Merge tag 'v9.0.0-rc3'
[qemu/ar7.git] / target / sh4 / helper.c
blob7c6f9d374ab1f2e9855672a0dcd880a1ab97a8fd
1 /*
2 * SH4 emulation
4 * Copyright (c) 2005 Samuel Tardieu
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/log.h"
26 #if !defined(CONFIG_USER_ONLY)
27 #include "hw/sh4/sh_intc.h"
28 #include "sysemu/runstate.h"
29 #endif
31 #define MMU_OK 0
32 #define MMU_ITLB_MISS (-1)
33 #define MMU_ITLB_MULTIPLE (-2)
34 #define MMU_ITLB_VIOLATION (-3)
35 #define MMU_DTLB_MISS_READ (-4)
36 #define MMU_DTLB_MISS_WRITE (-5)
37 #define MMU_DTLB_INITIAL_WRITE (-6)
38 #define MMU_DTLB_VIOLATION_READ (-7)
39 #define MMU_DTLB_VIOLATION_WRITE (-8)
40 #define MMU_DTLB_MULTIPLE (-9)
41 #define MMU_DTLB_MISS (-10)
42 #define MMU_IADDR_ERROR (-11)
43 #define MMU_DADDR_ERROR_READ (-12)
44 #define MMU_DADDR_ERROR_WRITE (-13)
46 #if defined(CONFIG_USER_ONLY)
48 int cpu_sh4_is_cached(CPUSH4State *env, target_ulong addr)
50 /* For user mode, only U0 area is cacheable. */
51 return !(addr & 0x80000000);
54 #else /* !CONFIG_USER_ONLY */
56 void superh_cpu_do_interrupt(CPUState *cs)
58 CPUSH4State *env = cpu_env(cs);
59 int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD;
60 int do_exp, irq_vector = cs->exception_index;
62 /* prioritize exceptions over interrupts */
64 do_exp = cs->exception_index != -1;
65 do_irq = do_irq && (cs->exception_index == -1);
67 if (env->sr & (1u << SR_BL)) {
68 if (do_exp && cs->exception_index != 0x1e0) {
69 /* In theory a masked exception generates a reset exception,
70 which in turn jumps to the reset vector. However this only
71 works when using a bootloader. When using a kernel and an
72 initrd, they need to be reloaded and the program counter
73 should be loaded with the kernel entry point.
74 qemu_system_reset_request takes care of that. */
75 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
76 return;
78 if (do_irq && !env->in_sleep) {
79 return; /* masked */
82 env->in_sleep = 0;
84 if (do_irq) {
85 irq_vector = sh_intc_get_pending_vector(env->intc_handle,
86 (env->sr >> 4) & 0xf);
87 if (irq_vector == -1) {
88 return; /* masked */
92 if (qemu_loglevel_mask(CPU_LOG_INT)) {
93 const char *expname;
94 switch (cs->exception_index) {
95 case 0x0e0:
96 expname = "addr_error";
97 break;
98 case 0x040:
99 expname = "tlb_miss";
100 break;
101 case 0x0a0:
102 expname = "tlb_violation";
103 break;
104 case 0x180:
105 expname = "illegal_instruction";
106 break;
107 case 0x1a0:
108 expname = "slot_illegal_instruction";
109 break;
110 case 0x800:
111 expname = "fpu_disable";
112 break;
113 case 0x820:
114 expname = "slot_fpu";
115 break;
116 case 0x100:
117 expname = "data_write";
118 break;
119 case 0x060:
120 expname = "dtlb_miss_write";
121 break;
122 case 0x0c0:
123 expname = "dtlb_violation_write";
124 break;
125 case 0x120:
126 expname = "fpu_exception";
127 break;
128 case 0x080:
129 expname = "initial_page_write";
130 break;
131 case 0x160:
132 expname = "trapa";
133 break;
134 default:
135 expname = do_irq ? "interrupt" : "???";
136 break;
138 qemu_log("exception 0x%03x [%s] raised\n",
139 irq_vector, expname);
140 log_cpu_state(cs, 0);
143 env->ssr = cpu_read_sr(env);
144 env->spc = env->pc;
145 env->sgr = env->gregs[15];
146 env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB);
147 env->lock_addr = -1;
149 if (env->flags & TB_FLAG_DELAY_SLOT_MASK) {
150 /* Branch instruction should be executed again before delay slot. */
151 env->spc -= 2;
152 /* Clear flags for exception/interrupt routine. */
153 env->flags &= ~TB_FLAG_DELAY_SLOT_MASK;
156 if (do_exp) {
157 env->expevt = cs->exception_index;
158 switch (cs->exception_index) {
159 case 0x000:
160 case 0x020:
161 case 0x140:
162 env->sr &= ~(1u << SR_FD);
163 env->sr |= 0xf << 4; /* IMASK */
164 env->pc = 0xa0000000;
165 break;
166 case 0x040:
167 case 0x060:
168 env->pc = env->vbr + 0x400;
169 break;
170 case 0x160:
171 env->spc += 2; /* special case for TRAPA */
172 /* fall through */
173 default:
174 env->pc = env->vbr + 0x100;
175 break;
177 return;
180 if (do_irq) {
181 env->intevt = irq_vector;
182 env->pc = env->vbr + 0x600;
183 return;
187 static void update_itlb_use(CPUSH4State * env, int itlbnb)
189 uint8_t or_mask = 0, and_mask = (uint8_t) - 1;
191 switch (itlbnb) {
192 case 0:
193 and_mask = 0x1f;
194 break;
195 case 1:
196 and_mask = 0xe7;
197 or_mask = 0x80;
198 break;
199 case 2:
200 and_mask = 0xfb;
201 or_mask = 0x50;
202 break;
203 case 3:
204 or_mask = 0x2c;
205 break;
208 env->mmucr &= (and_mask << 24) | 0x00ffffff;
209 env->mmucr |= (or_mask << 24);
212 static int itlb_replacement(CPUSH4State * env)
214 if ((env->mmucr & 0xe0000000) == 0xe0000000) {
215 return 0;
217 if ((env->mmucr & 0x98000000) == 0x18000000) {
218 return 1;
220 if ((env->mmucr & 0x54000000) == 0x04000000) {
221 return 2;
223 if ((env->mmucr & 0x2c000000) == 0x00000000) {
224 return 3;
226 cpu_abort(env_cpu(env), "Unhandled itlb_replacement");
229 /* Find the corresponding entry in the right TLB
230 Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE
232 static int find_tlb_entry(CPUSH4State * env, target_ulong address,
233 tlb_t * entries, uint8_t nbtlb, int use_asid)
235 int match = MMU_DTLB_MISS;
236 uint32_t start, end;
237 uint8_t asid;
238 int i;
240 asid = env->pteh & 0xff;
242 for (i = 0; i < nbtlb; i++) {
243 if (!entries[i].v)
244 continue; /* Invalid entry */
245 if (!entries[i].sh && use_asid && entries[i].asid != asid)
246 continue; /* Bad ASID */
247 start = (entries[i].vpn << 10) & ~(entries[i].size - 1);
248 end = start + entries[i].size - 1;
249 if (address >= start && address <= end) { /* Match */
250 if (match != MMU_DTLB_MISS)
251 return MMU_DTLB_MULTIPLE; /* Multiple match */
252 match = i;
255 return match;
258 static void increment_urc(CPUSH4State * env)
260 uint8_t urb, urc;
262 /* Increment URC */
263 urb = ((env->mmucr) >> 18) & 0x3f;
264 urc = ((env->mmucr) >> 10) & 0x3f;
265 urc++;
266 if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1))
267 urc = 0;
268 env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10);
271 /* Copy and utlb entry into itlb
272 Return entry
274 static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb)
276 int itlb;
278 tlb_t * ientry;
279 itlb = itlb_replacement(env);
280 ientry = &env->itlb[itlb];
281 if (ientry->v) {
282 tlb_flush_page(env_cpu(env), ientry->vpn << 10);
284 *ientry = env->utlb[utlb];
285 update_itlb_use(env, itlb);
286 return itlb;
289 /* Find itlb entry
290 Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE
292 static int find_itlb_entry(CPUSH4State * env, target_ulong address,
293 int use_asid)
295 int e;
297 e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid);
298 if (e == MMU_DTLB_MULTIPLE) {
299 e = MMU_ITLB_MULTIPLE;
300 } else if (e == MMU_DTLB_MISS) {
301 e = MMU_ITLB_MISS;
302 } else if (e >= 0) {
303 update_itlb_use(env, e);
305 return e;
308 /* Find utlb entry
309 Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */
310 static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid)
312 /* per utlb access */
313 increment_urc(env);
315 /* Return entry */
316 return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid);
319 /* Match address against MMU
320 Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE,
321 MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ,
322 MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS,
323 MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION,
324 MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE.
326 static int get_mmu_address(CPUSH4State * env, target_ulong * physical,
327 int *prot, target_ulong address,
328 MMUAccessType access_type)
330 int use_asid, n;
331 tlb_t *matching = NULL;
333 use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
335 if (access_type == MMU_INST_FETCH) {
336 n = find_itlb_entry(env, address, use_asid);
337 if (n >= 0) {
338 matching = &env->itlb[n];
339 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
340 n = MMU_ITLB_VIOLATION;
341 } else {
342 *prot = PAGE_EXEC;
344 } else {
345 n = find_utlb_entry(env, address, use_asid);
346 if (n >= 0) {
347 n = copy_utlb_entry_itlb(env, n);
348 matching = &env->itlb[n];
349 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
350 n = MMU_ITLB_VIOLATION;
351 } else {
352 *prot = PAGE_READ | PAGE_EXEC;
353 if ((matching->pr & 1) && matching->d) {
354 *prot |= PAGE_WRITE;
357 } else if (n == MMU_DTLB_MULTIPLE) {
358 n = MMU_ITLB_MULTIPLE;
359 } else if (n == MMU_DTLB_MISS) {
360 n = MMU_ITLB_MISS;
363 } else {
364 n = find_utlb_entry(env, address, use_asid);
365 if (n >= 0) {
366 matching = &env->utlb[n];
367 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
368 n = (access_type == MMU_DATA_STORE)
369 ? MMU_DTLB_VIOLATION_WRITE : MMU_DTLB_VIOLATION_READ;
370 } else if ((access_type == MMU_DATA_STORE) && !(matching->pr & 1)) {
371 n = MMU_DTLB_VIOLATION_WRITE;
372 } else if ((access_type == MMU_DATA_STORE) && !matching->d) {
373 n = MMU_DTLB_INITIAL_WRITE;
374 } else {
375 *prot = PAGE_READ;
376 if ((matching->pr & 1) && matching->d) {
377 *prot |= PAGE_WRITE;
380 } else if (n == MMU_DTLB_MISS) {
381 n = (access_type == MMU_DATA_STORE)
382 ? MMU_DTLB_MISS_WRITE : MMU_DTLB_MISS_READ;
385 if (n >= 0) {
386 n = MMU_OK;
387 *physical = ((matching->ppn << 10) & ~(matching->size - 1))
388 | (address & (matching->size - 1));
390 return n;
393 static int get_physical_address(CPUSH4State * env, target_ulong * physical,
394 int *prot, target_ulong address,
395 MMUAccessType access_type)
397 /* P1, P2 and P4 areas do not use translation */
398 if ((address >= 0x80000000 && address < 0xc0000000) || address >= 0xe0000000) {
399 if (!(env->sr & (1u << SR_MD))
400 && (address < 0xe0000000 || address >= 0xe4000000)) {
401 /* Unauthorized access in user mode (only store queues are available) */
402 qemu_log_mask(LOG_GUEST_ERROR, "Unauthorized access\n");
403 if (access_type == MMU_DATA_LOAD) {
404 return MMU_DADDR_ERROR_READ;
405 } else if (access_type == MMU_DATA_STORE) {
406 return MMU_DADDR_ERROR_WRITE;
407 } else {
408 return MMU_IADDR_ERROR;
411 if (address >= 0x80000000 && address < 0xc0000000) {
412 /* Mask upper 3 bits for P1 and P2 areas */
413 *physical = address & 0x1fffffff;
414 } else {
415 *physical = address;
417 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
418 return MMU_OK;
421 /* If MMU is disabled, return the corresponding physical page */
422 if (!(env->mmucr & MMUCR_AT)) {
423 *physical = address & 0x1FFFFFFF;
424 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
425 return MMU_OK;
428 /* We need to resort to the MMU */
429 return get_mmu_address(env, physical, prot, address, access_type);
432 hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
434 target_ulong physical;
435 int prot;
437 if (get_physical_address(cpu_env(cs), &physical, &prot, addr, MMU_DATA_LOAD)
438 == MMU_OK) {
439 return physical;
442 return -1;
445 void cpu_load_tlb(CPUSH4State * env)
447 CPUState *cs = env_cpu(env);
448 int n = cpu_mmucr_urc(env->mmucr);
449 tlb_t * entry = &env->utlb[n];
451 if (entry->v) {
452 /* Overwriting valid entry in utlb. */
453 target_ulong address = entry->vpn << 10;
454 tlb_flush_page(cs, address);
457 /* Take values into cpu status from registers. */
458 entry->asid = (uint8_t)cpu_pteh_asid(env->pteh);
459 entry->vpn = cpu_pteh_vpn(env->pteh);
460 entry->v = (uint8_t)cpu_ptel_v(env->ptel);
461 entry->ppn = cpu_ptel_ppn(env->ptel);
462 entry->sz = (uint8_t)cpu_ptel_sz(env->ptel);
463 switch (entry->sz) {
464 case 0: /* 00 */
465 entry->size = 1024; /* 1K */
466 break;
467 case 1: /* 01 */
468 entry->size = 1024 * 4; /* 4K */
469 break;
470 case 2: /* 10 */
471 entry->size = 1024 * 64; /* 64K */
472 break;
473 case 3: /* 11 */
474 entry->size = 1024 * 1024; /* 1M */
475 break;
476 default:
477 cpu_abort(cs, "Unhandled load_tlb");
478 break;
480 entry->sh = (uint8_t)cpu_ptel_sh(env->ptel);
481 entry->c = (uint8_t)cpu_ptel_c(env->ptel);
482 entry->pr = (uint8_t)cpu_ptel_pr(env->ptel);
483 entry->d = (uint8_t)cpu_ptel_d(env->ptel);
484 entry->wt = (uint8_t)cpu_ptel_wt(env->ptel);
485 entry->sa = (uint8_t)cpu_ptea_sa(env->ptea);
486 entry->tc = (uint8_t)cpu_ptea_tc(env->ptea);
489 void cpu_sh4_invalidate_tlb(CPUSH4State *s)
491 int i;
493 /* UTLB */
494 for (i = 0; i < UTLB_SIZE; i++) {
495 tlb_t * entry = &s->utlb[i];
496 entry->v = 0;
498 /* ITLB */
499 for (i = 0; i < ITLB_SIZE; i++) {
500 tlb_t * entry = &s->itlb[i];
501 entry->v = 0;
504 tlb_flush(env_cpu(s));
507 uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s,
508 hwaddr addr)
510 int index = (addr & 0x00000300) >> 8;
511 tlb_t * entry = &s->itlb[index];
513 return (entry->vpn << 10) |
514 (entry->v << 8) |
515 (entry->asid);
518 void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr,
519 uint32_t mem_value)
521 uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
522 uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
523 uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
525 int index = (addr & 0x00000300) >> 8;
526 tlb_t * entry = &s->itlb[index];
527 if (entry->v) {
528 /* Overwriting valid entry in itlb. */
529 target_ulong address = entry->vpn << 10;
530 tlb_flush_page(env_cpu(s), address);
532 entry->asid = asid;
533 entry->vpn = vpn;
534 entry->v = v;
537 uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s,
538 hwaddr addr)
540 int array = (addr & 0x00800000) >> 23;
541 int index = (addr & 0x00000300) >> 8;
542 tlb_t * entry = &s->itlb[index];
544 if (array == 0) {
545 /* ITLB Data Array 1 */
546 return (entry->ppn << 10) |
547 (entry->v << 8) |
548 (entry->pr << 5) |
549 ((entry->sz & 1) << 6) |
550 ((entry->sz & 2) << 4) |
551 (entry->c << 3) |
552 (entry->sh << 1);
553 } else {
554 /* ITLB Data Array 2 */
555 return (entry->tc << 1) |
556 (entry->sa);
560 void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr,
561 uint32_t mem_value)
563 int array = (addr & 0x00800000) >> 23;
564 int index = (addr & 0x00000300) >> 8;
565 tlb_t * entry = &s->itlb[index];
567 if (array == 0) {
568 /* ITLB Data Array 1 */
569 if (entry->v) {
570 /* Overwriting valid entry in utlb. */
571 target_ulong address = entry->vpn << 10;
572 tlb_flush_page(env_cpu(s), address);
574 entry->ppn = (mem_value & 0x1ffffc00) >> 10;
575 entry->v = (mem_value & 0x00000100) >> 8;
576 entry->sz = (mem_value & 0x00000080) >> 6 |
577 (mem_value & 0x00000010) >> 4;
578 entry->pr = (mem_value & 0x00000040) >> 5;
579 entry->c = (mem_value & 0x00000008) >> 3;
580 entry->sh = (mem_value & 0x00000002) >> 1;
581 } else {
582 /* ITLB Data Array 2 */
583 entry->tc = (mem_value & 0x00000008) >> 3;
584 entry->sa = (mem_value & 0x00000007);
588 uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s,
589 hwaddr addr)
591 int index = (addr & 0x00003f00) >> 8;
592 tlb_t * entry = &s->utlb[index];
594 increment_urc(s); /* per utlb access */
596 return (entry->vpn << 10) |
597 (entry->v << 8) |
598 (entry->asid);
601 void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr,
602 uint32_t mem_value)
604 int associate = addr & 0x0000080;
605 uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
606 uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9);
607 uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
608 uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
609 int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD));
611 if (associate) {
612 int i;
613 tlb_t * utlb_match_entry = NULL;
614 int needs_tlb_flush = 0;
616 /* search UTLB */
617 for (i = 0; i < UTLB_SIZE; i++) {
618 tlb_t * entry = &s->utlb[i];
619 if (!entry->v)
620 continue;
622 if (entry->vpn == vpn
623 && (!use_asid || entry->asid == asid || entry->sh)) {
624 if (utlb_match_entry) {
625 CPUState *cs = env_cpu(s);
627 /* Multiple TLB Exception */
628 cs->exception_index = 0x140;
629 s->tea = addr;
630 break;
632 if (entry->v && !v)
633 needs_tlb_flush = 1;
634 entry->v = v;
635 entry->d = d;
636 utlb_match_entry = entry;
638 increment_urc(s); /* per utlb access */
641 /* search ITLB */
642 for (i = 0; i < ITLB_SIZE; i++) {
643 tlb_t * entry = &s->itlb[i];
644 if (entry->vpn == vpn
645 && (!use_asid || entry->asid == asid || entry->sh)) {
646 if (entry->v && !v)
647 needs_tlb_flush = 1;
648 if (utlb_match_entry)
649 *entry = *utlb_match_entry;
650 else
651 entry->v = v;
652 break;
656 if (needs_tlb_flush) {
657 tlb_flush_page(env_cpu(s), vpn << 10);
659 } else {
660 int index = (addr & 0x00003f00) >> 8;
661 tlb_t * entry = &s->utlb[index];
662 if (entry->v) {
663 CPUState *cs = env_cpu(s);
665 /* Overwriting valid entry in utlb. */
666 target_ulong address = entry->vpn << 10;
667 tlb_flush_page(cs, address);
669 entry->asid = asid;
670 entry->vpn = vpn;
671 entry->d = d;
672 entry->v = v;
673 increment_urc(s);
677 uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s,
678 hwaddr addr)
680 int array = (addr & 0x00800000) >> 23;
681 int index = (addr & 0x00003f00) >> 8;
682 tlb_t * entry = &s->utlb[index];
684 increment_urc(s); /* per utlb access */
686 if (array == 0) {
687 /* ITLB Data Array 1 */
688 return (entry->ppn << 10) |
689 (entry->v << 8) |
690 (entry->pr << 5) |
691 ((entry->sz & 1) << 6) |
692 ((entry->sz & 2) << 4) |
693 (entry->c << 3) |
694 (entry->d << 2) |
695 (entry->sh << 1) |
696 (entry->wt);
697 } else {
698 /* ITLB Data Array 2 */
699 return (entry->tc << 1) |
700 (entry->sa);
704 void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr,
705 uint32_t mem_value)
707 int array = (addr & 0x00800000) >> 23;
708 int index = (addr & 0x00003f00) >> 8;
709 tlb_t * entry = &s->utlb[index];
711 increment_urc(s); /* per utlb access */
713 if (array == 0) {
714 /* UTLB Data Array 1 */
715 if (entry->v) {
716 /* Overwriting valid entry in utlb. */
717 target_ulong address = entry->vpn << 10;
718 tlb_flush_page(env_cpu(s), address);
720 entry->ppn = (mem_value & 0x1ffffc00) >> 10;
721 entry->v = (mem_value & 0x00000100) >> 8;
722 entry->sz = (mem_value & 0x00000080) >> 6 |
723 (mem_value & 0x00000010) >> 4;
724 entry->pr = (mem_value & 0x00000060) >> 5;
725 entry->c = (mem_value & 0x00000008) >> 3;
726 entry->d = (mem_value & 0x00000004) >> 2;
727 entry->sh = (mem_value & 0x00000002) >> 1;
728 entry->wt = (mem_value & 0x00000001);
729 } else {
730 /* UTLB Data Array 2 */
731 entry->tc = (mem_value & 0x00000008) >> 3;
732 entry->sa = (mem_value & 0x00000007);
736 int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr)
738 int n;
739 int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
741 /* check area */
742 if (env->sr & (1u << SR_MD)) {
743 /* For privileged mode, P2 and P4 area is not cacheable. */
744 if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr)
745 return 0;
746 } else {
747 /* For user mode, only U0 area is cacheable. */
748 if (0x80000000 <= addr)
749 return 0;
753 * TODO : Evaluate CCR and check if the cache is on or off.
754 * Now CCR is not in CPUSH4State, but in SH7750State.
755 * When you move the ccr into CPUSH4State, the code will be
756 * as follows.
758 #if 0
759 /* check if operand cache is enabled or not. */
760 if (!(env->ccr & 1))
761 return 0;
762 #endif
764 /* if MMU is off, no check for TLB. */
765 if (env->mmucr & MMUCR_AT)
766 return 1;
768 /* check TLB */
769 n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid);
770 if (n >= 0)
771 return env->itlb[n].c;
773 n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid);
774 if (n >= 0)
775 return env->utlb[n].c;
777 return 0;
780 bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
782 if (interrupt_request & CPU_INTERRUPT_HARD) {
783 /* Delay slots are indivisible, ignore interrupts */
784 if (cpu_env(cs)->flags & TB_FLAG_DELAY_SLOT_MASK) {
785 return false;
786 } else {
787 superh_cpu_do_interrupt(cs);
788 return true;
791 return false;
794 bool superh_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
795 MMUAccessType access_type, int mmu_idx,
796 bool probe, uintptr_t retaddr)
798 CPUSH4State *env = cpu_env(cs);
799 int ret;
801 target_ulong physical;
802 int prot;
804 ret = get_physical_address(env, &physical, &prot, address, access_type);
806 if (ret == MMU_OK) {
807 address &= TARGET_PAGE_MASK;
808 physical &= TARGET_PAGE_MASK;
809 tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE);
810 return true;
812 if (probe) {
813 return false;
816 if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) {
817 env->pteh = (env->pteh & PTEH_ASID_MASK) | (address & PTEH_VPN_MASK);
820 env->tea = address;
821 switch (ret) {
822 case MMU_ITLB_MISS:
823 case MMU_DTLB_MISS_READ:
824 cs->exception_index = 0x040;
825 break;
826 case MMU_DTLB_MULTIPLE:
827 case MMU_ITLB_MULTIPLE:
828 cs->exception_index = 0x140;
829 break;
830 case MMU_ITLB_VIOLATION:
831 cs->exception_index = 0x0a0;
832 break;
833 case MMU_DTLB_MISS_WRITE:
834 cs->exception_index = 0x060;
835 break;
836 case MMU_DTLB_INITIAL_WRITE:
837 cs->exception_index = 0x080;
838 break;
839 case MMU_DTLB_VIOLATION_READ:
840 cs->exception_index = 0x0a0;
841 break;
842 case MMU_DTLB_VIOLATION_WRITE:
843 cs->exception_index = 0x0c0;
844 break;
845 case MMU_IADDR_ERROR:
846 case MMU_DADDR_ERROR_READ:
847 cs->exception_index = 0x0e0;
848 break;
849 case MMU_DADDR_ERROR_WRITE:
850 cs->exception_index = 0x100;
851 break;
852 default:
853 cpu_abort(cs, "Unhandled MMU fault");
855 cpu_loop_exit_restore(cs, retaddr);
857 #endif /* !CONFIG_USER_ONLY */