2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/datadir.h"
34 #include "qemu/units.h"
35 #include "qemu/option.h"
36 #include "monitor/qdev.h"
37 #include "qapi/error.h"
38 #include "hw/sysbus.h"
39 #include "hw/boards.h"
40 #include "hw/arm/boot.h"
41 #include "hw/arm/primecell.h"
42 #include "hw/arm/virt.h"
43 #include "hw/block/flash.h"
44 #include "hw/vfio/vfio-calxeda-xgmac.h"
45 #include "hw/vfio/vfio-amd-xgbe.h"
46 #include "hw/display/ramfb.h"
48 #include "sysemu/device_tree.h"
49 #include "sysemu/numa.h"
50 #include "sysemu/runstate.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/tpm.h"
53 #include "sysemu/kvm.h"
54 #include "hw/loader.h"
55 #include "exec/address-spaces.h"
56 #include "qemu/bitops.h"
57 #include "qemu/error-report.h"
58 #include "qemu/module.h"
59 #include "hw/pci-host/gpex.h"
60 #include "hw/virtio/virtio-pci.h"
61 #include "hw/arm/sysbus-fdt.h"
62 #include "hw/platform-bus.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/arm/fdt.h"
65 #include "hw/intc/arm_gic.h"
66 #include "hw/intc/arm_gicv3_common.h"
69 #include "hw/firmware/smbios.h"
70 #include "qapi/visitor.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "standard-headers/linux/input.h"
73 #include "hw/arm/smmuv3.h"
74 #include "hw/acpi/acpi.h"
75 #include "target/arm/internals.h"
76 #include "hw/mem/pc-dimm.h"
77 #include "hw/mem/nvdimm.h"
78 #include "hw/acpi/generic_event_device.h"
79 #include "hw/virtio/virtio-iommu.h"
80 #include "hw/char/pl011.h"
81 #include "qemu/guest-random.h"
83 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
84 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
87 MachineClass *mc = MACHINE_CLASS(oc); \
88 virt_machine_##major##_##minor##_options(mc); \
89 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
94 static const TypeInfo machvirt_##major##_##minor##_info = { \
95 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
96 .parent = TYPE_VIRT_MACHINE, \
97 .class_init = virt_##major##_##minor##_class_init, \
99 static void machvirt_machine_##major##_##minor##_init(void) \
101 type_register_static(&machvirt_##major##_##minor##_info); \
103 type_init(machvirt_machine_##major##_##minor##_init);
105 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
106 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
107 #define DEFINE_VIRT_MACHINE(major, minor) \
108 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
111 /* Number of external interrupt lines to configure the GIC with */
114 #define PLATFORM_BUS_NUM_IRQS 64
116 /* Legacy RAM limit in GB (< version 4.0) */
117 #define LEGACY_RAMLIMIT_GB 255
118 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
120 /* Addresses and sizes of our components.
121 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
122 * 128MB..256MB is used for miscellaneous device I/O.
123 * 256MB..1GB is reserved for possible future PCI support (ie where the
124 * PCI memory window will go if we add a PCI host controller).
125 * 1GB and up is RAM (which may happily spill over into the
126 * high memory region beyond 4GB).
127 * This represents a compromise between how much RAM can be given to
128 * a 32 bit VM and leaving space for expansion and in particular for PCI.
129 * Note that devices should generally be placed at multiples of 0x10000,
130 * to accommodate guests using 64K pages.
132 static const MemMapEntry base_memmap
[] = {
133 /* Space up to 0x8000000 is reserved for a boot ROM */
134 [VIRT_FLASH
] = { 0, 0x08000000 },
135 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
136 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
137 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
138 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
139 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
140 [VIRT_GIC_HYP
] = { 0x08030000, 0x00010000 },
141 [VIRT_GIC_VCPU
] = { 0x08040000, 0x00010000 },
142 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
143 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
144 /* This redistributor space allows up to 2*64kB*123 CPUs */
145 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
146 [VIRT_UART
] = { 0x09000000, 0x00001000 },
147 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
148 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
149 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
150 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
151 [VIRT_SMMU
] = { 0x09050000, 0x00020000 },
152 [VIRT_PCDIMM_ACPI
] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN
},
153 [VIRT_ACPI_GED
] = { 0x09080000, ACPI_GED_EVT_SEL_LEN
},
154 [VIRT_NVDIMM_ACPI
] = { 0x09090000, NVDIMM_ACPI_IO_LEN
},
155 [VIRT_PVTIME
] = { 0x090a0000, 0x00010000 },
156 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
157 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
158 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
159 [VIRT_SECURE_MEM
] = { 0x0e000000, 0x01000000 },
160 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
161 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
162 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
163 /* Actual RAM size depends on initial RAM and device memory settings */
164 [VIRT_MEM
] = { GiB
, LEGACY_RAMLIMIT_BYTES
},
168 * Highmem IO Regions: This memory map is floating, located after the RAM.
169 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
170 * top of the RAM, so that its base get the same alignment as the size,
171 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
172 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
173 * Note the extended_memmap is sized so that it eventually also includes the
174 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
175 * index of base_memmap).
177 static MemMapEntry extended_memmap
[] = {
178 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
179 [VIRT_HIGH_GIC_REDIST2
] = { 0x0, 64 * MiB
},
180 [VIRT_HIGH_PCIE_ECAM
] = { 0x0, 256 * MiB
},
181 /* Second PCIe window */
182 [VIRT_HIGH_PCIE_MMIO
] = { 0x0, 512 * GiB
},
185 static const int a15irqmap
[] = {
188 [VIRT_PCIE
] = 3, /* ... to 6 */
190 [VIRT_SECURE_UART
] = 8,
192 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
193 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
194 [VIRT_SMMU
] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
195 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
198 static const char *valid_cpus
[] = {
199 ARM_CPU_TYPE_NAME("cortex-a7"),
200 ARM_CPU_TYPE_NAME("cortex-a15"),
201 ARM_CPU_TYPE_NAME("cortex-a53"),
202 ARM_CPU_TYPE_NAME("cortex-a57"),
203 ARM_CPU_TYPE_NAME("cortex-a72"),
204 ARM_CPU_TYPE_NAME("host"),
205 ARM_CPU_TYPE_NAME("max"),
208 static bool cpu_type_valid(const char *cpu
)
212 for (i
= 0; i
< ARRAY_SIZE(valid_cpus
); i
++) {
213 if (strcmp(cpu
, valid_cpus
[i
]) == 0) {
220 static void create_kaslr_seed(VirtMachineState
*vms
, const char *node
)
224 if (qemu_guest_getrandom(&seed
, sizeof(seed
), NULL
)) {
227 qemu_fdt_setprop_u64(vms
->fdt
, node
, "kaslr-seed", seed
);
230 static void create_fdt(VirtMachineState
*vms
)
232 MachineState
*ms
= MACHINE(vms
);
233 int nb_numa_nodes
= ms
->numa_state
->num_nodes
;
234 void *fdt
= create_device_tree(&vms
->fdt_size
);
237 error_report("create_device_tree() failed");
244 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
245 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
246 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
248 /* /chosen must exist for load_dtb to fill in necessary properties later */
249 qemu_fdt_add_subnode(fdt
, "/chosen");
250 create_kaslr_seed(vms
, "/chosen");
253 qemu_fdt_add_subnode(fdt
, "/secure-chosen");
254 create_kaslr_seed(vms
, "/secure-chosen");
257 /* Clock node, for the benefit of the UART. The kernel device tree
258 * binding documentation claims the PL011 node clock properties are
259 * optional but in practice if you omit them the kernel refuses to
260 * probe for the device.
262 vms
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
263 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
264 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
265 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
266 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
267 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
269 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vms
->clock_phandle
);
271 if (nb_numa_nodes
> 0 && ms
->numa_state
->have_numa_distance
) {
272 int size
= nb_numa_nodes
* nb_numa_nodes
* 3 * sizeof(uint32_t);
273 uint32_t *matrix
= g_malloc0(size
);
276 for (i
= 0; i
< nb_numa_nodes
; i
++) {
277 for (j
= 0; j
< nb_numa_nodes
; j
++) {
278 idx
= (i
* nb_numa_nodes
+ j
) * 3;
279 matrix
[idx
+ 0] = cpu_to_be32(i
);
280 matrix
[idx
+ 1] = cpu_to_be32(j
);
282 cpu_to_be32(ms
->numa_state
->nodes
[i
].distance
[j
]);
286 qemu_fdt_add_subnode(fdt
, "/distance-map");
287 qemu_fdt_setprop_string(fdt
, "/distance-map", "compatible",
288 "numa-distance-map-v1");
289 qemu_fdt_setprop(fdt
, "/distance-map", "distance-matrix",
295 static void fdt_add_timer_nodes(const VirtMachineState
*vms
)
297 /* On real hardware these interrupts are level-triggered.
298 * On KVM they were edge-triggered before host kernel version 4.4,
299 * and level-triggered afterwards.
300 * On emulated QEMU they are level-triggered.
302 * Getting the DTB info about them wrong is awkward for some
304 * pre-4.8 ignore the DT and leave the interrupt configured
305 * with whatever the GIC reset value (or the bootloader) left it at
306 * 4.8 before rc6 honour the incorrect data by programming it back
307 * into the GIC, causing problems
308 * 4.8rc6 and later ignore the DT and always write "level triggered"
311 * For backwards-compatibility, virt-2.8 and earlier will continue
312 * to say these are edge-triggered, but later machines will report
313 * the correct information.
316 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
317 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
319 if (vmc
->claim_edge_triggered_timers
) {
320 irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
323 if (vms
->gic_version
== VIRT_GIC_VERSION_2
) {
324 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
325 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
326 (1 << MACHINE(vms
)->smp
.cpus
) - 1);
329 qemu_fdt_add_subnode(vms
->fdt
, "/timer");
331 armcpu
= ARM_CPU(qemu_get_cpu(0));
332 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
333 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
334 qemu_fdt_setprop(vms
->fdt
, "/timer", "compatible",
335 compat
, sizeof(compat
));
337 qemu_fdt_setprop_string(vms
->fdt
, "/timer", "compatible",
340 qemu_fdt_setprop(vms
->fdt
, "/timer", "always-on", NULL
, 0);
341 qemu_fdt_setprop_cells(vms
->fdt
, "/timer", "interrupts",
342 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
343 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
344 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
345 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
348 static void fdt_add_cpu_nodes(const VirtMachineState
*vms
)
352 const MachineState
*ms
= MACHINE(vms
);
353 int smp_cpus
= ms
->smp
.cpus
;
356 * From Documentation/devicetree/bindings/arm/cpus.txt
357 * On ARM v8 64-bit systems value should be set to 2,
358 * that corresponds to the MPIDR_EL1 register size.
359 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
360 * in the system, #address-cells can be set to 1, since
361 * MPIDR_EL1[63:32] bits are not used for CPUs
364 * Here we actually don't know whether our system is 32- or 64-bit one.
365 * The simplest way to go is to examine affinity IDs of all our CPUs. If
366 * at least one of them has Aff3 populated, we set #address-cells to 2.
368 for (cpu
= 0; cpu
< smp_cpus
; cpu
++) {
369 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
371 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
377 qemu_fdt_add_subnode(vms
->fdt
, "/cpus");
378 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#address-cells", addr_cells
);
379 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#size-cells", 0x0);
381 for (cpu
= smp_cpus
- 1; cpu
>= 0; cpu
--) {
382 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
383 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
384 CPUState
*cs
= CPU(armcpu
);
386 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
387 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "cpu");
388 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
389 armcpu
->dtb_compatible
);
391 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
&& smp_cpus
> 1) {
392 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
393 "enable-method", "psci");
396 if (addr_cells
== 2) {
397 qemu_fdt_setprop_u64(vms
->fdt
, nodename
, "reg",
398 armcpu
->mp_affinity
);
400 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "reg",
401 armcpu
->mp_affinity
);
404 if (ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.has_node_id
) {
405 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "numa-node-id",
406 ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.node_id
);
413 static void fdt_add_its_gic_node(VirtMachineState
*vms
)
417 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
418 nodename
= g_strdup_printf("/intc/its@%" PRIx64
,
419 vms
->memmap
[VIRT_GIC_ITS
].base
);
420 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
421 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
423 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
424 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
425 2, vms
->memmap
[VIRT_GIC_ITS
].base
,
426 2, vms
->memmap
[VIRT_GIC_ITS
].size
);
427 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
431 static void fdt_add_v2m_gic_node(VirtMachineState
*vms
)
435 nodename
= g_strdup_printf("/intc/v2m@%" PRIx64
,
436 vms
->memmap
[VIRT_GIC_V2M
].base
);
437 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
438 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
439 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
440 "arm,gic-v2m-frame");
441 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
442 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
443 2, vms
->memmap
[VIRT_GIC_V2M
].base
,
444 2, vms
->memmap
[VIRT_GIC_V2M
].size
);
445 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
449 static void fdt_add_gic_node(VirtMachineState
*vms
)
453 vms
->gic_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
454 qemu_fdt_setprop_cell(vms
->fdt
, "/", "interrupt-parent", vms
->gic_phandle
);
456 nodename
= g_strdup_printf("/intc@%" PRIx64
,
457 vms
->memmap
[VIRT_GIC_DIST
].base
);
458 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
459 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 3);
460 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-controller", NULL
, 0);
461 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 0x2);
462 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 0x2);
463 qemu_fdt_setprop(vms
->fdt
, nodename
, "ranges", NULL
, 0);
464 if (vms
->gic_version
== VIRT_GIC_VERSION_3
) {
465 int nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
467 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
470 qemu_fdt_setprop_cell(vms
->fdt
, nodename
,
471 "#redistributor-regions", nb_redist_regions
);
473 if (nb_redist_regions
== 1) {
474 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
475 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
476 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
477 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
478 2, vms
->memmap
[VIRT_GIC_REDIST
].size
);
480 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
481 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
482 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
483 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
484 2, vms
->memmap
[VIRT_GIC_REDIST
].size
,
485 2, vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].base
,
486 2, vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
);
490 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
491 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
492 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
495 /* 'cortex-a15-gic' means 'GIC v2' */
496 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
497 "arm,cortex-a15-gic");
499 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
500 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
501 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
502 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
503 2, vms
->memmap
[VIRT_GIC_CPU
].size
);
505 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
506 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
507 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
508 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
509 2, vms
->memmap
[VIRT_GIC_CPU
].size
,
510 2, vms
->memmap
[VIRT_GIC_HYP
].base
,
511 2, vms
->memmap
[VIRT_GIC_HYP
].size
,
512 2, vms
->memmap
[VIRT_GIC_VCPU
].base
,
513 2, vms
->memmap
[VIRT_GIC_VCPU
].size
);
514 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
515 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
516 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
520 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->gic_phandle
);
524 static void fdt_add_pmu_nodes(const VirtMachineState
*vms
)
526 ARMCPU
*armcpu
= ARM_CPU(first_cpu
);
527 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
529 if (!arm_feature(&armcpu
->env
, ARM_FEATURE_PMU
)) {
530 assert(!object_property_get_bool(OBJECT(armcpu
), "pmu", NULL
));
534 if (vms
->gic_version
== VIRT_GIC_VERSION_2
) {
535 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
536 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
537 (1 << MACHINE(vms
)->smp
.cpus
) - 1);
540 qemu_fdt_add_subnode(vms
->fdt
, "/pmu");
541 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
542 const char compat
[] = "arm,armv8-pmuv3";
543 qemu_fdt_setprop(vms
->fdt
, "/pmu", "compatible",
544 compat
, sizeof(compat
));
545 qemu_fdt_setprop_cells(vms
->fdt
, "/pmu", "interrupts",
546 GIC_FDT_IRQ_TYPE_PPI
, VIRTUAL_PMU_IRQ
, irqflags
);
550 static inline DeviceState
*create_acpi_ged(VirtMachineState
*vms
)
553 MachineState
*ms
= MACHINE(vms
);
554 int irq
= vms
->irqmap
[VIRT_ACPI_GED
];
555 uint32_t event
= ACPI_GED_PWR_DOWN_EVT
;
558 event
|= ACPI_GED_MEM_HOTPLUG_EVT
;
561 if (ms
->nvdimms_state
->is_enabled
) {
562 event
|= ACPI_GED_NVDIMM_HOTPLUG_EVT
;
565 dev
= qdev_new(TYPE_ACPI_GED
);
566 qdev_prop_set_uint32(dev
, "ged-event", event
);
568 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_ACPI_GED
].base
);
569 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 1, vms
->memmap
[VIRT_PCDIMM_ACPI
].base
);
570 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), 0, qdev_get_gpio_in(vms
->gic
, irq
));
572 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
577 static void create_its(VirtMachineState
*vms
)
579 const char *itsclass
= its_class_name();
583 /* Do nothing if not supported */
587 dev
= qdev_new(itsclass
);
589 object_property_set_link(OBJECT(dev
), "parent-gicv3", OBJECT(vms
->gic
),
591 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
592 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_ITS
].base
);
594 fdt_add_its_gic_node(vms
);
595 vms
->msi_controller
= VIRT_MSI_CTRL_ITS
;
598 static void create_v2m(VirtMachineState
*vms
)
601 int irq
= vms
->irqmap
[VIRT_GIC_V2M
];
604 dev
= qdev_new("arm-gicv2m");
605 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_V2M
].base
);
606 qdev_prop_set_uint32(dev
, "base-spi", irq
);
607 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
608 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
610 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
611 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
,
612 qdev_get_gpio_in(vms
->gic
, irq
+ i
));
615 fdt_add_v2m_gic_node(vms
);
616 vms
->msi_controller
= VIRT_MSI_CTRL_GICV2M
;
619 static void create_gic(VirtMachineState
*vms
)
621 MachineState
*ms
= MACHINE(vms
);
622 /* We create a standalone GIC */
623 SysBusDevice
*gicbusdev
;
625 int type
= vms
->gic_version
, i
;
626 unsigned int smp_cpus
= ms
->smp
.cpus
;
627 uint32_t nb_redist_regions
= 0;
629 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
631 vms
->gic
= qdev_new(gictype
);
632 qdev_prop_set_uint32(vms
->gic
, "revision", type
);
633 qdev_prop_set_uint32(vms
->gic
, "num-cpu", smp_cpus
);
634 /* Note that the num-irq property counts both internal and external
635 * interrupts; there are always 32 of the former (mandated by GIC spec).
637 qdev_prop_set_uint32(vms
->gic
, "num-irq", NUM_IRQS
+ 32);
638 if (!kvm_irqchip_in_kernel()) {
639 qdev_prop_set_bit(vms
->gic
, "has-security-extensions", vms
->secure
);
643 uint32_t redist0_capacity
=
644 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
645 uint32_t redist0_count
= MIN(smp_cpus
, redist0_capacity
);
647 nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
649 qdev_prop_set_uint32(vms
->gic
, "len-redist-region-count",
651 qdev_prop_set_uint32(vms
->gic
, "redist-region-count[0]", redist0_count
);
653 if (nb_redist_regions
== 2) {
654 uint32_t redist1_capacity
=
655 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
657 qdev_prop_set_uint32(vms
->gic
, "redist-region-count[1]",
658 MIN(smp_cpus
- redist0_count
, redist1_capacity
));
661 if (!kvm_irqchip_in_kernel()) {
662 qdev_prop_set_bit(vms
->gic
, "has-virtualization-extensions",
666 gicbusdev
= SYS_BUS_DEVICE(vms
->gic
);
667 sysbus_realize_and_unref(gicbusdev
, &error_fatal
);
668 sysbus_mmio_map(gicbusdev
, 0, vms
->memmap
[VIRT_GIC_DIST
].base
);
670 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_REDIST
].base
);
671 if (nb_redist_regions
== 2) {
672 sysbus_mmio_map(gicbusdev
, 2,
673 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].base
);
676 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_CPU
].base
);
678 sysbus_mmio_map(gicbusdev
, 2, vms
->memmap
[VIRT_GIC_HYP
].base
);
679 sysbus_mmio_map(gicbusdev
, 3, vms
->memmap
[VIRT_GIC_VCPU
].base
);
683 /* Wire the outputs from each CPU's generic timer and the GICv3
684 * maintenance interrupt signal to the appropriate GIC PPI inputs,
685 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
687 for (i
= 0; i
< smp_cpus
; i
++) {
688 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
689 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
691 /* Mapping from the output timer irq lines from the CPU to the
692 * GIC PPI inputs we use for the virt board.
694 const int timer_irq
[] = {
695 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
696 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
697 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
698 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
701 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
702 qdev_connect_gpio_out(cpudev
, irq
,
703 qdev_get_gpio_in(vms
->gic
,
704 ppibase
+ timer_irq
[irq
]));
708 qemu_irq irq
= qdev_get_gpio_in(vms
->gic
,
709 ppibase
+ ARCH_GIC_MAINT_IRQ
);
710 qdev_connect_gpio_out_named(cpudev
, "gicv3-maintenance-interrupt",
712 } else if (vms
->virt
) {
713 qemu_irq irq
= qdev_get_gpio_in(vms
->gic
,
714 ppibase
+ ARCH_GIC_MAINT_IRQ
);
715 sysbus_connect_irq(gicbusdev
, i
+ 4 * smp_cpus
, irq
);
718 qdev_connect_gpio_out_named(cpudev
, "pmu-interrupt", 0,
719 qdev_get_gpio_in(vms
->gic
, ppibase
722 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
723 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
724 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
725 sysbus_connect_irq(gicbusdev
, i
+ 2 * smp_cpus
,
726 qdev_get_gpio_in(cpudev
, ARM_CPU_VIRQ
));
727 sysbus_connect_irq(gicbusdev
, i
+ 3 * smp_cpus
,
728 qdev_get_gpio_in(cpudev
, ARM_CPU_VFIQ
));
731 fdt_add_gic_node(vms
);
733 if (type
== 3 && vms
->its
) {
735 } else if (type
== 2) {
740 static void create_uart(const VirtMachineState
*vms
, int uart
,
741 MemoryRegion
*mem
, Chardev
*chr
)
744 hwaddr base
= vms
->memmap
[uart
].base
;
745 hwaddr size
= vms
->memmap
[uart
].size
;
746 int irq
= vms
->irqmap
[uart
];
747 const char compat
[] = "arm,pl011\0arm,primecell";
748 const char clocknames
[] = "uartclk\0apb_pclk";
749 DeviceState
*dev
= qdev_new(TYPE_PL011
);
750 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
752 qdev_prop_set_chr(dev
, "chardev", chr
);
753 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
754 memory_region_add_subregion(mem
, base
,
755 sysbus_mmio_get_region(s
, 0));
756 sysbus_connect_irq(s
, 0, qdev_get_gpio_in(vms
->gic
, irq
));
758 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
759 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
760 /* Note that we can't use setprop_string because of the embedded NUL */
761 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible",
762 compat
, sizeof(compat
));
763 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
765 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
766 GIC_FDT_IRQ_TYPE_SPI
, irq
,
767 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
768 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "clocks",
769 vms
->clock_phandle
, vms
->clock_phandle
);
770 qemu_fdt_setprop(vms
->fdt
, nodename
, "clock-names",
771 clocknames
, sizeof(clocknames
));
773 if (uart
== VIRT_UART
) {
774 qemu_fdt_setprop_string(vms
->fdt
, "/chosen", "stdout-path", nodename
);
776 /* Mark as not usable by the normal world */
777 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
778 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
780 qemu_fdt_setprop_string(vms
->fdt
, "/secure-chosen", "stdout-path",
787 static void create_rtc(const VirtMachineState
*vms
)
790 hwaddr base
= vms
->memmap
[VIRT_RTC
].base
;
791 hwaddr size
= vms
->memmap
[VIRT_RTC
].size
;
792 int irq
= vms
->irqmap
[VIRT_RTC
];
793 const char compat
[] = "arm,pl031\0arm,primecell";
795 sysbus_create_simple("pl031", base
, qdev_get_gpio_in(vms
->gic
, irq
));
797 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
798 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
799 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
800 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
802 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
803 GIC_FDT_IRQ_TYPE_SPI
, irq
,
804 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
805 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
806 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
810 static DeviceState
*gpio_key_dev
;
811 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
813 VirtMachineState
*s
= container_of(n
, VirtMachineState
, powerdown_notifier
);
816 acpi_send_event(s
->acpi_dev
, ACPI_POWER_DOWN_STATUS
);
818 /* use gpio Pin 3 for power button event */
819 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
823 static void create_gpio(const VirtMachineState
*vms
)
826 DeviceState
*pl061_dev
;
827 hwaddr base
= vms
->memmap
[VIRT_GPIO
].base
;
828 hwaddr size
= vms
->memmap
[VIRT_GPIO
].size
;
829 int irq
= vms
->irqmap
[VIRT_GPIO
];
830 const char compat
[] = "arm,pl061\0arm,primecell";
832 pl061_dev
= sysbus_create_simple("pl061", base
,
833 qdev_get_gpio_in(vms
->gic
, irq
));
835 uint32_t phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
836 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
837 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
838 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
840 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
841 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#gpio-cells", 2);
842 qemu_fdt_setprop(vms
->fdt
, nodename
, "gpio-controller", NULL
, 0);
843 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
844 GIC_FDT_IRQ_TYPE_SPI
, irq
,
845 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
846 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
847 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
848 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", phandle
);
850 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
851 qdev_get_gpio_in(pl061_dev
, 3));
852 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys");
853 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys", "compatible", "gpio-keys");
854 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#size-cells", 0);
855 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#address-cells", 1);
857 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys/poweroff");
858 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys/poweroff",
859 "label", "GPIO Key Poweroff");
860 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys/poweroff", "linux,code",
862 qemu_fdt_setprop_cells(vms
->fdt
, "/gpio-keys/poweroff",
863 "gpios", phandle
, 3, 0);
867 static void create_virtio_devices(const VirtMachineState
*vms
)
870 hwaddr size
= vms
->memmap
[VIRT_MMIO
].size
;
872 /* We create the transports in forwards order. Since qbus_realize()
873 * prepends (not appends) new child buses, the incrementing loop below will
874 * create a list of virtio-mmio buses with decreasing base addresses.
876 * When a -device option is processed from the command line,
877 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
878 * order. The upshot is that -device options in increasing command line
879 * order are mapped to virtio-mmio buses with decreasing base addresses.
881 * When this code was originally written, that arrangement ensured that the
882 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
883 * the first -device on the command line. (The end-to-end order is a
884 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
885 * guest kernel's name-to-address assignment strategy.)
887 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
888 * the message, if not necessarily the code, of commit 70161ff336.
889 * Therefore the loop now establishes the inverse of the original intent.
891 * Unfortunately, we can't counteract the kernel change by reversing the
892 * loop; it would break existing command lines.
894 * In any case, the kernel makes no guarantee about the stability of
895 * enumeration order of virtio devices (as demonstrated by it changing
896 * between kernel versions). For reliable and stable identification
897 * of disks users must use UUIDs or similar mechanisms.
899 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
900 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
901 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
903 sysbus_create_simple("virtio-mmio", base
,
904 qdev_get_gpio_in(vms
->gic
, irq
));
907 /* We add dtb nodes in reverse order so that they appear in the finished
908 * device tree lowest address first.
910 * Note that this mapping is independent of the loop above. The previous
911 * loop influences virtio device to virtio transport assignment, whereas
912 * this loop controls how virtio transports are laid out in the dtb.
914 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
916 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
917 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
919 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
920 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
921 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
922 "compatible", "virtio,mmio");
923 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
925 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
926 GIC_FDT_IRQ_TYPE_SPI
, irq
,
927 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
928 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
933 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
935 static PFlashCFI01
*virt_flash_create1(VirtMachineState
*vms
,
937 const char *alias_prop_name
)
940 * Create a single flash device. We use the same parameters as
941 * the flash devices on the Versatile Express board.
943 DeviceState
*dev
= qdev_new(TYPE_PFLASH_CFI01
);
945 qdev_prop_set_uint64(dev
, "sector-length", VIRT_FLASH_SECTOR_SIZE
);
946 qdev_prop_set_uint8(dev
, "width", 4);
947 qdev_prop_set_uint8(dev
, "device-width", 2);
948 qdev_prop_set_bit(dev
, "big-endian", false);
949 qdev_prop_set_uint16(dev
, "id0", 0x89);
950 qdev_prop_set_uint16(dev
, "id1", 0x18);
951 qdev_prop_set_uint16(dev
, "id2", 0x00);
952 qdev_prop_set_uint16(dev
, "id3", 0x00);
953 qdev_prop_set_string(dev
, "name", name
);
954 object_property_add_child(OBJECT(vms
), name
, OBJECT(dev
));
955 object_property_add_alias(OBJECT(vms
), alias_prop_name
,
956 OBJECT(dev
), "drive");
957 return PFLASH_CFI01(dev
);
960 static void virt_flash_create(VirtMachineState
*vms
)
962 vms
->flash
[0] = virt_flash_create1(vms
, "virt.flash0", "pflash0");
963 vms
->flash
[1] = virt_flash_create1(vms
, "virt.flash1", "pflash1");
966 static void virt_flash_map1(PFlashCFI01
*flash
,
967 hwaddr base
, hwaddr size
,
968 MemoryRegion
*sysmem
)
970 DeviceState
*dev
= DEVICE(flash
);
972 assert(QEMU_IS_ALIGNED(size
, VIRT_FLASH_SECTOR_SIZE
));
973 assert(size
/ VIRT_FLASH_SECTOR_SIZE
<= UINT32_MAX
);
974 qdev_prop_set_uint32(dev
, "num-blocks", size
/ VIRT_FLASH_SECTOR_SIZE
);
975 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
977 memory_region_add_subregion(sysmem
, base
,
978 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
),
982 static void virt_flash_map(VirtMachineState
*vms
,
983 MemoryRegion
*sysmem
,
984 MemoryRegion
*secure_sysmem
)
987 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
988 * sysmem is the system memory space. secure_sysmem is the secure view
989 * of the system, and the first flash device should be made visible only
990 * there. The second flash device is visible to both secure and nonsecure.
991 * If sysmem == secure_sysmem this means there is no separate Secure
992 * address space and both flash devices are generally visible.
994 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
995 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
997 virt_flash_map1(vms
->flash
[0], flashbase
, flashsize
,
999 virt_flash_map1(vms
->flash
[1], flashbase
+ flashsize
, flashsize
,
1003 static void virt_flash_fdt(VirtMachineState
*vms
,
1004 MemoryRegion
*sysmem
,
1005 MemoryRegion
*secure_sysmem
)
1007 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
1008 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
1011 if (sysmem
== secure_sysmem
) {
1012 /* Report both flash devices as a single node in the DT */
1013 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
1014 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1015 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
1016 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1017 2, flashbase
, 2, flashsize
,
1018 2, flashbase
+ flashsize
, 2, flashsize
);
1019 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
1023 * Report the devices as separate nodes so we can mark one as
1024 * only visible to the secure world.
1026 nodename
= g_strdup_printf("/secflash@%" PRIx64
, flashbase
);
1027 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1028 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
1029 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1030 2, flashbase
, 2, flashsize
);
1031 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
1032 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
1033 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
1036 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
1037 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1038 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
1039 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1040 2, flashbase
+ flashsize
, 2, flashsize
);
1041 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
1046 static bool virt_firmware_init(VirtMachineState
*vms
,
1047 MemoryRegion
*sysmem
,
1048 MemoryRegion
*secure_sysmem
)
1051 const char *bios_name
;
1052 BlockBackend
*pflash_blk0
;
1054 /* Map legacy -drive if=pflash to machine properties */
1055 for (i
= 0; i
< ARRAY_SIZE(vms
->flash
); i
++) {
1056 pflash_cfi01_legacy_drive(vms
->flash
[i
],
1057 drive_get(IF_PFLASH
, 0, i
));
1060 virt_flash_map(vms
, sysmem
, secure_sysmem
);
1062 pflash_blk0
= pflash_cfi01_get_blk(vms
->flash
[0]);
1064 bios_name
= MACHINE(vms
)->firmware
;
1071 error_report("The contents of the first flash device may be "
1072 "specified with -bios or with -drive if=pflash... "
1073 "but you cannot use both options at once");
1077 /* Fall back to -bios */
1079 fname
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
1081 error_report("Could not find ROM image '%s'", bios_name
);
1084 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(vms
->flash
[0]), 0);
1085 image_size
= load_image_mr(fname
, mr
);
1087 if (image_size
< 0) {
1088 error_report("Could not load ROM image '%s'", bios_name
);
1093 return pflash_blk0
|| bios_name
;
1096 static FWCfgState
*create_fw_cfg(const VirtMachineState
*vms
, AddressSpace
*as
)
1098 MachineState
*ms
= MACHINE(vms
);
1099 hwaddr base
= vms
->memmap
[VIRT_FW_CFG
].base
;
1100 hwaddr size
= vms
->memmap
[VIRT_FW_CFG
].size
;
1104 fw_cfg
= fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
1105 fw_cfg_add_i16(fw_cfg
, FW_CFG_NB_CPUS
, (uint16_t)ms
->smp
.cpus
);
1107 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
1108 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1109 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1110 "compatible", "qemu,fw-cfg-mmio");
1111 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1113 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1118 static void create_pcie_irq_map(const VirtMachineState
*vms
,
1119 uint32_t gic_phandle
,
1120 int first_irq
, const char *nodename
)
1123 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
1124 uint32_t *irq_map
= full_irq_map
;
1126 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
1127 for (pin
= 0; pin
< 4; pin
++) {
1128 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
1129 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
1130 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
1134 devfn
<< 8, 0, 0, /* devfn */
1135 pin
+ 1, /* PCI pin */
1136 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
1138 /* Convert map to big endian */
1139 for (i
= 0; i
< 10; i
++) {
1140 irq_map
[i
] = cpu_to_be32(map
[i
]);
1146 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-map",
1147 full_irq_map
, sizeof(full_irq_map
));
1149 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupt-map-mask",
1150 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1155 static void create_smmu(const VirtMachineState
*vms
,
1159 const char compat
[] = "arm,smmu-v3";
1160 int irq
= vms
->irqmap
[VIRT_SMMU
];
1162 hwaddr base
= vms
->memmap
[VIRT_SMMU
].base
;
1163 hwaddr size
= vms
->memmap
[VIRT_SMMU
].size
;
1164 const char irq_names
[] = "eventq\0priq\0cmdq-sync\0gerror";
1167 if (vms
->iommu
!= VIRT_IOMMU_SMMUV3
|| !vms
->iommu_phandle
) {
1171 dev
= qdev_new("arm-smmuv3");
1173 object_property_set_link(OBJECT(dev
), "primary-bus", OBJECT(bus
),
1175 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
1176 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, base
);
1177 for (i
= 0; i
< NUM_SMMU_IRQS
; i
++) {
1178 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
,
1179 qdev_get_gpio_in(vms
->gic
, irq
+ i
));
1182 node
= g_strdup_printf("/smmuv3@%" PRIx64
, base
);
1183 qemu_fdt_add_subnode(vms
->fdt
, node
);
1184 qemu_fdt_setprop(vms
->fdt
, node
, "compatible", compat
, sizeof(compat
));
1185 qemu_fdt_setprop_sized_cells(vms
->fdt
, node
, "reg", 2, base
, 2, size
);
1187 qemu_fdt_setprop_cells(vms
->fdt
, node
, "interrupts",
1188 GIC_FDT_IRQ_TYPE_SPI
, irq
, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1189 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1190 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1191 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
1193 qemu_fdt_setprop(vms
->fdt
, node
, "interrupt-names", irq_names
,
1196 qemu_fdt_setprop_cell(vms
->fdt
, node
, "clocks", vms
->clock_phandle
);
1197 qemu_fdt_setprop_string(vms
->fdt
, node
, "clock-names", "apb_pclk");
1198 qemu_fdt_setprop(vms
->fdt
, node
, "dma-coherent", NULL
, 0);
1200 qemu_fdt_setprop_cell(vms
->fdt
, node
, "#iommu-cells", 1);
1202 qemu_fdt_setprop_cell(vms
->fdt
, node
, "phandle", vms
->iommu_phandle
);
1206 static void create_virtio_iommu_dt_bindings(VirtMachineState
*vms
)
1208 const char compat
[] = "virtio,pci-iommu";
1209 uint16_t bdf
= vms
->virtio_iommu_bdf
;
1212 vms
->iommu_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
1214 node
= g_strdup_printf("%s/virtio_iommu@%d", vms
->pciehb_nodename
, bdf
);
1215 qemu_fdt_add_subnode(vms
->fdt
, node
);
1216 qemu_fdt_setprop(vms
->fdt
, node
, "compatible", compat
, sizeof(compat
));
1217 qemu_fdt_setprop_sized_cells(vms
->fdt
, node
, "reg",
1218 1, bdf
<< 8, 1, 0, 1, 0,
1221 qemu_fdt_setprop_cell(vms
->fdt
, node
, "#iommu-cells", 1);
1222 qemu_fdt_setprop_cell(vms
->fdt
, node
, "phandle", vms
->iommu_phandle
);
1225 qemu_fdt_setprop_cells(vms
->fdt
, vms
->pciehb_nodename
, "iommu-map",
1226 0x0, vms
->iommu_phandle
, 0x0, bdf
,
1227 bdf
+ 1, vms
->iommu_phandle
, bdf
+ 1, 0xffff - bdf
);
1230 static void create_pcie(VirtMachineState
*vms
)
1232 hwaddr base_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].base
;
1233 hwaddr size_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].size
;
1234 hwaddr base_mmio_high
= vms
->memmap
[VIRT_HIGH_PCIE_MMIO
].base
;
1235 hwaddr size_mmio_high
= vms
->memmap
[VIRT_HIGH_PCIE_MMIO
].size
;
1236 hwaddr base_pio
= vms
->memmap
[VIRT_PCIE_PIO
].base
;
1237 hwaddr size_pio
= vms
->memmap
[VIRT_PCIE_PIO
].size
;
1238 hwaddr base_ecam
, size_ecam
;
1239 hwaddr base
= base_mmio
;
1241 int irq
= vms
->irqmap
[VIRT_PCIE
];
1242 MemoryRegion
*mmio_alias
;
1243 MemoryRegion
*mmio_reg
;
1244 MemoryRegion
*ecam_alias
;
1245 MemoryRegion
*ecam_reg
;
1251 dev
= qdev_new(TYPE_GPEX_HOST
);
1252 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
1254 ecam_id
= VIRT_ECAM_ID(vms
->highmem_ecam
);
1255 base_ecam
= vms
->memmap
[ecam_id
].base
;
1256 size_ecam
= vms
->memmap
[ecam_id
].size
;
1257 nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
1258 /* Map only the first size_ecam bytes of ECAM space */
1259 ecam_alias
= g_new0(MemoryRegion
, 1);
1260 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
1261 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
1262 ecam_reg
, 0, size_ecam
);
1263 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
1265 /* Map the MMIO window into system address space so as to expose
1266 * the section of PCI MMIO space which starts at the same base address
1267 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1270 mmio_alias
= g_new0(MemoryRegion
, 1);
1271 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
1272 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
1273 mmio_reg
, base_mmio
, size_mmio
);
1274 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
1277 /* Map high MMIO space */
1278 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
1280 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
1281 mmio_reg
, base_mmio_high
, size_mmio_high
);
1282 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
1286 /* Map IO port space */
1287 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
1289 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
1290 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
,
1291 qdev_get_gpio_in(vms
->gic
, irq
+ i
));
1292 gpex_set_irq_num(GPEX_HOST(dev
), i
, irq
+ i
);
1295 pci
= PCI_HOST_BRIDGE(dev
);
1296 vms
->bus
= pci
->bus
;
1298 for (i
= 0; i
< nb_nics
; i
++) {
1299 NICInfo
*nd
= &nd_table
[i
];
1302 nd
->model
= g_strdup("virtio");
1305 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
1309 nodename
= vms
->pciehb_nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
1310 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1311 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1312 "compatible", "pci-host-ecam-generic");
1313 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "pci");
1314 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 3);
1315 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 2);
1316 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "linux,pci-domain", 0);
1317 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "bus-range", 0,
1319 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1321 if (vms
->msi_phandle
) {
1322 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "msi-parent",
1326 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1327 2, base_ecam
, 2, size_ecam
);
1330 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1331 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1332 2, base_pio
, 2, size_pio
,
1333 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1334 2, base_mmio
, 2, size_mmio
,
1335 1, FDT_PCI_RANGE_MMIO_64BIT
,
1337 2, base_mmio_high
, 2, size_mmio_high
);
1339 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1340 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1341 2, base_pio
, 2, size_pio
,
1342 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1343 2, base_mmio
, 2, size_mmio
);
1346 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 1);
1347 create_pcie_irq_map(vms
, vms
->gic_phandle
, irq
, nodename
);
1350 vms
->iommu_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
1352 switch (vms
->iommu
) {
1353 case VIRT_IOMMU_SMMUV3
:
1354 create_smmu(vms
, vms
->bus
);
1355 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "iommu-map",
1356 0x0, vms
->iommu_phandle
, 0x0, 0x10000);
1359 g_assert_not_reached();
1364 static void create_platform_bus(VirtMachineState
*vms
)
1369 MemoryRegion
*sysmem
= get_system_memory();
1371 dev
= qdev_new(TYPE_PLATFORM_BUS_DEVICE
);
1372 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
1373 qdev_prop_set_uint32(dev
, "num_irqs", PLATFORM_BUS_NUM_IRQS
);
1374 qdev_prop_set_uint32(dev
, "mmio_size", vms
->memmap
[VIRT_PLATFORM_BUS
].size
);
1375 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
1376 vms
->platform_bus_dev
= dev
;
1378 s
= SYS_BUS_DEVICE(dev
);
1379 for (i
= 0; i
< PLATFORM_BUS_NUM_IRQS
; i
++) {
1380 int irq
= vms
->irqmap
[VIRT_PLATFORM_BUS
] + i
;
1381 sysbus_connect_irq(s
, i
, qdev_get_gpio_in(vms
->gic
, irq
));
1384 memory_region_add_subregion(sysmem
,
1385 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1386 sysbus_mmio_get_region(s
, 0));
1389 static void create_tag_ram(MemoryRegion
*tag_sysmem
,
1390 hwaddr base
, hwaddr size
,
1393 MemoryRegion
*tagram
= g_new(MemoryRegion
, 1);
1395 memory_region_init_ram(tagram
, NULL
, name
, size
/ 32, &error_fatal
);
1396 memory_region_add_subregion(tag_sysmem
, base
/ 32, tagram
);
1399 static void create_secure_ram(VirtMachineState
*vms
,
1400 MemoryRegion
*secure_sysmem
,
1401 MemoryRegion
*secure_tag_sysmem
)
1403 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
1405 hwaddr base
= vms
->memmap
[VIRT_SECURE_MEM
].base
;
1406 hwaddr size
= vms
->memmap
[VIRT_SECURE_MEM
].size
;
1408 memory_region_init_ram(secram
, NULL
, "virt.secure-ram", size
,
1410 memory_region_add_subregion(secure_sysmem
, base
, secram
);
1412 nodename
= g_strdup_printf("/secram@%" PRIx64
, base
);
1413 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1414 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "memory");
1415 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg", 2, base
, 2, size
);
1416 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
1417 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
1419 if (secure_tag_sysmem
) {
1420 create_tag_ram(secure_tag_sysmem
, base
, size
, "mach-virt.secure-tag");
1426 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
1428 const VirtMachineState
*board
= container_of(binfo
, VirtMachineState
,
1431 *fdt_size
= board
->fdt_size
;
1435 static void virt_build_smbios(VirtMachineState
*vms
)
1437 MachineClass
*mc
= MACHINE_GET_CLASS(vms
);
1438 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1439 uint8_t *smbios_tables
, *smbios_anchor
;
1440 size_t smbios_tables_len
, smbios_anchor_len
;
1441 const char *product
= "QEMU Virtual Machine";
1443 if (kvm_enabled()) {
1444 product
= "KVM Virtual Machine";
1447 smbios_set_defaults("QEMU", product
,
1448 vmc
->smbios_old_sys_ver
? "1.0" : mc
->name
, false,
1449 true, SMBIOS_ENTRY_POINT_30
);
1451 smbios_get_tables(MACHINE(vms
), NULL
, 0, &smbios_tables
, &smbios_tables_len
,
1452 &smbios_anchor
, &smbios_anchor_len
);
1454 if (smbios_anchor
) {
1455 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-tables",
1456 smbios_tables
, smbios_tables_len
);
1457 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-anchor",
1458 smbios_anchor
, smbios_anchor_len
);
1463 void virt_machine_done(Notifier
*notifier
, void *data
)
1465 VirtMachineState
*vms
= container_of(notifier
, VirtMachineState
,
1467 MachineState
*ms
= MACHINE(vms
);
1468 ARMCPU
*cpu
= ARM_CPU(first_cpu
);
1469 struct arm_boot_info
*info
= &vms
->bootinfo
;
1470 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
1473 * If the user provided a dtb, we assume the dynamic sysbus nodes
1474 * already are integrated there. This corresponds to a use case where
1475 * the dynamic sysbus nodes are complex and their generation is not yet
1476 * supported. In that case the user can take charge of the guest dt
1477 * while qemu takes charge of the qom stuff.
1479 if (info
->dtb_filename
== NULL
) {
1480 platform_bus_add_all_fdt_nodes(vms
->fdt
, "/intc",
1481 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1482 vms
->memmap
[VIRT_PLATFORM_BUS
].size
,
1483 vms
->irqmap
[VIRT_PLATFORM_BUS
]);
1485 if (arm_load_dtb(info
->dtb_start
, info
, info
->dtb_limit
, as
, ms
) < 0) {
1489 fw_cfg_add_extra_pci_roots(vms
->bus
, vms
->fw_cfg
);
1491 virt_acpi_setup(vms
);
1492 virt_build_smbios(vms
);
1495 static uint64_t virt_cpu_mp_affinity(VirtMachineState
*vms
, int idx
)
1497 uint8_t clustersz
= ARM_DEFAULT_CPUS_PER_CLUSTER
;
1498 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1500 if (!vmc
->disallow_affinity_adjustment
) {
1501 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1502 * GIC's target-list limitations. 32-bit KVM hosts currently
1503 * always create clusters of 4 CPUs, but that is expected to
1504 * change when they gain support for gicv3. When KVM is enabled
1505 * it will override the changes we make here, therefore our
1506 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1507 * and to improve SGI efficiency.
1509 if (vms
->gic_version
== VIRT_GIC_VERSION_3
) {
1510 clustersz
= GICV3_TARGETLIST_BITS
;
1512 clustersz
= GIC_TARGETLIST_BITS
;
1515 return arm_cpu_mp_affinity(idx
, clustersz
);
1518 static void virt_set_memmap(VirtMachineState
*vms
)
1520 MachineState
*ms
= MACHINE(vms
);
1521 hwaddr base
, device_memory_base
, device_memory_size
;
1524 vms
->memmap
= extended_memmap
;
1526 for (i
= 0; i
< ARRAY_SIZE(base_memmap
); i
++) {
1527 vms
->memmap
[i
] = base_memmap
[i
];
1530 if (ms
->ram_slots
> ACPI_MAX_RAM_SLOTS
) {
1531 error_report("unsupported number of memory slots: %"PRIu64
,
1537 * We compute the base of the high IO region depending on the
1538 * amount of initial and device memory. The device memory start/size
1539 * is aligned on 1GiB. We never put the high IO region below 256GiB
1540 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1541 * The device region size assumes 1GiB page max alignment per slot.
1543 device_memory_base
=
1544 ROUND_UP(vms
->memmap
[VIRT_MEM
].base
+ ms
->ram_size
, GiB
);
1545 device_memory_size
= ms
->maxram_size
- ms
->ram_size
+ ms
->ram_slots
* GiB
;
1547 /* Base address of the high IO region */
1548 base
= device_memory_base
+ ROUND_UP(device_memory_size
, GiB
);
1549 if (base
< device_memory_base
) {
1550 error_report("maxmem/slots too huge");
1553 if (base
< vms
->memmap
[VIRT_MEM
].base
+ LEGACY_RAMLIMIT_BYTES
) {
1554 base
= vms
->memmap
[VIRT_MEM
].base
+ LEGACY_RAMLIMIT_BYTES
;
1557 for (i
= VIRT_LOWMEMMAP_LAST
; i
< ARRAY_SIZE(extended_memmap
); i
++) {
1558 hwaddr size
= extended_memmap
[i
].size
;
1560 base
= ROUND_UP(base
, size
);
1561 vms
->memmap
[i
].base
= base
;
1562 vms
->memmap
[i
].size
= size
;
1565 vms
->highest_gpa
= base
- 1;
1566 if (device_memory_size
> 0) {
1567 ms
->device_memory
= g_malloc0(sizeof(*ms
->device_memory
));
1568 ms
->device_memory
->base
= device_memory_base
;
1569 memory_region_init(&ms
->device_memory
->mr
, OBJECT(vms
),
1570 "device-memory", device_memory_size
);
1575 * finalize_gic_version - Determines the final gic_version
1576 * according to the gic-version property
1578 * Default GIC type is v2
1580 static void finalize_gic_version(VirtMachineState
*vms
)
1582 unsigned int max_cpus
= MACHINE(vms
)->smp
.max_cpus
;
1584 if (kvm_enabled()) {
1587 if (!kvm_irqchip_in_kernel()) {
1588 switch (vms
->gic_version
) {
1589 case VIRT_GIC_VERSION_HOST
:
1591 "gic-version=host not relevant with kernel-irqchip=off "
1592 "as only userspace GICv2 is supported. Using v2 ...");
1594 case VIRT_GIC_VERSION_MAX
:
1595 case VIRT_GIC_VERSION_NOSEL
:
1596 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1598 case VIRT_GIC_VERSION_2
:
1600 case VIRT_GIC_VERSION_3
:
1602 "gic-version=3 is not supported with kernel-irqchip=off");
1607 probe_bitmap
= kvm_arm_vgic_probe();
1608 if (!probe_bitmap
) {
1609 error_report("Unable to determine GIC version supported by host");
1613 switch (vms
->gic_version
) {
1614 case VIRT_GIC_VERSION_HOST
:
1615 case VIRT_GIC_VERSION_MAX
:
1616 if (probe_bitmap
& KVM_ARM_VGIC_V3
) {
1617 vms
->gic_version
= VIRT_GIC_VERSION_3
;
1619 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1622 case VIRT_GIC_VERSION_NOSEL
:
1623 if ((probe_bitmap
& KVM_ARM_VGIC_V2
) && max_cpus
<= GIC_NCPU
) {
1624 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1625 } else if (probe_bitmap
& KVM_ARM_VGIC_V3
) {
1627 * in case the host does not support v2 in-kernel emulation or
1628 * the end-user requested more than 8 VCPUs we now default
1629 * to v3. In any case defaulting to v2 would be broken.
1631 vms
->gic_version
= VIRT_GIC_VERSION_3
;
1632 } else if (max_cpus
> GIC_NCPU
) {
1633 error_report("host only supports in-kernel GICv2 emulation "
1634 "but more than 8 vcpus are requested");
1638 case VIRT_GIC_VERSION_2
:
1639 case VIRT_GIC_VERSION_3
:
1643 /* Check chosen version is effectively supported by the host */
1644 if (vms
->gic_version
== VIRT_GIC_VERSION_2
&&
1645 !(probe_bitmap
& KVM_ARM_VGIC_V2
)) {
1646 error_report("host does not support in-kernel GICv2 emulation");
1648 } else if (vms
->gic_version
== VIRT_GIC_VERSION_3
&&
1649 !(probe_bitmap
& KVM_ARM_VGIC_V3
)) {
1650 error_report("host does not support in-kernel GICv3 emulation");
1657 switch (vms
->gic_version
) {
1658 case VIRT_GIC_VERSION_NOSEL
:
1659 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1661 case VIRT_GIC_VERSION_MAX
:
1662 vms
->gic_version
= VIRT_GIC_VERSION_3
;
1664 case VIRT_GIC_VERSION_HOST
:
1665 error_report("gic-version=host requires KVM");
1667 case VIRT_GIC_VERSION_2
:
1668 case VIRT_GIC_VERSION_3
:
1674 * virt_cpu_post_init() must be called after the CPUs have
1675 * been realized and the GIC has been created.
1677 static void virt_cpu_post_init(VirtMachineState
*vms
, MemoryRegion
*sysmem
)
1679 int max_cpus
= MACHINE(vms
)->smp
.max_cpus
;
1680 bool aarch64
, pmu
, steal_time
;
1683 aarch64
= object_property_get_bool(OBJECT(first_cpu
), "aarch64", NULL
);
1684 pmu
= object_property_get_bool(OBJECT(first_cpu
), "pmu", NULL
);
1685 steal_time
= object_property_get_bool(OBJECT(first_cpu
),
1686 "kvm-steal-time", NULL
);
1688 if (kvm_enabled()) {
1689 hwaddr pvtime_reg_base
= vms
->memmap
[VIRT_PVTIME
].base
;
1690 hwaddr pvtime_reg_size
= vms
->memmap
[VIRT_PVTIME
].size
;
1693 MemoryRegion
*pvtime
= g_new(MemoryRegion
, 1);
1694 hwaddr pvtime_size
= max_cpus
* PVTIME_SIZE_PER_CPU
;
1696 /* The memory region size must be a multiple of host page size. */
1697 pvtime_size
= REAL_HOST_PAGE_ALIGN(pvtime_size
);
1699 if (pvtime_size
> pvtime_reg_size
) {
1700 error_report("pvtime requires a %" HWADDR_PRId
1701 " byte memory region for %d CPUs,"
1702 " but only %" HWADDR_PRId
" has been reserved",
1703 pvtime_size
, max_cpus
, pvtime_reg_size
);
1707 memory_region_init_ram(pvtime
, NULL
, "pvtime", pvtime_size
, NULL
);
1708 memory_region_add_subregion(sysmem
, pvtime_reg_base
, pvtime
);
1713 assert(arm_feature(&ARM_CPU(cpu
)->env
, ARM_FEATURE_PMU
));
1714 if (kvm_irqchip_in_kernel()) {
1715 kvm_arm_pmu_set_irq(cpu
, PPI(VIRTUAL_PMU_IRQ
));
1717 kvm_arm_pmu_init(cpu
);
1720 kvm_arm_pvtime_init(cpu
, pvtime_reg_base
+
1721 cpu
->cpu_index
* PVTIME_SIZE_PER_CPU
);
1725 if (aarch64
&& vms
->highmem
) {
1726 int requested_pa_size
= 64 - clz64(vms
->highest_gpa
);
1727 int pamax
= arm_pamax(ARM_CPU(first_cpu
));
1729 if (pamax
< requested_pa_size
) {
1730 error_report("VCPU supports less PA bits (%d) than "
1731 "requested by the memory map (%d)",
1732 pamax
, requested_pa_size
);
1739 static void machvirt_init(MachineState
*machine
)
1741 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1742 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(machine
);
1743 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1744 const CPUArchIdList
*possible_cpus
;
1745 MemoryRegion
*sysmem
= get_system_memory();
1746 MemoryRegion
*secure_sysmem
= NULL
;
1747 MemoryRegion
*tag_sysmem
= NULL
;
1748 MemoryRegion
*secure_tag_sysmem
= NULL
;
1749 int n
, virt_max_cpus
;
1750 bool firmware_loaded
;
1751 bool aarch64
= true;
1752 bool has_ged
= !vmc
->no_ged
;
1753 unsigned int smp_cpus
= machine
->smp
.cpus
;
1754 unsigned int max_cpus
= machine
->smp
.max_cpus
;
1757 * In accelerated mode, the memory map is computed earlier in kvm_type()
1758 * to create a VM with the right number of IPA bits.
1761 virt_set_memmap(vms
);
1764 /* We can probe only here because during property set
1765 * KVM is not available yet
1767 finalize_gic_version(vms
);
1769 if (!cpu_type_valid(machine
->cpu_type
)) {
1770 error_report("mach-virt: CPU type %s not supported", machine
->cpu_type
);
1775 if (kvm_enabled()) {
1776 error_report("mach-virt: KVM does not support Security extensions");
1781 * The Secure view of the world is the same as the NonSecure,
1782 * but with a few extra devices. Create it as a container region
1783 * containing the system memory at low priority; any secure-only
1784 * devices go in at higher priority and take precedence.
1786 secure_sysmem
= g_new(MemoryRegion
, 1);
1787 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1789 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1792 firmware_loaded
= virt_firmware_init(vms
, sysmem
,
1793 secure_sysmem
?: sysmem
);
1795 /* If we have an EL3 boot ROM then the assumption is that it will
1796 * implement PSCI itself, so disable QEMU's internal implementation
1797 * so it doesn't get in the way. Instead of starting secondary
1798 * CPUs in PSCI powerdown state we will start them all running and
1799 * let the boot ROM sort them out.
1800 * The usual case is that we do use QEMU's PSCI implementation;
1801 * if the guest has EL2 then we will use SMC as the conduit,
1802 * and otherwise we will use HVC (for backwards compatibility and
1803 * because if we're using KVM then we must use HVC).
1805 if (vms
->secure
&& firmware_loaded
) {
1806 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_DISABLED
;
1807 } else if (vms
->virt
) {
1808 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_SMC
;
1810 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_HVC
;
1813 /* The maximum number of CPUs depends on the GIC version, or on how
1814 * many redistributors we can fit into the memory map.
1816 if (vms
->gic_version
== VIRT_GIC_VERSION_3
) {
1818 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
1820 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
1822 virt_max_cpus
= GIC_NCPU
;
1825 if (max_cpus
> virt_max_cpus
) {
1826 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1827 "supported by machine 'mach-virt' (%d)",
1828 max_cpus
, virt_max_cpus
);
1832 if (vms
->virt
&& kvm_enabled()) {
1833 error_report("mach-virt: KVM does not support providing "
1834 "Virtualization extensions to the guest CPU");
1838 if (vms
->mte
&& kvm_enabled()) {
1839 error_report("mach-virt: KVM does not support providing "
1840 "MTE to the guest CPU");
1846 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
1847 assert(possible_cpus
->len
== max_cpus
);
1848 for (n
= 0; n
< possible_cpus
->len
; n
++) {
1852 if (n
>= smp_cpus
) {
1856 cpuobj
= object_new(possible_cpus
->cpus
[n
].type
);
1857 object_property_set_int(cpuobj
, "mp-affinity",
1858 possible_cpus
->cpus
[n
].arch_id
, NULL
);
1863 numa_cpu_pre_plug(&possible_cpus
->cpus
[cs
->cpu_index
], DEVICE(cpuobj
),
1866 aarch64
&= object_property_get_bool(cpuobj
, "aarch64", NULL
);
1869 object_property_set_bool(cpuobj
, "has_el3", false, NULL
);
1872 if (!vms
->virt
&& object_property_find(cpuobj
, "has_el2")) {
1873 object_property_set_bool(cpuobj
, "has_el2", false, NULL
);
1876 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
) {
1877 object_property_set_int(cpuobj
, "psci-conduit", vms
->psci_conduit
,
1880 /* Secondary CPUs start in PSCI powered-down state */
1882 object_property_set_bool(cpuobj
, "start-powered-off", true,
1887 if (vmc
->kvm_no_adjvtime
&&
1888 object_property_find(cpuobj
, "kvm-no-adjvtime")) {
1889 object_property_set_bool(cpuobj
, "kvm-no-adjvtime", true, NULL
);
1892 if (vmc
->no_kvm_steal_time
&&
1893 object_property_find(cpuobj
, "kvm-steal-time")) {
1894 object_property_set_bool(cpuobj
, "kvm-steal-time", false, NULL
);
1897 if (vmc
->no_pmu
&& object_property_find(cpuobj
, "pmu")) {
1898 object_property_set_bool(cpuobj
, "pmu", false, NULL
);
1901 if (object_property_find(cpuobj
, "reset-cbar")) {
1902 object_property_set_int(cpuobj
, "reset-cbar",
1903 vms
->memmap
[VIRT_CPUPERIPHS
].base
,
1907 object_property_set_link(cpuobj
, "memory", OBJECT(sysmem
),
1910 object_property_set_link(cpuobj
, "secure-memory",
1911 OBJECT(secure_sysmem
), &error_abort
);
1915 /* Create the memory region only once, but link to all cpus. */
1918 * The property exists only if MemTag is supported.
1919 * If it is, we must allocate the ram to back that up.
1921 if (!object_property_find(cpuobj
, "tag-memory")) {
1922 error_report("MTE requested, but not supported "
1923 "by the guest CPU");
1927 tag_sysmem
= g_new(MemoryRegion
, 1);
1928 memory_region_init(tag_sysmem
, OBJECT(machine
),
1929 "tag-memory", UINT64_MAX
/ 32);
1932 secure_tag_sysmem
= g_new(MemoryRegion
, 1);
1933 memory_region_init(secure_tag_sysmem
, OBJECT(machine
),
1934 "secure-tag-memory", UINT64_MAX
/ 32);
1936 /* As with ram, secure-tag takes precedence over tag. */
1937 memory_region_add_subregion_overlap(secure_tag_sysmem
, 0,
1942 object_property_set_link(cpuobj
, "tag-memory", OBJECT(tag_sysmem
),
1945 object_property_set_link(cpuobj
, "secure-tag-memory",
1946 OBJECT(secure_tag_sysmem
),
1951 qdev_realize(DEVICE(cpuobj
), NULL
, &error_fatal
);
1952 object_unref(cpuobj
);
1954 fdt_add_timer_nodes(vms
);
1955 fdt_add_cpu_nodes(vms
);
1957 memory_region_add_subregion(sysmem
, vms
->memmap
[VIRT_MEM
].base
,
1959 if (machine
->device_memory
) {
1960 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
1961 &machine
->device_memory
->mr
);
1964 virt_flash_fdt(vms
, sysmem
, secure_sysmem
?: sysmem
);
1968 virt_cpu_post_init(vms
, sysmem
);
1970 fdt_add_pmu_nodes(vms
);
1972 create_uart(vms
, VIRT_UART
, sysmem
, serial_hd(0));
1975 create_secure_ram(vms
, secure_sysmem
, secure_tag_sysmem
);
1976 create_uart(vms
, VIRT_SECURE_UART
, secure_sysmem
, serial_hd(1));
1980 create_tag_ram(tag_sysmem
, vms
->memmap
[VIRT_MEM
].base
,
1981 machine
->ram_size
, "mach-virt.tag");
1984 vms
->highmem_ecam
&= vms
->highmem
&& (!firmware_loaded
|| aarch64
);
1990 if (has_ged
&& aarch64
&& firmware_loaded
&& virt_is_acpi_enabled(vms
)) {
1991 vms
->acpi_dev
= create_acpi_ged(vms
);
1996 /* connect powerdown request */
1997 vms
->powerdown_notifier
.notify
= virt_powerdown_req
;
1998 qemu_register_powerdown_notifier(&vms
->powerdown_notifier
);
2000 /* Create mmio transports, so the user can create virtio backends
2001 * (which will be automatically plugged in to the transports). If
2002 * no backend is created the transport will just sit harmlessly idle.
2004 create_virtio_devices(vms
);
2006 vms
->fw_cfg
= create_fw_cfg(vms
, &address_space_memory
);
2007 rom_set_fw(vms
->fw_cfg
);
2009 create_platform_bus(vms
);
2011 if (machine
->nvdimms_state
->is_enabled
) {
2012 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio
= {
2013 .space_id
= AML_AS_SYSTEM_MEMORY
,
2014 .address
= vms
->memmap
[VIRT_NVDIMM_ACPI
].base
,
2015 .bit_width
= NVDIMM_ACPI_IO_LEN
<< 3
2018 nvdimm_init_acpi_state(machine
->nvdimms_state
, sysmem
,
2019 arm_virt_nvdimm_acpi_dsmio
,
2020 vms
->fw_cfg
, OBJECT(vms
));
2023 vms
->bootinfo
.ram_size
= machine
->ram_size
;
2024 vms
->bootinfo
.nb_cpus
= smp_cpus
;
2025 vms
->bootinfo
.board_id
= -1;
2026 vms
->bootinfo
.loader_start
= vms
->memmap
[VIRT_MEM
].base
;
2027 vms
->bootinfo
.get_dtb
= machvirt_dtb
;
2028 vms
->bootinfo
.skip_dtb_autoload
= true;
2029 vms
->bootinfo
.firmware_loaded
= firmware_loaded
;
2030 arm_load_kernel(ARM_CPU(first_cpu
), machine
, &vms
->bootinfo
);
2032 vms
->machine_done
.notify
= virt_machine_done
;
2033 qemu_add_machine_init_done_notifier(&vms
->machine_done
);
2036 static bool virt_get_secure(Object
*obj
, Error
**errp
)
2038 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2043 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
2045 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2047 vms
->secure
= value
;
2050 static bool virt_get_virt(Object
*obj
, Error
**errp
)
2052 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2057 static void virt_set_virt(Object
*obj
, bool value
, Error
**errp
)
2059 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2064 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
2066 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2068 return vms
->highmem
;
2071 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
2073 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2075 vms
->highmem
= value
;
2078 static bool virt_get_its(Object
*obj
, Error
**errp
)
2080 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2085 static void virt_set_its(Object
*obj
, bool value
, Error
**errp
)
2087 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2092 bool virt_is_acpi_enabled(VirtMachineState
*vms
)
2094 if (vms
->acpi
== ON_OFF_AUTO_OFF
) {
2100 static void virt_get_acpi(Object
*obj
, Visitor
*v
, const char *name
,
2101 void *opaque
, Error
**errp
)
2103 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2104 OnOffAuto acpi
= vms
->acpi
;
2106 visit_type_OnOffAuto(v
, name
, &acpi
, errp
);
2109 static void virt_set_acpi(Object
*obj
, Visitor
*v
, const char *name
,
2110 void *opaque
, Error
**errp
)
2112 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2114 visit_type_OnOffAuto(v
, name
, &vms
->acpi
, errp
);
2117 static bool virt_get_ras(Object
*obj
, Error
**errp
)
2119 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2124 static void virt_set_ras(Object
*obj
, bool value
, Error
**errp
)
2126 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2131 static bool virt_get_mte(Object
*obj
, Error
**errp
)
2133 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2138 static void virt_set_mte(Object
*obj
, bool value
, Error
**errp
)
2140 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2145 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
2147 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2148 const char *val
= vms
->gic_version
== VIRT_GIC_VERSION_3
? "3" : "2";
2150 return g_strdup(val
);
2153 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
2155 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2157 if (!strcmp(value
, "3")) {
2158 vms
->gic_version
= VIRT_GIC_VERSION_3
;
2159 } else if (!strcmp(value
, "2")) {
2160 vms
->gic_version
= VIRT_GIC_VERSION_2
;
2161 } else if (!strcmp(value
, "host")) {
2162 vms
->gic_version
= VIRT_GIC_VERSION_HOST
; /* Will probe later */
2163 } else if (!strcmp(value
, "max")) {
2164 vms
->gic_version
= VIRT_GIC_VERSION_MAX
; /* Will probe later */
2166 error_setg(errp
, "Invalid gic-version value");
2167 error_append_hint(errp
, "Valid values are 3, 2, host, max.\n");
2171 static char *virt_get_iommu(Object
*obj
, Error
**errp
)
2173 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2175 switch (vms
->iommu
) {
2176 case VIRT_IOMMU_NONE
:
2177 return g_strdup("none");
2178 case VIRT_IOMMU_SMMUV3
:
2179 return g_strdup("smmuv3");
2181 g_assert_not_reached();
2185 static void virt_set_iommu(Object
*obj
, const char *value
, Error
**errp
)
2187 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2189 if (!strcmp(value
, "smmuv3")) {
2190 vms
->iommu
= VIRT_IOMMU_SMMUV3
;
2191 } else if (!strcmp(value
, "none")) {
2192 vms
->iommu
= VIRT_IOMMU_NONE
;
2194 error_setg(errp
, "Invalid iommu value");
2195 error_append_hint(errp
, "Valid values are none, smmuv3.\n");
2199 static CpuInstanceProperties
2200 virt_cpu_index_to_props(MachineState
*ms
, unsigned cpu_index
)
2202 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
2203 const CPUArchIdList
*possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
2205 assert(cpu_index
< possible_cpus
->len
);
2206 return possible_cpus
->cpus
[cpu_index
].props
;
2209 static int64_t virt_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
2211 return idx
% ms
->numa_state
->num_nodes
;
2214 static const CPUArchIdList
*virt_possible_cpu_arch_ids(MachineState
*ms
)
2217 unsigned int max_cpus
= ms
->smp
.max_cpus
;
2218 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
2220 if (ms
->possible_cpus
) {
2221 assert(ms
->possible_cpus
->len
== max_cpus
);
2222 return ms
->possible_cpus
;
2225 ms
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
2226 sizeof(CPUArchId
) * max_cpus
);
2227 ms
->possible_cpus
->len
= max_cpus
;
2228 for (n
= 0; n
< ms
->possible_cpus
->len
; n
++) {
2229 ms
->possible_cpus
->cpus
[n
].type
= ms
->cpu_type
;
2230 ms
->possible_cpus
->cpus
[n
].arch_id
=
2231 virt_cpu_mp_affinity(vms
, n
);
2232 ms
->possible_cpus
->cpus
[n
].props
.has_thread_id
= true;
2233 ms
->possible_cpus
->cpus
[n
].props
.thread_id
= n
;
2235 return ms
->possible_cpus
;
2238 static void virt_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2241 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2242 const MachineState
*ms
= MACHINE(hotplug_dev
);
2243 const bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
2245 if (!vms
->acpi_dev
) {
2247 "memory hotplug is not enabled: missing acpi-ged device");
2252 error_setg(errp
, "memory hotplug is not enabled: MTE is enabled");
2256 if (is_nvdimm
&& !ms
->nvdimms_state
->is_enabled
) {
2257 error_setg(errp
, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2261 pc_dimm_pre_plug(PC_DIMM(dev
), MACHINE(hotplug_dev
), NULL
, errp
);
2264 static void virt_memory_plug(HotplugHandler
*hotplug_dev
,
2265 DeviceState
*dev
, Error
**errp
)
2267 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2268 MachineState
*ms
= MACHINE(hotplug_dev
);
2269 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
2271 pc_dimm_plug(PC_DIMM(dev
), MACHINE(vms
));
2274 nvdimm_plug(ms
->nvdimms_state
);
2277 hotplug_handler_plug(HOTPLUG_HANDLER(vms
->acpi_dev
),
2281 static void virt_machine_device_pre_plug_cb(HotplugHandler
*hotplug_dev
,
2282 DeviceState
*dev
, Error
**errp
)
2284 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2286 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2287 virt_memory_pre_plug(hotplug_dev
, dev
, errp
);
2288 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_VIRTIO_IOMMU_PCI
)) {
2289 hwaddr db_start
= 0, db_end
= 0;
2290 char *resv_prop_str
;
2292 switch (vms
->msi_controller
) {
2293 case VIRT_MSI_CTRL_NONE
:
2295 case VIRT_MSI_CTRL_ITS
:
2296 /* GITS_TRANSLATER page */
2297 db_start
= base_memmap
[VIRT_GIC_ITS
].base
+ 0x10000;
2298 db_end
= base_memmap
[VIRT_GIC_ITS
].base
+
2299 base_memmap
[VIRT_GIC_ITS
].size
- 1;
2301 case VIRT_MSI_CTRL_GICV2M
:
2302 /* MSI_SETSPI_NS page */
2303 db_start
= base_memmap
[VIRT_GIC_V2M
].base
;
2304 db_end
= db_start
+ base_memmap
[VIRT_GIC_V2M
].size
- 1;
2307 resv_prop_str
= g_strdup_printf("0x%"PRIx64
":0x%"PRIx64
":%u",
2309 VIRTIO_IOMMU_RESV_MEM_T_MSI
);
2311 qdev_prop_set_uint32(dev
, "len-reserved-regions", 1);
2312 qdev_prop_set_string(dev
, "reserved-regions[0]", resv_prop_str
);
2313 g_free(resv_prop_str
);
2317 static void virt_machine_device_plug_cb(HotplugHandler
*hotplug_dev
,
2318 DeviceState
*dev
, Error
**errp
)
2320 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2322 if (vms
->platform_bus_dev
) {
2323 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
)) {
2324 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms
->platform_bus_dev
),
2325 SYS_BUS_DEVICE(dev
));
2328 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2329 virt_memory_plug(hotplug_dev
, dev
, errp
);
2331 if (object_dynamic_cast(OBJECT(dev
), TYPE_VIRTIO_IOMMU_PCI
)) {
2332 PCIDevice
*pdev
= PCI_DEVICE(dev
);
2334 vms
->iommu
= VIRT_IOMMU_VIRTIO
;
2335 vms
->virtio_iommu_bdf
= pci_get_bdf(pdev
);
2336 create_virtio_iommu_dt_bindings(vms
);
2340 static void virt_dimm_unplug_request(HotplugHandler
*hotplug_dev
,
2341 DeviceState
*dev
, Error
**errp
)
2343 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2344 Error
*local_err
= NULL
;
2346 if (!vms
->acpi_dev
) {
2347 error_setg(&local_err
,
2348 "memory hotplug is not enabled: missing acpi-ged device");
2352 if (object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
)) {
2353 error_setg(&local_err
,
2354 "nvdimm device hot unplug is not supported yet.");
2358 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms
->acpi_dev
), dev
,
2361 error_propagate(errp
, local_err
);
2364 static void virt_dimm_unplug(HotplugHandler
*hotplug_dev
,
2365 DeviceState
*dev
, Error
**errp
)
2367 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2368 Error
*local_err
= NULL
;
2370 hotplug_handler_unplug(HOTPLUG_HANDLER(vms
->acpi_dev
), dev
, &local_err
);
2375 pc_dimm_unplug(PC_DIMM(dev
), MACHINE(vms
));
2376 qdev_unrealize(dev
);
2379 error_propagate(errp
, local_err
);
2382 static void virt_machine_device_unplug_request_cb(HotplugHandler
*hotplug_dev
,
2383 DeviceState
*dev
, Error
**errp
)
2385 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2386 virt_dimm_unplug_request(hotplug_dev
, dev
, errp
);
2388 error_setg(errp
, "device unplug request for unsupported device"
2389 " type: %s", object_get_typename(OBJECT(dev
)));
2393 static void virt_machine_device_unplug_cb(HotplugHandler
*hotplug_dev
,
2394 DeviceState
*dev
, Error
**errp
)
2396 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2397 virt_dimm_unplug(hotplug_dev
, dev
, errp
);
2399 error_setg(errp
, "virt: device unplug for unsupported device"
2400 " type: %s", object_get_typename(OBJECT(dev
)));
2404 static HotplugHandler
*virt_machine_get_hotplug_handler(MachineState
*machine
,
2407 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
) ||
2408 (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
))) {
2409 return HOTPLUG_HANDLER(machine
);
2411 if (object_dynamic_cast(OBJECT(dev
), TYPE_VIRTIO_IOMMU_PCI
)) {
2412 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
2414 if (!vms
->bootinfo
.firmware_loaded
|| !virt_is_acpi_enabled(vms
)) {
2415 return HOTPLUG_HANDLER(machine
);
2422 * for arm64 kvm_type [7-0] encodes the requested number of bits
2423 * in the IPA address space
2425 static int virt_kvm_type(MachineState
*ms
, const char *type_str
)
2427 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
2428 int max_vm_pa_size
= kvm_arm_get_max_vm_ipa_size(ms
);
2429 int requested_pa_size
;
2431 /* we freeze the memory map to compute the highest gpa */
2432 virt_set_memmap(vms
);
2434 requested_pa_size
= 64 - clz64(vms
->highest_gpa
);
2436 if (requested_pa_size
> max_vm_pa_size
) {
2437 error_report("-m and ,maxmem option values "
2438 "require an IPA range (%d bits) larger than "
2439 "the one supported by the host (%d bits)",
2440 requested_pa_size
, max_vm_pa_size
);
2444 * By default we return 0 which corresponds to an implicit legacy
2445 * 40b IPA setting. Otherwise we return the actual requested PA
2448 return requested_pa_size
> 40 ? requested_pa_size
: 0;
2451 static void virt_machine_class_init(ObjectClass
*oc
, void *data
)
2453 MachineClass
*mc
= MACHINE_CLASS(oc
);
2454 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
2456 mc
->init
= machvirt_init
;
2457 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2458 * The value may be reduced later when we have more information about the
2459 * configuration of the particular instance.
2462 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_CALXEDA_XGMAC
);
2463 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_AMD_XGBE
);
2464 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_RAMFB_DEVICE
);
2465 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_PLATFORM
);
2466 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_TPM_TIS_SYSBUS
);
2467 mc
->block_default_type
= IF_VIRTIO
;
2469 mc
->pci_allow_0_address
= true;
2470 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2471 mc
->minimum_page_bits
= 12;
2472 mc
->possible_cpu_arch_ids
= virt_possible_cpu_arch_ids
;
2473 mc
->cpu_index_to_instance_props
= virt_cpu_index_to_props
;
2474 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-a15");
2475 mc
->get_default_cpu_node_id
= virt_get_default_cpu_node_id
;
2476 mc
->kvm_type
= virt_kvm_type
;
2477 assert(!mc
->get_hotplug_handler
);
2478 mc
->get_hotplug_handler
= virt_machine_get_hotplug_handler
;
2479 hc
->pre_plug
= virt_machine_device_pre_plug_cb
;
2480 hc
->plug
= virt_machine_device_plug_cb
;
2481 hc
->unplug_request
= virt_machine_device_unplug_request_cb
;
2482 hc
->unplug
= virt_machine_device_unplug_cb
;
2483 mc
->nvdimm_supported
= true;
2484 mc
->auto_enable_numa_with_memhp
= true;
2485 mc
->auto_enable_numa_with_memdev
= true;
2486 mc
->default_ram_id
= "mach-virt.ram";
2488 object_class_property_add(oc
, "acpi", "OnOffAuto",
2489 virt_get_acpi
, virt_set_acpi
,
2491 object_class_property_set_description(oc
, "acpi",
2493 object_class_property_add_bool(oc
, "secure", virt_get_secure
,
2495 object_class_property_set_description(oc
, "secure",
2496 "Set on/off to enable/disable the ARM "
2497 "Security Extensions (TrustZone)");
2499 object_class_property_add_bool(oc
, "virtualization", virt_get_virt
,
2501 object_class_property_set_description(oc
, "virtualization",
2502 "Set on/off to enable/disable emulating a "
2503 "guest CPU which implements the ARM "
2504 "Virtualization Extensions");
2506 object_class_property_add_bool(oc
, "highmem", virt_get_highmem
,
2508 object_class_property_set_description(oc
, "highmem",
2509 "Set on/off to enable/disable using "
2510 "physical address space above 32 bits");
2512 object_class_property_add_str(oc
, "gic-version", virt_get_gic_version
,
2513 virt_set_gic_version
);
2514 object_class_property_set_description(oc
, "gic-version",
2516 "Valid values are 2, 3, host and max");
2518 object_class_property_add_str(oc
, "iommu", virt_get_iommu
, virt_set_iommu
);
2519 object_class_property_set_description(oc
, "iommu",
2520 "Set the IOMMU type. "
2521 "Valid values are none and smmuv3");
2523 object_class_property_add_bool(oc
, "ras", virt_get_ras
,
2525 object_class_property_set_description(oc
, "ras",
2526 "Set on/off to enable/disable reporting host memory errors "
2527 "to a KVM guest using ACPI and guest external abort exceptions");
2529 object_class_property_add_bool(oc
, "mte", virt_get_mte
, virt_set_mte
);
2530 object_class_property_set_description(oc
, "mte",
2531 "Set on/off to enable/disable emulating a "
2532 "guest CPU which implements the ARM "
2533 "Memory Tagging Extension");
2535 object_class_property_add_bool(oc
, "its", virt_get_its
,
2537 object_class_property_set_description(oc
, "its",
2538 "Set on/off to enable/disable "
2539 "ITS instantiation");
2543 static void virt_instance_init(Object
*obj
)
2545 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2546 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
2548 /* EL3 is disabled by default on virt: this makes us consistent
2549 * between KVM and TCG for this board, and it also allows us to
2550 * boot UEFI blobs which assume no TrustZone support.
2552 vms
->secure
= false;
2554 /* EL2 is also disabled by default, for similar reasons */
2557 /* High memory is enabled by default */
2558 vms
->highmem
= true;
2559 vms
->gic_version
= VIRT_GIC_VERSION_NOSEL
;
2561 vms
->highmem_ecam
= !vmc
->no_highmem_ecam
;
2566 /* Default allows ITS instantiation */
2570 /* Default disallows iommu instantiation */
2571 vms
->iommu
= VIRT_IOMMU_NONE
;
2573 /* Default disallows RAS instantiation */
2576 /* MTE is disabled by default. */
2579 vms
->irqmap
= a15irqmap
;
2581 virt_flash_create(vms
);
2584 static const TypeInfo virt_machine_info
= {
2585 .name
= TYPE_VIRT_MACHINE
,
2586 .parent
= TYPE_MACHINE
,
2588 .instance_size
= sizeof(VirtMachineState
),
2589 .class_size
= sizeof(VirtMachineClass
),
2590 .class_init
= virt_machine_class_init
,
2591 .instance_init
= virt_instance_init
,
2592 .interfaces
= (InterfaceInfo
[]) {
2593 { TYPE_HOTPLUG_HANDLER
},
2598 static void machvirt_machine_init(void)
2600 type_register_static(&virt_machine_info
);
2602 type_init(machvirt_machine_init
);
2604 static void virt_machine_6_0_options(MachineClass
*mc
)
2607 DEFINE_VIRT_MACHINE_AS_LATEST(6, 0)
2609 static void virt_machine_5_2_options(MachineClass
*mc
)
2611 virt_machine_6_0_options(mc
);
2612 compat_props_add(mc
->compat_props
, hw_compat_5_2
, hw_compat_5_2_len
);
2614 DEFINE_VIRT_MACHINE(5, 2)
2616 static void virt_machine_5_1_options(MachineClass
*mc
)
2618 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2620 virt_machine_5_2_options(mc
);
2621 compat_props_add(mc
->compat_props
, hw_compat_5_1
, hw_compat_5_1_len
);
2622 vmc
->no_kvm_steal_time
= true;
2624 DEFINE_VIRT_MACHINE(5, 1)
2626 static void virt_machine_5_0_options(MachineClass
*mc
)
2628 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2630 virt_machine_5_1_options(mc
);
2631 compat_props_add(mc
->compat_props
, hw_compat_5_0
, hw_compat_5_0_len
);
2632 mc
->numa_mem_supported
= true;
2633 vmc
->acpi_expose_flash
= true;
2634 mc
->auto_enable_numa_with_memdev
= false;
2636 DEFINE_VIRT_MACHINE(5, 0)
2638 static void virt_machine_4_2_options(MachineClass
*mc
)
2640 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2642 virt_machine_5_0_options(mc
);
2643 compat_props_add(mc
->compat_props
, hw_compat_4_2
, hw_compat_4_2_len
);
2644 vmc
->kvm_no_adjvtime
= true;
2646 DEFINE_VIRT_MACHINE(4, 2)
2648 static void virt_machine_4_1_options(MachineClass
*mc
)
2650 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2652 virt_machine_4_2_options(mc
);
2653 compat_props_add(mc
->compat_props
, hw_compat_4_1
, hw_compat_4_1_len
);
2655 mc
->auto_enable_numa_with_memhp
= false;
2657 DEFINE_VIRT_MACHINE(4, 1)
2659 static void virt_machine_4_0_options(MachineClass
*mc
)
2661 virt_machine_4_1_options(mc
);
2662 compat_props_add(mc
->compat_props
, hw_compat_4_0
, hw_compat_4_0_len
);
2664 DEFINE_VIRT_MACHINE(4, 0)
2666 static void virt_machine_3_1_options(MachineClass
*mc
)
2668 virt_machine_4_0_options(mc
);
2669 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
2671 DEFINE_VIRT_MACHINE(3, 1)
2673 static void virt_machine_3_0_options(MachineClass
*mc
)
2675 virt_machine_3_1_options(mc
);
2676 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
2678 DEFINE_VIRT_MACHINE(3, 0)
2680 static void virt_machine_2_12_options(MachineClass
*mc
)
2682 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2684 virt_machine_3_0_options(mc
);
2685 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
2686 vmc
->no_highmem_ecam
= true;
2689 DEFINE_VIRT_MACHINE(2, 12)
2691 static void virt_machine_2_11_options(MachineClass
*mc
)
2693 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2695 virt_machine_2_12_options(mc
);
2696 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
2697 vmc
->smbios_old_sys_ver
= true;
2699 DEFINE_VIRT_MACHINE(2, 11)
2701 static void virt_machine_2_10_options(MachineClass
*mc
)
2703 virt_machine_2_11_options(mc
);
2704 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
2705 /* before 2.11 we never faulted accesses to bad addresses */
2706 mc
->ignore_memory_transaction_failures
= true;
2708 DEFINE_VIRT_MACHINE(2, 10)
2710 static void virt_machine_2_9_options(MachineClass
*mc
)
2712 virt_machine_2_10_options(mc
);
2713 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
2715 DEFINE_VIRT_MACHINE(2, 9)
2717 static void virt_machine_2_8_options(MachineClass
*mc
)
2719 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2721 virt_machine_2_9_options(mc
);
2722 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
2723 /* For 2.8 and earlier we falsely claimed in the DT that
2724 * our timers were edge-triggered, not level-triggered.
2726 vmc
->claim_edge_triggered_timers
= true;
2728 DEFINE_VIRT_MACHINE(2, 8)
2730 static void virt_machine_2_7_options(MachineClass
*mc
)
2732 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2734 virt_machine_2_8_options(mc
);
2735 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
2736 /* ITS was introduced with 2.8 */
2738 /* Stick with 1K pages for migration compatibility */
2739 mc
->minimum_page_bits
= 0;
2741 DEFINE_VIRT_MACHINE(2, 7)
2743 static void virt_machine_2_6_options(MachineClass
*mc
)
2745 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2747 virt_machine_2_7_options(mc
);
2748 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
2749 vmc
->disallow_affinity_adjustment
= true;
2750 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2753 DEFINE_VIRT_MACHINE(2, 6)