target/mips: Declare generic FPU / Coprocessor functions in translate.h
[qemu/ar7.git] / hw / arm / virt.c
blob86070dfd98b9d7081ae18f30e510a9c1c946524c
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/datadir.h"
34 #include "qemu/units.h"
35 #include "qemu/option.h"
36 #include "monitor/qdev.h"
37 #include "qapi/error.h"
38 #include "hw/sysbus.h"
39 #include "hw/boards.h"
40 #include "hw/arm/boot.h"
41 #include "hw/arm/primecell.h"
42 #include "hw/arm/virt.h"
43 #include "hw/block/flash.h"
44 #include "hw/vfio/vfio-calxeda-xgmac.h"
45 #include "hw/vfio/vfio-amd-xgbe.h"
46 #include "hw/display/ramfb.h"
47 #include "net/net.h"
48 #include "sysemu/device_tree.h"
49 #include "sysemu/numa.h"
50 #include "sysemu/runstate.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/tpm.h"
53 #include "sysemu/kvm.h"
54 #include "hw/loader.h"
55 #include "exec/address-spaces.h"
56 #include "qemu/bitops.h"
57 #include "qemu/error-report.h"
58 #include "qemu/module.h"
59 #include "hw/pci-host/gpex.h"
60 #include "hw/virtio/virtio-pci.h"
61 #include "hw/arm/sysbus-fdt.h"
62 #include "hw/platform-bus.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/arm/fdt.h"
65 #include "hw/intc/arm_gic.h"
66 #include "hw/intc/arm_gicv3_common.h"
67 #include "hw/irq.h"
68 #include "kvm_arm.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "standard-headers/linux/input.h"
73 #include "hw/arm/smmuv3.h"
74 #include "hw/acpi/acpi.h"
75 #include "target/arm/internals.h"
76 #include "hw/mem/pc-dimm.h"
77 #include "hw/mem/nvdimm.h"
78 #include "hw/acpi/generic_event_device.h"
79 #include "hw/virtio/virtio-iommu.h"
80 #include "hw/char/pl011.h"
81 #include "qemu/guest-random.h"
83 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
84 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
85 void *data) \
86 { \
87 MachineClass *mc = MACHINE_CLASS(oc); \
88 virt_machine_##major##_##minor##_options(mc); \
89 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
90 if (latest) { \
91 mc->alias = "virt"; \
92 } \
93 } \
94 static const TypeInfo machvirt_##major##_##minor##_info = { \
95 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
96 .parent = TYPE_VIRT_MACHINE, \
97 .class_init = virt_##major##_##minor##_class_init, \
98 }; \
99 static void machvirt_machine_##major##_##minor##_init(void) \
101 type_register_static(&machvirt_##major##_##minor##_info); \
103 type_init(machvirt_machine_##major##_##minor##_init);
105 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
106 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
107 #define DEFINE_VIRT_MACHINE(major, minor) \
108 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
111 /* Number of external interrupt lines to configure the GIC with */
112 #define NUM_IRQS 256
114 #define PLATFORM_BUS_NUM_IRQS 64
116 /* Legacy RAM limit in GB (< version 4.0) */
117 #define LEGACY_RAMLIMIT_GB 255
118 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
120 /* Addresses and sizes of our components.
121 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
122 * 128MB..256MB is used for miscellaneous device I/O.
123 * 256MB..1GB is reserved for possible future PCI support (ie where the
124 * PCI memory window will go if we add a PCI host controller).
125 * 1GB and up is RAM (which may happily spill over into the
126 * high memory region beyond 4GB).
127 * This represents a compromise between how much RAM can be given to
128 * a 32 bit VM and leaving space for expansion and in particular for PCI.
129 * Note that devices should generally be placed at multiples of 0x10000,
130 * to accommodate guests using 64K pages.
132 static const MemMapEntry base_memmap[] = {
133 /* Space up to 0x8000000 is reserved for a boot ROM */
134 [VIRT_FLASH] = { 0, 0x08000000 },
135 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
136 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
137 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
138 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
139 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
140 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
141 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
142 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
143 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
144 /* This redistributor space allows up to 2*64kB*123 CPUs */
145 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
146 [VIRT_UART] = { 0x09000000, 0x00001000 },
147 [VIRT_RTC] = { 0x09010000, 0x00001000 },
148 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
149 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
150 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
151 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
152 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
153 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
154 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
155 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
156 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
157 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
158 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
159 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
160 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
161 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
162 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
163 /* Actual RAM size depends on initial RAM and device memory settings */
164 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
168 * Highmem IO Regions: This memory map is floating, located after the RAM.
169 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
170 * top of the RAM, so that its base get the same alignment as the size,
171 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
172 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
173 * Note the extended_memmap is sized so that it eventually also includes the
174 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
175 * index of base_memmap).
177 static MemMapEntry extended_memmap[] = {
178 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
179 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
180 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
181 /* Second PCIe window */
182 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
185 static const int a15irqmap[] = {
186 [VIRT_UART] = 1,
187 [VIRT_RTC] = 2,
188 [VIRT_PCIE] = 3, /* ... to 6 */
189 [VIRT_GPIO] = 7,
190 [VIRT_SECURE_UART] = 8,
191 [VIRT_ACPI_GED] = 9,
192 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
193 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
194 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
195 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
198 static const char *valid_cpus[] = {
199 ARM_CPU_TYPE_NAME("cortex-a7"),
200 ARM_CPU_TYPE_NAME("cortex-a15"),
201 ARM_CPU_TYPE_NAME("cortex-a53"),
202 ARM_CPU_TYPE_NAME("cortex-a57"),
203 ARM_CPU_TYPE_NAME("cortex-a72"),
204 ARM_CPU_TYPE_NAME("host"),
205 ARM_CPU_TYPE_NAME("max"),
208 static bool cpu_type_valid(const char *cpu)
210 int i;
212 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
213 if (strcmp(cpu, valid_cpus[i]) == 0) {
214 return true;
217 return false;
220 static void create_kaslr_seed(VirtMachineState *vms, const char *node)
222 uint64_t seed;
224 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
225 return;
227 qemu_fdt_setprop_u64(vms->fdt, node, "kaslr-seed", seed);
230 static void create_fdt(VirtMachineState *vms)
232 MachineState *ms = MACHINE(vms);
233 int nb_numa_nodes = ms->numa_state->num_nodes;
234 void *fdt = create_device_tree(&vms->fdt_size);
236 if (!fdt) {
237 error_report("create_device_tree() failed");
238 exit(1);
241 vms->fdt = fdt;
243 /* Header */
244 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
245 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
246 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
248 /* /chosen must exist for load_dtb to fill in necessary properties later */
249 qemu_fdt_add_subnode(fdt, "/chosen");
250 create_kaslr_seed(vms, "/chosen");
252 if (vms->secure) {
253 qemu_fdt_add_subnode(fdt, "/secure-chosen");
254 create_kaslr_seed(vms, "/secure-chosen");
257 /* Clock node, for the benefit of the UART. The kernel device tree
258 * binding documentation claims the PL011 node clock properties are
259 * optional but in practice if you omit them the kernel refuses to
260 * probe for the device.
262 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
263 qemu_fdt_add_subnode(fdt, "/apb-pclk");
264 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
265 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
266 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
267 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
268 "clk24mhz");
269 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
271 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
272 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
273 uint32_t *matrix = g_malloc0(size);
274 int idx, i, j;
276 for (i = 0; i < nb_numa_nodes; i++) {
277 for (j = 0; j < nb_numa_nodes; j++) {
278 idx = (i * nb_numa_nodes + j) * 3;
279 matrix[idx + 0] = cpu_to_be32(i);
280 matrix[idx + 1] = cpu_to_be32(j);
281 matrix[idx + 2] =
282 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
286 qemu_fdt_add_subnode(fdt, "/distance-map");
287 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
288 "numa-distance-map-v1");
289 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
290 matrix, size);
291 g_free(matrix);
295 static void fdt_add_timer_nodes(const VirtMachineState *vms)
297 /* On real hardware these interrupts are level-triggered.
298 * On KVM they were edge-triggered before host kernel version 4.4,
299 * and level-triggered afterwards.
300 * On emulated QEMU they are level-triggered.
302 * Getting the DTB info about them wrong is awkward for some
303 * guest kernels:
304 * pre-4.8 ignore the DT and leave the interrupt configured
305 * with whatever the GIC reset value (or the bootloader) left it at
306 * 4.8 before rc6 honour the incorrect data by programming it back
307 * into the GIC, causing problems
308 * 4.8rc6 and later ignore the DT and always write "level triggered"
309 * into the GIC
311 * For backwards-compatibility, virt-2.8 and earlier will continue
312 * to say these are edge-triggered, but later machines will report
313 * the correct information.
315 ARMCPU *armcpu;
316 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
317 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
319 if (vmc->claim_edge_triggered_timers) {
320 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
323 if (vms->gic_version == VIRT_GIC_VERSION_2) {
324 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
325 GIC_FDT_IRQ_PPI_CPU_WIDTH,
326 (1 << MACHINE(vms)->smp.cpus) - 1);
329 qemu_fdt_add_subnode(vms->fdt, "/timer");
331 armcpu = ARM_CPU(qemu_get_cpu(0));
332 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
333 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
334 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
335 compat, sizeof(compat));
336 } else {
337 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
338 "arm,armv7-timer");
340 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
341 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
342 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
343 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
344 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
345 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
348 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
350 int cpu;
351 int addr_cells = 1;
352 const MachineState *ms = MACHINE(vms);
353 int smp_cpus = ms->smp.cpus;
356 * From Documentation/devicetree/bindings/arm/cpus.txt
357 * On ARM v8 64-bit systems value should be set to 2,
358 * that corresponds to the MPIDR_EL1 register size.
359 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
360 * in the system, #address-cells can be set to 1, since
361 * MPIDR_EL1[63:32] bits are not used for CPUs
362 * identification.
364 * Here we actually don't know whether our system is 32- or 64-bit one.
365 * The simplest way to go is to examine affinity IDs of all our CPUs. If
366 * at least one of them has Aff3 populated, we set #address-cells to 2.
368 for (cpu = 0; cpu < smp_cpus; cpu++) {
369 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
371 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
372 addr_cells = 2;
373 break;
377 qemu_fdt_add_subnode(vms->fdt, "/cpus");
378 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
379 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
381 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
382 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
383 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
384 CPUState *cs = CPU(armcpu);
386 qemu_fdt_add_subnode(vms->fdt, nodename);
387 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
388 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
389 armcpu->dtb_compatible);
391 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
392 qemu_fdt_setprop_string(vms->fdt, nodename,
393 "enable-method", "psci");
396 if (addr_cells == 2) {
397 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
398 armcpu->mp_affinity);
399 } else {
400 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
401 armcpu->mp_affinity);
404 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
405 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
406 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
409 g_free(nodename);
413 static void fdt_add_its_gic_node(VirtMachineState *vms)
415 char *nodename;
417 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
418 nodename = g_strdup_printf("/intc/its@%" PRIx64,
419 vms->memmap[VIRT_GIC_ITS].base);
420 qemu_fdt_add_subnode(vms->fdt, nodename);
421 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
422 "arm,gic-v3-its");
423 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
424 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
425 2, vms->memmap[VIRT_GIC_ITS].base,
426 2, vms->memmap[VIRT_GIC_ITS].size);
427 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
428 g_free(nodename);
431 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
433 char *nodename;
435 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
436 vms->memmap[VIRT_GIC_V2M].base);
437 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
438 qemu_fdt_add_subnode(vms->fdt, nodename);
439 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
440 "arm,gic-v2m-frame");
441 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
442 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
443 2, vms->memmap[VIRT_GIC_V2M].base,
444 2, vms->memmap[VIRT_GIC_V2M].size);
445 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
446 g_free(nodename);
449 static void fdt_add_gic_node(VirtMachineState *vms)
451 char *nodename;
453 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
454 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
456 nodename = g_strdup_printf("/intc@%" PRIx64,
457 vms->memmap[VIRT_GIC_DIST].base);
458 qemu_fdt_add_subnode(vms->fdt, nodename);
459 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
460 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
461 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
462 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
463 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
464 if (vms->gic_version == VIRT_GIC_VERSION_3) {
465 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
467 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
468 "arm,gic-v3");
470 qemu_fdt_setprop_cell(vms->fdt, nodename,
471 "#redistributor-regions", nb_redist_regions);
473 if (nb_redist_regions == 1) {
474 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
475 2, vms->memmap[VIRT_GIC_DIST].base,
476 2, vms->memmap[VIRT_GIC_DIST].size,
477 2, vms->memmap[VIRT_GIC_REDIST].base,
478 2, vms->memmap[VIRT_GIC_REDIST].size);
479 } else {
480 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
481 2, vms->memmap[VIRT_GIC_DIST].base,
482 2, vms->memmap[VIRT_GIC_DIST].size,
483 2, vms->memmap[VIRT_GIC_REDIST].base,
484 2, vms->memmap[VIRT_GIC_REDIST].size,
485 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
486 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
489 if (vms->virt) {
490 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
491 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
492 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
494 } else {
495 /* 'cortex-a15-gic' means 'GIC v2' */
496 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
497 "arm,cortex-a15-gic");
498 if (!vms->virt) {
499 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
500 2, vms->memmap[VIRT_GIC_DIST].base,
501 2, vms->memmap[VIRT_GIC_DIST].size,
502 2, vms->memmap[VIRT_GIC_CPU].base,
503 2, vms->memmap[VIRT_GIC_CPU].size);
504 } else {
505 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
506 2, vms->memmap[VIRT_GIC_DIST].base,
507 2, vms->memmap[VIRT_GIC_DIST].size,
508 2, vms->memmap[VIRT_GIC_CPU].base,
509 2, vms->memmap[VIRT_GIC_CPU].size,
510 2, vms->memmap[VIRT_GIC_HYP].base,
511 2, vms->memmap[VIRT_GIC_HYP].size,
512 2, vms->memmap[VIRT_GIC_VCPU].base,
513 2, vms->memmap[VIRT_GIC_VCPU].size);
514 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
515 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
516 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
520 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
521 g_free(nodename);
524 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
526 ARMCPU *armcpu = ARM_CPU(first_cpu);
527 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
529 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
530 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
531 return;
534 if (vms->gic_version == VIRT_GIC_VERSION_2) {
535 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
536 GIC_FDT_IRQ_PPI_CPU_WIDTH,
537 (1 << MACHINE(vms)->smp.cpus) - 1);
540 qemu_fdt_add_subnode(vms->fdt, "/pmu");
541 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
542 const char compat[] = "arm,armv8-pmuv3";
543 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
544 compat, sizeof(compat));
545 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
546 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
550 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
552 DeviceState *dev;
553 MachineState *ms = MACHINE(vms);
554 int irq = vms->irqmap[VIRT_ACPI_GED];
555 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
557 if (ms->ram_slots) {
558 event |= ACPI_GED_MEM_HOTPLUG_EVT;
561 if (ms->nvdimms_state->is_enabled) {
562 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
565 dev = qdev_new(TYPE_ACPI_GED);
566 qdev_prop_set_uint32(dev, "ged-event", event);
568 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
569 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
570 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
572 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
574 return dev;
577 static void create_its(VirtMachineState *vms)
579 const char *itsclass = its_class_name();
580 DeviceState *dev;
582 if (!itsclass) {
583 /* Do nothing if not supported */
584 return;
587 dev = qdev_new(itsclass);
589 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
590 &error_abort);
591 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
592 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
594 fdt_add_its_gic_node(vms);
595 vms->msi_controller = VIRT_MSI_CTRL_ITS;
598 static void create_v2m(VirtMachineState *vms)
600 int i;
601 int irq = vms->irqmap[VIRT_GIC_V2M];
602 DeviceState *dev;
604 dev = qdev_new("arm-gicv2m");
605 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
606 qdev_prop_set_uint32(dev, "base-spi", irq);
607 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
608 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
610 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
611 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
612 qdev_get_gpio_in(vms->gic, irq + i));
615 fdt_add_v2m_gic_node(vms);
616 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
619 static void create_gic(VirtMachineState *vms)
621 MachineState *ms = MACHINE(vms);
622 /* We create a standalone GIC */
623 SysBusDevice *gicbusdev;
624 const char *gictype;
625 int type = vms->gic_version, i;
626 unsigned int smp_cpus = ms->smp.cpus;
627 uint32_t nb_redist_regions = 0;
629 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
631 vms->gic = qdev_new(gictype);
632 qdev_prop_set_uint32(vms->gic, "revision", type);
633 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
634 /* Note that the num-irq property counts both internal and external
635 * interrupts; there are always 32 of the former (mandated by GIC spec).
637 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
638 if (!kvm_irqchip_in_kernel()) {
639 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
642 if (type == 3) {
643 uint32_t redist0_capacity =
644 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
645 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
647 nb_redist_regions = virt_gicv3_redist_region_count(vms);
649 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
650 nb_redist_regions);
651 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
653 if (nb_redist_regions == 2) {
654 uint32_t redist1_capacity =
655 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
657 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
658 MIN(smp_cpus - redist0_count, redist1_capacity));
660 } else {
661 if (!kvm_irqchip_in_kernel()) {
662 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
663 vms->virt);
666 gicbusdev = SYS_BUS_DEVICE(vms->gic);
667 sysbus_realize_and_unref(gicbusdev, &error_fatal);
668 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
669 if (type == 3) {
670 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
671 if (nb_redist_regions == 2) {
672 sysbus_mmio_map(gicbusdev, 2,
673 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
675 } else {
676 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
677 if (vms->virt) {
678 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
679 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
683 /* Wire the outputs from each CPU's generic timer and the GICv3
684 * maintenance interrupt signal to the appropriate GIC PPI inputs,
685 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
687 for (i = 0; i < smp_cpus; i++) {
688 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
689 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
690 int irq;
691 /* Mapping from the output timer irq lines from the CPU to the
692 * GIC PPI inputs we use for the virt board.
694 const int timer_irq[] = {
695 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
696 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
697 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
698 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
701 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
702 qdev_connect_gpio_out(cpudev, irq,
703 qdev_get_gpio_in(vms->gic,
704 ppibase + timer_irq[irq]));
707 if (type == 3) {
708 qemu_irq irq = qdev_get_gpio_in(vms->gic,
709 ppibase + ARCH_GIC_MAINT_IRQ);
710 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
711 0, irq);
712 } else if (vms->virt) {
713 qemu_irq irq = qdev_get_gpio_in(vms->gic,
714 ppibase + ARCH_GIC_MAINT_IRQ);
715 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
718 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
719 qdev_get_gpio_in(vms->gic, ppibase
720 + VIRTUAL_PMU_IRQ));
722 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
723 sysbus_connect_irq(gicbusdev, i + smp_cpus,
724 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
725 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
726 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
727 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
728 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
731 fdt_add_gic_node(vms);
733 if (type == 3 && vms->its) {
734 create_its(vms);
735 } else if (type == 2) {
736 create_v2m(vms);
740 static void create_uart(const VirtMachineState *vms, int uart,
741 MemoryRegion *mem, Chardev *chr)
743 char *nodename;
744 hwaddr base = vms->memmap[uart].base;
745 hwaddr size = vms->memmap[uart].size;
746 int irq = vms->irqmap[uart];
747 const char compat[] = "arm,pl011\0arm,primecell";
748 const char clocknames[] = "uartclk\0apb_pclk";
749 DeviceState *dev = qdev_new(TYPE_PL011);
750 SysBusDevice *s = SYS_BUS_DEVICE(dev);
752 qdev_prop_set_chr(dev, "chardev", chr);
753 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
754 memory_region_add_subregion(mem, base,
755 sysbus_mmio_get_region(s, 0));
756 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
758 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
759 qemu_fdt_add_subnode(vms->fdt, nodename);
760 /* Note that we can't use setprop_string because of the embedded NUL */
761 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
762 compat, sizeof(compat));
763 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
764 2, base, 2, size);
765 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
766 GIC_FDT_IRQ_TYPE_SPI, irq,
767 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
768 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
769 vms->clock_phandle, vms->clock_phandle);
770 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
771 clocknames, sizeof(clocknames));
773 if (uart == VIRT_UART) {
774 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
775 } else {
776 /* Mark as not usable by the normal world */
777 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
778 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
780 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
781 nodename);
784 g_free(nodename);
787 static void create_rtc(const VirtMachineState *vms)
789 char *nodename;
790 hwaddr base = vms->memmap[VIRT_RTC].base;
791 hwaddr size = vms->memmap[VIRT_RTC].size;
792 int irq = vms->irqmap[VIRT_RTC];
793 const char compat[] = "arm,pl031\0arm,primecell";
795 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
797 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
798 qemu_fdt_add_subnode(vms->fdt, nodename);
799 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
800 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
801 2, base, 2, size);
802 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
803 GIC_FDT_IRQ_TYPE_SPI, irq,
804 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
805 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
806 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
807 g_free(nodename);
810 static DeviceState *gpio_key_dev;
811 static void virt_powerdown_req(Notifier *n, void *opaque)
813 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
815 if (s->acpi_dev) {
816 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
817 } else {
818 /* use gpio Pin 3 for power button event */
819 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
823 static void create_gpio(const VirtMachineState *vms)
825 char *nodename;
826 DeviceState *pl061_dev;
827 hwaddr base = vms->memmap[VIRT_GPIO].base;
828 hwaddr size = vms->memmap[VIRT_GPIO].size;
829 int irq = vms->irqmap[VIRT_GPIO];
830 const char compat[] = "arm,pl061\0arm,primecell";
832 pl061_dev = sysbus_create_simple("pl061", base,
833 qdev_get_gpio_in(vms->gic, irq));
835 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
836 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
837 qemu_fdt_add_subnode(vms->fdt, nodename);
838 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
839 2, base, 2, size);
840 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
841 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
842 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
843 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
844 GIC_FDT_IRQ_TYPE_SPI, irq,
845 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
846 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
847 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
848 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
850 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
851 qdev_get_gpio_in(pl061_dev, 3));
852 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
853 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
854 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
855 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
857 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
858 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
859 "label", "GPIO Key Poweroff");
860 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
861 KEY_POWER);
862 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
863 "gpios", phandle, 3, 0);
864 g_free(nodename);
867 static void create_virtio_devices(const VirtMachineState *vms)
869 int i;
870 hwaddr size = vms->memmap[VIRT_MMIO].size;
872 /* We create the transports in forwards order. Since qbus_realize()
873 * prepends (not appends) new child buses, the incrementing loop below will
874 * create a list of virtio-mmio buses with decreasing base addresses.
876 * When a -device option is processed from the command line,
877 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
878 * order. The upshot is that -device options in increasing command line
879 * order are mapped to virtio-mmio buses with decreasing base addresses.
881 * When this code was originally written, that arrangement ensured that the
882 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
883 * the first -device on the command line. (The end-to-end order is a
884 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
885 * guest kernel's name-to-address assignment strategy.)
887 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
888 * the message, if not necessarily the code, of commit 70161ff336.
889 * Therefore the loop now establishes the inverse of the original intent.
891 * Unfortunately, we can't counteract the kernel change by reversing the
892 * loop; it would break existing command lines.
894 * In any case, the kernel makes no guarantee about the stability of
895 * enumeration order of virtio devices (as demonstrated by it changing
896 * between kernel versions). For reliable and stable identification
897 * of disks users must use UUIDs or similar mechanisms.
899 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
900 int irq = vms->irqmap[VIRT_MMIO] + i;
901 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
903 sysbus_create_simple("virtio-mmio", base,
904 qdev_get_gpio_in(vms->gic, irq));
907 /* We add dtb nodes in reverse order so that they appear in the finished
908 * device tree lowest address first.
910 * Note that this mapping is independent of the loop above. The previous
911 * loop influences virtio device to virtio transport assignment, whereas
912 * this loop controls how virtio transports are laid out in the dtb.
914 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
915 char *nodename;
916 int irq = vms->irqmap[VIRT_MMIO] + i;
917 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
919 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
920 qemu_fdt_add_subnode(vms->fdt, nodename);
921 qemu_fdt_setprop_string(vms->fdt, nodename,
922 "compatible", "virtio,mmio");
923 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
924 2, base, 2, size);
925 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
926 GIC_FDT_IRQ_TYPE_SPI, irq,
927 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
928 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
929 g_free(nodename);
933 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
935 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
936 const char *name,
937 const char *alias_prop_name)
940 * Create a single flash device. We use the same parameters as
941 * the flash devices on the Versatile Express board.
943 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
945 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
946 qdev_prop_set_uint8(dev, "width", 4);
947 qdev_prop_set_uint8(dev, "device-width", 2);
948 qdev_prop_set_bit(dev, "big-endian", false);
949 qdev_prop_set_uint16(dev, "id0", 0x89);
950 qdev_prop_set_uint16(dev, "id1", 0x18);
951 qdev_prop_set_uint16(dev, "id2", 0x00);
952 qdev_prop_set_uint16(dev, "id3", 0x00);
953 qdev_prop_set_string(dev, "name", name);
954 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
955 object_property_add_alias(OBJECT(vms), alias_prop_name,
956 OBJECT(dev), "drive");
957 return PFLASH_CFI01(dev);
960 static void virt_flash_create(VirtMachineState *vms)
962 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
963 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
966 static void virt_flash_map1(PFlashCFI01 *flash,
967 hwaddr base, hwaddr size,
968 MemoryRegion *sysmem)
970 DeviceState *dev = DEVICE(flash);
972 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
973 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
974 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
975 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
977 memory_region_add_subregion(sysmem, base,
978 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
979 0));
982 static void virt_flash_map(VirtMachineState *vms,
983 MemoryRegion *sysmem,
984 MemoryRegion *secure_sysmem)
987 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
988 * sysmem is the system memory space. secure_sysmem is the secure view
989 * of the system, and the first flash device should be made visible only
990 * there. The second flash device is visible to both secure and nonsecure.
991 * If sysmem == secure_sysmem this means there is no separate Secure
992 * address space and both flash devices are generally visible.
994 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
995 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
997 virt_flash_map1(vms->flash[0], flashbase, flashsize,
998 secure_sysmem);
999 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1000 sysmem);
1003 static void virt_flash_fdt(VirtMachineState *vms,
1004 MemoryRegion *sysmem,
1005 MemoryRegion *secure_sysmem)
1007 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1008 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1009 char *nodename;
1011 if (sysmem == secure_sysmem) {
1012 /* Report both flash devices as a single node in the DT */
1013 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1014 qemu_fdt_add_subnode(vms->fdt, nodename);
1015 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1016 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1017 2, flashbase, 2, flashsize,
1018 2, flashbase + flashsize, 2, flashsize);
1019 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1020 g_free(nodename);
1021 } else {
1023 * Report the devices as separate nodes so we can mark one as
1024 * only visible to the secure world.
1026 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1027 qemu_fdt_add_subnode(vms->fdt, nodename);
1028 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1029 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1030 2, flashbase, 2, flashsize);
1031 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1032 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1033 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1034 g_free(nodename);
1036 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1037 qemu_fdt_add_subnode(vms->fdt, nodename);
1038 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1039 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1040 2, flashbase + flashsize, 2, flashsize);
1041 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1042 g_free(nodename);
1046 static bool virt_firmware_init(VirtMachineState *vms,
1047 MemoryRegion *sysmem,
1048 MemoryRegion *secure_sysmem)
1050 int i;
1051 const char *bios_name;
1052 BlockBackend *pflash_blk0;
1054 /* Map legacy -drive if=pflash to machine properties */
1055 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1056 pflash_cfi01_legacy_drive(vms->flash[i],
1057 drive_get(IF_PFLASH, 0, i));
1060 virt_flash_map(vms, sysmem, secure_sysmem);
1062 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1064 bios_name = MACHINE(vms)->firmware;
1065 if (bios_name) {
1066 char *fname;
1067 MemoryRegion *mr;
1068 int image_size;
1070 if (pflash_blk0) {
1071 error_report("The contents of the first flash device may be "
1072 "specified with -bios or with -drive if=pflash... "
1073 "but you cannot use both options at once");
1074 exit(1);
1077 /* Fall back to -bios */
1079 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1080 if (!fname) {
1081 error_report("Could not find ROM image '%s'", bios_name);
1082 exit(1);
1084 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1085 image_size = load_image_mr(fname, mr);
1086 g_free(fname);
1087 if (image_size < 0) {
1088 error_report("Could not load ROM image '%s'", bios_name);
1089 exit(1);
1093 return pflash_blk0 || bios_name;
1096 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1098 MachineState *ms = MACHINE(vms);
1099 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1100 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1101 FWCfgState *fw_cfg;
1102 char *nodename;
1104 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1105 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1107 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1108 qemu_fdt_add_subnode(vms->fdt, nodename);
1109 qemu_fdt_setprop_string(vms->fdt, nodename,
1110 "compatible", "qemu,fw-cfg-mmio");
1111 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1112 2, base, 2, size);
1113 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1114 g_free(nodename);
1115 return fw_cfg;
1118 static void create_pcie_irq_map(const VirtMachineState *vms,
1119 uint32_t gic_phandle,
1120 int first_irq, const char *nodename)
1122 int devfn, pin;
1123 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1124 uint32_t *irq_map = full_irq_map;
1126 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1127 for (pin = 0; pin < 4; pin++) {
1128 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1129 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1130 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1131 int i;
1133 uint32_t map[] = {
1134 devfn << 8, 0, 0, /* devfn */
1135 pin + 1, /* PCI pin */
1136 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1138 /* Convert map to big endian */
1139 for (i = 0; i < 10; i++) {
1140 irq_map[i] = cpu_to_be32(map[i]);
1142 irq_map += 10;
1146 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1147 full_irq_map, sizeof(full_irq_map));
1149 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1150 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1151 0, 0,
1152 0x7 /* PCI irq */);
1155 static void create_smmu(const VirtMachineState *vms,
1156 PCIBus *bus)
1158 char *node;
1159 const char compat[] = "arm,smmu-v3";
1160 int irq = vms->irqmap[VIRT_SMMU];
1161 int i;
1162 hwaddr base = vms->memmap[VIRT_SMMU].base;
1163 hwaddr size = vms->memmap[VIRT_SMMU].size;
1164 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1165 DeviceState *dev;
1167 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1168 return;
1171 dev = qdev_new("arm-smmuv3");
1173 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1174 &error_abort);
1175 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1176 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1177 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1178 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1179 qdev_get_gpio_in(vms->gic, irq + i));
1182 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1183 qemu_fdt_add_subnode(vms->fdt, node);
1184 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1185 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1187 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1188 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1189 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1190 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1191 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1193 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1194 sizeof(irq_names));
1196 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1197 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1198 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1200 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1202 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1203 g_free(node);
1206 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1208 const char compat[] = "virtio,pci-iommu";
1209 uint16_t bdf = vms->virtio_iommu_bdf;
1210 char *node;
1212 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1214 node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
1215 qemu_fdt_add_subnode(vms->fdt, node);
1216 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1217 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg",
1218 1, bdf << 8, 1, 0, 1, 0,
1219 1, 0, 1, 0);
1221 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1222 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1223 g_free(node);
1225 qemu_fdt_setprop_cells(vms->fdt, vms->pciehb_nodename, "iommu-map",
1226 0x0, vms->iommu_phandle, 0x0, bdf,
1227 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1230 static void create_pcie(VirtMachineState *vms)
1232 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1233 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1234 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1235 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1236 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1237 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1238 hwaddr base_ecam, size_ecam;
1239 hwaddr base = base_mmio;
1240 int nr_pcie_buses;
1241 int irq = vms->irqmap[VIRT_PCIE];
1242 MemoryRegion *mmio_alias;
1243 MemoryRegion *mmio_reg;
1244 MemoryRegion *ecam_alias;
1245 MemoryRegion *ecam_reg;
1246 DeviceState *dev;
1247 char *nodename;
1248 int i, ecam_id;
1249 PCIHostState *pci;
1251 dev = qdev_new(TYPE_GPEX_HOST);
1252 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1254 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1255 base_ecam = vms->memmap[ecam_id].base;
1256 size_ecam = vms->memmap[ecam_id].size;
1257 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1258 /* Map only the first size_ecam bytes of ECAM space */
1259 ecam_alias = g_new0(MemoryRegion, 1);
1260 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1261 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1262 ecam_reg, 0, size_ecam);
1263 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1265 /* Map the MMIO window into system address space so as to expose
1266 * the section of PCI MMIO space which starts at the same base address
1267 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1268 * the window).
1270 mmio_alias = g_new0(MemoryRegion, 1);
1271 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1272 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1273 mmio_reg, base_mmio, size_mmio);
1274 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1276 if (vms->highmem) {
1277 /* Map high MMIO space */
1278 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1280 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1281 mmio_reg, base_mmio_high, size_mmio_high);
1282 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1283 high_mmio_alias);
1286 /* Map IO port space */
1287 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1289 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1290 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1291 qdev_get_gpio_in(vms->gic, irq + i));
1292 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1295 pci = PCI_HOST_BRIDGE(dev);
1296 vms->bus = pci->bus;
1297 if (vms->bus) {
1298 for (i = 0; i < nb_nics; i++) {
1299 NICInfo *nd = &nd_table[i];
1301 if (!nd->model) {
1302 nd->model = g_strdup("virtio");
1305 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1309 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1310 qemu_fdt_add_subnode(vms->fdt, nodename);
1311 qemu_fdt_setprop_string(vms->fdt, nodename,
1312 "compatible", "pci-host-ecam-generic");
1313 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1314 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1315 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1316 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1317 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1318 nr_pcie_buses - 1);
1319 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1321 if (vms->msi_phandle) {
1322 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1323 vms->msi_phandle);
1326 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1327 2, base_ecam, 2, size_ecam);
1329 if (vms->highmem) {
1330 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1331 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1332 2, base_pio, 2, size_pio,
1333 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1334 2, base_mmio, 2, size_mmio,
1335 1, FDT_PCI_RANGE_MMIO_64BIT,
1336 2, base_mmio_high,
1337 2, base_mmio_high, 2, size_mmio_high);
1338 } else {
1339 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1340 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1341 2, base_pio, 2, size_pio,
1342 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1343 2, base_mmio, 2, size_mmio);
1346 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1347 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1349 if (vms->iommu) {
1350 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1352 switch (vms->iommu) {
1353 case VIRT_IOMMU_SMMUV3:
1354 create_smmu(vms, vms->bus);
1355 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1356 0x0, vms->iommu_phandle, 0x0, 0x10000);
1357 break;
1358 default:
1359 g_assert_not_reached();
1364 static void create_platform_bus(VirtMachineState *vms)
1366 DeviceState *dev;
1367 SysBusDevice *s;
1368 int i;
1369 MemoryRegion *sysmem = get_system_memory();
1371 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1372 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1373 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1374 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1375 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1376 vms->platform_bus_dev = dev;
1378 s = SYS_BUS_DEVICE(dev);
1379 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1380 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1381 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1384 memory_region_add_subregion(sysmem,
1385 vms->memmap[VIRT_PLATFORM_BUS].base,
1386 sysbus_mmio_get_region(s, 0));
1389 static void create_tag_ram(MemoryRegion *tag_sysmem,
1390 hwaddr base, hwaddr size,
1391 const char *name)
1393 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1395 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1396 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1399 static void create_secure_ram(VirtMachineState *vms,
1400 MemoryRegion *secure_sysmem,
1401 MemoryRegion *secure_tag_sysmem)
1403 MemoryRegion *secram = g_new(MemoryRegion, 1);
1404 char *nodename;
1405 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1406 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1408 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1409 &error_fatal);
1410 memory_region_add_subregion(secure_sysmem, base, secram);
1412 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1413 qemu_fdt_add_subnode(vms->fdt, nodename);
1414 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1415 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1416 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1417 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1419 if (secure_tag_sysmem) {
1420 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1423 g_free(nodename);
1426 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1428 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1429 bootinfo);
1431 *fdt_size = board->fdt_size;
1432 return board->fdt;
1435 static void virt_build_smbios(VirtMachineState *vms)
1437 MachineClass *mc = MACHINE_GET_CLASS(vms);
1438 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1439 uint8_t *smbios_tables, *smbios_anchor;
1440 size_t smbios_tables_len, smbios_anchor_len;
1441 const char *product = "QEMU Virtual Machine";
1443 if (kvm_enabled()) {
1444 product = "KVM Virtual Machine";
1447 smbios_set_defaults("QEMU", product,
1448 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1449 true, SMBIOS_ENTRY_POINT_30);
1451 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1452 &smbios_anchor, &smbios_anchor_len);
1454 if (smbios_anchor) {
1455 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1456 smbios_tables, smbios_tables_len);
1457 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1458 smbios_anchor, smbios_anchor_len);
1462 static
1463 void virt_machine_done(Notifier *notifier, void *data)
1465 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1466 machine_done);
1467 MachineState *ms = MACHINE(vms);
1468 ARMCPU *cpu = ARM_CPU(first_cpu);
1469 struct arm_boot_info *info = &vms->bootinfo;
1470 AddressSpace *as = arm_boot_address_space(cpu, info);
1473 * If the user provided a dtb, we assume the dynamic sysbus nodes
1474 * already are integrated there. This corresponds to a use case where
1475 * the dynamic sysbus nodes are complex and their generation is not yet
1476 * supported. In that case the user can take charge of the guest dt
1477 * while qemu takes charge of the qom stuff.
1479 if (info->dtb_filename == NULL) {
1480 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1481 vms->memmap[VIRT_PLATFORM_BUS].base,
1482 vms->memmap[VIRT_PLATFORM_BUS].size,
1483 vms->irqmap[VIRT_PLATFORM_BUS]);
1485 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1486 exit(1);
1489 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1491 virt_acpi_setup(vms);
1492 virt_build_smbios(vms);
1495 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1497 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1498 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1500 if (!vmc->disallow_affinity_adjustment) {
1501 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1502 * GIC's target-list limitations. 32-bit KVM hosts currently
1503 * always create clusters of 4 CPUs, but that is expected to
1504 * change when they gain support for gicv3. When KVM is enabled
1505 * it will override the changes we make here, therefore our
1506 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1507 * and to improve SGI efficiency.
1509 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1510 clustersz = GICV3_TARGETLIST_BITS;
1511 } else {
1512 clustersz = GIC_TARGETLIST_BITS;
1515 return arm_cpu_mp_affinity(idx, clustersz);
1518 static void virt_set_memmap(VirtMachineState *vms)
1520 MachineState *ms = MACHINE(vms);
1521 hwaddr base, device_memory_base, device_memory_size;
1522 int i;
1524 vms->memmap = extended_memmap;
1526 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1527 vms->memmap[i] = base_memmap[i];
1530 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1531 error_report("unsupported number of memory slots: %"PRIu64,
1532 ms->ram_slots);
1533 exit(EXIT_FAILURE);
1537 * We compute the base of the high IO region depending on the
1538 * amount of initial and device memory. The device memory start/size
1539 * is aligned on 1GiB. We never put the high IO region below 256GiB
1540 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1541 * The device region size assumes 1GiB page max alignment per slot.
1543 device_memory_base =
1544 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1545 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1547 /* Base address of the high IO region */
1548 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1549 if (base < device_memory_base) {
1550 error_report("maxmem/slots too huge");
1551 exit(EXIT_FAILURE);
1553 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1554 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1557 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1558 hwaddr size = extended_memmap[i].size;
1560 base = ROUND_UP(base, size);
1561 vms->memmap[i].base = base;
1562 vms->memmap[i].size = size;
1563 base += size;
1565 vms->highest_gpa = base - 1;
1566 if (device_memory_size > 0) {
1567 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1568 ms->device_memory->base = device_memory_base;
1569 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1570 "device-memory", device_memory_size);
1575 * finalize_gic_version - Determines the final gic_version
1576 * according to the gic-version property
1578 * Default GIC type is v2
1580 static void finalize_gic_version(VirtMachineState *vms)
1582 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1584 if (kvm_enabled()) {
1585 int probe_bitmap;
1587 if (!kvm_irqchip_in_kernel()) {
1588 switch (vms->gic_version) {
1589 case VIRT_GIC_VERSION_HOST:
1590 warn_report(
1591 "gic-version=host not relevant with kernel-irqchip=off "
1592 "as only userspace GICv2 is supported. Using v2 ...");
1593 return;
1594 case VIRT_GIC_VERSION_MAX:
1595 case VIRT_GIC_VERSION_NOSEL:
1596 vms->gic_version = VIRT_GIC_VERSION_2;
1597 return;
1598 case VIRT_GIC_VERSION_2:
1599 return;
1600 case VIRT_GIC_VERSION_3:
1601 error_report(
1602 "gic-version=3 is not supported with kernel-irqchip=off");
1603 exit(1);
1607 probe_bitmap = kvm_arm_vgic_probe();
1608 if (!probe_bitmap) {
1609 error_report("Unable to determine GIC version supported by host");
1610 exit(1);
1613 switch (vms->gic_version) {
1614 case VIRT_GIC_VERSION_HOST:
1615 case VIRT_GIC_VERSION_MAX:
1616 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1617 vms->gic_version = VIRT_GIC_VERSION_3;
1618 } else {
1619 vms->gic_version = VIRT_GIC_VERSION_2;
1621 return;
1622 case VIRT_GIC_VERSION_NOSEL:
1623 if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
1624 vms->gic_version = VIRT_GIC_VERSION_2;
1625 } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
1627 * in case the host does not support v2 in-kernel emulation or
1628 * the end-user requested more than 8 VCPUs we now default
1629 * to v3. In any case defaulting to v2 would be broken.
1631 vms->gic_version = VIRT_GIC_VERSION_3;
1632 } else if (max_cpus > GIC_NCPU) {
1633 error_report("host only supports in-kernel GICv2 emulation "
1634 "but more than 8 vcpus are requested");
1635 exit(1);
1637 break;
1638 case VIRT_GIC_VERSION_2:
1639 case VIRT_GIC_VERSION_3:
1640 break;
1643 /* Check chosen version is effectively supported by the host */
1644 if (vms->gic_version == VIRT_GIC_VERSION_2 &&
1645 !(probe_bitmap & KVM_ARM_VGIC_V2)) {
1646 error_report("host does not support in-kernel GICv2 emulation");
1647 exit(1);
1648 } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
1649 !(probe_bitmap & KVM_ARM_VGIC_V3)) {
1650 error_report("host does not support in-kernel GICv3 emulation");
1651 exit(1);
1653 return;
1656 /* TCG mode */
1657 switch (vms->gic_version) {
1658 case VIRT_GIC_VERSION_NOSEL:
1659 vms->gic_version = VIRT_GIC_VERSION_2;
1660 break;
1661 case VIRT_GIC_VERSION_MAX:
1662 vms->gic_version = VIRT_GIC_VERSION_3;
1663 break;
1664 case VIRT_GIC_VERSION_HOST:
1665 error_report("gic-version=host requires KVM");
1666 exit(1);
1667 case VIRT_GIC_VERSION_2:
1668 case VIRT_GIC_VERSION_3:
1669 break;
1674 * virt_cpu_post_init() must be called after the CPUs have
1675 * been realized and the GIC has been created.
1677 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1679 int max_cpus = MACHINE(vms)->smp.max_cpus;
1680 bool aarch64, pmu, steal_time;
1681 CPUState *cpu;
1683 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1684 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1685 steal_time = object_property_get_bool(OBJECT(first_cpu),
1686 "kvm-steal-time", NULL);
1688 if (kvm_enabled()) {
1689 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1690 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1692 if (steal_time) {
1693 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1694 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1696 /* The memory region size must be a multiple of host page size. */
1697 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1699 if (pvtime_size > pvtime_reg_size) {
1700 error_report("pvtime requires a %" HWADDR_PRId
1701 " byte memory region for %d CPUs,"
1702 " but only %" HWADDR_PRId " has been reserved",
1703 pvtime_size, max_cpus, pvtime_reg_size);
1704 exit(1);
1707 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1708 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1711 CPU_FOREACH(cpu) {
1712 if (pmu) {
1713 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1714 if (kvm_irqchip_in_kernel()) {
1715 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
1717 kvm_arm_pmu_init(cpu);
1719 if (steal_time) {
1720 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
1721 cpu->cpu_index * PVTIME_SIZE_PER_CPU);
1724 } else {
1725 if (aarch64 && vms->highmem) {
1726 int requested_pa_size = 64 - clz64(vms->highest_gpa);
1727 int pamax = arm_pamax(ARM_CPU(first_cpu));
1729 if (pamax < requested_pa_size) {
1730 error_report("VCPU supports less PA bits (%d) than "
1731 "requested by the memory map (%d)",
1732 pamax, requested_pa_size);
1733 exit(1);
1739 static void machvirt_init(MachineState *machine)
1741 VirtMachineState *vms = VIRT_MACHINE(machine);
1742 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1743 MachineClass *mc = MACHINE_GET_CLASS(machine);
1744 const CPUArchIdList *possible_cpus;
1745 MemoryRegion *sysmem = get_system_memory();
1746 MemoryRegion *secure_sysmem = NULL;
1747 MemoryRegion *tag_sysmem = NULL;
1748 MemoryRegion *secure_tag_sysmem = NULL;
1749 int n, virt_max_cpus;
1750 bool firmware_loaded;
1751 bool aarch64 = true;
1752 bool has_ged = !vmc->no_ged;
1753 unsigned int smp_cpus = machine->smp.cpus;
1754 unsigned int max_cpus = machine->smp.max_cpus;
1757 * In accelerated mode, the memory map is computed earlier in kvm_type()
1758 * to create a VM with the right number of IPA bits.
1760 if (!vms->memmap) {
1761 virt_set_memmap(vms);
1764 /* We can probe only here because during property set
1765 * KVM is not available yet
1767 finalize_gic_version(vms);
1769 if (!cpu_type_valid(machine->cpu_type)) {
1770 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1771 exit(1);
1774 if (vms->secure) {
1775 if (kvm_enabled()) {
1776 error_report("mach-virt: KVM does not support Security extensions");
1777 exit(1);
1781 * The Secure view of the world is the same as the NonSecure,
1782 * but with a few extra devices. Create it as a container region
1783 * containing the system memory at low priority; any secure-only
1784 * devices go in at higher priority and take precedence.
1786 secure_sysmem = g_new(MemoryRegion, 1);
1787 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1788 UINT64_MAX);
1789 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1792 firmware_loaded = virt_firmware_init(vms, sysmem,
1793 secure_sysmem ?: sysmem);
1795 /* If we have an EL3 boot ROM then the assumption is that it will
1796 * implement PSCI itself, so disable QEMU's internal implementation
1797 * so it doesn't get in the way. Instead of starting secondary
1798 * CPUs in PSCI powerdown state we will start them all running and
1799 * let the boot ROM sort them out.
1800 * The usual case is that we do use QEMU's PSCI implementation;
1801 * if the guest has EL2 then we will use SMC as the conduit,
1802 * and otherwise we will use HVC (for backwards compatibility and
1803 * because if we're using KVM then we must use HVC).
1805 if (vms->secure && firmware_loaded) {
1806 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1807 } else if (vms->virt) {
1808 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1809 } else {
1810 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1813 /* The maximum number of CPUs depends on the GIC version, or on how
1814 * many redistributors we can fit into the memory map.
1816 if (vms->gic_version == VIRT_GIC_VERSION_3) {
1817 virt_max_cpus =
1818 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1819 virt_max_cpus +=
1820 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1821 } else {
1822 virt_max_cpus = GIC_NCPU;
1825 if (max_cpus > virt_max_cpus) {
1826 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1827 "supported by machine 'mach-virt' (%d)",
1828 max_cpus, virt_max_cpus);
1829 exit(1);
1832 if (vms->virt && kvm_enabled()) {
1833 error_report("mach-virt: KVM does not support providing "
1834 "Virtualization extensions to the guest CPU");
1835 exit(1);
1838 if (vms->mte && kvm_enabled()) {
1839 error_report("mach-virt: KVM does not support providing "
1840 "MTE to the guest CPU");
1841 exit(1);
1844 create_fdt(vms);
1846 possible_cpus = mc->possible_cpu_arch_ids(machine);
1847 assert(possible_cpus->len == max_cpus);
1848 for (n = 0; n < possible_cpus->len; n++) {
1849 Object *cpuobj;
1850 CPUState *cs;
1852 if (n >= smp_cpus) {
1853 break;
1856 cpuobj = object_new(possible_cpus->cpus[n].type);
1857 object_property_set_int(cpuobj, "mp-affinity",
1858 possible_cpus->cpus[n].arch_id, NULL);
1860 cs = CPU(cpuobj);
1861 cs->cpu_index = n;
1863 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1864 &error_fatal);
1866 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1868 if (!vms->secure) {
1869 object_property_set_bool(cpuobj, "has_el3", false, NULL);
1872 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
1873 object_property_set_bool(cpuobj, "has_el2", false, NULL);
1876 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1877 object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit,
1878 NULL);
1880 /* Secondary CPUs start in PSCI powered-down state */
1881 if (n > 0) {
1882 object_property_set_bool(cpuobj, "start-powered-off", true,
1883 NULL);
1887 if (vmc->kvm_no_adjvtime &&
1888 object_property_find(cpuobj, "kvm-no-adjvtime")) {
1889 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
1892 if (vmc->no_kvm_steal_time &&
1893 object_property_find(cpuobj, "kvm-steal-time")) {
1894 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
1897 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
1898 object_property_set_bool(cpuobj, "pmu", false, NULL);
1901 if (object_property_find(cpuobj, "reset-cbar")) {
1902 object_property_set_int(cpuobj, "reset-cbar",
1903 vms->memmap[VIRT_CPUPERIPHS].base,
1904 &error_abort);
1907 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
1908 &error_abort);
1909 if (vms->secure) {
1910 object_property_set_link(cpuobj, "secure-memory",
1911 OBJECT(secure_sysmem), &error_abort);
1914 if (vms->mte) {
1915 /* Create the memory region only once, but link to all cpus. */
1916 if (!tag_sysmem) {
1918 * The property exists only if MemTag is supported.
1919 * If it is, we must allocate the ram to back that up.
1921 if (!object_property_find(cpuobj, "tag-memory")) {
1922 error_report("MTE requested, but not supported "
1923 "by the guest CPU");
1924 exit(1);
1927 tag_sysmem = g_new(MemoryRegion, 1);
1928 memory_region_init(tag_sysmem, OBJECT(machine),
1929 "tag-memory", UINT64_MAX / 32);
1931 if (vms->secure) {
1932 secure_tag_sysmem = g_new(MemoryRegion, 1);
1933 memory_region_init(secure_tag_sysmem, OBJECT(machine),
1934 "secure-tag-memory", UINT64_MAX / 32);
1936 /* As with ram, secure-tag takes precedence over tag. */
1937 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
1938 tag_sysmem, -1);
1942 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
1943 &error_abort);
1944 if (vms->secure) {
1945 object_property_set_link(cpuobj, "secure-tag-memory",
1946 OBJECT(secure_tag_sysmem),
1947 &error_abort);
1951 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
1952 object_unref(cpuobj);
1954 fdt_add_timer_nodes(vms);
1955 fdt_add_cpu_nodes(vms);
1957 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
1958 machine->ram);
1959 if (machine->device_memory) {
1960 memory_region_add_subregion(sysmem, machine->device_memory->base,
1961 &machine->device_memory->mr);
1964 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
1966 create_gic(vms);
1968 virt_cpu_post_init(vms, sysmem);
1970 fdt_add_pmu_nodes(vms);
1972 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
1974 if (vms->secure) {
1975 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
1976 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1979 if (tag_sysmem) {
1980 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
1981 machine->ram_size, "mach-virt.tag");
1984 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1986 create_rtc(vms);
1988 create_pcie(vms);
1990 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
1991 vms->acpi_dev = create_acpi_ged(vms);
1992 } else {
1993 create_gpio(vms);
1996 /* connect powerdown request */
1997 vms->powerdown_notifier.notify = virt_powerdown_req;
1998 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2000 /* Create mmio transports, so the user can create virtio backends
2001 * (which will be automatically plugged in to the transports). If
2002 * no backend is created the transport will just sit harmlessly idle.
2004 create_virtio_devices(vms);
2006 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2007 rom_set_fw(vms->fw_cfg);
2009 create_platform_bus(vms);
2011 if (machine->nvdimms_state->is_enabled) {
2012 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2013 .space_id = AML_AS_SYSTEM_MEMORY,
2014 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2015 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2018 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2019 arm_virt_nvdimm_acpi_dsmio,
2020 vms->fw_cfg, OBJECT(vms));
2023 vms->bootinfo.ram_size = machine->ram_size;
2024 vms->bootinfo.nb_cpus = smp_cpus;
2025 vms->bootinfo.board_id = -1;
2026 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2027 vms->bootinfo.get_dtb = machvirt_dtb;
2028 vms->bootinfo.skip_dtb_autoload = true;
2029 vms->bootinfo.firmware_loaded = firmware_loaded;
2030 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2032 vms->machine_done.notify = virt_machine_done;
2033 qemu_add_machine_init_done_notifier(&vms->machine_done);
2036 static bool virt_get_secure(Object *obj, Error **errp)
2038 VirtMachineState *vms = VIRT_MACHINE(obj);
2040 return vms->secure;
2043 static void virt_set_secure(Object *obj, bool value, Error **errp)
2045 VirtMachineState *vms = VIRT_MACHINE(obj);
2047 vms->secure = value;
2050 static bool virt_get_virt(Object *obj, Error **errp)
2052 VirtMachineState *vms = VIRT_MACHINE(obj);
2054 return vms->virt;
2057 static void virt_set_virt(Object *obj, bool value, Error **errp)
2059 VirtMachineState *vms = VIRT_MACHINE(obj);
2061 vms->virt = value;
2064 static bool virt_get_highmem(Object *obj, Error **errp)
2066 VirtMachineState *vms = VIRT_MACHINE(obj);
2068 return vms->highmem;
2071 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2073 VirtMachineState *vms = VIRT_MACHINE(obj);
2075 vms->highmem = value;
2078 static bool virt_get_its(Object *obj, Error **errp)
2080 VirtMachineState *vms = VIRT_MACHINE(obj);
2082 return vms->its;
2085 static void virt_set_its(Object *obj, bool value, Error **errp)
2087 VirtMachineState *vms = VIRT_MACHINE(obj);
2089 vms->its = value;
2092 bool virt_is_acpi_enabled(VirtMachineState *vms)
2094 if (vms->acpi == ON_OFF_AUTO_OFF) {
2095 return false;
2097 return true;
2100 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2101 void *opaque, Error **errp)
2103 VirtMachineState *vms = VIRT_MACHINE(obj);
2104 OnOffAuto acpi = vms->acpi;
2106 visit_type_OnOffAuto(v, name, &acpi, errp);
2109 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2110 void *opaque, Error **errp)
2112 VirtMachineState *vms = VIRT_MACHINE(obj);
2114 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2117 static bool virt_get_ras(Object *obj, Error **errp)
2119 VirtMachineState *vms = VIRT_MACHINE(obj);
2121 return vms->ras;
2124 static void virt_set_ras(Object *obj, bool value, Error **errp)
2126 VirtMachineState *vms = VIRT_MACHINE(obj);
2128 vms->ras = value;
2131 static bool virt_get_mte(Object *obj, Error **errp)
2133 VirtMachineState *vms = VIRT_MACHINE(obj);
2135 return vms->mte;
2138 static void virt_set_mte(Object *obj, bool value, Error **errp)
2140 VirtMachineState *vms = VIRT_MACHINE(obj);
2142 vms->mte = value;
2145 static char *virt_get_gic_version(Object *obj, Error **errp)
2147 VirtMachineState *vms = VIRT_MACHINE(obj);
2148 const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
2150 return g_strdup(val);
2153 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2155 VirtMachineState *vms = VIRT_MACHINE(obj);
2157 if (!strcmp(value, "3")) {
2158 vms->gic_version = VIRT_GIC_VERSION_3;
2159 } else if (!strcmp(value, "2")) {
2160 vms->gic_version = VIRT_GIC_VERSION_2;
2161 } else if (!strcmp(value, "host")) {
2162 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2163 } else if (!strcmp(value, "max")) {
2164 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2165 } else {
2166 error_setg(errp, "Invalid gic-version value");
2167 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2171 static char *virt_get_iommu(Object *obj, Error **errp)
2173 VirtMachineState *vms = VIRT_MACHINE(obj);
2175 switch (vms->iommu) {
2176 case VIRT_IOMMU_NONE:
2177 return g_strdup("none");
2178 case VIRT_IOMMU_SMMUV3:
2179 return g_strdup("smmuv3");
2180 default:
2181 g_assert_not_reached();
2185 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2187 VirtMachineState *vms = VIRT_MACHINE(obj);
2189 if (!strcmp(value, "smmuv3")) {
2190 vms->iommu = VIRT_IOMMU_SMMUV3;
2191 } else if (!strcmp(value, "none")) {
2192 vms->iommu = VIRT_IOMMU_NONE;
2193 } else {
2194 error_setg(errp, "Invalid iommu value");
2195 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2199 static CpuInstanceProperties
2200 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2202 MachineClass *mc = MACHINE_GET_CLASS(ms);
2203 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2205 assert(cpu_index < possible_cpus->len);
2206 return possible_cpus->cpus[cpu_index].props;
2209 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2211 return idx % ms->numa_state->num_nodes;
2214 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2216 int n;
2217 unsigned int max_cpus = ms->smp.max_cpus;
2218 VirtMachineState *vms = VIRT_MACHINE(ms);
2220 if (ms->possible_cpus) {
2221 assert(ms->possible_cpus->len == max_cpus);
2222 return ms->possible_cpus;
2225 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2226 sizeof(CPUArchId) * max_cpus);
2227 ms->possible_cpus->len = max_cpus;
2228 for (n = 0; n < ms->possible_cpus->len; n++) {
2229 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2230 ms->possible_cpus->cpus[n].arch_id =
2231 virt_cpu_mp_affinity(vms, n);
2232 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2233 ms->possible_cpus->cpus[n].props.thread_id = n;
2235 return ms->possible_cpus;
2238 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2239 Error **errp)
2241 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2242 const MachineState *ms = MACHINE(hotplug_dev);
2243 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2245 if (!vms->acpi_dev) {
2246 error_setg(errp,
2247 "memory hotplug is not enabled: missing acpi-ged device");
2248 return;
2251 if (vms->mte) {
2252 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2253 return;
2256 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2257 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2258 return;
2261 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2264 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2265 DeviceState *dev, Error **errp)
2267 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2268 MachineState *ms = MACHINE(hotplug_dev);
2269 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2271 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2273 if (is_nvdimm) {
2274 nvdimm_plug(ms->nvdimms_state);
2277 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2278 dev, &error_abort);
2281 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2282 DeviceState *dev, Error **errp)
2284 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2286 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2287 virt_memory_pre_plug(hotplug_dev, dev, errp);
2288 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2289 hwaddr db_start = 0, db_end = 0;
2290 char *resv_prop_str;
2292 switch (vms->msi_controller) {
2293 case VIRT_MSI_CTRL_NONE:
2294 return;
2295 case VIRT_MSI_CTRL_ITS:
2296 /* GITS_TRANSLATER page */
2297 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2298 db_end = base_memmap[VIRT_GIC_ITS].base +
2299 base_memmap[VIRT_GIC_ITS].size - 1;
2300 break;
2301 case VIRT_MSI_CTRL_GICV2M:
2302 /* MSI_SETSPI_NS page */
2303 db_start = base_memmap[VIRT_GIC_V2M].base;
2304 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2305 break;
2307 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2308 db_start, db_end,
2309 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2311 qdev_prop_set_uint32(dev, "len-reserved-regions", 1);
2312 qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str);
2313 g_free(resv_prop_str);
2317 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2318 DeviceState *dev, Error **errp)
2320 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2322 if (vms->platform_bus_dev) {
2323 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
2324 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2325 SYS_BUS_DEVICE(dev));
2328 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2329 virt_memory_plug(hotplug_dev, dev, errp);
2331 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2332 PCIDevice *pdev = PCI_DEVICE(dev);
2334 vms->iommu = VIRT_IOMMU_VIRTIO;
2335 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2336 create_virtio_iommu_dt_bindings(vms);
2340 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2341 DeviceState *dev, Error **errp)
2343 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2344 Error *local_err = NULL;
2346 if (!vms->acpi_dev) {
2347 error_setg(&local_err,
2348 "memory hotplug is not enabled: missing acpi-ged device");
2349 goto out;
2352 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2353 error_setg(&local_err,
2354 "nvdimm device hot unplug is not supported yet.");
2355 goto out;
2358 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2359 &local_err);
2360 out:
2361 error_propagate(errp, local_err);
2364 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2365 DeviceState *dev, Error **errp)
2367 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2368 Error *local_err = NULL;
2370 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2371 if (local_err) {
2372 goto out;
2375 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2376 qdev_unrealize(dev);
2378 out:
2379 error_propagate(errp, local_err);
2382 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2383 DeviceState *dev, Error **errp)
2385 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2386 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2387 } else {
2388 error_setg(errp, "device unplug request for unsupported device"
2389 " type: %s", object_get_typename(OBJECT(dev)));
2393 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2394 DeviceState *dev, Error **errp)
2396 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2397 virt_dimm_unplug(hotplug_dev, dev, errp);
2398 } else {
2399 error_setg(errp, "virt: device unplug for unsupported device"
2400 " type: %s", object_get_typename(OBJECT(dev)));
2404 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2405 DeviceState *dev)
2407 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) ||
2408 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
2409 return HOTPLUG_HANDLER(machine);
2411 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2412 VirtMachineState *vms = VIRT_MACHINE(machine);
2414 if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) {
2415 return HOTPLUG_HANDLER(machine);
2418 return NULL;
2422 * for arm64 kvm_type [7-0] encodes the requested number of bits
2423 * in the IPA address space
2425 static int virt_kvm_type(MachineState *ms, const char *type_str)
2427 VirtMachineState *vms = VIRT_MACHINE(ms);
2428 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
2429 int requested_pa_size;
2431 /* we freeze the memory map to compute the highest gpa */
2432 virt_set_memmap(vms);
2434 requested_pa_size = 64 - clz64(vms->highest_gpa);
2436 if (requested_pa_size > max_vm_pa_size) {
2437 error_report("-m and ,maxmem option values "
2438 "require an IPA range (%d bits) larger than "
2439 "the one supported by the host (%d bits)",
2440 requested_pa_size, max_vm_pa_size);
2441 exit(1);
2444 * By default we return 0 which corresponds to an implicit legacy
2445 * 40b IPA setting. Otherwise we return the actual requested PA
2446 * logsize
2448 return requested_pa_size > 40 ? requested_pa_size : 0;
2451 static void virt_machine_class_init(ObjectClass *oc, void *data)
2453 MachineClass *mc = MACHINE_CLASS(oc);
2454 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2456 mc->init = machvirt_init;
2457 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2458 * The value may be reduced later when we have more information about the
2459 * configuration of the particular instance.
2461 mc->max_cpus = 512;
2462 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2463 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
2464 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
2465 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
2466 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
2467 mc->block_default_type = IF_VIRTIO;
2468 mc->no_cdrom = 1;
2469 mc->pci_allow_0_address = true;
2470 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2471 mc->minimum_page_bits = 12;
2472 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
2473 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
2474 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
2475 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
2476 mc->kvm_type = virt_kvm_type;
2477 assert(!mc->get_hotplug_handler);
2478 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
2479 hc->pre_plug = virt_machine_device_pre_plug_cb;
2480 hc->plug = virt_machine_device_plug_cb;
2481 hc->unplug_request = virt_machine_device_unplug_request_cb;
2482 hc->unplug = virt_machine_device_unplug_cb;
2483 mc->nvdimm_supported = true;
2484 mc->auto_enable_numa_with_memhp = true;
2485 mc->auto_enable_numa_with_memdev = true;
2486 mc->default_ram_id = "mach-virt.ram";
2488 object_class_property_add(oc, "acpi", "OnOffAuto",
2489 virt_get_acpi, virt_set_acpi,
2490 NULL, NULL);
2491 object_class_property_set_description(oc, "acpi",
2492 "Enable ACPI");
2493 object_class_property_add_bool(oc, "secure", virt_get_secure,
2494 virt_set_secure);
2495 object_class_property_set_description(oc, "secure",
2496 "Set on/off to enable/disable the ARM "
2497 "Security Extensions (TrustZone)");
2499 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
2500 virt_set_virt);
2501 object_class_property_set_description(oc, "virtualization",
2502 "Set on/off to enable/disable emulating a "
2503 "guest CPU which implements the ARM "
2504 "Virtualization Extensions");
2506 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
2507 virt_set_highmem);
2508 object_class_property_set_description(oc, "highmem",
2509 "Set on/off to enable/disable using "
2510 "physical address space above 32 bits");
2512 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
2513 virt_set_gic_version);
2514 object_class_property_set_description(oc, "gic-version",
2515 "Set GIC version. "
2516 "Valid values are 2, 3, host and max");
2518 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
2519 object_class_property_set_description(oc, "iommu",
2520 "Set the IOMMU type. "
2521 "Valid values are none and smmuv3");
2523 object_class_property_add_bool(oc, "ras", virt_get_ras,
2524 virt_set_ras);
2525 object_class_property_set_description(oc, "ras",
2526 "Set on/off to enable/disable reporting host memory errors "
2527 "to a KVM guest using ACPI and guest external abort exceptions");
2529 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
2530 object_class_property_set_description(oc, "mte",
2531 "Set on/off to enable/disable emulating a "
2532 "guest CPU which implements the ARM "
2533 "Memory Tagging Extension");
2535 object_class_property_add_bool(oc, "its", virt_get_its,
2536 virt_set_its);
2537 object_class_property_set_description(oc, "its",
2538 "Set on/off to enable/disable "
2539 "ITS instantiation");
2543 static void virt_instance_init(Object *obj)
2545 VirtMachineState *vms = VIRT_MACHINE(obj);
2546 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
2548 /* EL3 is disabled by default on virt: this makes us consistent
2549 * between KVM and TCG for this board, and it also allows us to
2550 * boot UEFI blobs which assume no TrustZone support.
2552 vms->secure = false;
2554 /* EL2 is also disabled by default, for similar reasons */
2555 vms->virt = false;
2557 /* High memory is enabled by default */
2558 vms->highmem = true;
2559 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
2561 vms->highmem_ecam = !vmc->no_highmem_ecam;
2563 if (vmc->no_its) {
2564 vms->its = false;
2565 } else {
2566 /* Default allows ITS instantiation */
2567 vms->its = true;
2570 /* Default disallows iommu instantiation */
2571 vms->iommu = VIRT_IOMMU_NONE;
2573 /* Default disallows RAS instantiation */
2574 vms->ras = false;
2576 /* MTE is disabled by default. */
2577 vms->mte = false;
2579 vms->irqmap = a15irqmap;
2581 virt_flash_create(vms);
2584 static const TypeInfo virt_machine_info = {
2585 .name = TYPE_VIRT_MACHINE,
2586 .parent = TYPE_MACHINE,
2587 .abstract = true,
2588 .instance_size = sizeof(VirtMachineState),
2589 .class_size = sizeof(VirtMachineClass),
2590 .class_init = virt_machine_class_init,
2591 .instance_init = virt_instance_init,
2592 .interfaces = (InterfaceInfo[]) {
2593 { TYPE_HOTPLUG_HANDLER },
2598 static void machvirt_machine_init(void)
2600 type_register_static(&virt_machine_info);
2602 type_init(machvirt_machine_init);
2604 static void virt_machine_6_0_options(MachineClass *mc)
2607 DEFINE_VIRT_MACHINE_AS_LATEST(6, 0)
2609 static void virt_machine_5_2_options(MachineClass *mc)
2611 virt_machine_6_0_options(mc);
2612 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
2614 DEFINE_VIRT_MACHINE(5, 2)
2616 static void virt_machine_5_1_options(MachineClass *mc)
2618 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2620 virt_machine_5_2_options(mc);
2621 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
2622 vmc->no_kvm_steal_time = true;
2624 DEFINE_VIRT_MACHINE(5, 1)
2626 static void virt_machine_5_0_options(MachineClass *mc)
2628 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2630 virt_machine_5_1_options(mc);
2631 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
2632 mc->numa_mem_supported = true;
2633 vmc->acpi_expose_flash = true;
2634 mc->auto_enable_numa_with_memdev = false;
2636 DEFINE_VIRT_MACHINE(5, 0)
2638 static void virt_machine_4_2_options(MachineClass *mc)
2640 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2642 virt_machine_5_0_options(mc);
2643 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
2644 vmc->kvm_no_adjvtime = true;
2646 DEFINE_VIRT_MACHINE(4, 2)
2648 static void virt_machine_4_1_options(MachineClass *mc)
2650 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2652 virt_machine_4_2_options(mc);
2653 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
2654 vmc->no_ged = true;
2655 mc->auto_enable_numa_with_memhp = false;
2657 DEFINE_VIRT_MACHINE(4, 1)
2659 static void virt_machine_4_0_options(MachineClass *mc)
2661 virt_machine_4_1_options(mc);
2662 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2664 DEFINE_VIRT_MACHINE(4, 0)
2666 static void virt_machine_3_1_options(MachineClass *mc)
2668 virt_machine_4_0_options(mc);
2669 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2671 DEFINE_VIRT_MACHINE(3, 1)
2673 static void virt_machine_3_0_options(MachineClass *mc)
2675 virt_machine_3_1_options(mc);
2676 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2678 DEFINE_VIRT_MACHINE(3, 0)
2680 static void virt_machine_2_12_options(MachineClass *mc)
2682 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2684 virt_machine_3_0_options(mc);
2685 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2686 vmc->no_highmem_ecam = true;
2687 mc->max_cpus = 255;
2689 DEFINE_VIRT_MACHINE(2, 12)
2691 static void virt_machine_2_11_options(MachineClass *mc)
2693 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2695 virt_machine_2_12_options(mc);
2696 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2697 vmc->smbios_old_sys_ver = true;
2699 DEFINE_VIRT_MACHINE(2, 11)
2701 static void virt_machine_2_10_options(MachineClass *mc)
2703 virt_machine_2_11_options(mc);
2704 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2705 /* before 2.11 we never faulted accesses to bad addresses */
2706 mc->ignore_memory_transaction_failures = true;
2708 DEFINE_VIRT_MACHINE(2, 10)
2710 static void virt_machine_2_9_options(MachineClass *mc)
2712 virt_machine_2_10_options(mc);
2713 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2715 DEFINE_VIRT_MACHINE(2, 9)
2717 static void virt_machine_2_8_options(MachineClass *mc)
2719 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2721 virt_machine_2_9_options(mc);
2722 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2723 /* For 2.8 and earlier we falsely claimed in the DT that
2724 * our timers were edge-triggered, not level-triggered.
2726 vmc->claim_edge_triggered_timers = true;
2728 DEFINE_VIRT_MACHINE(2, 8)
2730 static void virt_machine_2_7_options(MachineClass *mc)
2732 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2734 virt_machine_2_8_options(mc);
2735 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2736 /* ITS was introduced with 2.8 */
2737 vmc->no_its = true;
2738 /* Stick with 1K pages for migration compatibility */
2739 mc->minimum_page_bits = 0;
2741 DEFINE_VIRT_MACHINE(2, 7)
2743 static void virt_machine_2_6_options(MachineClass *mc)
2745 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2747 virt_machine_2_7_options(mc);
2748 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2749 vmc->disallow_affinity_adjustment = true;
2750 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2751 vmc->no_pmu = true;
2753 DEFINE_VIRT_MACHINE(2, 6)