exec/cpu-common: add qemu_ram_get_fd()
[qemu/ar7.git] / target / hexagon / cpu.c
blobfa6d722555e46c51ede51ff466a46a4d59ada2cf
1 /*
2 * Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 #include "qemu/osdep.h"
19 #include "qemu/qemu-print.h"
20 #include "cpu.h"
21 #include "internal.h"
22 #include "exec/exec-all.h"
23 #include "qapi/error.h"
24 #include "hw/qdev-properties.h"
25 #include "fpu/softfloat-helpers.h"
27 static void hexagon_v67_cpu_init(Object *obj)
31 static ObjectClass *hexagon_cpu_class_by_name(const char *cpu_model)
33 ObjectClass *oc;
34 char *typename;
35 char **cpuname;
37 cpuname = g_strsplit(cpu_model, ",", 1);
38 typename = g_strdup_printf(HEXAGON_CPU_TYPE_NAME("%s"), cpuname[0]);
39 oc = object_class_by_name(typename);
40 g_strfreev(cpuname);
41 g_free(typename);
42 if (!oc || !object_class_dynamic_cast(oc, TYPE_HEXAGON_CPU) ||
43 object_class_is_abstract(oc)) {
44 return NULL;
46 return oc;
49 static Property hexagon_lldb_compat_property =
50 DEFINE_PROP_BOOL("lldb-compat", HexagonCPU, lldb_compat, false);
51 static Property hexagon_lldb_stack_adjust_property =
52 DEFINE_PROP_UNSIGNED("lldb-stack-adjust", HexagonCPU, lldb_stack_adjust,
53 0, qdev_prop_uint32, target_ulong);
55 const char * const hexagon_regnames[TOTAL_PER_THREAD_REGS] = {
56 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
57 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
58 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
59 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
60 "sa0", "lc0", "sa1", "lc1", "p3_0", "c5", "m0", "m1",
61 "usr", "pc", "ugp", "gp", "cs0", "cs1", "c14", "c15",
62 "c16", "c17", "c18", "c19", "pkt_cnt", "insn_cnt", "hvx_cnt", "c23",
63 "c24", "c25", "c26", "c27", "c28", "c29", "c30", "c31",
67 * One of the main debugging techniques is to use "-d cpu" and compare against
68 * LLDB output when single stepping. However, the target and qemu put the
69 * stacks at different locations. This is used to compensate so the diff is
70 * cleaner.
72 static target_ulong adjust_stack_ptrs(CPUHexagonState *env, target_ulong addr)
74 HexagonCPU *cpu = env_archcpu(env);
75 target_ulong stack_adjust = cpu->lldb_stack_adjust;
76 target_ulong stack_start = env->stack_start;
77 target_ulong stack_size = 0x10000;
79 if (stack_adjust == 0) {
80 return addr;
83 if (stack_start + 0x1000 >= addr && addr >= (stack_start - stack_size)) {
84 return addr - stack_adjust;
86 return addr;
89 /* HEX_REG_P3_0 (aka C4) is an alias for the predicate registers */
90 static target_ulong read_p3_0(CPUHexagonState *env)
92 int32_t control_reg = 0;
93 int i;
94 for (i = NUM_PREGS - 1; i >= 0; i--) {
95 control_reg <<= 8;
96 control_reg |= env->pred[i] & 0xff;
98 return control_reg;
101 static void print_reg(FILE *f, CPUHexagonState *env, int regnum)
103 target_ulong value;
105 if (regnum == HEX_REG_P3_0) {
106 value = read_p3_0(env);
107 } else {
108 value = regnum < 32 ? adjust_stack_ptrs(env, env->gpr[regnum])
109 : env->gpr[regnum];
112 qemu_fprintf(f, " %s = 0x" TARGET_FMT_lx "\n",
113 hexagon_regnames[regnum], value);
116 static void print_vreg(FILE *f, CPUHexagonState *env, int regnum,
117 bool skip_if_zero)
119 if (skip_if_zero) {
120 bool nonzero_found = false;
121 for (int i = 0; i < MAX_VEC_SIZE_BYTES; i++) {
122 if (env->VRegs[regnum].ub[i] != 0) {
123 nonzero_found = true;
124 break;
127 if (!nonzero_found) {
128 return;
132 qemu_fprintf(f, " v%d = ( ", regnum);
133 qemu_fprintf(f, "0x%02x", env->VRegs[regnum].ub[MAX_VEC_SIZE_BYTES - 1]);
134 for (int i = MAX_VEC_SIZE_BYTES - 2; i >= 0; i--) {
135 qemu_fprintf(f, ", 0x%02x", env->VRegs[regnum].ub[i]);
137 qemu_fprintf(f, " )\n");
140 void hexagon_debug_vreg(CPUHexagonState *env, int regnum)
142 print_vreg(stdout, env, regnum, false);
145 static void print_qreg(FILE *f, CPUHexagonState *env, int regnum,
146 bool skip_if_zero)
148 if (skip_if_zero) {
149 bool nonzero_found = false;
150 for (int i = 0; i < MAX_VEC_SIZE_BYTES / 8; i++) {
151 if (env->QRegs[regnum].ub[i] != 0) {
152 nonzero_found = true;
153 break;
156 if (!nonzero_found) {
157 return;
161 qemu_fprintf(f, " q%d = ( ", regnum);
162 qemu_fprintf(f, "0x%02x",
163 env->QRegs[regnum].ub[MAX_VEC_SIZE_BYTES / 8 - 1]);
164 for (int i = MAX_VEC_SIZE_BYTES / 8 - 2; i >= 0; i--) {
165 qemu_fprintf(f, ", 0x%02x", env->QRegs[regnum].ub[i]);
167 qemu_fprintf(f, " )\n");
170 void hexagon_debug_qreg(CPUHexagonState *env, int regnum)
172 print_qreg(stdout, env, regnum, false);
175 static void hexagon_dump(CPUHexagonState *env, FILE *f, int flags)
177 HexagonCPU *cpu = env_archcpu(env);
179 if (cpu->lldb_compat) {
181 * When comparing with LLDB, it doesn't step through single-cycle
182 * hardware loops the same way. So, we just skip them here
184 if (env->gpr[HEX_REG_PC] == env->last_pc_dumped) {
185 return;
187 env->last_pc_dumped = env->gpr[HEX_REG_PC];
190 qemu_fprintf(f, "General Purpose Registers = {\n");
191 for (int i = 0; i < 32; i++) {
192 print_reg(f, env, i);
194 print_reg(f, env, HEX_REG_SA0);
195 print_reg(f, env, HEX_REG_LC0);
196 print_reg(f, env, HEX_REG_SA1);
197 print_reg(f, env, HEX_REG_LC1);
198 print_reg(f, env, HEX_REG_M0);
199 print_reg(f, env, HEX_REG_M1);
200 print_reg(f, env, HEX_REG_USR);
201 print_reg(f, env, HEX_REG_P3_0);
202 print_reg(f, env, HEX_REG_GP);
203 print_reg(f, env, HEX_REG_UGP);
204 print_reg(f, env, HEX_REG_PC);
205 #ifdef CONFIG_USER_ONLY
207 * Not modelled in user mode, print junk to minimize the diff's
208 * with LLDB output
210 qemu_fprintf(f, " cause = 0x000000db\n");
211 qemu_fprintf(f, " badva = 0x00000000\n");
212 qemu_fprintf(f, " cs0 = 0x00000000\n");
213 qemu_fprintf(f, " cs1 = 0x00000000\n");
214 #else
215 print_reg(f, env, HEX_REG_CAUSE);
216 print_reg(f, env, HEX_REG_BADVA);
217 print_reg(f, env, HEX_REG_CS0);
218 print_reg(f, env, HEX_REG_CS1);
219 #endif
220 qemu_fprintf(f, "}\n");
222 if (flags & CPU_DUMP_FPU) {
223 qemu_fprintf(f, "Vector Registers = {\n");
224 for (int i = 0; i < NUM_VREGS; i++) {
225 print_vreg(f, env, i, true);
227 for (int i = 0; i < NUM_QREGS; i++) {
228 print_qreg(f, env, i, true);
230 qemu_fprintf(f, "}\n");
234 static void hexagon_dump_state(CPUState *cs, FILE *f, int flags)
236 HexagonCPU *cpu = HEXAGON_CPU(cs);
237 CPUHexagonState *env = &cpu->env;
239 hexagon_dump(env, f, flags);
242 void hexagon_debug(CPUHexagonState *env)
244 hexagon_dump(env, stdout, CPU_DUMP_FPU);
247 static void hexagon_cpu_set_pc(CPUState *cs, vaddr value)
249 HexagonCPU *cpu = HEXAGON_CPU(cs);
250 CPUHexagonState *env = &cpu->env;
251 env->gpr[HEX_REG_PC] = value;
254 static vaddr hexagon_cpu_get_pc(CPUState *cs)
256 HexagonCPU *cpu = HEXAGON_CPU(cs);
257 CPUHexagonState *env = &cpu->env;
258 return env->gpr[HEX_REG_PC];
261 static void hexagon_cpu_synchronize_from_tb(CPUState *cs,
262 const TranslationBlock *tb)
264 HexagonCPU *cpu = HEXAGON_CPU(cs);
265 CPUHexagonState *env = &cpu->env;
266 env->gpr[HEX_REG_PC] = tb_pc(tb);
269 static bool hexagon_cpu_has_work(CPUState *cs)
271 return true;
274 void restore_state_to_opc(CPUHexagonState *env, TranslationBlock *tb,
275 target_ulong *data)
277 env->gpr[HEX_REG_PC] = data[0];
280 static void hexagon_cpu_reset(DeviceState *dev)
282 CPUState *cs = CPU(dev);
283 HexagonCPU *cpu = HEXAGON_CPU(cs);
284 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(cpu);
285 CPUHexagonState *env = &cpu->env;
287 mcc->parent_reset(dev);
289 set_default_nan_mode(1, &env->fp_status);
290 set_float_detect_tininess(float_tininess_before_rounding, &env->fp_status);
293 static void hexagon_cpu_disas_set_info(CPUState *s, disassemble_info *info)
295 info->print_insn = print_insn_hexagon;
298 static void hexagon_cpu_realize(DeviceState *dev, Error **errp)
300 CPUState *cs = CPU(dev);
301 HexagonCPUClass *mcc = HEXAGON_CPU_GET_CLASS(dev);
302 Error *local_err = NULL;
304 cpu_exec_realizefn(cs, &local_err);
305 if (local_err != NULL) {
306 error_propagate(errp, local_err);
307 return;
310 qemu_init_vcpu(cs);
311 cpu_reset(cs);
313 mcc->parent_realize(dev, errp);
316 static void hexagon_cpu_init(Object *obj)
318 HexagonCPU *cpu = HEXAGON_CPU(obj);
320 cpu_set_cpustate_pointers(cpu);
321 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_compat_property);
322 qdev_property_add_static(DEVICE(obj), &hexagon_lldb_stack_adjust_property);
325 #include "hw/core/tcg-cpu-ops.h"
327 static const struct TCGCPUOps hexagon_tcg_ops = {
328 .initialize = hexagon_translate_init,
329 .synchronize_from_tb = hexagon_cpu_synchronize_from_tb,
332 static void hexagon_cpu_class_init(ObjectClass *c, void *data)
334 HexagonCPUClass *mcc = HEXAGON_CPU_CLASS(c);
335 CPUClass *cc = CPU_CLASS(c);
336 DeviceClass *dc = DEVICE_CLASS(c);
338 device_class_set_parent_realize(dc, hexagon_cpu_realize,
339 &mcc->parent_realize);
341 device_class_set_parent_reset(dc, hexagon_cpu_reset, &mcc->parent_reset);
343 cc->class_by_name = hexagon_cpu_class_by_name;
344 cc->has_work = hexagon_cpu_has_work;
345 cc->dump_state = hexagon_dump_state;
346 cc->set_pc = hexagon_cpu_set_pc;
347 cc->get_pc = hexagon_cpu_get_pc;
348 cc->gdb_read_register = hexagon_gdb_read_register;
349 cc->gdb_write_register = hexagon_gdb_write_register;
350 cc->gdb_num_core_regs = TOTAL_PER_THREAD_REGS + NUM_VREGS + NUM_QREGS;
351 cc->gdb_stop_before_watchpoint = true;
352 cc->disas_set_info = hexagon_cpu_disas_set_info;
353 cc->tcg_ops = &hexagon_tcg_ops;
356 #define DEFINE_CPU(type_name, initfn) \
358 .name = type_name, \
359 .parent = TYPE_HEXAGON_CPU, \
360 .instance_init = initfn \
363 static const TypeInfo hexagon_cpu_type_infos[] = {
365 .name = TYPE_HEXAGON_CPU,
366 .parent = TYPE_CPU,
367 .instance_size = sizeof(HexagonCPU),
368 .instance_init = hexagon_cpu_init,
369 .abstract = true,
370 .class_size = sizeof(HexagonCPUClass),
371 .class_init = hexagon_cpu_class_init,
373 DEFINE_CPU(TYPE_HEXAGON_CPU_V67, hexagon_v67_cpu_init),
376 DEFINE_TYPES(hexagon_cpu_type_infos)