target/sparc: Prefer fast cpu_env() over slower CPU QOM cast macro
[qemu/ar7.git] / target / sparc / ldst_helper.c
blobe581bb42acf5a4897d25ff6ce5ea4ca3a81aab26
1 /*
2 * Helpers for loads and stores
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "tcg/tcg.h"
24 #include "exec/helper-proto.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
27 #include "asi.h"
29 //#define DEBUG_MMU
30 //#define DEBUG_MXCC
31 //#define DEBUG_UNASSIGNED
32 //#define DEBUG_ASI
33 //#define DEBUG_CACHE_CONTROL
35 #ifdef DEBUG_MMU
36 #define DPRINTF_MMU(fmt, ...) \
37 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF_MMU(fmt, ...) do {} while (0)
40 #endif
42 #ifdef DEBUG_MXCC
43 #define DPRINTF_MXCC(fmt, ...) \
44 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
47 #endif
49 #ifdef DEBUG_ASI
50 #define DPRINTF_ASI(fmt, ...) \
51 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
52 #endif
54 #ifdef DEBUG_CACHE_CONTROL
55 #define DPRINTF_CACHE_CONTROL(fmt, ...) \
56 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
59 #endif
61 #ifdef TARGET_SPARC64
62 #ifndef TARGET_ABI32
63 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
64 #else
65 #define AM_CHECK(env1) (1)
66 #endif
67 #endif
69 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
70 /* Calculates TSB pointer value for fault page size
71 * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
72 * UA2005 holds the page size configuration in mmu_ctx registers */
73 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
74 const SparcV9MMU *mmu, const int idx)
76 uint64_t tsb_register;
77 int page_size;
78 if (cpu_has_hypervisor(env)) {
79 int tsb_index = 0;
80 int ctx = mmu->tag_access & 0x1fffULL;
81 uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
82 tsb_index = idx;
83 tsb_index |= ctx ? 2 : 0;
84 page_size = idx ? ctx_register >> 8 : ctx_register;
85 page_size &= 7;
86 tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
87 } else {
88 page_size = idx;
89 tsb_register = mmu->tsb;
91 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
92 int tsb_size = tsb_register & 0xf;
94 uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
96 /* move va bits to correct position,
97 * the context bits will be masked out later */
98 uint64_t va = mmu->tag_access >> (3 * page_size + 9);
100 /* calculate tsb_base mask and adjust va if split is in use */
101 if (tsb_split) {
102 if (idx == 0) {
103 va &= ~(1ULL << (13 + tsb_size));
104 } else {
105 va |= (1ULL << (13 + tsb_size));
107 tsb_base_mask <<= 1;
110 return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
113 /* Calculates tag target register value by reordering bits
114 in tag access register */
115 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
117 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
120 static void replace_tlb_entry(SparcTLBEntry *tlb,
121 uint64_t tlb_tag, uint64_t tlb_tte,
122 CPUSPARCState *env)
124 target_ulong mask, size, va, offset;
126 /* flush page range if translation is valid */
127 if (TTE_IS_VALID(tlb->tte)) {
128 CPUState *cs = env_cpu(env);
130 size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
131 mask = 1ULL + ~size;
133 va = tlb->tag & mask;
135 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
136 tlb_flush_page(cs, va + offset);
140 tlb->tag = tlb_tag;
141 tlb->tte = tlb_tte;
144 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
145 const char *strmmu, CPUSPARCState *env1)
147 unsigned int i;
148 target_ulong mask;
149 uint64_t context;
151 int is_demap_context = (demap_addr >> 6) & 1;
153 /* demap context */
154 switch ((demap_addr >> 4) & 3) {
155 case 0: /* primary */
156 context = env1->dmmu.mmu_primary_context;
157 break;
158 case 1: /* secondary */
159 context = env1->dmmu.mmu_secondary_context;
160 break;
161 case 2: /* nucleus */
162 context = 0;
163 break;
164 case 3: /* reserved */
165 default:
166 return;
169 for (i = 0; i < 64; i++) {
170 if (TTE_IS_VALID(tlb[i].tte)) {
172 if (is_demap_context) {
173 /* will remove non-global entries matching context value */
174 if (TTE_IS_GLOBAL(tlb[i].tte) ||
175 !tlb_compare_context(&tlb[i], context)) {
176 continue;
178 } else {
179 /* demap page
180 will remove any entry matching VA */
181 mask = 0xffffffffffffe000ULL;
182 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
184 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
185 continue;
188 /* entry should be global or matching context value */
189 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
190 !tlb_compare_context(&tlb[i], context)) {
191 continue;
195 replace_tlb_entry(&tlb[i], 0, 0, env1);
196 #ifdef DEBUG_MMU
197 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
198 dump_mmu(env1);
199 #endif
204 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
205 uint64_t sun4v_tte)
207 uint64_t sun4u_tte;
208 if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
209 /* is already in the sun4u format */
210 return sun4v_tte;
212 sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
213 sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
214 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
215 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
216 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
217 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
218 TTE_SIDEEFFECT_BIT);
219 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
220 sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
221 return sun4u_tte;
224 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
225 uint64_t tlb_tag, uint64_t tlb_tte,
226 const char *strmmu, CPUSPARCState *env1,
227 uint64_t addr)
229 unsigned int i, replace_used;
231 tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
232 if (cpu_has_hypervisor(env1)) {
233 uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
234 uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
235 uint32_t new_ctx = tlb_tag & 0x1fffU;
236 for (i = 0; i < 64; i++) {
237 uint32_t ctx = tlb[i].tag & 0x1fffU;
238 /* check if new mapping overlaps an existing one */
239 if (new_ctx == ctx) {
240 uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
241 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
242 if (new_vaddr == vaddr
243 || (new_vaddr < vaddr + size
244 && vaddr < new_vaddr + new_size)) {
245 DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
246 new_vaddr);
247 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
248 return;
254 /* Try replacing invalid entry */
255 for (i = 0; i < 64; i++) {
256 if (!TTE_IS_VALID(tlb[i].tte)) {
257 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
258 #ifdef DEBUG_MMU
259 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
260 dump_mmu(env1);
261 #endif
262 return;
266 /* All entries are valid, try replacing unlocked entry */
268 for (replace_used = 0; replace_used < 2; ++replace_used) {
270 /* Used entries are not replaced on first pass */
272 for (i = 0; i < 64; i++) {
273 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
275 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
276 #ifdef DEBUG_MMU
277 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
278 strmmu, (replace_used ? "used" : "unused"), i);
279 dump_mmu(env1);
280 #endif
281 return;
285 /* Now reset used bit and search for unused entries again */
287 for (i = 0; i < 64; i++) {
288 TTE_SET_UNUSED(tlb[i].tte);
292 #ifdef DEBUG_MMU
293 DPRINTF_MMU("%s lru replacement: no free entries available, "
294 "replacing the last one\n", strmmu);
295 #endif
296 /* corner case: the last entry is replaced anyway */
297 replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
300 #endif
302 #ifdef TARGET_SPARC64
303 /* returns true if access using this ASI is to have address translated by MMU
304 otherwise access is to raw physical address */
305 /* TODO: check sparc32 bits */
306 static inline int is_translating_asi(int asi)
308 /* Ultrasparc IIi translating asi
309 - note this list is defined by cpu implementation
311 switch (asi) {
312 case 0x04 ... 0x11:
313 case 0x16 ... 0x19:
314 case 0x1E ... 0x1F:
315 case 0x24 ... 0x2C:
316 case 0x70 ... 0x73:
317 case 0x78 ... 0x79:
318 case 0x80 ... 0xFF:
319 return 1;
321 default:
322 return 0;
326 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
328 if (AM_CHECK(env1)) {
329 addr &= 0xffffffffULL;
331 return addr;
334 static inline target_ulong asi_address_mask(CPUSPARCState *env,
335 int asi, target_ulong addr)
337 if (is_translating_asi(asi)) {
338 addr = address_mask(env, addr);
340 return addr;
343 #ifndef CONFIG_USER_ONLY
344 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
346 /* ASIs >= 0x80 are user mode.
347 * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
348 * ASIs <= 0x2f are super mode.
350 if (asi < 0x80
351 && !cpu_hypervisor_mode(env)
352 && (!cpu_supervisor_mode(env)
353 || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
354 cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
357 #endif /* !CONFIG_USER_ONLY */
358 #endif
360 #if defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)
361 static void do_check_align(CPUSPARCState *env, target_ulong addr,
362 uint32_t align, uintptr_t ra)
364 if (addr & align) {
365 cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
368 #endif
370 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
371 defined(DEBUG_MXCC)
372 static void dump_mxcc(CPUSPARCState *env)
374 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
375 "\n",
376 env->mxccdata[0], env->mxccdata[1],
377 env->mxccdata[2], env->mxccdata[3]);
378 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
379 "\n"
380 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
381 "\n",
382 env->mxccregs[0], env->mxccregs[1],
383 env->mxccregs[2], env->mxccregs[3],
384 env->mxccregs[4], env->mxccregs[5],
385 env->mxccregs[6], env->mxccregs[7]);
387 #endif
389 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
390 && defined(DEBUG_ASI)
391 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
392 uint64_t r1)
394 switch (size) {
395 case 1:
396 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
397 addr, asi, r1 & 0xff);
398 break;
399 case 2:
400 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
401 addr, asi, r1 & 0xffff);
402 break;
403 case 4:
404 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
405 addr, asi, r1 & 0xffffffff);
406 break;
407 case 8:
408 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
409 addr, asi, r1);
410 break;
413 #endif
415 #ifndef CONFIG_USER_ONLY
416 #ifndef TARGET_SPARC64
417 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
418 bool is_write, bool is_exec, int is_asi,
419 unsigned size, uintptr_t retaddr)
421 CPUSPARCState *env = cpu_env(cs);
422 int fault_type;
424 #ifdef DEBUG_UNASSIGNED
425 if (is_asi) {
426 printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
427 " asi 0x%02x from " TARGET_FMT_lx "\n",
428 is_exec ? "exec" : is_write ? "write" : "read", size,
429 size == 1 ? "" : "s", addr, is_asi, env->pc);
430 } else {
431 printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
432 " from " TARGET_FMT_lx "\n",
433 is_exec ? "exec" : is_write ? "write" : "read", size,
434 size == 1 ? "" : "s", addr, env->pc);
436 #endif
437 /* Don't overwrite translation and access faults */
438 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
439 if ((fault_type > 4) || (fault_type == 0)) {
440 env->mmuregs[3] = 0; /* Fault status register */
441 if (is_asi) {
442 env->mmuregs[3] |= 1 << 16;
444 if (env->psrs) {
445 env->mmuregs[3] |= 1 << 5;
447 if (is_exec) {
448 env->mmuregs[3] |= 1 << 6;
450 if (is_write) {
451 env->mmuregs[3] |= 1 << 7;
453 env->mmuregs[3] |= (5 << 2) | 2;
454 /* SuperSPARC will never place instruction fault addresses in the FAR */
455 if (!is_exec) {
456 env->mmuregs[4] = addr; /* Fault address register */
459 /* overflow (same type fault was not read before another fault) */
460 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
461 env->mmuregs[3] |= 1;
464 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
465 int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
466 cpu_raise_exception_ra(env, tt, retaddr);
470 * flush neverland mappings created during no-fault mode,
471 * so the sequential MMU faults report proper fault types
473 if (env->mmuregs[0] & MMU_NF) {
474 tlb_flush(cs);
477 #else
478 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
479 bool is_write, bool is_exec, int is_asi,
480 unsigned size, uintptr_t retaddr)
482 CPUSPARCState *env = cpu_env(cs);
484 #ifdef DEBUG_UNASSIGNED
485 printf("Unassigned mem access to " HWADDR_FMT_plx " from " TARGET_FMT_lx
486 "\n", addr, env->pc);
487 #endif
489 if (is_exec) { /* XXX has_hypervisor */
490 if (env->lsu & (IMMU_E)) {
491 cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr);
492 } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
493 cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr);
495 } else {
496 if (env->lsu & (DMMU_E)) {
497 cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr);
498 } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
499 cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr);
503 #endif
504 #endif
506 #ifndef TARGET_SPARC64
507 #ifndef CONFIG_USER_ONLY
510 /* Leon3 cache control */
512 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
513 uint64_t val, int size)
515 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
516 addr, val, size);
518 if (size != 4) {
519 DPRINTF_CACHE_CONTROL("32bits only\n");
520 return;
523 switch (addr) {
524 case 0x00: /* Cache control */
526 /* These values must always be read as zeros */
527 val &= ~CACHE_CTRL_FD;
528 val &= ~CACHE_CTRL_FI;
529 val &= ~CACHE_CTRL_IB;
530 val &= ~CACHE_CTRL_IP;
531 val &= ~CACHE_CTRL_DP;
533 env->cache_control = val;
534 break;
535 case 0x04: /* Instruction cache configuration */
536 case 0x08: /* Data cache configuration */
537 /* Read Only */
538 break;
539 default:
540 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
541 break;
545 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
546 int size)
548 uint64_t ret = 0;
550 if (size != 4) {
551 DPRINTF_CACHE_CONTROL("32bits only\n");
552 return 0;
555 switch (addr) {
556 case 0x00: /* Cache control */
557 ret = env->cache_control;
558 break;
560 /* Configuration registers are read and only always keep those
561 predefined values */
563 case 0x04: /* Instruction cache configuration */
564 ret = 0x10220000;
565 break;
566 case 0x08: /* Data cache configuration */
567 ret = 0x18220000;
568 break;
569 default:
570 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
571 break;
573 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
574 addr, ret, size);
575 return ret;
578 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
579 int asi, uint32_t memop)
581 int size = 1 << (memop & MO_SIZE);
582 int sign = memop & MO_SIGN;
583 CPUState *cs = env_cpu(env);
584 uint64_t ret = 0;
585 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
586 uint32_t last_addr = addr;
587 #endif
588 MemOpIdx oi;
590 do_check_align(env, addr, size - 1, GETPC());
591 switch (asi) {
592 case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
593 /* case ASI_LEON_CACHEREGS: Leon3 cache control */
594 switch (addr) {
595 case 0x00: /* Leon3 Cache Control */
596 case 0x08: /* Leon3 Instruction Cache config */
597 case 0x0C: /* Leon3 Date Cache config */
598 if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
599 ret = leon3_cache_control_ld(env, addr, size);
601 break;
602 case 0x01c00a00: /* MXCC control register */
603 if (size == 8) {
604 ret = env->mxccregs[3];
605 } else {
606 qemu_log_mask(LOG_UNIMP,
607 "%08x: unimplemented access size: %d\n", addr,
608 size);
610 break;
611 case 0x01c00a04: /* MXCC control register */
612 if (size == 4) {
613 ret = env->mxccregs[3];
614 } else {
615 qemu_log_mask(LOG_UNIMP,
616 "%08x: unimplemented access size: %d\n", addr,
617 size);
619 break;
620 case 0x01c00c00: /* Module reset register */
621 if (size == 8) {
622 ret = env->mxccregs[5];
623 /* should we do something here? */
624 } else {
625 qemu_log_mask(LOG_UNIMP,
626 "%08x: unimplemented access size: %d\n", addr,
627 size);
629 break;
630 case 0x01c00f00: /* MBus port address register */
631 if (size == 8) {
632 ret = env->mxccregs[7];
633 } else {
634 qemu_log_mask(LOG_UNIMP,
635 "%08x: unimplemented access size: %d\n", addr,
636 size);
638 break;
639 default:
640 qemu_log_mask(LOG_UNIMP,
641 "%08x: unimplemented address, size: %d\n", addr,
642 size);
643 break;
645 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
646 "addr = %08x -> ret = %" PRIx64 ","
647 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
648 #ifdef DEBUG_MXCC
649 dump_mxcc(env);
650 #endif
651 break;
652 case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
653 case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
655 int mmulev;
657 mmulev = (addr >> 8) & 15;
658 if (mmulev > 4) {
659 ret = 0;
660 } else {
661 ret = mmu_probe(env, addr, mmulev);
663 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
664 addr, mmulev, ret);
666 break;
667 case ASI_M_MMUREGS: /* SuperSparc MMU regs */
668 case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
670 int reg = (addr >> 8) & 0x1f;
672 ret = env->mmuregs[reg];
673 if (reg == 3) { /* Fault status cleared on read */
674 env->mmuregs[3] = 0;
675 } else if (reg == 0x13) { /* Fault status read */
676 ret = env->mmuregs[3];
677 } else if (reg == 0x14) { /* Fault address read */
678 ret = env->mmuregs[4];
680 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
682 break;
683 case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
684 case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */
685 case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */
686 break;
687 case ASI_KERNELTXT: /* Supervisor code access */
688 oi = make_memop_idx(memop, cpu_mmu_index(env_cpu(env), true));
689 switch (size) {
690 case 1:
691 ret = cpu_ldb_code_mmu(env, addr, oi, GETPC());
692 break;
693 case 2:
694 ret = cpu_ldw_code_mmu(env, addr, oi, GETPC());
695 break;
696 default:
697 case 4:
698 ret = cpu_ldl_code_mmu(env, addr, oi, GETPC());
699 break;
700 case 8:
701 ret = cpu_ldq_code_mmu(env, addr, oi, GETPC());
702 break;
704 break;
705 case ASI_M_TXTC_TAG: /* SparcStation 5 I-cache tag */
706 case ASI_M_TXTC_DATA: /* SparcStation 5 I-cache data */
707 case ASI_M_DATAC_TAG: /* SparcStation 5 D-cache tag */
708 case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
709 break;
710 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
712 MemTxResult result;
713 hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
715 switch (size) {
716 case 1:
717 ret = address_space_ldub(cs->as, access_addr,
718 MEMTXATTRS_UNSPECIFIED, &result);
719 break;
720 case 2:
721 ret = address_space_lduw(cs->as, access_addr,
722 MEMTXATTRS_UNSPECIFIED, &result);
723 break;
724 default:
725 case 4:
726 ret = address_space_ldl(cs->as, access_addr,
727 MEMTXATTRS_UNSPECIFIED, &result);
728 break;
729 case 8:
730 ret = address_space_ldq(cs->as, access_addr,
731 MEMTXATTRS_UNSPECIFIED, &result);
732 break;
735 if (result != MEMTX_OK) {
736 sparc_raise_mmu_fault(cs, access_addr, false, false, false,
737 size, GETPC());
739 break;
741 case 0x30: /* Turbosparc secondary cache diagnostic */
742 case 0x31: /* Turbosparc RAM snoop */
743 case 0x32: /* Turbosparc page table descriptor diagnostic */
744 case 0x39: /* data cache diagnostic register */
745 ret = 0;
746 break;
747 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
749 int reg = (addr >> 8) & 3;
751 switch (reg) {
752 case 0: /* Breakpoint Value (Addr) */
753 ret = env->mmubpregs[reg];
754 break;
755 case 1: /* Breakpoint Mask */
756 ret = env->mmubpregs[reg];
757 break;
758 case 2: /* Breakpoint Control */
759 ret = env->mmubpregs[reg];
760 break;
761 case 3: /* Breakpoint Status */
762 ret = env->mmubpregs[reg];
763 env->mmubpregs[reg] = 0ULL;
764 break;
766 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
767 ret);
769 break;
770 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
771 ret = env->mmubpctrv;
772 break;
773 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
774 ret = env->mmubpctrc;
775 break;
776 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
777 ret = env->mmubpctrs;
778 break;
779 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
780 ret = env->mmubpaction;
781 break;
782 case ASI_USERTXT: /* User code access, XXX */
783 default:
784 sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC());
785 ret = 0;
786 break;
788 case ASI_USERDATA: /* User data access */
789 case ASI_KERNELDATA: /* Supervisor data access */
790 case ASI_P: /* Implicit primary context data access (v9 only?) */
791 case ASI_M_BYPASS: /* MMU passthrough */
792 case ASI_LEON_BYPASS: /* LEON MMU passthrough */
793 /* These are always handled inline. */
794 g_assert_not_reached();
796 if (sign) {
797 switch (size) {
798 case 1:
799 ret = (int8_t) ret;
800 break;
801 case 2:
802 ret = (int16_t) ret;
803 break;
804 case 4:
805 ret = (int32_t) ret;
806 break;
807 default:
808 break;
811 #ifdef DEBUG_ASI
812 dump_asi("read ", last_addr, asi, size, ret);
813 #endif
814 return ret;
817 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
818 int asi, uint32_t memop)
820 int size = 1 << (memop & MO_SIZE);
821 CPUState *cs = env_cpu(env);
823 do_check_align(env, addr, size - 1, GETPC());
824 switch (asi) {
825 case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
826 /* case ASI_LEON_CACHEREGS: Leon3 cache control */
827 switch (addr) {
828 case 0x00: /* Leon3 Cache Control */
829 case 0x08: /* Leon3 Instruction Cache config */
830 case 0x0C: /* Leon3 Date Cache config */
831 if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
832 leon3_cache_control_st(env, addr, val, size);
834 break;
836 case 0x01c00000: /* MXCC stream data register 0 */
837 if (size == 8) {
838 env->mxccdata[0] = val;
839 } else {
840 qemu_log_mask(LOG_UNIMP,
841 "%08x: unimplemented access size: %d\n", addr,
842 size);
844 break;
845 case 0x01c00008: /* MXCC stream data register 1 */
846 if (size == 8) {
847 env->mxccdata[1] = val;
848 } else {
849 qemu_log_mask(LOG_UNIMP,
850 "%08x: unimplemented access size: %d\n", addr,
851 size);
853 break;
854 case 0x01c00010: /* MXCC stream data register 2 */
855 if (size == 8) {
856 env->mxccdata[2] = val;
857 } else {
858 qemu_log_mask(LOG_UNIMP,
859 "%08x: unimplemented access size: %d\n", addr,
860 size);
862 break;
863 case 0x01c00018: /* MXCC stream data register 3 */
864 if (size == 8) {
865 env->mxccdata[3] = val;
866 } else {
867 qemu_log_mask(LOG_UNIMP,
868 "%08x: unimplemented access size: %d\n", addr,
869 size);
871 break;
872 case 0x01c00100: /* MXCC stream source */
874 int i;
876 if (size == 8) {
877 env->mxccregs[0] = val;
878 } else {
879 qemu_log_mask(LOG_UNIMP,
880 "%08x: unimplemented access size: %d\n", addr,
881 size);
884 for (i = 0; i < 4; i++) {
885 MemTxResult result;
886 hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i;
888 env->mxccdata[i] = address_space_ldq(cs->as,
889 access_addr,
890 MEMTXATTRS_UNSPECIFIED,
891 &result);
892 if (result != MEMTX_OK) {
893 /* TODO: investigate whether this is the right behaviour */
894 sparc_raise_mmu_fault(cs, access_addr, false, false,
895 false, size, GETPC());
898 break;
900 case 0x01c00200: /* MXCC stream destination */
902 int i;
904 if (size == 8) {
905 env->mxccregs[1] = val;
906 } else {
907 qemu_log_mask(LOG_UNIMP,
908 "%08x: unimplemented access size: %d\n", addr,
909 size);
912 for (i = 0; i < 4; i++) {
913 MemTxResult result;
914 hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i;
916 address_space_stq(cs->as, access_addr, env->mxccdata[i],
917 MEMTXATTRS_UNSPECIFIED, &result);
919 if (result != MEMTX_OK) {
920 /* TODO: investigate whether this is the right behaviour */
921 sparc_raise_mmu_fault(cs, access_addr, true, false,
922 false, size, GETPC());
925 break;
927 case 0x01c00a00: /* MXCC control register */
928 if (size == 8) {
929 env->mxccregs[3] = val;
930 } else {
931 qemu_log_mask(LOG_UNIMP,
932 "%08x: unimplemented access size: %d\n", addr,
933 size);
935 break;
936 case 0x01c00a04: /* MXCC control register */
937 if (size == 4) {
938 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
939 | val;
940 } else {
941 qemu_log_mask(LOG_UNIMP,
942 "%08x: unimplemented access size: %d\n", addr,
943 size);
945 break;
946 case 0x01c00e00: /* MXCC error register */
947 /* writing a 1 bit clears the error */
948 if (size == 8) {
949 env->mxccregs[6] &= ~val;
950 } else {
951 qemu_log_mask(LOG_UNIMP,
952 "%08x: unimplemented access size: %d\n", addr,
953 size);
955 break;
956 case 0x01c00f00: /* MBus port address register */
957 if (size == 8) {
958 env->mxccregs[7] = val;
959 } else {
960 qemu_log_mask(LOG_UNIMP,
961 "%08x: unimplemented access size: %d\n", addr,
962 size);
964 break;
965 default:
966 qemu_log_mask(LOG_UNIMP,
967 "%08x: unimplemented address, size: %d\n", addr,
968 size);
969 break;
971 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
972 asi, size, addr, val);
973 #ifdef DEBUG_MXCC
974 dump_mxcc(env);
975 #endif
976 break;
977 case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
978 case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
980 int mmulev;
982 mmulev = (addr >> 8) & 15;
983 DPRINTF_MMU("mmu flush level %d\n", mmulev);
984 switch (mmulev) {
985 case 0: /* flush page */
986 tlb_flush_page(cs, addr & 0xfffff000);
987 break;
988 case 1: /* flush segment (256k) */
989 case 2: /* flush region (16M) */
990 case 3: /* flush context (4G) */
991 case 4: /* flush entire */
992 tlb_flush(cs);
993 break;
994 default:
995 break;
997 #ifdef DEBUG_MMU
998 dump_mmu(env);
999 #endif
1001 break;
1002 case ASI_M_MMUREGS: /* write MMU regs */
1003 case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
1005 int reg = (addr >> 8) & 0x1f;
1006 uint32_t oldreg;
1008 oldreg = env->mmuregs[reg];
1009 switch (reg) {
1010 case 0: /* Control Register */
1011 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1012 (val & 0x00ffffff);
1013 /* Mappings generated during no-fault mode
1014 are invalid in normal mode. */
1015 if ((oldreg ^ env->mmuregs[reg])
1016 & (MMU_NF | env->def.mmu_bm)) {
1017 tlb_flush(cs);
1019 break;
1020 case 1: /* Context Table Pointer Register */
1021 env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
1022 break;
1023 case 2: /* Context Register */
1024 env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
1025 if (oldreg != env->mmuregs[reg]) {
1026 /* we flush when the MMU context changes because
1027 QEMU has no MMU context support */
1028 tlb_flush(cs);
1030 break;
1031 case 3: /* Synchronous Fault Status Register with Clear */
1032 case 4: /* Synchronous Fault Address Register */
1033 break;
1034 case 0x10: /* TLB Replacement Control Register */
1035 env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
1036 break;
1037 case 0x13: /* Synchronous Fault Status Register with Read
1038 and Clear */
1039 env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
1040 break;
1041 case 0x14: /* Synchronous Fault Address Register */
1042 env->mmuregs[4] = val;
1043 break;
1044 default:
1045 env->mmuregs[reg] = val;
1046 break;
1048 if (oldreg != env->mmuregs[reg]) {
1049 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1050 reg, oldreg, env->mmuregs[reg]);
1052 #ifdef DEBUG_MMU
1053 dump_mmu(env);
1054 #endif
1056 break;
1057 case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
1058 case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */
1059 case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */
1060 break;
1061 case ASI_M_TXTC_TAG: /* I-cache tag */
1062 case ASI_M_TXTC_DATA: /* I-cache data */
1063 case ASI_M_DATAC_TAG: /* D-cache tag */
1064 case ASI_M_DATAC_DATA: /* D-cache data */
1065 case ASI_M_FLUSH_PAGE: /* I/D-cache flush page */
1066 case ASI_M_FLUSH_SEG: /* I/D-cache flush segment */
1067 case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
1068 case ASI_M_FLUSH_CTX: /* I/D-cache flush context */
1069 case ASI_M_FLUSH_USER: /* I/D-cache flush user */
1070 break;
1071 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1073 MemTxResult result;
1074 hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
1076 switch (size) {
1077 case 1:
1078 address_space_stb(cs->as, access_addr, val,
1079 MEMTXATTRS_UNSPECIFIED, &result);
1080 break;
1081 case 2:
1082 address_space_stw(cs->as, access_addr, val,
1083 MEMTXATTRS_UNSPECIFIED, &result);
1084 break;
1085 case 4:
1086 default:
1087 address_space_stl(cs->as, access_addr, val,
1088 MEMTXATTRS_UNSPECIFIED, &result);
1089 break;
1090 case 8:
1091 address_space_stq(cs->as, access_addr, val,
1092 MEMTXATTRS_UNSPECIFIED, &result);
1093 break;
1095 if (result != MEMTX_OK) {
1096 sparc_raise_mmu_fault(cs, access_addr, true, false, false,
1097 size, GETPC());
1100 break;
1101 case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1102 case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1103 Turbosparc snoop RAM */
1104 case 0x32: /* store buffer control or Turbosparc page table
1105 descriptor diagnostic */
1106 case 0x36: /* I-cache flash clear */
1107 case 0x37: /* D-cache flash clear */
1108 break;
1109 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1111 int reg = (addr >> 8) & 3;
1113 switch (reg) {
1114 case 0: /* Breakpoint Value (Addr) */
1115 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1116 break;
1117 case 1: /* Breakpoint Mask */
1118 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1119 break;
1120 case 2: /* Breakpoint Control */
1121 env->mmubpregs[reg] = (val & 0x7fULL);
1122 break;
1123 case 3: /* Breakpoint Status */
1124 env->mmubpregs[reg] = (val & 0xfULL);
1125 break;
1127 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1128 env->mmuregs[reg]);
1130 break;
1131 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1132 env->mmubpctrv = val & 0xffffffff;
1133 break;
1134 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1135 env->mmubpctrc = val & 0x3;
1136 break;
1137 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1138 env->mmubpctrs = val & 0x3;
1139 break;
1140 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1141 env->mmubpaction = val & 0x1fff;
1142 break;
1143 case ASI_USERTXT: /* User code access, XXX */
1144 case ASI_KERNELTXT: /* Supervisor code access, XXX */
1145 default:
1146 sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC());
1147 break;
1149 case ASI_USERDATA: /* User data access */
1150 case ASI_KERNELDATA: /* Supervisor data access */
1151 case ASI_P:
1152 case ASI_M_BYPASS: /* MMU passthrough */
1153 case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1154 case ASI_M_BCOPY: /* Block copy, sta access */
1155 case ASI_M_BFILL: /* Block fill, stda access */
1156 /* These are always handled inline. */
1157 g_assert_not_reached();
1159 #ifdef DEBUG_ASI
1160 dump_asi("write", addr, asi, size, val);
1161 #endif
1164 #endif /* CONFIG_USER_ONLY */
1165 #else /* TARGET_SPARC64 */
1167 #ifdef CONFIG_USER_ONLY
1168 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1169 int asi, uint32_t memop)
1171 int size = 1 << (memop & MO_SIZE);
1172 int sign = memop & MO_SIGN;
1173 uint64_t ret = 0;
1175 if (asi < 0x80) {
1176 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1178 do_check_align(env, addr, size - 1, GETPC());
1179 addr = asi_address_mask(env, asi, addr);
1181 switch (asi) {
1182 case ASI_PNF: /* Primary no-fault */
1183 case ASI_PNFL: /* Primary no-fault LE */
1184 case ASI_SNF: /* Secondary no-fault */
1185 case ASI_SNFL: /* Secondary no-fault LE */
1186 if (!page_check_range(addr, size, PAGE_READ)) {
1187 ret = 0;
1188 break;
1190 switch (size) {
1191 case 1:
1192 ret = cpu_ldub_data(env, addr);
1193 break;
1194 case 2:
1195 ret = cpu_lduw_data(env, addr);
1196 break;
1197 case 4:
1198 ret = cpu_ldl_data(env, addr);
1199 break;
1200 case 8:
1201 ret = cpu_ldq_data(env, addr);
1202 break;
1203 default:
1204 g_assert_not_reached();
1206 break;
1207 break;
1209 case ASI_P: /* Primary */
1210 case ASI_PL: /* Primary LE */
1211 case ASI_S: /* Secondary */
1212 case ASI_SL: /* Secondary LE */
1213 /* These are always handled inline. */
1214 g_assert_not_reached();
1216 default:
1217 cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1220 /* Convert from little endian */
1221 switch (asi) {
1222 case ASI_PNFL: /* Primary no-fault LE */
1223 case ASI_SNFL: /* Secondary no-fault LE */
1224 switch (size) {
1225 case 2:
1226 ret = bswap16(ret);
1227 break;
1228 case 4:
1229 ret = bswap32(ret);
1230 break;
1231 case 8:
1232 ret = bswap64(ret);
1233 break;
1237 /* Convert to signed number */
1238 if (sign) {
1239 switch (size) {
1240 case 1:
1241 ret = (int8_t) ret;
1242 break;
1243 case 2:
1244 ret = (int16_t) ret;
1245 break;
1246 case 4:
1247 ret = (int32_t) ret;
1248 break;
1251 #ifdef DEBUG_ASI
1252 dump_asi("read", addr, asi, size, ret);
1253 #endif
1254 return ret;
1257 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1258 int asi, uint32_t memop)
1260 int size = 1 << (memop & MO_SIZE);
1261 #ifdef DEBUG_ASI
1262 dump_asi("write", addr, asi, size, val);
1263 #endif
1264 if (asi < 0x80) {
1265 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1267 do_check_align(env, addr, size - 1, GETPC());
1269 switch (asi) {
1270 case ASI_P: /* Primary */
1271 case ASI_PL: /* Primary LE */
1272 case ASI_S: /* Secondary */
1273 case ASI_SL: /* Secondary LE */
1274 /* These are always handled inline. */
1275 g_assert_not_reached();
1277 case ASI_PNF: /* Primary no-fault, RO */
1278 case ASI_SNF: /* Secondary no-fault, RO */
1279 case ASI_PNFL: /* Primary no-fault LE, RO */
1280 case ASI_SNFL: /* Secondary no-fault LE, RO */
1281 default:
1282 cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1286 #else /* CONFIG_USER_ONLY */
1288 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1289 int asi, uint32_t memop)
1291 int size = 1 << (memop & MO_SIZE);
1292 int sign = memop & MO_SIGN;
1293 CPUState *cs = env_cpu(env);
1294 uint64_t ret = 0;
1295 #if defined(DEBUG_ASI)
1296 target_ulong last_addr = addr;
1297 #endif
1299 asi &= 0xff;
1301 do_check_asi(env, asi, GETPC());
1302 do_check_align(env, addr, size - 1, GETPC());
1303 addr = asi_address_mask(env, asi, addr);
1305 switch (asi) {
1306 case ASI_PNF:
1307 case ASI_PNFL:
1308 case ASI_SNF:
1309 case ASI_SNFL:
1311 MemOpIdx oi;
1312 int idx = (env->pstate & PS_PRIV
1313 ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1314 : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1316 if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1317 #ifdef DEBUG_ASI
1318 dump_asi("read ", last_addr, asi, size, ret);
1319 #endif
1320 /* exception_index is set in get_physical_address_data. */
1321 cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1323 oi = make_memop_idx(memop, idx);
1324 switch (size) {
1325 case 1:
1326 ret = cpu_ldb_mmu(env, addr, oi, GETPC());
1327 break;
1328 case 2:
1329 ret = cpu_ldw_mmu(env, addr, oi, GETPC());
1330 break;
1331 case 4:
1332 ret = cpu_ldl_mmu(env, addr, oi, GETPC());
1333 break;
1334 case 8:
1335 ret = cpu_ldq_mmu(env, addr, oi, GETPC());
1336 break;
1337 default:
1338 g_assert_not_reached();
1341 break;
1343 case ASI_AIUP: /* As if user primary */
1344 case ASI_AIUS: /* As if user secondary */
1345 case ASI_AIUPL: /* As if user primary LE */
1346 case ASI_AIUSL: /* As if user secondary LE */
1347 case ASI_P: /* Primary */
1348 case ASI_S: /* Secondary */
1349 case ASI_PL: /* Primary LE */
1350 case ASI_SL: /* Secondary LE */
1351 case ASI_REAL: /* Bypass */
1352 case ASI_REAL_IO: /* Bypass, non-cacheable */
1353 case ASI_REAL_L: /* Bypass LE */
1354 case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1355 case ASI_N: /* Nucleus */
1356 case ASI_NL: /* Nucleus Little Endian (LE) */
1357 case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */
1358 case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1359 case ASI_TWINX_AIUP: /* As if user primary, twinx */
1360 case ASI_TWINX_AIUS: /* As if user secondary, twinx */
1361 case ASI_TWINX_REAL: /* Real address, twinx */
1362 case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1363 case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1364 case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1365 case ASI_TWINX_N: /* Nucleus, twinx */
1366 case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1367 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1368 case ASI_TWINX_P: /* Primary, twinx */
1369 case ASI_TWINX_PL: /* Primary, twinx, LE */
1370 case ASI_TWINX_S: /* Secondary, twinx */
1371 case ASI_TWINX_SL: /* Secondary, twinx, LE */
1372 /* These are always handled inline. */
1373 g_assert_not_reached();
1375 case ASI_UPA_CONFIG: /* UPA config */
1376 /* XXX */
1377 break;
1378 case ASI_LSU_CONTROL: /* LSU */
1379 ret = env->lsu;
1380 break;
1381 case ASI_IMMU: /* I-MMU regs */
1383 int reg = (addr >> 3) & 0xf;
1384 switch (reg) {
1385 case 0:
1386 /* 0x00 I-TSB Tag Target register */
1387 ret = ultrasparc_tag_target(env->immu.tag_access);
1388 break;
1389 case 3: /* SFSR */
1390 ret = env->immu.sfsr;
1391 break;
1392 case 5: /* TSB access */
1393 ret = env->immu.tsb;
1394 break;
1395 case 6:
1396 /* 0x30 I-TSB Tag Access register */
1397 ret = env->immu.tag_access;
1398 break;
1399 default:
1400 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1401 ret = 0;
1403 break;
1405 case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1407 /* env->immuregs[5] holds I-MMU TSB register value
1408 env->immuregs[6] holds I-MMU Tag Access register value */
1409 ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1410 break;
1412 case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1414 /* env->immuregs[5] holds I-MMU TSB register value
1415 env->immuregs[6] holds I-MMU Tag Access register value */
1416 ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1417 break;
1419 case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1421 int reg = (addr >> 3) & 0x3f;
1423 ret = env->itlb[reg].tte;
1424 break;
1426 case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1428 int reg = (addr >> 3) & 0x3f;
1430 ret = env->itlb[reg].tag;
1431 break;
1433 case ASI_DMMU: /* D-MMU regs */
1435 int reg = (addr >> 3) & 0xf;
1436 switch (reg) {
1437 case 0:
1438 /* 0x00 D-TSB Tag Target register */
1439 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1440 break;
1441 case 1: /* 0x08 Primary Context */
1442 ret = env->dmmu.mmu_primary_context;
1443 break;
1444 case 2: /* 0x10 Secondary Context */
1445 ret = env->dmmu.mmu_secondary_context;
1446 break;
1447 case 3: /* SFSR */
1448 ret = env->dmmu.sfsr;
1449 break;
1450 case 4: /* 0x20 SFAR */
1451 ret = env->dmmu.sfar;
1452 break;
1453 case 5: /* 0x28 TSB access */
1454 ret = env->dmmu.tsb;
1455 break;
1456 case 6: /* 0x30 D-TSB Tag Access register */
1457 ret = env->dmmu.tag_access;
1458 break;
1459 case 7:
1460 ret = env->dmmu.virtual_watchpoint;
1461 break;
1462 case 8:
1463 ret = env->dmmu.physical_watchpoint;
1464 break;
1465 default:
1466 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1467 ret = 0;
1469 break;
1471 case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1473 /* env->dmmuregs[5] holds D-MMU TSB register value
1474 env->dmmuregs[6] holds D-MMU Tag Access register value */
1475 ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1476 break;
1478 case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1480 /* env->dmmuregs[5] holds D-MMU TSB register value
1481 env->dmmuregs[6] holds D-MMU Tag Access register value */
1482 ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1483 break;
1485 case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1487 int reg = (addr >> 3) & 0x3f;
1489 ret = env->dtlb[reg].tte;
1490 break;
1492 case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1494 int reg = (addr >> 3) & 0x3f;
1496 ret = env->dtlb[reg].tag;
1497 break;
1499 case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1500 break;
1501 case ASI_INTR_RECEIVE: /* Interrupt data receive */
1502 ret = env->ivec_status;
1503 break;
1504 case ASI_INTR_R: /* Incoming interrupt vector, RO */
1506 int reg = (addr >> 4) & 0x3;
1507 if (reg < 3) {
1508 ret = env->ivec_data[reg];
1510 break;
1512 case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1513 if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1514 /* Hyperprivileged access only */
1515 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1517 /* fall through */
1518 case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1520 unsigned int i = (addr >> 3) & 0x7;
1521 ret = env->scratch[i];
1522 break;
1524 case ASI_MMU: /* UA2005 Context ID registers */
1525 switch ((addr >> 3) & 0x3) {
1526 case 1:
1527 ret = env->dmmu.mmu_primary_context;
1528 break;
1529 case 2:
1530 ret = env->dmmu.mmu_secondary_context;
1531 break;
1532 default:
1533 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1535 break;
1536 case ASI_DCACHE_DATA: /* D-cache data */
1537 case ASI_DCACHE_TAG: /* D-cache tag access */
1538 case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1539 case ASI_AFSR: /* E-cache asynchronous fault status */
1540 case ASI_AFAR: /* E-cache asynchronous fault address */
1541 case ASI_EC_TAG_DATA: /* E-cache tag data */
1542 case ASI_IC_INSTR: /* I-cache instruction access */
1543 case ASI_IC_TAG: /* I-cache tag access */
1544 case ASI_IC_PRE_DECODE: /* I-cache predecode */
1545 case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1546 case ASI_EC_W: /* E-cache tag */
1547 case ASI_EC_R: /* E-cache tag */
1548 break;
1549 case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1550 case ASI_ITLB_DATA_IN: /* I-MMU data in, WO */
1551 case ASI_IMMU_DEMAP: /* I-MMU demap, WO */
1552 case ASI_DTLB_DATA_IN: /* D-MMU data in, WO */
1553 case ASI_DMMU_DEMAP: /* D-MMU demap, WO */
1554 case ASI_INTR_W: /* Interrupt vector, WO */
1555 default:
1556 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1557 ret = 0;
1558 break;
1561 /* Convert to signed number */
1562 if (sign) {
1563 switch (size) {
1564 case 1:
1565 ret = (int8_t) ret;
1566 break;
1567 case 2:
1568 ret = (int16_t) ret;
1569 break;
1570 case 4:
1571 ret = (int32_t) ret;
1572 break;
1573 default:
1574 break;
1577 #ifdef DEBUG_ASI
1578 dump_asi("read ", last_addr, asi, size, ret);
1579 #endif
1580 return ret;
1583 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1584 int asi, uint32_t memop)
1586 int size = 1 << (memop & MO_SIZE);
1587 CPUState *cs = env_cpu(env);
1589 #ifdef DEBUG_ASI
1590 dump_asi("write", addr, asi, size, val);
1591 #endif
1593 asi &= 0xff;
1595 do_check_asi(env, asi, GETPC());
1596 do_check_align(env, addr, size - 1, GETPC());
1597 addr = asi_address_mask(env, asi, addr);
1599 switch (asi) {
1600 case ASI_AIUP: /* As if user primary */
1601 case ASI_AIUS: /* As if user secondary */
1602 case ASI_AIUPL: /* As if user primary LE */
1603 case ASI_AIUSL: /* As if user secondary LE */
1604 case ASI_P: /* Primary */
1605 case ASI_S: /* Secondary */
1606 case ASI_PL: /* Primary LE */
1607 case ASI_SL: /* Secondary LE */
1608 case ASI_REAL: /* Bypass */
1609 case ASI_REAL_IO: /* Bypass, non-cacheable */
1610 case ASI_REAL_L: /* Bypass LE */
1611 case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1612 case ASI_N: /* Nucleus */
1613 case ASI_NL: /* Nucleus Little Endian (LE) */
1614 case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */
1615 case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1616 case ASI_TWINX_AIUP: /* As if user primary, twinx */
1617 case ASI_TWINX_AIUS: /* As if user secondary, twinx */
1618 case ASI_TWINX_REAL: /* Real address, twinx */
1619 case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1620 case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1621 case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1622 case ASI_TWINX_N: /* Nucleus, twinx */
1623 case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1624 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1625 case ASI_TWINX_P: /* Primary, twinx */
1626 case ASI_TWINX_PL: /* Primary, twinx, LE */
1627 case ASI_TWINX_S: /* Secondary, twinx */
1628 case ASI_TWINX_SL: /* Secondary, twinx, LE */
1629 /* These are always handled inline. */
1630 g_assert_not_reached();
1631 /* these ASIs have different functions on UltraSPARC-IIIi
1632 * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1634 case 0x31:
1635 case 0x32:
1636 case 0x39:
1637 case 0x3a:
1638 if (cpu_has_hypervisor(env)) {
1639 /* UA2005
1640 * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1641 * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1642 * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1643 * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1645 int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1646 env->dmmu.sun4v_tsb_pointers[idx] = val;
1647 } else {
1648 goto illegal_insn;
1650 break;
1651 case 0x33:
1652 case 0x3b:
1653 if (cpu_has_hypervisor(env)) {
1654 /* UA2005
1655 * ASI_DMMU_CTX_ZERO_CONFIG
1656 * ASI_DMMU_CTX_NONZERO_CONFIG
1658 env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1659 } else {
1660 goto illegal_insn;
1662 break;
1663 case 0x35:
1664 case 0x36:
1665 case 0x3d:
1666 case 0x3e:
1667 if (cpu_has_hypervisor(env)) {
1668 /* UA2005
1669 * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1670 * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1671 * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1672 * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1674 int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1675 env->immu.sun4v_tsb_pointers[idx] = val;
1676 } else {
1677 goto illegal_insn;
1679 break;
1680 case 0x37:
1681 case 0x3f:
1682 if (cpu_has_hypervisor(env)) {
1683 /* UA2005
1684 * ASI_IMMU_CTX_ZERO_CONFIG
1685 * ASI_IMMU_CTX_NONZERO_CONFIG
1687 env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1688 } else {
1689 goto illegal_insn;
1691 break;
1692 case ASI_UPA_CONFIG: /* UPA config */
1693 /* XXX */
1694 return;
1695 case ASI_LSU_CONTROL: /* LSU */
1696 env->lsu = val & (DMMU_E | IMMU_E);
1697 return;
1698 case ASI_IMMU: /* I-MMU regs */
1700 int reg = (addr >> 3) & 0xf;
1701 uint64_t oldreg;
1703 oldreg = env->immu.mmuregs[reg];
1704 switch (reg) {
1705 case 0: /* RO */
1706 return;
1707 case 1: /* Not in I-MMU */
1708 case 2:
1709 return;
1710 case 3: /* SFSR */
1711 if ((val & 1) == 0) {
1712 val = 0; /* Clear SFSR */
1714 env->immu.sfsr = val;
1715 break;
1716 case 4: /* RO */
1717 return;
1718 case 5: /* TSB access */
1719 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1720 PRIx64 "\n", env->immu.tsb, val);
1721 env->immu.tsb = val;
1722 break;
1723 case 6: /* Tag access */
1724 env->immu.tag_access = val;
1725 break;
1726 case 7:
1727 case 8:
1728 return;
1729 default:
1730 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1731 break;
1734 if (oldreg != env->immu.mmuregs[reg]) {
1735 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1736 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1738 #ifdef DEBUG_MMU
1739 dump_mmu(env);
1740 #endif
1741 return;
1743 case ASI_ITLB_DATA_IN: /* I-MMU data in */
1744 /* ignore real translation entries */
1745 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1746 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1747 val, "immu", env, addr);
1749 return;
1750 case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1752 /* TODO: auto demap */
1754 unsigned int i = (addr >> 3) & 0x3f;
1756 /* ignore real translation entries */
1757 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1758 replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1759 sun4v_tte_to_sun4u(env, addr, val), env);
1761 #ifdef DEBUG_MMU
1762 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1763 dump_mmu(env);
1764 #endif
1765 return;
1767 case ASI_IMMU_DEMAP: /* I-MMU demap */
1768 demap_tlb(env->itlb, addr, "immu", env);
1769 return;
1770 case ASI_DMMU: /* D-MMU regs */
1772 int reg = (addr >> 3) & 0xf;
1773 uint64_t oldreg;
1775 oldreg = env->dmmu.mmuregs[reg];
1776 switch (reg) {
1777 case 0: /* RO */
1778 case 4:
1779 return;
1780 case 3: /* SFSR */
1781 if ((val & 1) == 0) {
1782 val = 0; /* Clear SFSR, Fault address */
1783 env->dmmu.sfar = 0;
1785 env->dmmu.sfsr = val;
1786 break;
1787 case 1: /* Primary context */
1788 env->dmmu.mmu_primary_context = val;
1789 /* can be optimized to only flush MMU_USER_IDX
1790 and MMU_KERNEL_IDX entries */
1791 tlb_flush(cs);
1792 break;
1793 case 2: /* Secondary context */
1794 env->dmmu.mmu_secondary_context = val;
1795 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1796 and MMU_KERNEL_SECONDARY_IDX entries */
1797 tlb_flush(cs);
1798 break;
1799 case 5: /* TSB access */
1800 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1801 PRIx64 "\n", env->dmmu.tsb, val);
1802 env->dmmu.tsb = val;
1803 break;
1804 case 6: /* Tag access */
1805 env->dmmu.tag_access = val;
1806 break;
1807 case 7: /* Virtual Watchpoint */
1808 env->dmmu.virtual_watchpoint = val;
1809 break;
1810 case 8: /* Physical Watchpoint */
1811 env->dmmu.physical_watchpoint = val;
1812 break;
1813 default:
1814 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1815 break;
1818 if (oldreg != env->dmmu.mmuregs[reg]) {
1819 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1820 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1822 #ifdef DEBUG_MMU
1823 dump_mmu(env);
1824 #endif
1825 return;
1827 case ASI_DTLB_DATA_IN: /* D-MMU data in */
1828 /* ignore real translation entries */
1829 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1830 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1831 val, "dmmu", env, addr);
1833 return;
1834 case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1836 unsigned int i = (addr >> 3) & 0x3f;
1838 /* ignore real translation entries */
1839 if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1840 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1841 sun4v_tte_to_sun4u(env, addr, val), env);
1843 #ifdef DEBUG_MMU
1844 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1845 dump_mmu(env);
1846 #endif
1847 return;
1849 case ASI_DMMU_DEMAP: /* D-MMU demap */
1850 demap_tlb(env->dtlb, addr, "dmmu", env);
1851 return;
1852 case ASI_INTR_RECEIVE: /* Interrupt data receive */
1853 env->ivec_status = val & 0x20;
1854 return;
1855 case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1856 if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1857 /* Hyperprivileged access only */
1858 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1860 /* fall through */
1861 case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1863 unsigned int i = (addr >> 3) & 0x7;
1864 env->scratch[i] = val;
1865 return;
1867 case ASI_MMU: /* UA2005 Context ID registers */
1869 switch ((addr >> 3) & 0x3) {
1870 case 1:
1871 env->dmmu.mmu_primary_context = val;
1872 env->immu.mmu_primary_context = val;
1873 tlb_flush_by_mmuidx(cs,
1874 (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1875 break;
1876 case 2:
1877 env->dmmu.mmu_secondary_context = val;
1878 env->immu.mmu_secondary_context = val;
1879 tlb_flush_by_mmuidx(cs,
1880 (1 << MMU_USER_SECONDARY_IDX) |
1881 (1 << MMU_KERNEL_SECONDARY_IDX));
1882 break;
1883 default:
1884 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1887 return;
1888 case ASI_QUEUE: /* UA2005 CPU mondo queue */
1889 case ASI_DCACHE_DATA: /* D-cache data */
1890 case ASI_DCACHE_TAG: /* D-cache tag access */
1891 case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1892 case ASI_AFSR: /* E-cache asynchronous fault status */
1893 case ASI_AFAR: /* E-cache asynchronous fault address */
1894 case ASI_EC_TAG_DATA: /* E-cache tag data */
1895 case ASI_IC_INSTR: /* I-cache instruction access */
1896 case ASI_IC_TAG: /* I-cache tag access */
1897 case ASI_IC_PRE_DECODE: /* I-cache predecode */
1898 case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1899 case ASI_EC_W: /* E-cache tag */
1900 case ASI_EC_R: /* E-cache tag */
1901 return;
1902 case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1903 case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1904 case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1905 case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1906 case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1907 case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1908 case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1909 case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1910 case ASI_INTR_R: /* Incoming interrupt vector, RO */
1911 case ASI_PNF: /* Primary no-fault, RO */
1912 case ASI_SNF: /* Secondary no-fault, RO */
1913 case ASI_PNFL: /* Primary no-fault LE, RO */
1914 case ASI_SNFL: /* Secondary no-fault LE, RO */
1915 default:
1916 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1917 return;
1918 illegal_insn:
1919 cpu_raise_exception_ra(env, TT_ILL_INSN, GETPC());
1922 #endif /* CONFIG_USER_ONLY */
1923 #endif /* TARGET_SPARC64 */
1925 #if !defined(CONFIG_USER_ONLY)
1927 void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1928 vaddr addr, unsigned size,
1929 MMUAccessType access_type,
1930 int mmu_idx, MemTxAttrs attrs,
1931 MemTxResult response, uintptr_t retaddr)
1933 bool is_write = access_type == MMU_DATA_STORE;
1934 bool is_exec = access_type == MMU_INST_FETCH;
1935 bool is_asi = false;
1937 sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec,
1938 is_asi, size, retaddr);
1940 #endif