Merge remote-tracking branch 'remotes/amarkovic/tags/mips-queue-jun-26-2019' into...
[qemu/ar7.git] / target / sh4 / helper.c
blob2afc1770d8e8516a6602878d769aca8b0d26b02c
1 /*
2 * SH4 emulation
4 * Copyright (c) 2005 Samuel Tardieu
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/log.h"
24 #include "sysemu/sysemu.h"
26 #if !defined(CONFIG_USER_ONLY)
27 #include "hw/sh4/sh_intc.h"
28 #endif
30 #define MMU_OK 0
31 #define MMU_ITLB_MISS (-1)
32 #define MMU_ITLB_MULTIPLE (-2)
33 #define MMU_ITLB_VIOLATION (-3)
34 #define MMU_DTLB_MISS_READ (-4)
35 #define MMU_DTLB_MISS_WRITE (-5)
36 #define MMU_DTLB_INITIAL_WRITE (-6)
37 #define MMU_DTLB_VIOLATION_READ (-7)
38 #define MMU_DTLB_VIOLATION_WRITE (-8)
39 #define MMU_DTLB_MULTIPLE (-9)
40 #define MMU_DTLB_MISS (-10)
41 #define MMU_IADDR_ERROR (-11)
42 #define MMU_DADDR_ERROR_READ (-12)
43 #define MMU_DADDR_ERROR_WRITE (-13)
45 #if defined(CONFIG_USER_ONLY)
47 void superh_cpu_do_interrupt(CPUState *cs)
49 cs->exception_index = -1;
52 int cpu_sh4_is_cached(CPUSH4State *env, target_ulong addr)
54 /* For user mode, only U0 area is cacheable. */
55 return !(addr & 0x80000000);
58 #else /* !CONFIG_USER_ONLY */
60 void superh_cpu_do_interrupt(CPUState *cs)
62 SuperHCPU *cpu = SUPERH_CPU(cs);
63 CPUSH4State *env = &cpu->env;
64 int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD;
65 int do_exp, irq_vector = cs->exception_index;
67 /* prioritize exceptions over interrupts */
69 do_exp = cs->exception_index != -1;
70 do_irq = do_irq && (cs->exception_index == -1);
72 if (env->sr & (1u << SR_BL)) {
73 if (do_exp && cs->exception_index != 0x1e0) {
74 /* In theory a masked exception generates a reset exception,
75 which in turn jumps to the reset vector. However this only
76 works when using a bootloader. When using a kernel and an
77 initrd, they need to be reloaded and the program counter
78 should be loaded with the kernel entry point.
79 qemu_system_reset_request takes care of that. */
80 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
81 return;
83 if (do_irq && !env->in_sleep) {
84 return; /* masked */
87 env->in_sleep = 0;
89 if (do_irq) {
90 irq_vector = sh_intc_get_pending_vector(env->intc_handle,
91 (env->sr >> 4) & 0xf);
92 if (irq_vector == -1) {
93 return; /* masked */
97 if (qemu_loglevel_mask(CPU_LOG_INT)) {
98 const char *expname;
99 switch (cs->exception_index) {
100 case 0x0e0:
101 expname = "addr_error";
102 break;
103 case 0x040:
104 expname = "tlb_miss";
105 break;
106 case 0x0a0:
107 expname = "tlb_violation";
108 break;
109 case 0x180:
110 expname = "illegal_instruction";
111 break;
112 case 0x1a0:
113 expname = "slot_illegal_instruction";
114 break;
115 case 0x800:
116 expname = "fpu_disable";
117 break;
118 case 0x820:
119 expname = "slot_fpu";
120 break;
121 case 0x100:
122 expname = "data_write";
123 break;
124 case 0x060:
125 expname = "dtlb_miss_write";
126 break;
127 case 0x0c0:
128 expname = "dtlb_violation_write";
129 break;
130 case 0x120:
131 expname = "fpu_exception";
132 break;
133 case 0x080:
134 expname = "initial_page_write";
135 break;
136 case 0x160:
137 expname = "trapa";
138 break;
139 default:
140 expname = do_irq ? "interrupt" : "???";
141 break;
143 qemu_log("exception 0x%03x [%s] raised\n",
144 irq_vector, expname);
145 log_cpu_state(cs, 0);
148 env->ssr = cpu_read_sr(env);
149 env->spc = env->pc;
150 env->sgr = env->gregs[15];
151 env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB);
152 env->lock_addr = -1;
154 if (env->flags & DELAY_SLOT_MASK) {
155 /* Branch instruction should be executed again before delay slot. */
156 env->spc -= 2;
157 /* Clear flags for exception/interrupt routine. */
158 env->flags &= ~DELAY_SLOT_MASK;
161 if (do_exp) {
162 env->expevt = cs->exception_index;
163 switch (cs->exception_index) {
164 case 0x000:
165 case 0x020:
166 case 0x140:
167 env->sr &= ~(1u << SR_FD);
168 env->sr |= 0xf << 4; /* IMASK */
169 env->pc = 0xa0000000;
170 break;
171 case 0x040:
172 case 0x060:
173 env->pc = env->vbr + 0x400;
174 break;
175 case 0x160:
176 env->spc += 2; /* special case for TRAPA */
177 /* fall through */
178 default:
179 env->pc = env->vbr + 0x100;
180 break;
182 return;
185 if (do_irq) {
186 env->intevt = irq_vector;
187 env->pc = env->vbr + 0x600;
188 return;
192 static void update_itlb_use(CPUSH4State * env, int itlbnb)
194 uint8_t or_mask = 0, and_mask = (uint8_t) - 1;
196 switch (itlbnb) {
197 case 0:
198 and_mask = 0x1f;
199 break;
200 case 1:
201 and_mask = 0xe7;
202 or_mask = 0x80;
203 break;
204 case 2:
205 and_mask = 0xfb;
206 or_mask = 0x50;
207 break;
208 case 3:
209 or_mask = 0x2c;
210 break;
213 env->mmucr &= (and_mask << 24) | 0x00ffffff;
214 env->mmucr |= (or_mask << 24);
217 static int itlb_replacement(CPUSH4State * env)
219 if ((env->mmucr & 0xe0000000) == 0xe0000000) {
220 return 0;
222 if ((env->mmucr & 0x98000000) == 0x18000000) {
223 return 1;
225 if ((env->mmucr & 0x54000000) == 0x04000000) {
226 return 2;
228 if ((env->mmucr & 0x2c000000) == 0x00000000) {
229 return 3;
231 cpu_abort(env_cpu(env), "Unhandled itlb_replacement");
234 /* Find the corresponding entry in the right TLB
235 Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE
237 static int find_tlb_entry(CPUSH4State * env, target_ulong address,
238 tlb_t * entries, uint8_t nbtlb, int use_asid)
240 int match = MMU_DTLB_MISS;
241 uint32_t start, end;
242 uint8_t asid;
243 int i;
245 asid = env->pteh & 0xff;
247 for (i = 0; i < nbtlb; i++) {
248 if (!entries[i].v)
249 continue; /* Invalid entry */
250 if (!entries[i].sh && use_asid && entries[i].asid != asid)
251 continue; /* Bad ASID */
252 start = (entries[i].vpn << 10) & ~(entries[i].size - 1);
253 end = start + entries[i].size - 1;
254 if (address >= start && address <= end) { /* Match */
255 if (match != MMU_DTLB_MISS)
256 return MMU_DTLB_MULTIPLE; /* Multiple match */
257 match = i;
260 return match;
263 static void increment_urc(CPUSH4State * env)
265 uint8_t urb, urc;
267 /* Increment URC */
268 urb = ((env->mmucr) >> 18) & 0x3f;
269 urc = ((env->mmucr) >> 10) & 0x3f;
270 urc++;
271 if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1))
272 urc = 0;
273 env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10);
276 /* Copy and utlb entry into itlb
277 Return entry
279 static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb)
281 int itlb;
283 tlb_t * ientry;
284 itlb = itlb_replacement(env);
285 ientry = &env->itlb[itlb];
286 if (ientry->v) {
287 tlb_flush_page(env_cpu(env), ientry->vpn << 10);
289 *ientry = env->utlb[utlb];
290 update_itlb_use(env, itlb);
291 return itlb;
294 /* Find itlb entry
295 Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE
297 static int find_itlb_entry(CPUSH4State * env, target_ulong address,
298 int use_asid)
300 int e;
302 e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid);
303 if (e == MMU_DTLB_MULTIPLE) {
304 e = MMU_ITLB_MULTIPLE;
305 } else if (e == MMU_DTLB_MISS) {
306 e = MMU_ITLB_MISS;
307 } else if (e >= 0) {
308 update_itlb_use(env, e);
310 return e;
313 /* Find utlb entry
314 Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */
315 static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid)
317 /* per utlb access */
318 increment_urc(env);
320 /* Return entry */
321 return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid);
324 /* Match address against MMU
325 Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE,
326 MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ,
327 MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS,
328 MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION,
329 MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE.
331 static int get_mmu_address(CPUSH4State * env, target_ulong * physical,
332 int *prot, target_ulong address,
333 int rw, int access_type)
335 int use_asid, n;
336 tlb_t *matching = NULL;
338 use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
340 if (rw == 2) {
341 n = find_itlb_entry(env, address, use_asid);
342 if (n >= 0) {
343 matching = &env->itlb[n];
344 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
345 n = MMU_ITLB_VIOLATION;
346 } else {
347 *prot = PAGE_EXEC;
349 } else {
350 n = find_utlb_entry(env, address, use_asid);
351 if (n >= 0) {
352 n = copy_utlb_entry_itlb(env, n);
353 matching = &env->itlb[n];
354 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
355 n = MMU_ITLB_VIOLATION;
356 } else {
357 *prot = PAGE_READ | PAGE_EXEC;
358 if ((matching->pr & 1) && matching->d) {
359 *prot |= PAGE_WRITE;
362 } else if (n == MMU_DTLB_MULTIPLE) {
363 n = MMU_ITLB_MULTIPLE;
364 } else if (n == MMU_DTLB_MISS) {
365 n = MMU_ITLB_MISS;
368 } else {
369 n = find_utlb_entry(env, address, use_asid);
370 if (n >= 0) {
371 matching = &env->utlb[n];
372 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
373 n = (rw == 1) ? MMU_DTLB_VIOLATION_WRITE :
374 MMU_DTLB_VIOLATION_READ;
375 } else if ((rw == 1) && !(matching->pr & 1)) {
376 n = MMU_DTLB_VIOLATION_WRITE;
377 } else if ((rw == 1) && !matching->d) {
378 n = MMU_DTLB_INITIAL_WRITE;
379 } else {
380 *prot = PAGE_READ;
381 if ((matching->pr & 1) && matching->d) {
382 *prot |= PAGE_WRITE;
385 } else if (n == MMU_DTLB_MISS) {
386 n = (rw == 1) ? MMU_DTLB_MISS_WRITE :
387 MMU_DTLB_MISS_READ;
390 if (n >= 0) {
391 n = MMU_OK;
392 *physical = ((matching->ppn << 10) & ~(matching->size - 1)) |
393 (address & (matching->size - 1));
395 return n;
398 static int get_physical_address(CPUSH4State * env, target_ulong * physical,
399 int *prot, target_ulong address,
400 int rw, int access_type)
402 /* P1, P2 and P4 areas do not use translation */
403 if ((address >= 0x80000000 && address < 0xc0000000) ||
404 address >= 0xe0000000) {
405 if (!(env->sr & (1u << SR_MD))
406 && (address < 0xe0000000 || address >= 0xe4000000)) {
407 /* Unauthorized access in user mode (only store queues are available) */
408 qemu_log_mask(LOG_GUEST_ERROR, "Unauthorized access\n");
409 if (rw == 0)
410 return MMU_DADDR_ERROR_READ;
411 else if (rw == 1)
412 return MMU_DADDR_ERROR_WRITE;
413 else
414 return MMU_IADDR_ERROR;
416 if (address >= 0x80000000 && address < 0xc0000000) {
417 /* Mask upper 3 bits for P1 and P2 areas */
418 *physical = address & 0x1fffffff;
419 } else {
420 *physical = address;
422 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
423 return MMU_OK;
426 /* If MMU is disabled, return the corresponding physical page */
427 if (!(env->mmucr & MMUCR_AT)) {
428 *physical = address & 0x1FFFFFFF;
429 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
430 return MMU_OK;
433 /* We need to resort to the MMU */
434 return get_mmu_address(env, physical, prot, address, rw, access_type);
437 hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
439 SuperHCPU *cpu = SUPERH_CPU(cs);
440 target_ulong physical;
441 int prot;
443 get_physical_address(&cpu->env, &physical, &prot, addr, 0, 0);
444 return physical;
447 void cpu_load_tlb(CPUSH4State * env)
449 CPUState *cs = env_cpu(env);
450 int n = cpu_mmucr_urc(env->mmucr);
451 tlb_t * entry = &env->utlb[n];
453 if (entry->v) {
454 /* Overwriting valid entry in utlb. */
455 target_ulong address = entry->vpn << 10;
456 tlb_flush_page(cs, address);
459 /* Take values into cpu status from registers. */
460 entry->asid = (uint8_t)cpu_pteh_asid(env->pteh);
461 entry->vpn = cpu_pteh_vpn(env->pteh);
462 entry->v = (uint8_t)cpu_ptel_v(env->ptel);
463 entry->ppn = cpu_ptel_ppn(env->ptel);
464 entry->sz = (uint8_t)cpu_ptel_sz(env->ptel);
465 switch (entry->sz) {
466 case 0: /* 00 */
467 entry->size = 1024; /* 1K */
468 break;
469 case 1: /* 01 */
470 entry->size = 1024 * 4; /* 4K */
471 break;
472 case 2: /* 10 */
473 entry->size = 1024 * 64; /* 64K */
474 break;
475 case 3: /* 11 */
476 entry->size = 1024 * 1024; /* 1M */
477 break;
478 default:
479 cpu_abort(cs, "Unhandled load_tlb");
480 break;
482 entry->sh = (uint8_t)cpu_ptel_sh(env->ptel);
483 entry->c = (uint8_t)cpu_ptel_c(env->ptel);
484 entry->pr = (uint8_t)cpu_ptel_pr(env->ptel);
485 entry->d = (uint8_t)cpu_ptel_d(env->ptel);
486 entry->wt = (uint8_t)cpu_ptel_wt(env->ptel);
487 entry->sa = (uint8_t)cpu_ptea_sa(env->ptea);
488 entry->tc = (uint8_t)cpu_ptea_tc(env->ptea);
491 void cpu_sh4_invalidate_tlb(CPUSH4State *s)
493 int i;
495 /* UTLB */
496 for (i = 0; i < UTLB_SIZE; i++) {
497 tlb_t * entry = &s->utlb[i];
498 entry->v = 0;
500 /* ITLB */
501 for (i = 0; i < ITLB_SIZE; i++) {
502 tlb_t * entry = &s->itlb[i];
503 entry->v = 0;
506 tlb_flush(env_cpu(s));
509 uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s,
510 hwaddr addr)
512 int index = (addr & 0x00000300) >> 8;
513 tlb_t * entry = &s->itlb[index];
515 return (entry->vpn << 10) |
516 (entry->v << 8) |
517 (entry->asid);
520 void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr,
521 uint32_t mem_value)
523 uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
524 uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
525 uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
527 int index = (addr & 0x00000300) >> 8;
528 tlb_t * entry = &s->itlb[index];
529 if (entry->v) {
530 /* Overwriting valid entry in itlb. */
531 target_ulong address = entry->vpn << 10;
532 tlb_flush_page(env_cpu(s), address);
534 entry->asid = asid;
535 entry->vpn = vpn;
536 entry->v = v;
539 uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s,
540 hwaddr addr)
542 int array = (addr & 0x00800000) >> 23;
543 int index = (addr & 0x00000300) >> 8;
544 tlb_t * entry = &s->itlb[index];
546 if (array == 0) {
547 /* ITLB Data Array 1 */
548 return (entry->ppn << 10) |
549 (entry->v << 8) |
550 (entry->pr << 5) |
551 ((entry->sz & 1) << 6) |
552 ((entry->sz & 2) << 4) |
553 (entry->c << 3) |
554 (entry->sh << 1);
555 } else {
556 /* ITLB Data Array 2 */
557 return (entry->tc << 1) |
558 (entry->sa);
562 void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr,
563 uint32_t mem_value)
565 int array = (addr & 0x00800000) >> 23;
566 int index = (addr & 0x00000300) >> 8;
567 tlb_t * entry = &s->itlb[index];
569 if (array == 0) {
570 /* ITLB Data Array 1 */
571 if (entry->v) {
572 /* Overwriting valid entry in utlb. */
573 target_ulong address = entry->vpn << 10;
574 tlb_flush_page(env_cpu(s), address);
576 entry->ppn = (mem_value & 0x1ffffc00) >> 10;
577 entry->v = (mem_value & 0x00000100) >> 8;
578 entry->sz = (mem_value & 0x00000080) >> 6 |
579 (mem_value & 0x00000010) >> 4;
580 entry->pr = (mem_value & 0x00000040) >> 5;
581 entry->c = (mem_value & 0x00000008) >> 3;
582 entry->sh = (mem_value & 0x00000002) >> 1;
583 } else {
584 /* ITLB Data Array 2 */
585 entry->tc = (mem_value & 0x00000008) >> 3;
586 entry->sa = (mem_value & 0x00000007);
590 uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s,
591 hwaddr addr)
593 int index = (addr & 0x00003f00) >> 8;
594 tlb_t * entry = &s->utlb[index];
596 increment_urc(s); /* per utlb access */
598 return (entry->vpn << 10) |
599 (entry->v << 8) |
600 (entry->asid);
603 void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr,
604 uint32_t mem_value)
606 int associate = addr & 0x0000080;
607 uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
608 uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9);
609 uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
610 uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
611 int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD));
613 if (associate) {
614 int i;
615 tlb_t * utlb_match_entry = NULL;
616 int needs_tlb_flush = 0;
618 /* search UTLB */
619 for (i = 0; i < UTLB_SIZE; i++) {
620 tlb_t * entry = &s->utlb[i];
621 if (!entry->v)
622 continue;
624 if (entry->vpn == vpn
625 && (!use_asid || entry->asid == asid || entry->sh)) {
626 if (utlb_match_entry) {
627 CPUState *cs = env_cpu(s);
629 /* Multiple TLB Exception */
630 cs->exception_index = 0x140;
631 s->tea = addr;
632 break;
634 if (entry->v && !v)
635 needs_tlb_flush = 1;
636 entry->v = v;
637 entry->d = d;
638 utlb_match_entry = entry;
640 increment_urc(s); /* per utlb access */
643 /* search ITLB */
644 for (i = 0; i < ITLB_SIZE; i++) {
645 tlb_t * entry = &s->itlb[i];
646 if (entry->vpn == vpn
647 && (!use_asid || entry->asid == asid || entry->sh)) {
648 if (entry->v && !v)
649 needs_tlb_flush = 1;
650 if (utlb_match_entry)
651 *entry = *utlb_match_entry;
652 else
653 entry->v = v;
654 break;
658 if (needs_tlb_flush) {
659 tlb_flush_page(env_cpu(s), vpn << 10);
661 } else {
662 int index = (addr & 0x00003f00) >> 8;
663 tlb_t * entry = &s->utlb[index];
664 if (entry->v) {
665 CPUState *cs = env_cpu(s);
667 /* Overwriting valid entry in utlb. */
668 target_ulong address = entry->vpn << 10;
669 tlb_flush_page(cs, address);
671 entry->asid = asid;
672 entry->vpn = vpn;
673 entry->d = d;
674 entry->v = v;
675 increment_urc(s);
679 uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s,
680 hwaddr addr)
682 int array = (addr & 0x00800000) >> 23;
683 int index = (addr & 0x00003f00) >> 8;
684 tlb_t * entry = &s->utlb[index];
686 increment_urc(s); /* per utlb access */
688 if (array == 0) {
689 /* ITLB Data Array 1 */
690 return (entry->ppn << 10) |
691 (entry->v << 8) |
692 (entry->pr << 5) |
693 ((entry->sz & 1) << 6) |
694 ((entry->sz & 2) << 4) |
695 (entry->c << 3) |
696 (entry->d << 2) |
697 (entry->sh << 1) |
698 (entry->wt);
699 } else {
700 /* ITLB Data Array 2 */
701 return (entry->tc << 1) |
702 (entry->sa);
706 void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr,
707 uint32_t mem_value)
709 int array = (addr & 0x00800000) >> 23;
710 int index = (addr & 0x00003f00) >> 8;
711 tlb_t * entry = &s->utlb[index];
713 increment_urc(s); /* per utlb access */
715 if (array == 0) {
716 /* UTLB Data Array 1 */
717 if (entry->v) {
718 /* Overwriting valid entry in utlb. */
719 target_ulong address = entry->vpn << 10;
720 tlb_flush_page(env_cpu(s), address);
722 entry->ppn = (mem_value & 0x1ffffc00) >> 10;
723 entry->v = (mem_value & 0x00000100) >> 8;
724 entry->sz = (mem_value & 0x00000080) >> 6 |
725 (mem_value & 0x00000010) >> 4;
726 entry->pr = (mem_value & 0x00000060) >> 5;
727 entry->c = (mem_value & 0x00000008) >> 3;
728 entry->d = (mem_value & 0x00000004) >> 2;
729 entry->sh = (mem_value & 0x00000002) >> 1;
730 entry->wt = (mem_value & 0x00000001);
731 } else {
732 /* UTLB Data Array 2 */
733 entry->tc = (mem_value & 0x00000008) >> 3;
734 entry->sa = (mem_value & 0x00000007);
738 int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr)
740 int n;
741 int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
743 /* check area */
744 if (env->sr & (1u << SR_MD)) {
745 /* For privileged mode, P2 and P4 area is not cacheable. */
746 if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr)
747 return 0;
748 } else {
749 /* For user mode, only U0 area is cacheable. */
750 if (0x80000000 <= addr)
751 return 0;
755 * TODO : Evaluate CCR and check if the cache is on or off.
756 * Now CCR is not in CPUSH4State, but in SH7750State.
757 * When you move the ccr into CPUSH4State, the code will be
758 * as follows.
760 #if 0
761 /* check if operand cache is enabled or not. */
762 if (!(env->ccr & 1))
763 return 0;
764 #endif
766 /* if MMU is off, no check for TLB. */
767 if (env->mmucr & MMUCR_AT)
768 return 1;
770 /* check TLB */
771 n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid);
772 if (n >= 0)
773 return env->itlb[n].c;
775 n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid);
776 if (n >= 0)
777 return env->utlb[n].c;
779 return 0;
782 #endif
784 bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
786 if (interrupt_request & CPU_INTERRUPT_HARD) {
787 SuperHCPU *cpu = SUPERH_CPU(cs);
788 CPUSH4State *env = &cpu->env;
790 /* Delay slots are indivisible, ignore interrupts */
791 if (env->flags & DELAY_SLOT_MASK) {
792 return false;
793 } else {
794 superh_cpu_do_interrupt(cs);
795 return true;
798 return false;
801 bool superh_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
802 MMUAccessType access_type, int mmu_idx,
803 bool probe, uintptr_t retaddr)
805 SuperHCPU *cpu = SUPERH_CPU(cs);
806 CPUSH4State *env = &cpu->env;
807 int ret;
809 #ifdef CONFIG_USER_ONLY
810 ret = (access_type == MMU_DATA_STORE ? MMU_DTLB_VIOLATION_WRITE :
811 access_type == MMU_INST_FETCH ? MMU_ITLB_VIOLATION :
812 MMU_DTLB_VIOLATION_READ);
813 #else
814 target_ulong physical;
815 int prot, sh_access_type;
817 sh_access_type = ACCESS_INT;
818 ret = get_physical_address(env, &physical, &prot, address,
819 access_type, sh_access_type);
821 if (ret == MMU_OK) {
822 address &= TARGET_PAGE_MASK;
823 physical &= TARGET_PAGE_MASK;
824 tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE);
825 return true;
827 if (probe) {
828 return false;
831 if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) {
832 env->pteh = (env->pteh & PTEH_ASID_MASK) | (address & PTEH_VPN_MASK);
834 #endif
836 env->tea = address;
837 switch (ret) {
838 case MMU_ITLB_MISS:
839 case MMU_DTLB_MISS_READ:
840 cs->exception_index = 0x040;
841 break;
842 case MMU_DTLB_MULTIPLE:
843 case MMU_ITLB_MULTIPLE:
844 cs->exception_index = 0x140;
845 break;
846 case MMU_ITLB_VIOLATION:
847 cs->exception_index = 0x0a0;
848 break;
849 case MMU_DTLB_MISS_WRITE:
850 cs->exception_index = 0x060;
851 break;
852 case MMU_DTLB_INITIAL_WRITE:
853 cs->exception_index = 0x080;
854 break;
855 case MMU_DTLB_VIOLATION_READ:
856 cs->exception_index = 0x0a0;
857 break;
858 case MMU_DTLB_VIOLATION_WRITE:
859 cs->exception_index = 0x0c0;
860 break;
861 case MMU_IADDR_ERROR:
862 case MMU_DADDR_ERROR_READ:
863 cs->exception_index = 0x0e0;
864 break;
865 case MMU_DADDR_ERROR_WRITE:
866 cs->exception_index = 0x100;
867 break;
868 default:
869 cpu_abort(cs, "Unhandled MMU fault");
871 cpu_loop_exit_restore(cs, retaddr);