "cpu/tm",
473 .version_id = 1,
474 .minimum_version_id = 1,
475 .minimum_version_id_old = 1,
476 .needed = tm_needed,
477 .fields = (VMStateField []) {
478 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
479 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
480 VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
481 VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
482 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
483 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
484 VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
485 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
486 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
487 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
488 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
489 VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
490 VMSTATE_END_OF_LIST()
493 #endif
495 static bool sr_needed(void *opaque)
497 #ifdef TARGET_PPC64
498 PowerPCCPU *cpu = opaque;
500 return !(cpu->env.mmu_model & POWERPC_MMU_64);
501 #else
502 return true;
503 #endif
506 static const VMStateDescription vmstate_sr = {
507 .name = "cpu/sr",
508 .version_id = 1,
509 .minimum_version_id = 1,
510 .needed = sr_needed,
511 .fields = (VMStateField[]) {
512 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
513 VMSTATE_END_OF_LIST()
517 #ifdef TARGET_PPC64
518 static int get_slbe(QEMUFile *f, void *pv, size_t size,
519 const VMStateField *field)
521 ppc_slb_t *v = pv;
523 v->esid = qemu_get_be64(f);
524 v->vsid = qemu_get_be64(f);
526 return 0;
529 static int put_slbe(QEMUFile *f, void *pv, size_t size,
530 const VMStateField *field, QJSON *vmdesc)
532 ppc_slb_t *v = pv;
534 qemu_put_be64(f, v->esid);
535 qemu_put_be64(f, v->vsid);
536 return 0;
539 static const VMStateInfo vmstate_info_slbe = {
540 .name = "slbe",
541 .get = get_slbe,
542 .put = put_slbe,
545 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
546 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
548 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \
549 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
551 static bool slb_needed(void *opaque)
553 PowerPCCPU *cpu = opaque;
555 /* We don't support any of the old segment table based 64-bit CPUs */
556 return (cpu->env.mmu_model & POWERPC_MMU_64);
559 static int slb_post_load(void *opaque, int version_id)
561 PowerPCCPU *cpu = opaque;
562 CPUPPCState *env = &cpu->env;
563 int i;
565 /* We've pulled in the raw esid and vsid values from the migration
566 * stream, but we need to recompute the page size pointers */
567 for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
568 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
569 /* Migration source had bad values in its SLB */
570 return -1;
574 return 0;
577 static const VMStateDescription vmstate_slb = {
578 .name = "cpu/slb",
579 .version_id = 1,
580 .minimum_version_id = 1,
581 .needed = slb_needed,
582 .post_load = slb_post_load,
583 .fields = (VMStateField[]) {
584 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
585 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
586 VMSTATE_END_OF_LIST()
589 #endif /* TARGET_PPC64 */
591 static const VMStateDescription vmstate_tlb6xx_entry = {
592 .name = "cpu/tlb6xx_entry",
593 .version_id = 1,
594 .minimum_version_id = 1,
595 .fields = (VMStateField[]) {
596 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
597 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
598 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
599 VMSTATE_END_OF_LIST()
603 static bool tlb6xx_needed(void *opaque)
605 PowerPCCPU *cpu = opaque;
606 CPUPPCState *env = &cpu->env;
608 return env->nb_tlb && (env->tlb_type == TLB_6XX);
611 static const VMStateDescription vmstate_tlb6xx = {
612 .name = "cpu/tlb6xx",
613 .version_id = 1,
614 .minimum_version_id = 1,
615 .needed = tlb6xx_needed,
616 .fields = (VMStateField[]) {
617 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
618 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
619 env.nb_tlb,
620 vmstate_tlb6xx_entry,
621 ppc6xx_tlb_t),
622 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
623 VMSTATE_END_OF_LIST()
627 static const VMStateDescription vmstate_tlbemb_entry = {
628 .name = "cpu/tlbemb_entry",
629 .version_id = 1,
630 .minimum_version_id = 1,
631 .fields = (VMStateField[]) {
632 VMSTATE_UINT64(RPN, ppcemb_tlb_t),
633 VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
634 VMSTATE_UINTTL(PID, ppcemb_tlb_t),
635 VMSTATE_UINTTL(size, ppcemb_tlb_t),
636 VMSTATE_UINT32(prot, ppcemb_tlb_t),
637 VMSTATE_UINT32(attr, ppcemb_tlb_t),
638 VMSTATE_END_OF_LIST()
642 static bool tlbemb_needed(void *opaque)
644 PowerPCCPU *cpu = opaque;
645 CPUPPCState *env = &cpu->env;
647 return env->nb_tlb && (env->tlb_type == TLB_EMB);
650 static bool pbr403_needed(void *opaque)
652 PowerPCCPU *cpu = opaque;
653 uint32_t pvr = cpu->env.spr[SPR_PVR];
655 return (pvr & 0xffff0000) == 0x00200000;
658 static const VMStateDescription vmstate_pbr403 = {
659 .name = "cpu/pbr403",
660 .version_id = 1,
661 .minimum_version_id = 1,
662 .needed = pbr403_needed,
663 .fields = (VMStateField[]) {
664 VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
665 VMSTATE_END_OF_LIST()
669 static const VMStateDescription vmstate_tlbemb = {
670 .name = "cpu/tlb6xx",
671 .version_id = 1,
672 .minimum_version_id = 1,
673 .needed = tlbemb_needed,
674 .fields = (VMStateField[]) {
675 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
676 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
677 env.nb_tlb,
678 vmstate_tlbemb_entry,
679 ppcemb_tlb_t),
680 /* 403 protection registers */
681 VMSTATE_END_OF_LIST()
683 .subsections = (const VMStateDescription*[]) {
684 &vmstate_pbr403,
685 NULL
689 static const VMStateDescription vmstate_tlbmas_entry = {
690 .name = "cpu/tlbmas_entry",
691 .version_id = 1,
692 .minimum_version_id = 1,
693 .fields = (VMStateField[]) {
694 VMSTATE_UINT32(mas8, ppcmas_tlb_t),
695 VMSTATE_UINT32(mas1, ppcmas_tlb_t),
696 VMSTATE_UINT64(mas2, ppcmas_tlb_t),
697 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
698 VMSTATE_END_OF_LIST()
702 static bool tlbmas_needed(void *opaque)
704 PowerPCCPU *cpu = opaque;
705 CPUPPCState *env = &cpu->env;
707 return env->nb_tlb && (env->tlb_type == TLB_MAS);
710 static const VMStateDescription vmstate_tlbmas = {
711 .name = "cpu/tlbmas",
712 .version_id = 1,
713 .minimum_version_id = 1,
714 .needed = tlbmas_needed,
715 .fields = (VMStateField[]) {
716 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
717 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
718 env.nb_tlb,
719 vmstate_tlbmas_entry,
720 ppcmas_tlb_t),
721 VMSTATE_END_OF_LIST()
725 static bool compat_needed(void *opaque)
727 PowerPCCPU *cpu = opaque;
729 assert(!(cpu->compat_pvr && !cpu->vhyp));
730 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
733 static const VMStateDescription vmstate_compat = {
734 .name = "cpu/compat",
735 .version_id = 1,
736 .minimum_version_id = 1,
737 .needed = compat_needed,
738 .fields = (VMStateField[]) {
739 VMSTATE_UINT32(compat_pvr, PowerPCCPU),
740 VMSTATE_END_OF_LIST()
744 const VMStateDescription vmstate_ppc_cpu = {
745 .name = "cpu",
746 .version_id = 5,
747 .minimum_version_id = 5,
748 .minimum_version_id_old = 4,
749 .load_state_old = cpu_load_old,
750 .pre_save = cpu_pre_save,
751 .post_load = cpu_post_load,
752 .fields = (VMStateField[]) {
753 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
755 /* User mode architected state */
756 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
757 #if !defined(TARGET_PPC64)
758 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
759 #endif
760 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
761 VMSTATE_UINTTL(env.nip, PowerPCCPU),
763 /* SPRs */
764 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
765 VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
767 /* Reservation */
768 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
770 /* Supervisor mode architected state */
771 VMSTATE_UINTTL(env.msr, PowerPCCPU),
773 /* Internal state */
774 VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
775 /* FIXME: access_type? */
777 /* Sanity checking */
778 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
779 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
780 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
781 cpu_pre_2_8_migration),
782 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
783 VMSTATE_END_OF_LIST()
785 .subsections = (const VMStateDescription*[]) {
786 &vmstate_fpu,
787 &vmstate_altivec,
788 &vmstate_vsx,
789 &vmstate_sr,
790 #ifdef TARGET_PPC64
791 &vmstate_tm,
792 &vmstate_slb,
793 #endif /* TARGET_PPC64 */
794 &vmstate_tlb6xx,
795 &vmstate_tlbemb,
796 &vmstate_tlbmas,
797 &vmstate_compat,
798 NULL