trace: forbid use of %m in trace event format strings
[qemu/ar7.git] / target / ppc / mem_helper.c
blob9c5a68579edf944e6b2778d8e0068bf9e1b58526
1 /*
2 * PowerPC memory access emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/exec-all.h"
22 #include "qemu/host-utils.h"
23 #include "exec/helper-proto.h"
24 #include "helper_regs.h"
25 #include "exec/cpu_ldst.h"
26 #include "tcg.h"
27 #include "internal.h"
28 #include "qemu/atomic128.h"
30 //#define DEBUG_OP
32 static inline bool needs_byteswap(const CPUPPCState *env)
34 #if defined(TARGET_WORDS_BIGENDIAN)
35 return msr_le;
36 #else
37 return !msr_le;
38 #endif
41 /*****************************************************************************/
42 /* Memory load and stores */
44 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
45 target_long arg)
47 #if defined(TARGET_PPC64)
48 if (!msr_is_64bit(env, env->msr)) {
49 return (uint32_t)(addr + arg);
50 } else
51 #endif
53 return addr + arg;
57 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
59 for (; reg < 32; reg++) {
60 if (needs_byteswap(env)) {
61 env->gpr[reg] = bswap32(cpu_ldl_data_ra(env, addr, GETPC()));
62 } else {
63 env->gpr[reg] = cpu_ldl_data_ra(env, addr, GETPC());
65 addr = addr_add(env, addr, 4);
69 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
71 for (; reg < 32; reg++) {
72 if (needs_byteswap(env)) {
73 cpu_stl_data_ra(env, addr, bswap32((uint32_t)env->gpr[reg]),
74 GETPC());
75 } else {
76 cpu_stl_data_ra(env, addr, (uint32_t)env->gpr[reg], GETPC());
78 addr = addr_add(env, addr, 4);
82 static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
83 uint32_t reg, uintptr_t raddr)
85 int sh;
87 for (; nb > 3; nb -= 4) {
88 env->gpr[reg] = cpu_ldl_data_ra(env, addr, raddr);
89 reg = (reg + 1) % 32;
90 addr = addr_add(env, addr, 4);
92 if (unlikely(nb > 0)) {
93 env->gpr[reg] = 0;
94 for (sh = 24; nb > 0; nb--, sh -= 8) {
95 env->gpr[reg] |= cpu_ldub_data_ra(env, addr, raddr) << sh;
96 addr = addr_add(env, addr, 1);
101 void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
103 do_lsw(env, addr, nb, reg, GETPC());
106 /* PPC32 specification says we must generate an exception if
107 * rA is in the range of registers to be loaded.
108 * In an other hand, IBM says this is valid, but rA won't be loaded.
109 * For now, I'll follow the spec...
111 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
112 uint32_t ra, uint32_t rb)
114 if (likely(xer_bc != 0)) {
115 int num_used_regs = DIV_ROUND_UP(xer_bc, 4);
116 if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
117 lsw_reg_in_range(reg, num_used_regs, rb))) {
118 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
119 POWERPC_EXCP_INVAL |
120 POWERPC_EXCP_INVAL_LSWX, GETPC());
121 } else {
122 do_lsw(env, addr, xer_bc, reg, GETPC());
127 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
128 uint32_t reg)
130 int sh;
132 for (; nb > 3; nb -= 4) {
133 cpu_stl_data_ra(env, addr, env->gpr[reg], GETPC());
134 reg = (reg + 1) % 32;
135 addr = addr_add(env, addr, 4);
137 if (unlikely(nb > 0)) {
138 for (sh = 24; nb > 0; nb--, sh -= 8) {
139 cpu_stb_data_ra(env, addr, (env->gpr[reg] >> sh) & 0xFF, GETPC());
140 addr = addr_add(env, addr, 1);
145 static void dcbz_common(CPUPPCState *env, target_ulong addr,
146 uint32_t opcode, bool epid, uintptr_t retaddr)
148 target_ulong mask, dcbz_size = env->dcache_line_size;
149 uint32_t i;
150 void *haddr;
151 int mmu_idx = epid ? PPC_TLB_EPID_STORE : env->dmmu_idx;
153 #if defined(TARGET_PPC64)
154 /* Check for dcbz vs dcbzl on 970 */
155 if (env->excp_model == POWERPC_EXCP_970 &&
156 !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
157 dcbz_size = 32;
159 #endif
161 /* Align address */
162 mask = ~(dcbz_size - 1);
163 addr &= mask;
165 /* Check reservation */
166 if ((env->reserve_addr & mask) == (addr & mask)) {
167 env->reserve_addr = (target_ulong)-1ULL;
170 /* Try fast path translate */
171 haddr = tlb_vaddr_to_host(env, addr, MMU_DATA_STORE, mmu_idx);
172 if (haddr) {
173 memset(haddr, 0, dcbz_size);
174 } else {
175 /* Slow path */
176 for (i = 0; i < dcbz_size; i += 8) {
177 if (epid) {
178 #if !defined(CONFIG_USER_ONLY)
179 /* Does not make sense on USER_ONLY config */
180 cpu_stq_eps_ra(env, addr + i, 0, retaddr);
181 #endif
182 } else {
183 cpu_stq_data_ra(env, addr + i, 0, retaddr);
189 void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
191 dcbz_common(env, addr, opcode, false, GETPC());
194 void helper_dcbzep(CPUPPCState *env, target_ulong addr, uint32_t opcode)
196 dcbz_common(env, addr, opcode, true, GETPC());
199 void helper_icbi(CPUPPCState *env, target_ulong addr)
201 addr &= ~(env->dcache_line_size - 1);
202 /* Invalidate one cache line :
203 * PowerPC specification says this is to be treated like a load
204 * (not a fetch) by the MMU. To be sure it will be so,
205 * do the load "by hand".
207 cpu_ldl_data_ra(env, addr, GETPC());
210 void helper_icbiep(CPUPPCState *env, target_ulong addr)
212 #if !defined(CONFIG_USER_ONLY)
213 /* See comments above */
214 addr &= ~(env->dcache_line_size - 1);
215 cpu_ldl_epl_ra(env, addr, GETPC());
216 #endif
219 /* XXX: to be tested */
220 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
221 uint32_t ra, uint32_t rb)
223 int i, c, d;
225 d = 24;
226 for (i = 0; i < xer_bc; i++) {
227 c = cpu_ldub_data_ra(env, addr, GETPC());
228 addr = addr_add(env, addr, 1);
229 /* ra (if not 0) and rb are never modified */
230 if (likely(reg != rb && (ra == 0 || reg != ra))) {
231 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
233 if (unlikely(c == xer_cmp)) {
234 break;
236 if (likely(d != 0)) {
237 d -= 8;
238 } else {
239 d = 24;
240 reg++;
241 reg = reg & 0x1F;
244 return i;
247 #ifdef TARGET_PPC64
248 uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr,
249 uint32_t opidx)
251 Int128 ret;
253 /* We will have raised EXCP_ATOMIC from the translator. */
254 assert(HAVE_ATOMIC128);
255 ret = helper_atomic_ldo_le_mmu(env, addr, opidx, GETPC());
256 env->retxh = int128_gethi(ret);
257 return int128_getlo(ret);
260 uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr,
261 uint32_t opidx)
263 Int128 ret;
265 /* We will have raised EXCP_ATOMIC from the translator. */
266 assert(HAVE_ATOMIC128);
267 ret = helper_atomic_ldo_be_mmu(env, addr, opidx, GETPC());
268 env->retxh = int128_gethi(ret);
269 return int128_getlo(ret);
272 void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr,
273 uint64_t lo, uint64_t hi, uint32_t opidx)
275 Int128 val;
277 /* We will have raised EXCP_ATOMIC from the translator. */
278 assert(HAVE_ATOMIC128);
279 val = int128_make128(lo, hi);
280 helper_atomic_sto_le_mmu(env, addr, val, opidx, GETPC());
283 void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr,
284 uint64_t lo, uint64_t hi, uint32_t opidx)
286 Int128 val;
288 /* We will have raised EXCP_ATOMIC from the translator. */
289 assert(HAVE_ATOMIC128);
290 val = int128_make128(lo, hi);
291 helper_atomic_sto_be_mmu(env, addr, val, opidx, GETPC());
294 uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr,
295 uint64_t new_lo, uint64_t new_hi,
296 uint32_t opidx)
298 bool success = false;
300 /* We will have raised EXCP_ATOMIC from the translator. */
301 assert(HAVE_CMPXCHG128);
303 if (likely(addr == env->reserve_addr)) {
304 Int128 oldv, cmpv, newv;
306 cmpv = int128_make128(env->reserve_val2, env->reserve_val);
307 newv = int128_make128(new_lo, new_hi);
308 oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv,
309 opidx, GETPC());
310 success = int128_eq(oldv, cmpv);
312 env->reserve_addr = -1;
313 return env->so + success * CRF_EQ_BIT;
316 uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr,
317 uint64_t new_lo, uint64_t new_hi,
318 uint32_t opidx)
320 bool success = false;
322 /* We will have raised EXCP_ATOMIC from the translator. */
323 assert(HAVE_CMPXCHG128);
325 if (likely(addr == env->reserve_addr)) {
326 Int128 oldv, cmpv, newv;
328 cmpv = int128_make128(env->reserve_val2, env->reserve_val);
329 newv = int128_make128(new_lo, new_hi);
330 oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv,
331 opidx, GETPC());
332 success = int128_eq(oldv, cmpv);
334 env->reserve_addr = -1;
335 return env->so + success * CRF_EQ_BIT;
337 #endif
339 /*****************************************************************************/
340 /* Altivec extension helpers */
341 #if defined(HOST_WORDS_BIGENDIAN)
342 #define HI_IDX 0
343 #define LO_IDX 1
344 #else
345 #define HI_IDX 1
346 #define LO_IDX 0
347 #endif
349 /* We use msr_le to determine index ordering in a vector. However,
350 byteswapping is not simply controlled by msr_le. We also need to take
351 into account endianness of the target. This is done for the little-endian
352 PPC64 user-mode target. */
354 #define LVE(name, access, swap, element) \
355 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
356 target_ulong addr) \
358 size_t n_elems = ARRAY_SIZE(r->element); \
359 int adjust = HI_IDX*(n_elems - 1); \
360 int sh = sizeof(r->element[0]) >> 1; \
361 int index = (addr & 0xf) >> sh; \
362 if (msr_le) { \
363 index = n_elems - index - 1; \
366 if (needs_byteswap(env)) { \
367 r->element[LO_IDX ? index : (adjust - index)] = \
368 swap(access(env, addr, GETPC())); \
369 } else { \
370 r->element[LO_IDX ? index : (adjust - index)] = \
371 access(env, addr, GETPC()); \
374 #define I(x) (x)
375 LVE(lvebx, cpu_ldub_data_ra, I, u8)
376 LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
377 LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
378 #undef I
379 #undef LVE
381 #define STVE(name, access, swap, element) \
382 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
383 target_ulong addr) \
385 size_t n_elems = ARRAY_SIZE(r->element); \
386 int adjust = HI_IDX * (n_elems - 1); \
387 int sh = sizeof(r->element[0]) >> 1; \
388 int index = (addr & 0xf) >> sh; \
389 if (msr_le) { \
390 index = n_elems - index - 1; \
393 if (needs_byteswap(env)) { \
394 access(env, addr, swap(r->element[LO_IDX ? index : \
395 (adjust - index)]), \
396 GETPC()); \
397 } else { \
398 access(env, addr, r->element[LO_IDX ? index : \
399 (adjust - index)], GETPC()); \
402 #define I(x) (x)
403 STVE(stvebx, cpu_stb_data_ra, I, u8)
404 STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
405 STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
406 #undef I
407 #undef LVE
409 #ifdef TARGET_PPC64
410 #define GET_NB(rb) ((rb >> 56) & 0xFF)
412 #define VSX_LXVL(name, lj) \
413 void helper_##name(CPUPPCState *env, target_ulong addr, \
414 target_ulong xt_num, target_ulong rb) \
416 int i; \
417 ppc_vsr_t xt; \
418 uint64_t nb = GET_NB(rb); \
420 xt.s128 = int128_zero(); \
421 if (nb) { \
422 nb = (nb >= 16) ? 16 : nb; \
423 if (msr_le && !lj) { \
424 for (i = 16; i > 16 - nb; i--) { \
425 xt.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC()); \
426 addr = addr_add(env, addr, 1); \
428 } else { \
429 for (i = 0; i < nb; i++) { \
430 xt.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC()); \
431 addr = addr_add(env, addr, 1); \
435 putVSR(xt_num, &xt, env); \
438 VSX_LXVL(lxvl, 0)
439 VSX_LXVL(lxvll, 1)
440 #undef VSX_LXVL
442 #define VSX_STXVL(name, lj) \
443 void helper_##name(CPUPPCState *env, target_ulong addr, \
444 target_ulong xt_num, target_ulong rb) \
446 int i; \
447 ppc_vsr_t xt; \
448 target_ulong nb = GET_NB(rb); \
450 if (!nb) { \
451 return; \
453 getVSR(xt_num, &xt, env); \
454 nb = (nb >= 16) ? 16 : nb; \
455 if (msr_le && !lj) { \
456 for (i = 16; i > 16 - nb; i--) { \
457 cpu_stb_data_ra(env, addr, xt.VsrB(i - 1), GETPC()); \
458 addr = addr_add(env, addr, 1); \
460 } else { \
461 for (i = 0; i < nb; i++) { \
462 cpu_stb_data_ra(env, addr, xt.VsrB(i), GETPC()); \
463 addr = addr_add(env, addr, 1); \
468 VSX_STXVL(stxvl, 0)
469 VSX_STXVL(stxvll, 1)
470 #undef VSX_STXVL
471 #undef GET_NB
472 #endif /* TARGET_PPC64 */
474 #undef HI_IDX
475 #undef LO_IDX
477 void helper_tbegin(CPUPPCState *env)
479 /* As a degenerate implementation, always fail tbegin. The reason
480 * given is "Nesting overflow". The "persistent" bit is set,
481 * providing a hint to the error handler to not retry. The TFIAR
482 * captures the address of the failure, which is this tbegin
483 * instruction. Instruction execution will continue with the
484 * next instruction in memory, which is precisely what we want.
487 env->spr[SPR_TEXASR] =
488 (1ULL << TEXASR_FAILURE_PERSISTENT) |
489 (1ULL << TEXASR_NESTING_OVERFLOW) |
490 (msr_hv << TEXASR_PRIVILEGE_HV) |
491 (msr_pr << TEXASR_PRIVILEGE_PR) |
492 (1ULL << TEXASR_FAILURE_SUMMARY) |
493 (1ULL << TEXASR_TFIAR_EXACT);
494 env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
495 env->spr[SPR_TFHAR] = env->nip + 4;
496 env->crf[0] = 0xB; /* 0b1010 = transaction failure */