target/arm: Check supported KVM features globally (not per vCPU)
[qemu/ar7.git] / hw / arm / sbsa-ref.c
blobe40c868a829c0c488be3fb535dbc9a392b1a9233
1 /*
2 * ARM SBSA Reference Platform emulation
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "qemu/units.h"
25 #include "sysemu/device_tree.h"
26 #include "sysemu/numa.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/sysemu.h"
29 #include "exec/address-spaces.h"
30 #include "exec/hwaddr.h"
31 #include "kvm_arm.h"
32 #include "hw/arm/boot.h"
33 #include "hw/block/flash.h"
34 #include "hw/boards.h"
35 #include "hw/ide/internal.h"
36 #include "hw/ide/ahci_internal.h"
37 #include "hw/intc/arm_gicv3_common.h"
38 #include "hw/loader.h"
39 #include "hw/pci-host/gpex.h"
40 #include "hw/qdev-properties.h"
41 #include "hw/usb.h"
42 #include "hw/char/pl011.h"
43 #include "net/net.h"
45 #define RAMLIMIT_GB 8192
46 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
48 #define NUM_IRQS 256
49 #define NUM_SMMU_IRQS 4
50 #define NUM_SATA_PORTS 6
52 #define VIRTUAL_PMU_IRQ 7
53 #define ARCH_GIC_MAINT_IRQ 9
54 #define ARCH_TIMER_VIRT_IRQ 11
55 #define ARCH_TIMER_S_EL1_IRQ 13
56 #define ARCH_TIMER_NS_EL1_IRQ 14
57 #define ARCH_TIMER_NS_EL2_IRQ 10
59 enum {
60 SBSA_FLASH,
61 SBSA_MEM,
62 SBSA_CPUPERIPHS,
63 SBSA_GIC_DIST,
64 SBSA_GIC_REDIST,
65 SBSA_SMMU,
66 SBSA_UART,
67 SBSA_RTC,
68 SBSA_PCIE,
69 SBSA_PCIE_MMIO,
70 SBSA_PCIE_MMIO_HIGH,
71 SBSA_PCIE_PIO,
72 SBSA_PCIE_ECAM,
73 SBSA_GPIO,
74 SBSA_SECURE_UART,
75 SBSA_SECURE_UART_MM,
76 SBSA_SECURE_MEM,
77 SBSA_AHCI,
78 SBSA_EHCI,
81 typedef struct MemMapEntry {
82 hwaddr base;
83 hwaddr size;
84 } MemMapEntry;
86 typedef struct {
87 MachineState parent;
88 struct arm_boot_info bootinfo;
89 int smp_cpus;
90 void *fdt;
91 int fdt_size;
92 int psci_conduit;
93 DeviceState *gic;
94 PFlashCFI01 *flash[2];
95 } SBSAMachineState;
97 #define TYPE_SBSA_MACHINE MACHINE_TYPE_NAME("sbsa-ref")
98 #define SBSA_MACHINE(obj) \
99 OBJECT_CHECK(SBSAMachineState, (obj), TYPE_SBSA_MACHINE)
101 static const MemMapEntry sbsa_ref_memmap[] = {
102 /* 512M boot ROM */
103 [SBSA_FLASH] = { 0, 0x20000000 },
104 /* 512M secure memory */
105 [SBSA_SECURE_MEM] = { 0x20000000, 0x20000000 },
106 /* Space reserved for CPU peripheral devices */
107 [SBSA_CPUPERIPHS] = { 0x40000000, 0x00040000 },
108 [SBSA_GIC_DIST] = { 0x40060000, 0x00010000 },
109 [SBSA_GIC_REDIST] = { 0x40080000, 0x04000000 },
110 [SBSA_UART] = { 0x60000000, 0x00001000 },
111 [SBSA_RTC] = { 0x60010000, 0x00001000 },
112 [SBSA_GPIO] = { 0x60020000, 0x00001000 },
113 [SBSA_SECURE_UART] = { 0x60030000, 0x00001000 },
114 [SBSA_SECURE_UART_MM] = { 0x60040000, 0x00001000 },
115 [SBSA_SMMU] = { 0x60050000, 0x00020000 },
116 /* Space here reserved for more SMMUs */
117 [SBSA_AHCI] = { 0x60100000, 0x00010000 },
118 [SBSA_EHCI] = { 0x60110000, 0x00010000 },
119 /* Space here reserved for other devices */
120 [SBSA_PCIE_PIO] = { 0x7fff0000, 0x00010000 },
121 /* 32-bit address PCIE MMIO space */
122 [SBSA_PCIE_MMIO] = { 0x80000000, 0x70000000 },
123 /* 256M PCIE ECAM space */
124 [SBSA_PCIE_ECAM] = { 0xf0000000, 0x10000000 },
125 /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
126 [SBSA_PCIE_MMIO_HIGH] = { 0x100000000ULL, 0xFF00000000ULL },
127 [SBSA_MEM] = { 0x10000000000ULL, RAMLIMIT_BYTES },
130 static const int sbsa_ref_irqmap[] = {
131 [SBSA_UART] = 1,
132 [SBSA_RTC] = 2,
133 [SBSA_PCIE] = 3, /* ... to 6 */
134 [SBSA_GPIO] = 7,
135 [SBSA_SECURE_UART] = 8,
136 [SBSA_SECURE_UART_MM] = 9,
137 [SBSA_AHCI] = 10,
138 [SBSA_EHCI] = 11,
142 * Firmware on this machine only uses ACPI table to load OS, these limited
143 * device tree nodes are just to let firmware know the info which varies from
144 * command line parameters, so it is not necessary to be fully compatible
145 * with the kernel CPU and NUMA binding rules.
147 static void create_fdt(SBSAMachineState *sms)
149 void *fdt = create_device_tree(&sms->fdt_size);
150 const MachineState *ms = MACHINE(sms);
151 int nb_numa_nodes = ms->numa_state->num_nodes;
152 int cpu;
154 if (!fdt) {
155 error_report("create_device_tree() failed");
156 exit(1);
159 sms->fdt = fdt;
161 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
162 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
163 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
165 if (ms->numa_state->have_numa_distance) {
166 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
167 uint32_t *matrix = g_malloc0(size);
168 int idx, i, j;
170 for (i = 0; i < nb_numa_nodes; i++) {
171 for (j = 0; j < nb_numa_nodes; j++) {
172 idx = (i * nb_numa_nodes + j) * 3;
173 matrix[idx + 0] = cpu_to_be32(i);
174 matrix[idx + 1] = cpu_to_be32(j);
175 matrix[idx + 2] =
176 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
180 qemu_fdt_add_subnode(fdt, "/distance-map");
181 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
182 matrix, size);
183 g_free(matrix);
186 qemu_fdt_add_subnode(sms->fdt, "/cpus");
188 for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
189 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
190 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
191 CPUState *cs = CPU(armcpu);
193 qemu_fdt_add_subnode(sms->fdt, nodename);
195 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
196 qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
197 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
200 g_free(nodename);
204 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
206 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
207 const char *name,
208 const char *alias_prop_name)
211 * Create a single flash device. We use the same parameters as
212 * the flash devices on the Versatile Express board.
214 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
216 qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
217 qdev_prop_set_uint8(dev, "width", 4);
218 qdev_prop_set_uint8(dev, "device-width", 2);
219 qdev_prop_set_bit(dev, "big-endian", false);
220 qdev_prop_set_uint16(dev, "id0", 0x89);
221 qdev_prop_set_uint16(dev, "id1", 0x18);
222 qdev_prop_set_uint16(dev, "id2", 0x00);
223 qdev_prop_set_uint16(dev, "id3", 0x00);
224 qdev_prop_set_string(dev, "name", name);
225 object_property_add_child(OBJECT(sms), name, OBJECT(dev));
226 object_property_add_alias(OBJECT(sms), alias_prop_name,
227 OBJECT(dev), "drive");
228 return PFLASH_CFI01(dev);
231 static void sbsa_flash_create(SBSAMachineState *sms)
233 sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
234 sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
237 static void sbsa_flash_map1(PFlashCFI01 *flash,
238 hwaddr base, hwaddr size,
239 MemoryRegion *sysmem)
241 DeviceState *dev = DEVICE(flash);
243 assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
244 assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
245 qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
246 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
248 memory_region_add_subregion(sysmem, base,
249 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
250 0));
253 static void sbsa_flash_map(SBSAMachineState *sms,
254 MemoryRegion *sysmem,
255 MemoryRegion *secure_sysmem)
258 * Map two flash devices to fill the SBSA_FLASH space in the memmap.
259 * sysmem is the system memory space. secure_sysmem is the secure view
260 * of the system, and the first flash device should be made visible only
261 * there. The second flash device is visible to both secure and nonsecure.
263 hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
264 hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
266 sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
267 secure_sysmem);
268 sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
269 sysmem);
272 static bool sbsa_firmware_init(SBSAMachineState *sms,
273 MemoryRegion *sysmem,
274 MemoryRegion *secure_sysmem)
276 int i;
277 BlockBackend *pflash_blk0;
279 /* Map legacy -drive if=pflash to machine properties */
280 for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
281 pflash_cfi01_legacy_drive(sms->flash[i],
282 drive_get(IF_PFLASH, 0, i));
285 sbsa_flash_map(sms, sysmem, secure_sysmem);
287 pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
289 if (bios_name) {
290 char *fname;
291 MemoryRegion *mr;
292 int image_size;
294 if (pflash_blk0) {
295 error_report("The contents of the first flash device may be "
296 "specified with -bios or with -drive if=pflash... "
297 "but you cannot use both options at once");
298 exit(1);
301 /* Fall back to -bios */
303 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
304 if (!fname) {
305 error_report("Could not find ROM image '%s'", bios_name);
306 exit(1);
308 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
309 image_size = load_image_mr(fname, mr);
310 g_free(fname);
311 if (image_size < 0) {
312 error_report("Could not load ROM image '%s'", bios_name);
313 exit(1);
317 return pflash_blk0 || bios_name;
320 static void create_secure_ram(SBSAMachineState *sms,
321 MemoryRegion *secure_sysmem)
323 MemoryRegion *secram = g_new(MemoryRegion, 1);
324 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
325 hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
327 memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
328 &error_fatal);
329 memory_region_add_subregion(secure_sysmem, base, secram);
332 static void create_gic(SBSAMachineState *sms)
334 unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
335 SysBusDevice *gicbusdev;
336 const char *gictype;
337 uint32_t redist0_capacity, redist0_count;
338 int i;
340 gictype = gicv3_class_name();
342 sms->gic = qdev_new(gictype);
343 qdev_prop_set_uint32(sms->gic, "revision", 3);
344 qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
346 * Note that the num-irq property counts both internal and external
347 * interrupts; there are always 32 of the former (mandated by GIC spec).
349 qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
350 qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
352 redist0_capacity =
353 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
354 redist0_count = MIN(smp_cpus, redist0_capacity);
356 qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1);
357 qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count);
359 gicbusdev = SYS_BUS_DEVICE(sms->gic);
360 sysbus_realize_and_unref(gicbusdev, &error_fatal);
361 sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
362 sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
365 * Wire the outputs from each CPU's generic timer and the GICv3
366 * maintenance interrupt signal to the appropriate GIC PPI inputs,
367 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
369 for (i = 0; i < smp_cpus; i++) {
370 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
371 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
372 int irq;
374 * Mapping from the output timer irq lines from the CPU to the
375 * GIC PPI inputs used for this board.
377 const int timer_irq[] = {
378 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
379 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
380 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
381 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
384 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
385 qdev_connect_gpio_out(cpudev, irq,
386 qdev_get_gpio_in(sms->gic,
387 ppibase + timer_irq[irq]));
390 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
391 qdev_get_gpio_in(sms->gic, ppibase
392 + ARCH_GIC_MAINT_IRQ));
393 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
394 qdev_get_gpio_in(sms->gic, ppibase
395 + VIRTUAL_PMU_IRQ));
397 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
398 sysbus_connect_irq(gicbusdev, i + smp_cpus,
399 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
400 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
401 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
402 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
403 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
407 static void create_uart(const SBSAMachineState *sms, int uart,
408 MemoryRegion *mem, Chardev *chr)
410 hwaddr base = sbsa_ref_memmap[uart].base;
411 int irq = sbsa_ref_irqmap[uart];
412 DeviceState *dev = qdev_new(TYPE_PL011);
413 SysBusDevice *s = SYS_BUS_DEVICE(dev);
415 qdev_prop_set_chr(dev, "chardev", chr);
416 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
417 memory_region_add_subregion(mem, base,
418 sysbus_mmio_get_region(s, 0));
419 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
422 static void create_rtc(const SBSAMachineState *sms)
424 hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
425 int irq = sbsa_ref_irqmap[SBSA_RTC];
427 sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
430 static DeviceState *gpio_key_dev;
431 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
433 /* use gpio Pin 3 for power button event */
434 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
437 static Notifier sbsa_ref_powerdown_notifier = {
438 .notify = sbsa_ref_powerdown_req
441 static void create_gpio(const SBSAMachineState *sms)
443 DeviceState *pl061_dev;
444 hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
445 int irq = sbsa_ref_irqmap[SBSA_GPIO];
447 pl061_dev = sysbus_create_simple("pl061", base,
448 qdev_get_gpio_in(sms->gic, irq));
450 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
451 qdev_get_gpio_in(pl061_dev, 3));
453 /* connect powerdown request */
454 qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
457 static void create_ahci(const SBSAMachineState *sms)
459 hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
460 int irq = sbsa_ref_irqmap[SBSA_AHCI];
461 DeviceState *dev;
462 DriveInfo *hd[NUM_SATA_PORTS];
463 SysbusAHCIState *sysahci;
464 AHCIState *ahci;
465 int i;
467 dev = qdev_new("sysbus-ahci");
468 qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
469 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
470 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
471 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
473 sysahci = SYSBUS_AHCI(dev);
474 ahci = &sysahci->ahci;
475 ide_drive_get(hd, ARRAY_SIZE(hd));
476 for (i = 0; i < ahci->ports; i++) {
477 if (hd[i] == NULL) {
478 continue;
480 ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
484 static void create_ehci(const SBSAMachineState *sms)
486 hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
487 int irq = sbsa_ref_irqmap[SBSA_EHCI];
489 sysbus_create_simple("platform-ehci-usb", base,
490 qdev_get_gpio_in(sms->gic, irq));
493 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
495 hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
496 int irq = sbsa_ref_irqmap[SBSA_SMMU];
497 DeviceState *dev;
498 int i;
500 dev = qdev_new("arm-smmuv3");
502 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
503 &error_abort);
504 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
505 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
506 for (i = 0; i < NUM_SMMU_IRQS; i++) {
507 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
508 qdev_get_gpio_in(sms->gic, irq + 1));
512 static void create_pcie(SBSAMachineState *sms)
514 hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
515 hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
516 hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
517 hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
518 hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
519 hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
520 hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
521 int irq = sbsa_ref_irqmap[SBSA_PCIE];
522 MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
523 MemoryRegion *ecam_alias, *ecam_reg;
524 DeviceState *dev;
525 PCIHostState *pci;
526 int i;
528 dev = qdev_new(TYPE_GPEX_HOST);
529 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
531 /* Map ECAM space */
532 ecam_alias = g_new0(MemoryRegion, 1);
533 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
534 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
535 ecam_reg, 0, size_ecam);
536 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
538 /* Map the MMIO space */
539 mmio_alias = g_new0(MemoryRegion, 1);
540 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
541 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
542 mmio_reg, base_mmio, size_mmio);
543 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
545 /* Map the MMIO_HIGH space */
546 mmio_alias_high = g_new0(MemoryRegion, 1);
547 memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
548 mmio_reg, base_mmio_high, size_mmio_high);
549 memory_region_add_subregion(get_system_memory(), base_mmio_high,
550 mmio_alias_high);
552 /* Map IO port space */
553 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
555 for (i = 0; i < GPEX_NUM_IRQS; i++) {
556 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
557 qdev_get_gpio_in(sms->gic, irq + 1));
558 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
561 pci = PCI_HOST_BRIDGE(dev);
562 if (pci->bus) {
563 for (i = 0; i < nb_nics; i++) {
564 NICInfo *nd = &nd_table[i];
566 if (!nd->model) {
567 nd->model = g_strdup("e1000e");
570 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
574 pci_create_simple(pci->bus, -1, "VGA");
576 create_smmu(sms, pci->bus);
579 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
581 const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
582 bootinfo);
584 *fdt_size = board->fdt_size;
585 return board->fdt;
588 static void sbsa_ref_init(MachineState *machine)
590 unsigned int smp_cpus = machine->smp.cpus;
591 unsigned int max_cpus = machine->smp.max_cpus;
592 SBSAMachineState *sms = SBSA_MACHINE(machine);
593 MachineClass *mc = MACHINE_GET_CLASS(machine);
594 MemoryRegion *sysmem = get_system_memory();
595 MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
596 bool firmware_loaded;
597 const CPUArchIdList *possible_cpus;
598 int n, sbsa_max_cpus;
600 if (strcmp(machine->cpu_type, ARM_CPU_TYPE_NAME("cortex-a57"))) {
601 error_report("sbsa-ref: CPU type other than the built-in "
602 "cortex-a57 not supported");
603 exit(1);
606 if (kvm_enabled()) {
607 error_report("sbsa-ref: KVM is not supported for this machine");
608 exit(1);
612 * The Secure view of the world is the same as the NonSecure,
613 * but with a few extra devices. Create it as a container region
614 * containing the system memory at low priority; any secure-only
615 * devices go in at higher priority and take precedence.
617 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
618 UINT64_MAX);
619 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
621 firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
623 if (machine->kernel_filename && firmware_loaded) {
624 error_report("sbsa-ref: No fw_cfg device on this machine, "
625 "so -kernel option is not supported when firmware loaded, "
626 "please load OS from hard disk instead");
627 exit(1);
631 * This machine has EL3 enabled, external firmware should supply PSCI
632 * implementation, so the QEMU's internal PSCI is disabled.
634 sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
636 sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
638 if (max_cpus > sbsa_max_cpus) {
639 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
640 "supported by machine 'sbsa-ref' (%d)",
641 max_cpus, sbsa_max_cpus);
642 exit(1);
645 sms->smp_cpus = smp_cpus;
647 if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
648 error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
649 exit(1);
652 possible_cpus = mc->possible_cpu_arch_ids(machine);
653 for (n = 0; n < possible_cpus->len; n++) {
654 Object *cpuobj;
655 CPUState *cs;
657 if (n >= smp_cpus) {
658 break;
661 cpuobj = object_new(possible_cpus->cpus[n].type);
662 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
663 "mp-affinity", NULL);
665 cs = CPU(cpuobj);
666 cs->cpu_index = n;
668 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
669 &error_fatal);
671 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
672 object_property_set_int(cpuobj,
673 sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
674 "reset-cbar", &error_abort);
677 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
678 &error_abort);
680 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
681 "secure-memory", &error_abort);
683 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
684 object_unref(cpuobj);
687 memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
688 machine->ram);
690 create_fdt(sms);
692 create_secure_ram(sms, secure_sysmem);
694 create_gic(sms);
696 create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
697 create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
698 /* Second secure UART for RAS and MM from EL0 */
699 create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
701 create_rtc(sms);
703 create_gpio(sms);
705 create_ahci(sms);
707 create_ehci(sms);
709 create_pcie(sms);
711 sms->bootinfo.ram_size = machine->ram_size;
712 sms->bootinfo.nb_cpus = smp_cpus;
713 sms->bootinfo.board_id = -1;
714 sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
715 sms->bootinfo.get_dtb = sbsa_ref_dtb;
716 sms->bootinfo.firmware_loaded = firmware_loaded;
717 arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
720 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
722 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
723 return arm_cpu_mp_affinity(idx, clustersz);
726 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
728 unsigned int max_cpus = ms->smp.max_cpus;
729 SBSAMachineState *sms = SBSA_MACHINE(ms);
730 int n;
732 if (ms->possible_cpus) {
733 assert(ms->possible_cpus->len == max_cpus);
734 return ms->possible_cpus;
737 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
738 sizeof(CPUArchId) * max_cpus);
739 ms->possible_cpus->len = max_cpus;
740 for (n = 0; n < ms->possible_cpus->len; n++) {
741 ms->possible_cpus->cpus[n].type = ms->cpu_type;
742 ms->possible_cpus->cpus[n].arch_id =
743 sbsa_ref_cpu_mp_affinity(sms, n);
744 ms->possible_cpus->cpus[n].props.has_thread_id = true;
745 ms->possible_cpus->cpus[n].props.thread_id = n;
747 return ms->possible_cpus;
750 static CpuInstanceProperties
751 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
753 MachineClass *mc = MACHINE_GET_CLASS(ms);
754 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
756 assert(cpu_index < possible_cpus->len);
757 return possible_cpus->cpus[cpu_index].props;
760 static int64_t
761 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
763 return idx % ms->numa_state->num_nodes;
766 static void sbsa_ref_instance_init(Object *obj)
768 SBSAMachineState *sms = SBSA_MACHINE(obj);
770 sbsa_flash_create(sms);
773 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
775 MachineClass *mc = MACHINE_CLASS(oc);
777 mc->init = sbsa_ref_init;
778 mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
779 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57");
780 mc->max_cpus = 512;
781 mc->pci_allow_0_address = true;
782 mc->minimum_page_bits = 12;
783 mc->block_default_type = IF_IDE;
784 mc->no_cdrom = 1;
785 mc->default_ram_size = 1 * GiB;
786 mc->default_ram_id = "sbsa-ref.ram";
787 mc->default_cpus = 4;
788 mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
789 mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
790 mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
793 static const TypeInfo sbsa_ref_info = {
794 .name = TYPE_SBSA_MACHINE,
795 .parent = TYPE_MACHINE,
796 .instance_init = sbsa_ref_instance_init,
797 .class_init = sbsa_ref_class_init,
798 .instance_size = sizeof(SBSAMachineState),
801 static void sbsa_ref_machine_init(void)
803 type_register_static(&sbsa_ref_info);
806 type_init(sbsa_ref_machine_init);