Merge tag 'v9.0.0-rc3'
[qemu/ar7.git] / target / ppc / mem_helper.c
blobea7e8443a8ba245524f5ec94f4d92c0929718125
1 /*
2 * PowerPC memory access emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/host-utils.h"
24 #include "exec/helper-proto.h"
25 #include "helper_regs.h"
26 #include "exec/cpu_ldst.h"
27 #include "internal.h"
28 #include "qemu/atomic128.h"
30 /* #define DEBUG_OP */
32 static inline bool needs_byteswap(const CPUPPCState *env)
34 #if TARGET_BIG_ENDIAN
35 return FIELD_EX64(env->msr, MSR, LE);
36 #else
37 return !FIELD_EX64(env->msr, MSR, LE);
38 #endif
41 /*****************************************************************************/
42 /* Memory load and stores */
44 static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
45 target_long arg)
47 #if defined(TARGET_PPC64)
48 if (!msr_is_64bit(env, env->msr)) {
49 return (uint32_t)(addr + arg);
50 } else
51 #endif
53 return addr + arg;
57 static void *probe_contiguous(CPUPPCState *env, target_ulong addr, uint32_t nb,
58 MMUAccessType access_type, int mmu_idx,
59 uintptr_t raddr)
61 void *host1, *host2;
62 uint32_t nb_pg1, nb_pg2;
64 nb_pg1 = -(addr | TARGET_PAGE_MASK);
65 if (likely(nb <= nb_pg1)) {
66 /* The entire operation is on a single page. */
67 return probe_access(env, addr, nb, access_type, mmu_idx, raddr);
70 /* The operation spans two pages. */
71 nb_pg2 = nb - nb_pg1;
72 host1 = probe_access(env, addr, nb_pg1, access_type, mmu_idx, raddr);
73 addr = addr_add(env, addr, nb_pg1);
74 host2 = probe_access(env, addr, nb_pg2, access_type, mmu_idx, raddr);
76 /* If the two host pages are contiguous, optimize. */
77 if (host2 == host1 + nb_pg1) {
78 return host1;
80 return NULL;
83 void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
85 uintptr_t raddr = GETPC();
86 int mmu_idx = ppc_env_mmu_index(env, false);
87 void *host = probe_contiguous(env, addr, (32 - reg) * 4,
88 MMU_DATA_LOAD, mmu_idx, raddr);
90 if (likely(host)) {
91 /* Fast path -- the entire operation is in RAM at host. */
92 for (; reg < 32; reg++) {
93 env->gpr[reg] = (uint32_t)ldl_be_p(host);
94 host += 4;
96 } else {
97 /* Slow path -- at least some of the operation requires i/o. */
98 for (; reg < 32; reg++) {
99 env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr);
100 addr = addr_add(env, addr, 4);
105 void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
107 uintptr_t raddr = GETPC();
108 int mmu_idx = ppc_env_mmu_index(env, false);
109 void *host = probe_contiguous(env, addr, (32 - reg) * 4,
110 MMU_DATA_STORE, mmu_idx, raddr);
112 if (likely(host)) {
113 /* Fast path -- the entire operation is in RAM at host. */
114 for (; reg < 32; reg++) {
115 stl_be_p(host, env->gpr[reg]);
116 host += 4;
118 } else {
119 /* Slow path -- at least some of the operation requires i/o. */
120 for (; reg < 32; reg++) {
121 cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr);
122 addr = addr_add(env, addr, 4);
127 static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
128 uint32_t reg, uintptr_t raddr)
130 int mmu_idx;
131 void *host;
132 uint32_t val;
134 if (unlikely(nb == 0)) {
135 return;
138 mmu_idx = ppc_env_mmu_index(env, false);
139 host = probe_contiguous(env, addr, nb, MMU_DATA_LOAD, mmu_idx, raddr);
141 if (likely(host)) {
142 /* Fast path -- the entire operation is in RAM at host. */
143 for (; nb > 3; nb -= 4) {
144 env->gpr[reg] = (uint32_t)ldl_be_p(host);
145 reg = (reg + 1) % 32;
146 host += 4;
148 switch (nb) {
149 default:
150 return;
151 case 1:
152 val = ldub_p(host) << 24;
153 break;
154 case 2:
155 val = lduw_be_p(host) << 16;
156 break;
157 case 3:
158 val = (lduw_be_p(host) << 16) | (ldub_p(host + 2) << 8);
159 break;
161 } else {
162 /* Slow path -- at least some of the operation requires i/o. */
163 for (; nb > 3; nb -= 4) {
164 env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr);
165 reg = (reg + 1) % 32;
166 addr = addr_add(env, addr, 4);
168 switch (nb) {
169 default:
170 return;
171 case 1:
172 val = cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 24;
173 break;
174 case 2:
175 val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16;
176 break;
177 case 3:
178 val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16;
179 addr = addr_add(env, addr, 2);
180 val |= cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 8;
181 break;
184 env->gpr[reg] = val;
187 void helper_lsw(CPUPPCState *env, target_ulong addr,
188 uint32_t nb, uint32_t reg)
190 do_lsw(env, addr, nb, reg, GETPC());
194 * PPC32 specification says we must generate an exception if rA is in
195 * the range of registers to be loaded. In an other hand, IBM says
196 * this is valid, but rA won't be loaded. For now, I'll follow the
197 * spec...
199 void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
200 uint32_t ra, uint32_t rb)
202 if (likely(xer_bc != 0)) {
203 int num_used_regs = DIV_ROUND_UP(xer_bc, 4);
204 if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
205 lsw_reg_in_range(reg, num_used_regs, rb))) {
206 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
207 POWERPC_EXCP_INVAL |
208 POWERPC_EXCP_INVAL_LSWX, GETPC());
209 } else {
210 do_lsw(env, addr, xer_bc, reg, GETPC());
215 void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
216 uint32_t reg)
218 uintptr_t raddr = GETPC();
219 int mmu_idx;
220 void *host;
221 uint32_t val;
223 if (unlikely(nb == 0)) {
224 return;
227 mmu_idx = ppc_env_mmu_index(env, false);
228 host = probe_contiguous(env, addr, nb, MMU_DATA_STORE, mmu_idx, raddr);
230 if (likely(host)) {
231 /* Fast path -- the entire operation is in RAM at host. */
232 for (; nb > 3; nb -= 4) {
233 stl_be_p(host, env->gpr[reg]);
234 reg = (reg + 1) % 32;
235 host += 4;
237 val = env->gpr[reg];
238 switch (nb) {
239 case 1:
240 stb_p(host, val >> 24);
241 break;
242 case 2:
243 stw_be_p(host, val >> 16);
244 break;
245 case 3:
246 stw_be_p(host, val >> 16);
247 stb_p(host + 2, val >> 8);
248 break;
250 } else {
251 for (; nb > 3; nb -= 4) {
252 cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr);
253 reg = (reg + 1) % 32;
254 addr = addr_add(env, addr, 4);
256 val = env->gpr[reg];
257 switch (nb) {
258 case 1:
259 cpu_stb_mmuidx_ra(env, addr, val >> 24, mmu_idx, raddr);
260 break;
261 case 2:
262 cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr);
263 break;
264 case 3:
265 cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr);
266 addr = addr_add(env, addr, 2);
267 cpu_stb_mmuidx_ra(env, addr, val >> 8, mmu_idx, raddr);
268 break;
273 static void dcbz_common(CPUPPCState *env, target_ulong addr,
274 uint32_t opcode, bool epid, uintptr_t retaddr)
276 target_ulong mask, dcbz_size = env->dcache_line_size;
277 uint32_t i;
278 void *haddr;
279 int mmu_idx = epid ? PPC_TLB_EPID_STORE : ppc_env_mmu_index(env, false);
281 #if defined(TARGET_PPC64)
282 /* Check for dcbz vs dcbzl on 970 */
283 if (env->excp_model == POWERPC_EXCP_970 &&
284 !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
285 dcbz_size = 32;
287 #endif
289 /* Align address */
290 mask = ~(dcbz_size - 1);
291 addr &= mask;
293 /* Check reservation */
294 if ((env->reserve_addr & mask) == addr) {
295 env->reserve_addr = (target_ulong)-1ULL;
298 /* Try fast path translate */
299 haddr = probe_write(env, addr, dcbz_size, mmu_idx, retaddr);
300 if (haddr) {
301 memset(haddr, 0, dcbz_size);
302 } else {
303 /* Slow path */
304 for (i = 0; i < dcbz_size; i += 8) {
305 cpu_stq_mmuidx_ra(env, addr + i, 0, mmu_idx, retaddr);
310 void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
312 dcbz_common(env, addr, opcode, false, GETPC());
315 void helper_dcbzep(CPUPPCState *env, target_ulong addr, uint32_t opcode)
317 dcbz_common(env, addr, opcode, true, GETPC());
320 void helper_icbi(CPUPPCState *env, target_ulong addr)
322 addr &= ~(env->dcache_line_size - 1);
324 * Invalidate one cache line :
325 * PowerPC specification says this is to be treated like a load
326 * (not a fetch) by the MMU. To be sure it will be so,
327 * do the load "by hand".
329 cpu_ldl_data_ra(env, addr, GETPC());
332 void helper_icbiep(CPUPPCState *env, target_ulong addr)
334 #if !defined(CONFIG_USER_ONLY)
335 /* See comments above */
336 addr &= ~(env->dcache_line_size - 1);
337 cpu_ldl_mmuidx_ra(env, addr, PPC_TLB_EPID_LOAD, GETPC());
338 #endif
341 /* XXX: to be tested */
342 target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
343 uint32_t ra, uint32_t rb)
345 int i, c, d;
347 d = 24;
348 for (i = 0; i < xer_bc; i++) {
349 c = cpu_ldub_data_ra(env, addr, GETPC());
350 addr = addr_add(env, addr, 1);
351 /* ra (if not 0) and rb are never modified */
352 if (likely(reg != rb && (ra == 0 || reg != ra))) {
353 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
355 if (unlikely(c == xer_cmp)) {
356 break;
358 if (likely(d != 0)) {
359 d -= 8;
360 } else {
361 d = 24;
362 reg++;
363 reg = reg & 0x1F;
366 return i;
369 /*****************************************************************************/
370 /* Altivec extension helpers */
371 #if HOST_BIG_ENDIAN
372 #define HI_IDX 0
373 #define LO_IDX 1
374 #else
375 #define HI_IDX 1
376 #define LO_IDX 0
377 #endif
380 * We use MSR_LE to determine index ordering in a vector. However,
381 * byteswapping is not simply controlled by MSR_LE. We also need to
382 * take into account endianness of the target. This is done for the
383 * little-endian PPC64 user-mode target.
386 #define LVE(name, access, swap, element) \
387 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
388 target_ulong addr) \
390 size_t n_elems = ARRAY_SIZE(r->element); \
391 int adjust = HI_IDX * (n_elems - 1); \
392 int sh = sizeof(r->element[0]) >> 1; \
393 int index = (addr & 0xf) >> sh; \
394 if (FIELD_EX64(env->msr, MSR, LE)) { \
395 index = n_elems - index - 1; \
398 if (needs_byteswap(env)) { \
399 r->element[LO_IDX ? index : (adjust - index)] = \
400 swap(access(env, addr, GETPC())); \
401 } else { \
402 r->element[LO_IDX ? index : (adjust - index)] = \
403 access(env, addr, GETPC()); \
406 #define I(x) (x)
407 LVE(lvebx, cpu_ldub_data_ra, I, u8)
408 LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
409 LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
410 #undef I
411 #undef LVE
413 #define STVE(name, access, swap, element) \
414 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
415 target_ulong addr) \
417 size_t n_elems = ARRAY_SIZE(r->element); \
418 int adjust = HI_IDX * (n_elems - 1); \
419 int sh = sizeof(r->element[0]) >> 1; \
420 int index = (addr & 0xf) >> sh; \
421 if (FIELD_EX64(env->msr, MSR, LE)) { \
422 index = n_elems - index - 1; \
425 if (needs_byteswap(env)) { \
426 access(env, addr, swap(r->element[LO_IDX ? index : \
427 (adjust - index)]), \
428 GETPC()); \
429 } else { \
430 access(env, addr, r->element[LO_IDX ? index : \
431 (adjust - index)], GETPC()); \
434 #define I(x) (x)
435 STVE(stvebx, cpu_stb_data_ra, I, u8)
436 STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
437 STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
438 #undef I
439 #undef LVE
441 #ifdef TARGET_PPC64
442 #define GET_NB(rb) ((rb >> 56) & 0xFF)
444 #define VSX_LXVL(name, lj) \
445 void helper_##name(CPUPPCState *env, target_ulong addr, \
446 ppc_vsr_t *xt, target_ulong rb) \
448 ppc_vsr_t t; \
449 uint64_t nb = GET_NB(rb); \
450 int i; \
452 t.s128 = int128_zero(); \
453 if (nb) { \
454 nb = (nb >= 16) ? 16 : nb; \
455 if (FIELD_EX64(env->msr, MSR, LE) && !lj) { \
456 for (i = 16; i > 16 - nb; i--) { \
457 t.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC()); \
458 addr = addr_add(env, addr, 1); \
460 } else { \
461 for (i = 0; i < nb; i++) { \
462 t.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC()); \
463 addr = addr_add(env, addr, 1); \
467 *xt = t; \
470 VSX_LXVL(lxvl, 0)
471 VSX_LXVL(lxvll, 1)
472 #undef VSX_LXVL
474 #define VSX_STXVL(name, lj) \
475 void helper_##name(CPUPPCState *env, target_ulong addr, \
476 ppc_vsr_t *xt, target_ulong rb) \
478 target_ulong nb = GET_NB(rb); \
479 int i; \
481 if (!nb) { \
482 return; \
485 nb = (nb >= 16) ? 16 : nb; \
486 if (FIELD_EX64(env->msr, MSR, LE) && !lj) { \
487 for (i = 16; i > 16 - nb; i--) { \
488 cpu_stb_data_ra(env, addr, xt->VsrB(i - 1), GETPC()); \
489 addr = addr_add(env, addr, 1); \
491 } else { \
492 for (i = 0; i < nb; i++) { \
493 cpu_stb_data_ra(env, addr, xt->VsrB(i), GETPC()); \
494 addr = addr_add(env, addr, 1); \
499 VSX_STXVL(stxvl, 0)
500 VSX_STXVL(stxvll, 1)
501 #undef VSX_STXVL
502 #undef GET_NB
503 #endif /* TARGET_PPC64 */
505 #undef HI_IDX
506 #undef LO_IDX
508 void helper_tbegin(CPUPPCState *env)
511 * As a degenerate implementation, always fail tbegin. The reason
512 * given is "Nesting overflow". The "persistent" bit is set,
513 * providing a hint to the error handler to not retry. The TFIAR
514 * captures the address of the failure, which is this tbegin
515 * instruction. Instruction execution will continue with the next
516 * instruction in memory, which is precisely what we want.
519 env->spr[SPR_TEXASR] =
520 (1ULL << TEXASR_FAILURE_PERSISTENT) |
521 (1ULL << TEXASR_NESTING_OVERFLOW) |
522 (FIELD_EX64_HV(env->msr) << TEXASR_PRIVILEGE_HV) |
523 (FIELD_EX64(env->msr, MSR, PR) << TEXASR_PRIVILEGE_PR) |
524 (1ULL << TEXASR_FAILURE_SUMMARY) |
525 (1ULL << TEXASR_TFIAR_EXACT);
526 env->spr[SPR_TFIAR] = env->nip | (FIELD_EX64_HV(env->msr) << 1) |
527 FIELD_EX64(env->msr, MSR, PR);
528 env->spr[SPR_TFHAR] = env->nip + 4;
529 env->crf[0] = 0xB; /* 0b1010 = transaction failure */