target/arm: Create gen_gvec_{u,s}{rshr,rsra}
[qemu/ar7.git] / target / arm / translate-a64.c
blob50949d306bf89ced4088d1ad9919f4a60d1eae9e
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg-op.h"
24 #include "tcg/tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
31 #include "hw/semihosting/semihost.h"
32 #include "exec/gen-icount.h"
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
36 #include "exec/log.h"
38 #include "trace-tcg.h"
39 #include "translate-a64.h"
40 #include "qemu/atomic128.h"
42 static TCGv_i64 cpu_X[32];
43 static TCGv_i64 cpu_pc;
45 /* Load/store exclusive handling */
46 static TCGv_i64 cpu_exclusive_high;
48 static const char *regnames[] = {
49 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
50 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
51 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
52 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
55 enum a64_shift_type {
56 A64_SHIFT_TYPE_LSL = 0,
57 A64_SHIFT_TYPE_LSR = 1,
58 A64_SHIFT_TYPE_ASR = 2,
59 A64_SHIFT_TYPE_ROR = 3
62 /* Table based decoder typedefs - used when the relevant bits for decode
63 * are too awkwardly scattered across the instruction (eg SIMD).
65 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
67 typedef struct AArch64DecodeTable {
68 uint32_t pattern;
69 uint32_t mask;
70 AArch64DecodeFn *disas_fn;
71 } AArch64DecodeTable;
73 /* initialize TCG globals. */
74 void a64_translate_init(void)
76 int i;
78 cpu_pc = tcg_global_mem_new_i64(cpu_env,
79 offsetof(CPUARMState, pc),
80 "pc");
81 for (i = 0; i < 32; i++) {
82 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
83 offsetof(CPUARMState, xregs[i]),
84 regnames[i]);
87 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
88 offsetof(CPUARMState, exclusive_high), "exclusive_high");
92 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
94 static int get_a64_user_mem_index(DisasContext *s)
97 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
98 * which is the usual mmu_idx for this cpu state.
100 ARMMMUIdx useridx = s->mmu_idx;
102 if (s->unpriv) {
104 * We have pre-computed the condition for AccType_UNPRIV.
105 * Therefore we should never get here with a mmu_idx for
106 * which we do not know the corresponding user mmu_idx.
108 switch (useridx) {
109 case ARMMMUIdx_E10_1:
110 case ARMMMUIdx_E10_1_PAN:
111 useridx = ARMMMUIdx_E10_0;
112 break;
113 case ARMMMUIdx_E20_2:
114 case ARMMMUIdx_E20_2_PAN:
115 useridx = ARMMMUIdx_E20_0;
116 break;
117 case ARMMMUIdx_SE10_1:
118 case ARMMMUIdx_SE10_1_PAN:
119 useridx = ARMMMUIdx_SE10_0;
120 break;
121 default:
122 g_assert_not_reached();
125 return arm_to_core_mmu_idx(useridx);
128 static void reset_btype(DisasContext *s)
130 if (s->btype != 0) {
131 TCGv_i32 zero = tcg_const_i32(0);
132 tcg_gen_st_i32(zero, cpu_env, offsetof(CPUARMState, btype));
133 tcg_temp_free_i32(zero);
134 s->btype = 0;
138 static void set_btype(DisasContext *s, int val)
140 TCGv_i32 tcg_val;
142 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
143 tcg_debug_assert(val >= 1 && val <= 3);
145 tcg_val = tcg_const_i32(val);
146 tcg_gen_st_i32(tcg_val, cpu_env, offsetof(CPUARMState, btype));
147 tcg_temp_free_i32(tcg_val);
148 s->btype = -1;
151 void gen_a64_set_pc_im(uint64_t val)
153 tcg_gen_movi_i64(cpu_pc, val);
157 * Handle Top Byte Ignore (TBI) bits.
159 * If address tagging is enabled via the TCR TBI bits:
160 * + for EL2 and EL3 there is only one TBI bit, and if it is set
161 * then the address is zero-extended, clearing bits [63:56]
162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
163 * and TBI1 controls addressses with bit 55 == 1.
164 * If the appropriate TBI bit is set for the address then
165 * the address is sign-extended from bit 55 into bits [63:56]
167 * Here We have concatenated TBI{1,0} into tbi.
169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
170 TCGv_i64 src, int tbi)
172 if (tbi == 0) {
173 /* Load unmodified address */
174 tcg_gen_mov_i64(dst, src);
175 } else if (!regime_has_2_ranges(s->mmu_idx)) {
176 /* Force tag byte to all zero */
177 tcg_gen_extract_i64(dst, src, 0, 56);
178 } else {
179 /* Sign-extend from bit 55. */
180 tcg_gen_sextract_i64(dst, src, 0, 56);
182 if (tbi != 3) {
183 TCGv_i64 tcg_zero = tcg_const_i64(0);
186 * The two TBI bits differ.
187 * If tbi0, then !tbi1: only use the extension if positive.
188 * if !tbi0, then tbi1: only use the extension if negative.
190 tcg_gen_movcond_i64(tbi == 1 ? TCG_COND_GE : TCG_COND_LT,
191 dst, dst, tcg_zero, dst, src);
192 tcg_temp_free_i64(tcg_zero);
197 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
200 * If address tagging is enabled for instructions via the TCR TBI bits,
201 * then loading an address into the PC will clear out any tag.
203 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
207 * Return a "clean" address for ADDR according to TBID.
208 * This is always a fresh temporary, as we need to be able to
209 * increment this independently of a dirty write-back address.
211 static TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
213 TCGv_i64 clean = new_tmp_a64(s);
215 * In order to get the correct value in the FAR_ELx register,
216 * we must present the memory subsystem with the "dirty" address
217 * including the TBI. In system mode we can make this work via
218 * the TLB, dropping the TBI during translation. But for user-only
219 * mode we don't have that option, and must remove the top byte now.
221 #ifdef CONFIG_USER_ONLY
222 gen_top_byte_ignore(s, clean, addr, s->tbid);
223 #else
224 tcg_gen_mov_i64(clean, addr);
225 #endif
226 return clean;
229 typedef struct DisasCompare64 {
230 TCGCond cond;
231 TCGv_i64 value;
232 } DisasCompare64;
234 static void a64_test_cc(DisasCompare64 *c64, int cc)
236 DisasCompare c32;
238 arm_test_cc(&c32, cc);
240 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
241 * properly. The NE/EQ comparisons are also fine with this choice. */
242 c64->cond = c32.cond;
243 c64->value = tcg_temp_new_i64();
244 tcg_gen_ext_i32_i64(c64->value, c32.value);
246 arm_free_cc(&c32);
249 static void a64_free_cc(DisasCompare64 *c64)
251 tcg_temp_free_i64(c64->value);
254 static void gen_exception_internal(int excp)
256 TCGv_i32 tcg_excp = tcg_const_i32(excp);
258 assert(excp_is_internal(excp));
259 gen_helper_exception_internal(cpu_env, tcg_excp);
260 tcg_temp_free_i32(tcg_excp);
263 static void gen_exception_internal_insn(DisasContext *s, uint64_t pc, int excp)
265 gen_a64_set_pc_im(pc);
266 gen_exception_internal(excp);
267 s->base.is_jmp = DISAS_NORETURN;
270 static void gen_exception_insn(DisasContext *s, uint64_t pc, int excp,
271 uint32_t syndrome, uint32_t target_el)
273 gen_a64_set_pc_im(pc);
274 gen_exception(excp, syndrome, target_el);
275 s->base.is_jmp = DISAS_NORETURN;
278 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
280 TCGv_i32 tcg_syn;
282 gen_a64_set_pc_im(s->pc_curr);
283 tcg_syn = tcg_const_i32(syndrome);
284 gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
285 tcg_temp_free_i32(tcg_syn);
286 s->base.is_jmp = DISAS_NORETURN;
289 static void gen_step_complete_exception(DisasContext *s)
291 /* We just completed step of an insn. Move from Active-not-pending
292 * to Active-pending, and then also take the swstep exception.
293 * This corresponds to making the (IMPDEF) choice to prioritize
294 * swstep exceptions over asynchronous exceptions taken to an exception
295 * level where debug is disabled. This choice has the advantage that
296 * we do not need to maintain internal state corresponding to the
297 * ISV/EX syndrome bits between completion of the step and generation
298 * of the exception, and our syndrome information is always correct.
300 gen_ss_advance(s);
301 gen_swstep_exception(s, 1, s->is_ldex);
302 s->base.is_jmp = DISAS_NORETURN;
305 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
307 /* No direct tb linking with singlestep (either QEMU's or the ARM
308 * debug architecture kind) or deterministic io
310 if (s->base.singlestep_enabled || s->ss_active ||
311 (tb_cflags(s->base.tb) & CF_LAST_IO)) {
312 return false;
315 #ifndef CONFIG_USER_ONLY
316 /* Only link tbs from inside the same guest page */
317 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
318 return false;
320 #endif
322 return true;
325 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
327 TranslationBlock *tb;
329 tb = s->base.tb;
330 if (use_goto_tb(s, n, dest)) {
331 tcg_gen_goto_tb(n);
332 gen_a64_set_pc_im(dest);
333 tcg_gen_exit_tb(tb, n);
334 s->base.is_jmp = DISAS_NORETURN;
335 } else {
336 gen_a64_set_pc_im(dest);
337 if (s->ss_active) {
338 gen_step_complete_exception(s);
339 } else if (s->base.singlestep_enabled) {
340 gen_exception_internal(EXCP_DEBUG);
341 } else {
342 tcg_gen_lookup_and_goto_ptr();
343 s->base.is_jmp = DISAS_NORETURN;
348 void unallocated_encoding(DisasContext *s)
350 /* Unallocated and reserved encodings are uncategorized */
351 gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_uncategorized(),
352 default_exception_el(s));
355 static void init_tmp_a64_array(DisasContext *s)
357 #ifdef CONFIG_DEBUG_TCG
358 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
359 #endif
360 s->tmp_a64_count = 0;
363 static void free_tmp_a64(DisasContext *s)
365 int i;
366 for (i = 0; i < s->tmp_a64_count; i++) {
367 tcg_temp_free_i64(s->tmp_a64[i]);
369 init_tmp_a64_array(s);
372 TCGv_i64 new_tmp_a64(DisasContext *s)
374 assert(s->tmp_a64_count < TMP_A64_MAX);
375 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
378 TCGv_i64 new_tmp_a64_zero(DisasContext *s)
380 TCGv_i64 t = new_tmp_a64(s);
381 tcg_gen_movi_i64(t, 0);
382 return t;
386 * Register access functions
388 * These functions are used for directly accessing a register in where
389 * changes to the final register value are likely to be made. If you
390 * need to use a register for temporary calculation (e.g. index type
391 * operations) use the read_* form.
393 * B1.2.1 Register mappings
395 * In instruction register encoding 31 can refer to ZR (zero register) or
396 * the SP (stack pointer) depending on context. In QEMU's case we map SP
397 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
398 * This is the point of the _sp forms.
400 TCGv_i64 cpu_reg(DisasContext *s, int reg)
402 if (reg == 31) {
403 return new_tmp_a64_zero(s);
404 } else {
405 return cpu_X[reg];
409 /* register access for when 31 == SP */
410 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
412 return cpu_X[reg];
415 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
416 * representing the register contents. This TCGv is an auto-freed
417 * temporary so it need not be explicitly freed, and may be modified.
419 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
421 TCGv_i64 v = new_tmp_a64(s);
422 if (reg != 31) {
423 if (sf) {
424 tcg_gen_mov_i64(v, cpu_X[reg]);
425 } else {
426 tcg_gen_ext32u_i64(v, cpu_X[reg]);
428 } else {
429 tcg_gen_movi_i64(v, 0);
431 return v;
434 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
436 TCGv_i64 v = new_tmp_a64(s);
437 if (sf) {
438 tcg_gen_mov_i64(v, cpu_X[reg]);
439 } else {
440 tcg_gen_ext32u_i64(v, cpu_X[reg]);
442 return v;
445 /* Return the offset into CPUARMState of a slice (from
446 * the least significant end) of FP register Qn (ie
447 * Dn, Sn, Hn or Bn).
448 * (Note that this is not the same mapping as for A32; see cpu.h)
450 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
452 return vec_reg_offset(s, regno, 0, size);
455 /* Offset of the high half of the 128 bit vector Qn */
456 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
458 return vec_reg_offset(s, regno, 1, MO_64);
461 /* Convenience accessors for reading and writing single and double
462 * FP registers. Writing clears the upper parts of the associated
463 * 128 bit vector register, as required by the architecture.
464 * Note that unlike the GP register accessors, the values returned
465 * by the read functions must be manually freed.
467 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
469 TCGv_i64 v = tcg_temp_new_i64();
471 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
472 return v;
475 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
477 TCGv_i32 v = tcg_temp_new_i32();
479 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
480 return v;
483 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
485 TCGv_i32 v = tcg_temp_new_i32();
487 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
488 return v;
491 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
492 * If SVE is not enabled, then there are only 128 bits in the vector.
494 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
496 unsigned ofs = fp_reg_offset(s, rd, MO_64);
497 unsigned vsz = vec_full_reg_size(s);
499 if (!is_q) {
500 TCGv_i64 tcg_zero = tcg_const_i64(0);
501 tcg_gen_st_i64(tcg_zero, cpu_env, ofs + 8);
502 tcg_temp_free_i64(tcg_zero);
504 if (vsz > 16) {
505 tcg_gen_gvec_dup_imm(MO_64, ofs + 16, vsz - 16, vsz - 16, 0);
509 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
511 unsigned ofs = fp_reg_offset(s, reg, MO_64);
513 tcg_gen_st_i64(v, cpu_env, ofs);
514 clear_vec_high(s, false, reg);
517 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
519 TCGv_i64 tmp = tcg_temp_new_i64();
521 tcg_gen_extu_i32_i64(tmp, v);
522 write_fp_dreg(s, reg, tmp);
523 tcg_temp_free_i64(tmp);
526 TCGv_ptr get_fpstatus_ptr(bool is_f16)
528 TCGv_ptr statusptr = tcg_temp_new_ptr();
529 int offset;
531 /* In A64 all instructions (both FP and Neon) use the FPCR; there
532 * is no equivalent of the A32 Neon "standard FPSCR value".
533 * However half-precision operations operate under a different
534 * FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status.
536 if (is_f16) {
537 offset = offsetof(CPUARMState, vfp.fp_status_f16);
538 } else {
539 offset = offsetof(CPUARMState, vfp.fp_status);
541 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
542 return statusptr;
545 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
546 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
547 GVecGen2Fn *gvec_fn, int vece)
549 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
550 is_q ? 16 : 8, vec_full_reg_size(s));
553 /* Expand a 2-operand + immediate AdvSIMD vector operation using
554 * an expander function.
556 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
557 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
559 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
560 imm, is_q ? 16 : 8, vec_full_reg_size(s));
563 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
564 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
565 GVecGen3Fn *gvec_fn, int vece)
567 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
568 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
571 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
572 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
573 int rx, GVecGen4Fn *gvec_fn, int vece)
575 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
576 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
577 is_q ? 16 : 8, vec_full_reg_size(s));
580 /* Expand a 2-operand AdvSIMD vector operation using an op descriptor. */
581 static void gen_gvec_op2(DisasContext *s, bool is_q, int rd,
582 int rn, const GVecGen2 *gvec_op)
584 tcg_gen_gvec_2(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
585 is_q ? 16 : 8, vec_full_reg_size(s), gvec_op);
588 /* Expand a 2-operand + immediate AdvSIMD vector operation using
589 * an op descriptor.
591 static void gen_gvec_op2i(DisasContext *s, bool is_q, int rd,
592 int rn, int64_t imm, const GVecGen2i *gvec_op)
594 tcg_gen_gvec_2i(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
595 is_q ? 16 : 8, vec_full_reg_size(s), imm, gvec_op);
598 /* Expand a 3-operand AdvSIMD vector operation using an op descriptor. */
599 static void gen_gvec_op3(DisasContext *s, bool is_q, int rd,
600 int rn, int rm, const GVecGen3 *gvec_op)
602 tcg_gen_gvec_3(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
603 vec_full_reg_offset(s, rm), is_q ? 16 : 8,
604 vec_full_reg_size(s), gvec_op);
607 /* Expand a 3-operand operation using an out-of-line helper. */
608 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
609 int rn, int rm, int data, gen_helper_gvec_3 *fn)
611 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
612 vec_full_reg_offset(s, rn),
613 vec_full_reg_offset(s, rm),
614 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
617 /* Expand a 3-operand + env pointer operation using
618 * an out-of-line helper.
620 static void gen_gvec_op3_env(DisasContext *s, bool is_q, int rd,
621 int rn, int rm, gen_helper_gvec_3_ptr *fn)
623 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
624 vec_full_reg_offset(s, rn),
625 vec_full_reg_offset(s, rm), cpu_env,
626 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
629 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
630 * an out-of-line helper.
632 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
633 int rm, bool is_fp16, int data,
634 gen_helper_gvec_3_ptr *fn)
636 TCGv_ptr fpst = get_fpstatus_ptr(is_fp16);
637 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
638 vec_full_reg_offset(s, rn),
639 vec_full_reg_offset(s, rm), fpst,
640 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
641 tcg_temp_free_ptr(fpst);
644 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
645 * than the 32 bit equivalent.
647 static inline void gen_set_NZ64(TCGv_i64 result)
649 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
650 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
653 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
654 static inline void gen_logic_CC(int sf, TCGv_i64 result)
656 if (sf) {
657 gen_set_NZ64(result);
658 } else {
659 tcg_gen_extrl_i64_i32(cpu_ZF, result);
660 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
662 tcg_gen_movi_i32(cpu_CF, 0);
663 tcg_gen_movi_i32(cpu_VF, 0);
666 /* dest = T0 + T1; compute C, N, V and Z flags */
667 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
669 if (sf) {
670 TCGv_i64 result, flag, tmp;
671 result = tcg_temp_new_i64();
672 flag = tcg_temp_new_i64();
673 tmp = tcg_temp_new_i64();
675 tcg_gen_movi_i64(tmp, 0);
676 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
678 tcg_gen_extrl_i64_i32(cpu_CF, flag);
680 gen_set_NZ64(result);
682 tcg_gen_xor_i64(flag, result, t0);
683 tcg_gen_xor_i64(tmp, t0, t1);
684 tcg_gen_andc_i64(flag, flag, tmp);
685 tcg_temp_free_i64(tmp);
686 tcg_gen_extrh_i64_i32(cpu_VF, flag);
688 tcg_gen_mov_i64(dest, result);
689 tcg_temp_free_i64(result);
690 tcg_temp_free_i64(flag);
691 } else {
692 /* 32 bit arithmetic */
693 TCGv_i32 t0_32 = tcg_temp_new_i32();
694 TCGv_i32 t1_32 = tcg_temp_new_i32();
695 TCGv_i32 tmp = tcg_temp_new_i32();
697 tcg_gen_movi_i32(tmp, 0);
698 tcg_gen_extrl_i64_i32(t0_32, t0);
699 tcg_gen_extrl_i64_i32(t1_32, t1);
700 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
701 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
702 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
703 tcg_gen_xor_i32(tmp, t0_32, t1_32);
704 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
705 tcg_gen_extu_i32_i64(dest, cpu_NF);
707 tcg_temp_free_i32(tmp);
708 tcg_temp_free_i32(t0_32);
709 tcg_temp_free_i32(t1_32);
713 /* dest = T0 - T1; compute C, N, V and Z flags */
714 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
716 if (sf) {
717 /* 64 bit arithmetic */
718 TCGv_i64 result, flag, tmp;
720 result = tcg_temp_new_i64();
721 flag = tcg_temp_new_i64();
722 tcg_gen_sub_i64(result, t0, t1);
724 gen_set_NZ64(result);
726 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
727 tcg_gen_extrl_i64_i32(cpu_CF, flag);
729 tcg_gen_xor_i64(flag, result, t0);
730 tmp = tcg_temp_new_i64();
731 tcg_gen_xor_i64(tmp, t0, t1);
732 tcg_gen_and_i64(flag, flag, tmp);
733 tcg_temp_free_i64(tmp);
734 tcg_gen_extrh_i64_i32(cpu_VF, flag);
735 tcg_gen_mov_i64(dest, result);
736 tcg_temp_free_i64(flag);
737 tcg_temp_free_i64(result);
738 } else {
739 /* 32 bit arithmetic */
740 TCGv_i32 t0_32 = tcg_temp_new_i32();
741 TCGv_i32 t1_32 = tcg_temp_new_i32();
742 TCGv_i32 tmp;
744 tcg_gen_extrl_i64_i32(t0_32, t0);
745 tcg_gen_extrl_i64_i32(t1_32, t1);
746 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
747 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
748 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
749 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
750 tmp = tcg_temp_new_i32();
751 tcg_gen_xor_i32(tmp, t0_32, t1_32);
752 tcg_temp_free_i32(t0_32);
753 tcg_temp_free_i32(t1_32);
754 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
755 tcg_temp_free_i32(tmp);
756 tcg_gen_extu_i32_i64(dest, cpu_NF);
760 /* dest = T0 + T1 + CF; do not compute flags. */
761 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
763 TCGv_i64 flag = tcg_temp_new_i64();
764 tcg_gen_extu_i32_i64(flag, cpu_CF);
765 tcg_gen_add_i64(dest, t0, t1);
766 tcg_gen_add_i64(dest, dest, flag);
767 tcg_temp_free_i64(flag);
769 if (!sf) {
770 tcg_gen_ext32u_i64(dest, dest);
774 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
775 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
777 if (sf) {
778 TCGv_i64 result, cf_64, vf_64, tmp;
779 result = tcg_temp_new_i64();
780 cf_64 = tcg_temp_new_i64();
781 vf_64 = tcg_temp_new_i64();
782 tmp = tcg_const_i64(0);
784 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
785 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
786 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
787 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
788 gen_set_NZ64(result);
790 tcg_gen_xor_i64(vf_64, result, t0);
791 tcg_gen_xor_i64(tmp, t0, t1);
792 tcg_gen_andc_i64(vf_64, vf_64, tmp);
793 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
795 tcg_gen_mov_i64(dest, result);
797 tcg_temp_free_i64(tmp);
798 tcg_temp_free_i64(vf_64);
799 tcg_temp_free_i64(cf_64);
800 tcg_temp_free_i64(result);
801 } else {
802 TCGv_i32 t0_32, t1_32, tmp;
803 t0_32 = tcg_temp_new_i32();
804 t1_32 = tcg_temp_new_i32();
805 tmp = tcg_const_i32(0);
807 tcg_gen_extrl_i64_i32(t0_32, t0);
808 tcg_gen_extrl_i64_i32(t1_32, t1);
809 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
810 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
812 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
813 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
814 tcg_gen_xor_i32(tmp, t0_32, t1_32);
815 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
816 tcg_gen_extu_i32_i64(dest, cpu_NF);
818 tcg_temp_free_i32(tmp);
819 tcg_temp_free_i32(t1_32);
820 tcg_temp_free_i32(t0_32);
825 * Load/Store generators
829 * Store from GPR register to memory.
831 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
832 TCGv_i64 tcg_addr, int size, int memidx,
833 bool iss_valid,
834 unsigned int iss_srt,
835 bool iss_sf, bool iss_ar)
837 g_assert(size <= 3);
838 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
840 if (iss_valid) {
841 uint32_t syn;
843 syn = syn_data_abort_with_iss(0,
844 size,
845 false,
846 iss_srt,
847 iss_sf,
848 iss_ar,
849 0, 0, 0, 0, 0, false);
850 disas_set_insn_syndrome(s, syn);
854 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
855 TCGv_i64 tcg_addr, int size,
856 bool iss_valid,
857 unsigned int iss_srt,
858 bool iss_sf, bool iss_ar)
860 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
861 iss_valid, iss_srt, iss_sf, iss_ar);
865 * Load from memory to GPR register
867 static void do_gpr_ld_memidx(DisasContext *s,
868 TCGv_i64 dest, TCGv_i64 tcg_addr,
869 int size, bool is_signed,
870 bool extend, int memidx,
871 bool iss_valid, unsigned int iss_srt,
872 bool iss_sf, bool iss_ar)
874 MemOp memop = s->be_data + size;
876 g_assert(size <= 3);
878 if (is_signed) {
879 memop += MO_SIGN;
882 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
884 if (extend && is_signed) {
885 g_assert(size < 3);
886 tcg_gen_ext32u_i64(dest, dest);
889 if (iss_valid) {
890 uint32_t syn;
892 syn = syn_data_abort_with_iss(0,
893 size,
894 is_signed,
895 iss_srt,
896 iss_sf,
897 iss_ar,
898 0, 0, 0, 0, 0, false);
899 disas_set_insn_syndrome(s, syn);
903 static void do_gpr_ld(DisasContext *s,
904 TCGv_i64 dest, TCGv_i64 tcg_addr,
905 int size, bool is_signed, bool extend,
906 bool iss_valid, unsigned int iss_srt,
907 bool iss_sf, bool iss_ar)
909 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
910 get_mem_index(s),
911 iss_valid, iss_srt, iss_sf, iss_ar);
915 * Store from FP register to memory
917 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
919 /* This writes the bottom N bits of a 128 bit wide vector to memory */
920 TCGv_i64 tmp = tcg_temp_new_i64();
921 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
922 if (size < 4) {
923 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
924 s->be_data + size);
925 } else {
926 bool be = s->be_data == MO_BE;
927 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
929 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
930 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
931 s->be_data | MO_Q);
932 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
933 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
934 s->be_data | MO_Q);
935 tcg_temp_free_i64(tcg_hiaddr);
938 tcg_temp_free_i64(tmp);
942 * Load from memory to FP register
944 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
946 /* This always zero-extends and writes to a full 128 bit wide vector */
947 TCGv_i64 tmplo = tcg_temp_new_i64();
948 TCGv_i64 tmphi;
950 if (size < 4) {
951 MemOp memop = s->be_data + size;
952 tmphi = tcg_const_i64(0);
953 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
954 } else {
955 bool be = s->be_data == MO_BE;
956 TCGv_i64 tcg_hiaddr;
958 tmphi = tcg_temp_new_i64();
959 tcg_hiaddr = tcg_temp_new_i64();
961 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
962 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
963 s->be_data | MO_Q);
964 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
965 s->be_data | MO_Q);
966 tcg_temp_free_i64(tcg_hiaddr);
969 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
970 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
972 tcg_temp_free_i64(tmplo);
973 tcg_temp_free_i64(tmphi);
975 clear_vec_high(s, true, destidx);
979 * Vector load/store helpers.
981 * The principal difference between this and a FP load is that we don't
982 * zero extend as we are filling a partial chunk of the vector register.
983 * These functions don't support 128 bit loads/stores, which would be
984 * normal load/store operations.
986 * The _i32 versions are useful when operating on 32 bit quantities
987 * (eg for floating point single or using Neon helper functions).
990 /* Get value of an element within a vector register */
991 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
992 int element, MemOp memop)
994 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
995 switch (memop) {
996 case MO_8:
997 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
998 break;
999 case MO_16:
1000 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1001 break;
1002 case MO_32:
1003 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1004 break;
1005 case MO_8|MO_SIGN:
1006 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1007 break;
1008 case MO_16|MO_SIGN:
1009 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1010 break;
1011 case MO_32|MO_SIGN:
1012 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1013 break;
1014 case MO_64:
1015 case MO_64|MO_SIGN:
1016 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1017 break;
1018 default:
1019 g_assert_not_reached();
1023 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1024 int element, MemOp memop)
1026 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1027 switch (memop) {
1028 case MO_8:
1029 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1030 break;
1031 case MO_16:
1032 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1033 break;
1034 case MO_8|MO_SIGN:
1035 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1036 break;
1037 case MO_16|MO_SIGN:
1038 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1039 break;
1040 case MO_32:
1041 case MO_32|MO_SIGN:
1042 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1043 break;
1044 default:
1045 g_assert_not_reached();
1049 /* Set value of an element within a vector register */
1050 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1051 int element, MemOp memop)
1053 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1054 switch (memop) {
1055 case MO_8:
1056 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1057 break;
1058 case MO_16:
1059 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1060 break;
1061 case MO_32:
1062 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1063 break;
1064 case MO_64:
1065 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1066 break;
1067 default:
1068 g_assert_not_reached();
1072 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1073 int destidx, int element, MemOp memop)
1075 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1076 switch (memop) {
1077 case MO_8:
1078 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1079 break;
1080 case MO_16:
1081 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1082 break;
1083 case MO_32:
1084 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1085 break;
1086 default:
1087 g_assert_not_reached();
1091 /* Store from vector register to memory */
1092 static void do_vec_st(DisasContext *s, int srcidx, int element,
1093 TCGv_i64 tcg_addr, int size, MemOp endian)
1095 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1097 read_vec_element(s, tcg_tmp, srcidx, element, size);
1098 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1100 tcg_temp_free_i64(tcg_tmp);
1103 /* Load from memory to vector register */
1104 static void do_vec_ld(DisasContext *s, int destidx, int element,
1105 TCGv_i64 tcg_addr, int size, MemOp endian)
1107 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1109 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), endian | size);
1110 write_vec_element(s, tcg_tmp, destidx, element, size);
1112 tcg_temp_free_i64(tcg_tmp);
1115 /* Check that FP/Neon access is enabled. If it is, return
1116 * true. If not, emit code to generate an appropriate exception,
1117 * and return false; the caller should not emit any code for
1118 * the instruction. Note that this check must happen after all
1119 * unallocated-encoding checks (otherwise the syndrome information
1120 * for the resulting exception will be incorrect).
1122 static inline bool fp_access_check(DisasContext *s)
1124 assert(!s->fp_access_checked);
1125 s->fp_access_checked = true;
1127 if (!s->fp_excp_el) {
1128 return true;
1131 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
1132 syn_fp_access_trap(1, 0xe, false), s->fp_excp_el);
1133 return false;
1136 /* Check that SVE access is enabled. If it is, return true.
1137 * If not, emit code to generate an appropriate exception and return false.
1139 bool sve_access_check(DisasContext *s)
1141 if (s->sve_excp_el) {
1142 gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_sve_access_trap(),
1143 s->sve_excp_el);
1144 return false;
1146 return fp_access_check(s);
1150 * This utility function is for doing register extension with an
1151 * optional shift. You will likely want to pass a temporary for the
1152 * destination register. See DecodeRegExtend() in the ARM ARM.
1154 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1155 int option, unsigned int shift)
1157 int extsize = extract32(option, 0, 2);
1158 bool is_signed = extract32(option, 2, 1);
1160 if (is_signed) {
1161 switch (extsize) {
1162 case 0:
1163 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1164 break;
1165 case 1:
1166 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1167 break;
1168 case 2:
1169 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1170 break;
1171 case 3:
1172 tcg_gen_mov_i64(tcg_out, tcg_in);
1173 break;
1175 } else {
1176 switch (extsize) {
1177 case 0:
1178 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1179 break;
1180 case 1:
1181 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1182 break;
1183 case 2:
1184 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1185 break;
1186 case 3:
1187 tcg_gen_mov_i64(tcg_out, tcg_in);
1188 break;
1192 if (shift) {
1193 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1197 static inline void gen_check_sp_alignment(DisasContext *s)
1199 /* The AArch64 architecture mandates that (if enabled via PSTATE
1200 * or SCTLR bits) there is a check that SP is 16-aligned on every
1201 * SP-relative load or store (with an exception generated if it is not).
1202 * In line with general QEMU practice regarding misaligned accesses,
1203 * we omit these checks for the sake of guest program performance.
1204 * This function is provided as a hook so we can more easily add these
1205 * checks in future (possibly as a "favour catching guest program bugs
1206 * over speed" user selectable option).
1211 * This provides a simple table based table lookup decoder. It is
1212 * intended to be used when the relevant bits for decode are too
1213 * awkwardly placed and switch/if based logic would be confusing and
1214 * deeply nested. Since it's a linear search through the table, tables
1215 * should be kept small.
1217 * It returns the first handler where insn & mask == pattern, or
1218 * NULL if there is no match.
1219 * The table is terminated by an empty mask (i.e. 0)
1221 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1222 uint32_t insn)
1224 const AArch64DecodeTable *tptr = table;
1226 while (tptr->mask) {
1227 if ((insn & tptr->mask) == tptr->pattern) {
1228 return tptr->disas_fn;
1230 tptr++;
1232 return NULL;
1236 * The instruction disassembly implemented here matches
1237 * the instruction encoding classifications in chapter C4
1238 * of the ARM Architecture Reference Manual (DDI0487B_a);
1239 * classification names and decode diagrams here should generally
1240 * match up with those in the manual.
1243 /* Unconditional branch (immediate)
1244 * 31 30 26 25 0
1245 * +----+-----------+-------------------------------------+
1246 * | op | 0 0 1 0 1 | imm26 |
1247 * +----+-----------+-------------------------------------+
1249 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1251 uint64_t addr = s->pc_curr + sextract32(insn, 0, 26) * 4;
1253 if (insn & (1U << 31)) {
1254 /* BL Branch with link */
1255 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
1258 /* B Branch / BL Branch with link */
1259 reset_btype(s);
1260 gen_goto_tb(s, 0, addr);
1263 /* Compare and branch (immediate)
1264 * 31 30 25 24 23 5 4 0
1265 * +----+-------------+----+---------------------+--------+
1266 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1267 * +----+-------------+----+---------------------+--------+
1269 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1271 unsigned int sf, op, rt;
1272 uint64_t addr;
1273 TCGLabel *label_match;
1274 TCGv_i64 tcg_cmp;
1276 sf = extract32(insn, 31, 1);
1277 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1278 rt = extract32(insn, 0, 5);
1279 addr = s->pc_curr + sextract32(insn, 5, 19) * 4;
1281 tcg_cmp = read_cpu_reg(s, rt, sf);
1282 label_match = gen_new_label();
1284 reset_btype(s);
1285 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1286 tcg_cmp, 0, label_match);
1288 gen_goto_tb(s, 0, s->base.pc_next);
1289 gen_set_label(label_match);
1290 gen_goto_tb(s, 1, addr);
1293 /* Test and branch (immediate)
1294 * 31 30 25 24 23 19 18 5 4 0
1295 * +----+-------------+----+-------+-------------+------+
1296 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1297 * +----+-------------+----+-------+-------------+------+
1299 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1301 unsigned int bit_pos, op, rt;
1302 uint64_t addr;
1303 TCGLabel *label_match;
1304 TCGv_i64 tcg_cmp;
1306 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1307 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1308 addr = s->pc_curr + sextract32(insn, 5, 14) * 4;
1309 rt = extract32(insn, 0, 5);
1311 tcg_cmp = tcg_temp_new_i64();
1312 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1313 label_match = gen_new_label();
1315 reset_btype(s);
1316 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1317 tcg_cmp, 0, label_match);
1318 tcg_temp_free_i64(tcg_cmp);
1319 gen_goto_tb(s, 0, s->base.pc_next);
1320 gen_set_label(label_match);
1321 gen_goto_tb(s, 1, addr);
1324 /* Conditional branch (immediate)
1325 * 31 25 24 23 5 4 3 0
1326 * +---------------+----+---------------------+----+------+
1327 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1328 * +---------------+----+---------------------+----+------+
1330 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1332 unsigned int cond;
1333 uint64_t addr;
1335 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1336 unallocated_encoding(s);
1337 return;
1339 addr = s->pc_curr + sextract32(insn, 5, 19) * 4;
1340 cond = extract32(insn, 0, 4);
1342 reset_btype(s);
1343 if (cond < 0x0e) {
1344 /* genuinely conditional branches */
1345 TCGLabel *label_match = gen_new_label();
1346 arm_gen_test_cc(cond, label_match);
1347 gen_goto_tb(s, 0, s->base.pc_next);
1348 gen_set_label(label_match);
1349 gen_goto_tb(s, 1, addr);
1350 } else {
1351 /* 0xe and 0xf are both "always" conditions */
1352 gen_goto_tb(s, 0, addr);
1356 /* HINT instruction group, including various allocated HINTs */
1357 static void handle_hint(DisasContext *s, uint32_t insn,
1358 unsigned int op1, unsigned int op2, unsigned int crm)
1360 unsigned int selector = crm << 3 | op2;
1362 if (op1 != 3) {
1363 unallocated_encoding(s);
1364 return;
1367 switch (selector) {
1368 case 0b00000: /* NOP */
1369 break;
1370 case 0b00011: /* WFI */
1371 s->base.is_jmp = DISAS_WFI;
1372 break;
1373 case 0b00001: /* YIELD */
1374 /* When running in MTTCG we don't generate jumps to the yield and
1375 * WFE helpers as it won't affect the scheduling of other vCPUs.
1376 * If we wanted to more completely model WFE/SEV so we don't busy
1377 * spin unnecessarily we would need to do something more involved.
1379 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1380 s->base.is_jmp = DISAS_YIELD;
1382 break;
1383 case 0b00010: /* WFE */
1384 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1385 s->base.is_jmp = DISAS_WFE;
1387 break;
1388 case 0b00100: /* SEV */
1389 case 0b00101: /* SEVL */
1390 /* we treat all as NOP at least for now */
1391 break;
1392 case 0b00111: /* XPACLRI */
1393 if (s->pauth_active) {
1394 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1396 break;
1397 case 0b01000: /* PACIA1716 */
1398 if (s->pauth_active) {
1399 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1401 break;
1402 case 0b01010: /* PACIB1716 */
1403 if (s->pauth_active) {
1404 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1406 break;
1407 case 0b01100: /* AUTIA1716 */
1408 if (s->pauth_active) {
1409 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1411 break;
1412 case 0b01110: /* AUTIB1716 */
1413 if (s->pauth_active) {
1414 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1416 break;
1417 case 0b11000: /* PACIAZ */
1418 if (s->pauth_active) {
1419 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1420 new_tmp_a64_zero(s));
1422 break;
1423 case 0b11001: /* PACIASP */
1424 if (s->pauth_active) {
1425 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1427 break;
1428 case 0b11010: /* PACIBZ */
1429 if (s->pauth_active) {
1430 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1431 new_tmp_a64_zero(s));
1433 break;
1434 case 0b11011: /* PACIBSP */
1435 if (s->pauth_active) {
1436 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1438 break;
1439 case 0b11100: /* AUTIAZ */
1440 if (s->pauth_active) {
1441 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1442 new_tmp_a64_zero(s));
1444 break;
1445 case 0b11101: /* AUTIASP */
1446 if (s->pauth_active) {
1447 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1449 break;
1450 case 0b11110: /* AUTIBZ */
1451 if (s->pauth_active) {
1452 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1453 new_tmp_a64_zero(s));
1455 break;
1456 case 0b11111: /* AUTIBSP */
1457 if (s->pauth_active) {
1458 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1460 break;
1461 default:
1462 /* default specified as NOP equivalent */
1463 break;
1467 static void gen_clrex(DisasContext *s, uint32_t insn)
1469 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1472 /* CLREX, DSB, DMB, ISB */
1473 static void handle_sync(DisasContext *s, uint32_t insn,
1474 unsigned int op1, unsigned int op2, unsigned int crm)
1476 TCGBar bar;
1478 if (op1 != 3) {
1479 unallocated_encoding(s);
1480 return;
1483 switch (op2) {
1484 case 2: /* CLREX */
1485 gen_clrex(s, insn);
1486 return;
1487 case 4: /* DSB */
1488 case 5: /* DMB */
1489 switch (crm & 3) {
1490 case 1: /* MBReqTypes_Reads */
1491 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1492 break;
1493 case 2: /* MBReqTypes_Writes */
1494 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1495 break;
1496 default: /* MBReqTypes_All */
1497 bar = TCG_BAR_SC | TCG_MO_ALL;
1498 break;
1500 tcg_gen_mb(bar);
1501 return;
1502 case 6: /* ISB */
1503 /* We need to break the TB after this insn to execute
1504 * a self-modified code correctly and also to take
1505 * any pending interrupts immediately.
1507 reset_btype(s);
1508 gen_goto_tb(s, 0, s->base.pc_next);
1509 return;
1511 case 7: /* SB */
1512 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1513 goto do_unallocated;
1516 * TODO: There is no speculation barrier opcode for TCG;
1517 * MB and end the TB instead.
1519 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1520 gen_goto_tb(s, 0, s->base.pc_next);
1521 return;
1523 default:
1524 do_unallocated:
1525 unallocated_encoding(s);
1526 return;
1530 static void gen_xaflag(void)
1532 TCGv_i32 z = tcg_temp_new_i32();
1534 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1537 * (!C & !Z) << 31
1538 * (!(C | Z)) << 31
1539 * ~((C | Z) << 31)
1540 * ~-(C | Z)
1541 * (C | Z) - 1
1543 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1544 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1546 /* !(Z & C) */
1547 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1548 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1550 /* (!C & Z) << 31 -> -(Z & ~C) */
1551 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1552 tcg_gen_neg_i32(cpu_VF, cpu_VF);
1554 /* C | Z */
1555 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1557 tcg_temp_free_i32(z);
1560 static void gen_axflag(void)
1562 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
1563 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
1565 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1566 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1568 tcg_gen_movi_i32(cpu_NF, 0);
1569 tcg_gen_movi_i32(cpu_VF, 0);
1572 /* MSR (immediate) - move immediate to processor state field */
1573 static void handle_msr_i(DisasContext *s, uint32_t insn,
1574 unsigned int op1, unsigned int op2, unsigned int crm)
1576 TCGv_i32 t1;
1577 int op = op1 << 3 | op2;
1579 /* End the TB by default, chaining is ok. */
1580 s->base.is_jmp = DISAS_TOO_MANY;
1582 switch (op) {
1583 case 0x00: /* CFINV */
1584 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1585 goto do_unallocated;
1587 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1588 s->base.is_jmp = DISAS_NEXT;
1589 break;
1591 case 0x01: /* XAFlag */
1592 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1593 goto do_unallocated;
1595 gen_xaflag();
1596 s->base.is_jmp = DISAS_NEXT;
1597 break;
1599 case 0x02: /* AXFlag */
1600 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1601 goto do_unallocated;
1603 gen_axflag();
1604 s->base.is_jmp = DISAS_NEXT;
1605 break;
1607 case 0x03: /* UAO */
1608 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1609 goto do_unallocated;
1611 if (crm & 1) {
1612 set_pstate_bits(PSTATE_UAO);
1613 } else {
1614 clear_pstate_bits(PSTATE_UAO);
1616 t1 = tcg_const_i32(s->current_el);
1617 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1618 tcg_temp_free_i32(t1);
1619 break;
1621 case 0x04: /* PAN */
1622 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1623 goto do_unallocated;
1625 if (crm & 1) {
1626 set_pstate_bits(PSTATE_PAN);
1627 } else {
1628 clear_pstate_bits(PSTATE_PAN);
1630 t1 = tcg_const_i32(s->current_el);
1631 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1632 tcg_temp_free_i32(t1);
1633 break;
1635 case 0x05: /* SPSel */
1636 if (s->current_el == 0) {
1637 goto do_unallocated;
1639 t1 = tcg_const_i32(crm & PSTATE_SP);
1640 gen_helper_msr_i_spsel(cpu_env, t1);
1641 tcg_temp_free_i32(t1);
1642 break;
1644 case 0x1e: /* DAIFSet */
1645 t1 = tcg_const_i32(crm);
1646 gen_helper_msr_i_daifset(cpu_env, t1);
1647 tcg_temp_free_i32(t1);
1648 break;
1650 case 0x1f: /* DAIFClear */
1651 t1 = tcg_const_i32(crm);
1652 gen_helper_msr_i_daifclear(cpu_env, t1);
1653 tcg_temp_free_i32(t1);
1654 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1655 s->base.is_jmp = DISAS_UPDATE;
1656 break;
1658 default:
1659 do_unallocated:
1660 unallocated_encoding(s);
1661 return;
1665 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1667 TCGv_i32 tmp = tcg_temp_new_i32();
1668 TCGv_i32 nzcv = tcg_temp_new_i32();
1670 /* build bit 31, N */
1671 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1672 /* build bit 30, Z */
1673 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1674 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1675 /* build bit 29, C */
1676 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1677 /* build bit 28, V */
1678 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1679 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1680 /* generate result */
1681 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1683 tcg_temp_free_i32(nzcv);
1684 tcg_temp_free_i32(tmp);
1687 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1689 TCGv_i32 nzcv = tcg_temp_new_i32();
1691 /* take NZCV from R[t] */
1692 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1694 /* bit 31, N */
1695 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1696 /* bit 30, Z */
1697 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1698 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1699 /* bit 29, C */
1700 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1701 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1702 /* bit 28, V */
1703 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1704 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1705 tcg_temp_free_i32(nzcv);
1708 /* MRS - move from system register
1709 * MSR (register) - move to system register
1710 * SYS
1711 * SYSL
1712 * These are all essentially the same insn in 'read' and 'write'
1713 * versions, with varying op0 fields.
1715 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1716 unsigned int op0, unsigned int op1, unsigned int op2,
1717 unsigned int crn, unsigned int crm, unsigned int rt)
1719 const ARMCPRegInfo *ri;
1720 TCGv_i64 tcg_rt;
1722 ri = get_arm_cp_reginfo(s->cp_regs,
1723 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1724 crn, crm, op0, op1, op2));
1726 if (!ri) {
1727 /* Unknown register; this might be a guest error or a QEMU
1728 * unimplemented feature.
1730 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1731 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1732 isread ? "read" : "write", op0, op1, crn, crm, op2);
1733 unallocated_encoding(s);
1734 return;
1737 /* Check access permissions */
1738 if (!cp_access_ok(s->current_el, ri, isread)) {
1739 unallocated_encoding(s);
1740 return;
1743 if (ri->accessfn) {
1744 /* Emit code to perform further access permissions checks at
1745 * runtime; this may result in an exception.
1747 TCGv_ptr tmpptr;
1748 TCGv_i32 tcg_syn, tcg_isread;
1749 uint32_t syndrome;
1751 gen_a64_set_pc_im(s->pc_curr);
1752 tmpptr = tcg_const_ptr(ri);
1753 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1754 tcg_syn = tcg_const_i32(syndrome);
1755 tcg_isread = tcg_const_i32(isread);
1756 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1757 tcg_temp_free_ptr(tmpptr);
1758 tcg_temp_free_i32(tcg_syn);
1759 tcg_temp_free_i32(tcg_isread);
1760 } else if (ri->type & ARM_CP_RAISES_EXC) {
1762 * The readfn or writefn might raise an exception;
1763 * synchronize the CPU state in case it does.
1765 gen_a64_set_pc_im(s->pc_curr);
1768 /* Handle special cases first */
1769 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1770 case ARM_CP_NOP:
1771 return;
1772 case ARM_CP_NZCV:
1773 tcg_rt = cpu_reg(s, rt);
1774 if (isread) {
1775 gen_get_nzcv(tcg_rt);
1776 } else {
1777 gen_set_nzcv(tcg_rt);
1779 return;
1780 case ARM_CP_CURRENTEL:
1781 /* Reads as current EL value from pstate, which is
1782 * guaranteed to be constant by the tb flags.
1784 tcg_rt = cpu_reg(s, rt);
1785 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1786 return;
1787 case ARM_CP_DC_ZVA:
1788 /* Writes clear the aligned block of memory which rt points into. */
1789 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
1790 gen_helper_dc_zva(cpu_env, tcg_rt);
1791 return;
1792 default:
1793 break;
1795 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1796 return;
1797 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1798 return;
1801 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1802 gen_io_start();
1805 tcg_rt = cpu_reg(s, rt);
1807 if (isread) {
1808 if (ri->type & ARM_CP_CONST) {
1809 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1810 } else if (ri->readfn) {
1811 TCGv_ptr tmpptr;
1812 tmpptr = tcg_const_ptr(ri);
1813 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1814 tcg_temp_free_ptr(tmpptr);
1815 } else {
1816 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1818 } else {
1819 if (ri->type & ARM_CP_CONST) {
1820 /* If not forbidden by access permissions, treat as WI */
1821 return;
1822 } else if (ri->writefn) {
1823 TCGv_ptr tmpptr;
1824 tmpptr = tcg_const_ptr(ri);
1825 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1826 tcg_temp_free_ptr(tmpptr);
1827 } else {
1828 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1832 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1833 /* I/O operations must end the TB here (whether read or write) */
1834 s->base.is_jmp = DISAS_UPDATE;
1836 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1838 * A write to any coprocessor regiser that ends a TB
1839 * must rebuild the hflags for the next TB.
1841 TCGv_i32 tcg_el = tcg_const_i32(s->current_el);
1842 gen_helper_rebuild_hflags_a64(cpu_env, tcg_el);
1843 tcg_temp_free_i32(tcg_el);
1845 * We default to ending the TB on a coprocessor register write,
1846 * but allow this to be suppressed by the register definition
1847 * (usually only necessary to work around guest bugs).
1849 s->base.is_jmp = DISAS_UPDATE;
1853 /* System
1854 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1855 * +---------------------+---+-----+-----+-------+-------+-----+------+
1856 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1857 * +---------------------+---+-----+-----+-------+-------+-----+------+
1859 static void disas_system(DisasContext *s, uint32_t insn)
1861 unsigned int l, op0, op1, crn, crm, op2, rt;
1862 l = extract32(insn, 21, 1);
1863 op0 = extract32(insn, 19, 2);
1864 op1 = extract32(insn, 16, 3);
1865 crn = extract32(insn, 12, 4);
1866 crm = extract32(insn, 8, 4);
1867 op2 = extract32(insn, 5, 3);
1868 rt = extract32(insn, 0, 5);
1870 if (op0 == 0) {
1871 if (l || rt != 31) {
1872 unallocated_encoding(s);
1873 return;
1875 switch (crn) {
1876 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
1877 handle_hint(s, insn, op1, op2, crm);
1878 break;
1879 case 3: /* CLREX, DSB, DMB, ISB */
1880 handle_sync(s, insn, op1, op2, crm);
1881 break;
1882 case 4: /* MSR (immediate) */
1883 handle_msr_i(s, insn, op1, op2, crm);
1884 break;
1885 default:
1886 unallocated_encoding(s);
1887 break;
1889 return;
1891 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1894 /* Exception generation
1896 * 31 24 23 21 20 5 4 2 1 0
1897 * +-----------------+-----+------------------------+-----+----+
1898 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1899 * +-----------------------+------------------------+----------+
1901 static void disas_exc(DisasContext *s, uint32_t insn)
1903 int opc = extract32(insn, 21, 3);
1904 int op2_ll = extract32(insn, 0, 5);
1905 int imm16 = extract32(insn, 5, 16);
1906 TCGv_i32 tmp;
1908 switch (opc) {
1909 case 0:
1910 /* For SVC, HVC and SMC we advance the single-step state
1911 * machine before taking the exception. This is architecturally
1912 * mandated, to ensure that single-stepping a system call
1913 * instruction works properly.
1915 switch (op2_ll) {
1916 case 1: /* SVC */
1917 gen_ss_advance(s);
1918 gen_exception_insn(s, s->base.pc_next, EXCP_SWI,
1919 syn_aa64_svc(imm16), default_exception_el(s));
1920 break;
1921 case 2: /* HVC */
1922 if (s->current_el == 0) {
1923 unallocated_encoding(s);
1924 break;
1926 /* The pre HVC helper handles cases when HVC gets trapped
1927 * as an undefined insn by runtime configuration.
1929 gen_a64_set_pc_im(s->pc_curr);
1930 gen_helper_pre_hvc(cpu_env);
1931 gen_ss_advance(s);
1932 gen_exception_insn(s, s->base.pc_next, EXCP_HVC,
1933 syn_aa64_hvc(imm16), 2);
1934 break;
1935 case 3: /* SMC */
1936 if (s->current_el == 0) {
1937 unallocated_encoding(s);
1938 break;
1940 gen_a64_set_pc_im(s->pc_curr);
1941 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1942 gen_helper_pre_smc(cpu_env, tmp);
1943 tcg_temp_free_i32(tmp);
1944 gen_ss_advance(s);
1945 gen_exception_insn(s, s->base.pc_next, EXCP_SMC,
1946 syn_aa64_smc(imm16), 3);
1947 break;
1948 default:
1949 unallocated_encoding(s);
1950 break;
1952 break;
1953 case 1:
1954 if (op2_ll != 0) {
1955 unallocated_encoding(s);
1956 break;
1958 /* BRK */
1959 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16));
1960 break;
1961 case 2:
1962 if (op2_ll != 0) {
1963 unallocated_encoding(s);
1964 break;
1966 /* HLT. This has two purposes.
1967 * Architecturally, it is an external halting debug instruction.
1968 * Since QEMU doesn't implement external debug, we treat this as
1969 * it is required for halting debug disabled: it will UNDEF.
1970 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1972 if (semihosting_enabled() && imm16 == 0xf000) {
1973 #ifndef CONFIG_USER_ONLY
1974 /* In system mode, don't allow userspace access to semihosting,
1975 * to provide some semblance of security (and for consistency
1976 * with our 32-bit semihosting).
1978 if (s->current_el == 0) {
1979 unsupported_encoding(s, insn);
1980 break;
1982 #endif
1983 gen_exception_internal_insn(s, s->pc_curr, EXCP_SEMIHOST);
1984 } else {
1985 unsupported_encoding(s, insn);
1987 break;
1988 case 5:
1989 if (op2_ll < 1 || op2_ll > 3) {
1990 unallocated_encoding(s);
1991 break;
1993 /* DCPS1, DCPS2, DCPS3 */
1994 unsupported_encoding(s, insn);
1995 break;
1996 default:
1997 unallocated_encoding(s);
1998 break;
2002 /* Unconditional branch (register)
2003 * 31 25 24 21 20 16 15 10 9 5 4 0
2004 * +---------------+-------+-------+-------+------+-------+
2005 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
2006 * +---------------+-------+-------+-------+------+-------+
2008 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
2010 unsigned int opc, op2, op3, rn, op4;
2011 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */
2012 TCGv_i64 dst;
2013 TCGv_i64 modifier;
2015 opc = extract32(insn, 21, 4);
2016 op2 = extract32(insn, 16, 5);
2017 op3 = extract32(insn, 10, 6);
2018 rn = extract32(insn, 5, 5);
2019 op4 = extract32(insn, 0, 5);
2021 if (op2 != 0x1f) {
2022 goto do_unallocated;
2025 switch (opc) {
2026 case 0: /* BR */
2027 case 1: /* BLR */
2028 case 2: /* RET */
2029 btype_mod = opc;
2030 switch (op3) {
2031 case 0:
2032 /* BR, BLR, RET */
2033 if (op4 != 0) {
2034 goto do_unallocated;
2036 dst = cpu_reg(s, rn);
2037 break;
2039 case 2:
2040 case 3:
2041 if (!dc_isar_feature(aa64_pauth, s)) {
2042 goto do_unallocated;
2044 if (opc == 2) {
2045 /* RETAA, RETAB */
2046 if (rn != 0x1f || op4 != 0x1f) {
2047 goto do_unallocated;
2049 rn = 30;
2050 modifier = cpu_X[31];
2051 } else {
2052 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2053 if (op4 != 0x1f) {
2054 goto do_unallocated;
2056 modifier = new_tmp_a64_zero(s);
2058 if (s->pauth_active) {
2059 dst = new_tmp_a64(s);
2060 if (op3 == 2) {
2061 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2062 } else {
2063 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2065 } else {
2066 dst = cpu_reg(s, rn);
2068 break;
2070 default:
2071 goto do_unallocated;
2073 gen_a64_set_pc(s, dst);
2074 /* BLR also needs to load return address */
2075 if (opc == 1) {
2076 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
2078 break;
2080 case 8: /* BRAA */
2081 case 9: /* BLRAA */
2082 if (!dc_isar_feature(aa64_pauth, s)) {
2083 goto do_unallocated;
2085 if ((op3 & ~1) != 2) {
2086 goto do_unallocated;
2088 btype_mod = opc & 1;
2089 if (s->pauth_active) {
2090 dst = new_tmp_a64(s);
2091 modifier = cpu_reg_sp(s, op4);
2092 if (op3 == 2) {
2093 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2094 } else {
2095 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2097 } else {
2098 dst = cpu_reg(s, rn);
2100 gen_a64_set_pc(s, dst);
2101 /* BLRAA also needs to load return address */
2102 if (opc == 9) {
2103 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
2105 break;
2107 case 4: /* ERET */
2108 if (s->current_el == 0) {
2109 goto do_unallocated;
2111 switch (op3) {
2112 case 0: /* ERET */
2113 if (op4 != 0) {
2114 goto do_unallocated;
2116 dst = tcg_temp_new_i64();
2117 tcg_gen_ld_i64(dst, cpu_env,
2118 offsetof(CPUARMState, elr_el[s->current_el]));
2119 break;
2121 case 2: /* ERETAA */
2122 case 3: /* ERETAB */
2123 if (!dc_isar_feature(aa64_pauth, s)) {
2124 goto do_unallocated;
2126 if (rn != 0x1f || op4 != 0x1f) {
2127 goto do_unallocated;
2129 dst = tcg_temp_new_i64();
2130 tcg_gen_ld_i64(dst, cpu_env,
2131 offsetof(CPUARMState, elr_el[s->current_el]));
2132 if (s->pauth_active) {
2133 modifier = cpu_X[31];
2134 if (op3 == 2) {
2135 gen_helper_autia(dst, cpu_env, dst, modifier);
2136 } else {
2137 gen_helper_autib(dst, cpu_env, dst, modifier);
2140 break;
2142 default:
2143 goto do_unallocated;
2145 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2146 gen_io_start();
2149 gen_helper_exception_return(cpu_env, dst);
2150 tcg_temp_free_i64(dst);
2151 /* Must exit loop to check un-masked IRQs */
2152 s->base.is_jmp = DISAS_EXIT;
2153 return;
2155 case 5: /* DRPS */
2156 if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2157 goto do_unallocated;
2158 } else {
2159 unsupported_encoding(s, insn);
2161 return;
2163 default:
2164 do_unallocated:
2165 unallocated_encoding(s);
2166 return;
2169 switch (btype_mod) {
2170 case 0: /* BR */
2171 if (dc_isar_feature(aa64_bti, s)) {
2172 /* BR to {x16,x17} or !guard -> 1, else 3. */
2173 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
2175 break;
2177 case 1: /* BLR */
2178 if (dc_isar_feature(aa64_bti, s)) {
2179 /* BLR sets BTYPE to 2, regardless of source guarded page. */
2180 set_btype(s, 2);
2182 break;
2184 default: /* RET or none of the above. */
2185 /* BTYPE will be set to 0 by normal end-of-insn processing. */
2186 break;
2189 s->base.is_jmp = DISAS_JUMP;
2192 /* Branches, exception generating and system instructions */
2193 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2195 switch (extract32(insn, 25, 7)) {
2196 case 0x0a: case 0x0b:
2197 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2198 disas_uncond_b_imm(s, insn);
2199 break;
2200 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2201 disas_comp_b_imm(s, insn);
2202 break;
2203 case 0x1b: case 0x5b: /* Test & branch (immediate) */
2204 disas_test_b_imm(s, insn);
2205 break;
2206 case 0x2a: /* Conditional branch (immediate) */
2207 disas_cond_b_imm(s, insn);
2208 break;
2209 case 0x6a: /* Exception generation / System */
2210 if (insn & (1 << 24)) {
2211 if (extract32(insn, 22, 2) == 0) {
2212 disas_system(s, insn);
2213 } else {
2214 unallocated_encoding(s);
2216 } else {
2217 disas_exc(s, insn);
2219 break;
2220 case 0x6b: /* Unconditional branch (register) */
2221 disas_uncond_b_reg(s, insn);
2222 break;
2223 default:
2224 unallocated_encoding(s);
2225 break;
2230 * Load/Store exclusive instructions are implemented by remembering
2231 * the value/address loaded, and seeing if these are the same
2232 * when the store is performed. This is not actually the architecturally
2233 * mandated semantics, but it works for typical guest code sequences
2234 * and avoids having to monitor regular stores.
2236 * The store exclusive uses the atomic cmpxchg primitives to avoid
2237 * races in multi-threaded linux-user and when MTTCG softmmu is
2238 * enabled.
2240 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2241 TCGv_i64 addr, int size, bool is_pair)
2243 int idx = get_mem_index(s);
2244 MemOp memop = s->be_data;
2246 g_assert(size <= 3);
2247 if (is_pair) {
2248 g_assert(size >= 2);
2249 if (size == 2) {
2250 /* The pair must be single-copy atomic for the doubleword. */
2251 memop |= MO_64 | MO_ALIGN;
2252 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2253 if (s->be_data == MO_LE) {
2254 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2255 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2256 } else {
2257 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2258 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2260 } else {
2261 /* The pair must be single-copy atomic for *each* doubleword, not
2262 the entire quadword, however it must be quadword aligned. */
2263 memop |= MO_64;
2264 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2265 memop | MO_ALIGN_16);
2267 TCGv_i64 addr2 = tcg_temp_new_i64();
2268 tcg_gen_addi_i64(addr2, addr, 8);
2269 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2270 tcg_temp_free_i64(addr2);
2272 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2273 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2275 } else {
2276 memop |= size | MO_ALIGN;
2277 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2278 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2280 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2283 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2284 TCGv_i64 addr, int size, int is_pair)
2286 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2287 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2288 * [addr] = {Rt};
2289 * if (is_pair) {
2290 * [addr + datasize] = {Rt2};
2292 * {Rd} = 0;
2293 * } else {
2294 * {Rd} = 1;
2296 * env->exclusive_addr = -1;
2298 TCGLabel *fail_label = gen_new_label();
2299 TCGLabel *done_label = gen_new_label();
2300 TCGv_i64 tmp;
2302 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2304 tmp = tcg_temp_new_i64();
2305 if (is_pair) {
2306 if (size == 2) {
2307 if (s->be_data == MO_LE) {
2308 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2309 } else {
2310 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2312 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2313 cpu_exclusive_val, tmp,
2314 get_mem_index(s),
2315 MO_64 | MO_ALIGN | s->be_data);
2316 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2317 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2318 if (!HAVE_CMPXCHG128) {
2319 gen_helper_exit_atomic(cpu_env);
2320 s->base.is_jmp = DISAS_NORETURN;
2321 } else if (s->be_data == MO_LE) {
2322 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2323 cpu_exclusive_addr,
2324 cpu_reg(s, rt),
2325 cpu_reg(s, rt2));
2326 } else {
2327 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2328 cpu_exclusive_addr,
2329 cpu_reg(s, rt),
2330 cpu_reg(s, rt2));
2332 } else if (s->be_data == MO_LE) {
2333 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2334 cpu_reg(s, rt), cpu_reg(s, rt2));
2335 } else {
2336 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2337 cpu_reg(s, rt), cpu_reg(s, rt2));
2339 } else {
2340 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2341 cpu_reg(s, rt), get_mem_index(s),
2342 size | MO_ALIGN | s->be_data);
2343 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2345 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2346 tcg_temp_free_i64(tmp);
2347 tcg_gen_br(done_label);
2349 gen_set_label(fail_label);
2350 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2351 gen_set_label(done_label);
2352 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2355 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2356 int rn, int size)
2358 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2359 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2360 int memidx = get_mem_index(s);
2361 TCGv_i64 clean_addr;
2363 if (rn == 31) {
2364 gen_check_sp_alignment(s);
2366 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2367 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2368 size | MO_ALIGN | s->be_data);
2371 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2372 int rn, int size)
2374 TCGv_i64 s1 = cpu_reg(s, rs);
2375 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2376 TCGv_i64 t1 = cpu_reg(s, rt);
2377 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2378 TCGv_i64 clean_addr;
2379 int memidx = get_mem_index(s);
2381 if (rn == 31) {
2382 gen_check_sp_alignment(s);
2384 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2386 if (size == 2) {
2387 TCGv_i64 cmp = tcg_temp_new_i64();
2388 TCGv_i64 val = tcg_temp_new_i64();
2390 if (s->be_data == MO_LE) {
2391 tcg_gen_concat32_i64(val, t1, t2);
2392 tcg_gen_concat32_i64(cmp, s1, s2);
2393 } else {
2394 tcg_gen_concat32_i64(val, t2, t1);
2395 tcg_gen_concat32_i64(cmp, s2, s1);
2398 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2399 MO_64 | MO_ALIGN | s->be_data);
2400 tcg_temp_free_i64(val);
2402 if (s->be_data == MO_LE) {
2403 tcg_gen_extr32_i64(s1, s2, cmp);
2404 } else {
2405 tcg_gen_extr32_i64(s2, s1, cmp);
2407 tcg_temp_free_i64(cmp);
2408 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2409 if (HAVE_CMPXCHG128) {
2410 TCGv_i32 tcg_rs = tcg_const_i32(rs);
2411 if (s->be_data == MO_LE) {
2412 gen_helper_casp_le_parallel(cpu_env, tcg_rs,
2413 clean_addr, t1, t2);
2414 } else {
2415 gen_helper_casp_be_parallel(cpu_env, tcg_rs,
2416 clean_addr, t1, t2);
2418 tcg_temp_free_i32(tcg_rs);
2419 } else {
2420 gen_helper_exit_atomic(cpu_env);
2421 s->base.is_jmp = DISAS_NORETURN;
2423 } else {
2424 TCGv_i64 d1 = tcg_temp_new_i64();
2425 TCGv_i64 d2 = tcg_temp_new_i64();
2426 TCGv_i64 a2 = tcg_temp_new_i64();
2427 TCGv_i64 c1 = tcg_temp_new_i64();
2428 TCGv_i64 c2 = tcg_temp_new_i64();
2429 TCGv_i64 zero = tcg_const_i64(0);
2431 /* Load the two words, in memory order. */
2432 tcg_gen_qemu_ld_i64(d1, clean_addr, memidx,
2433 MO_64 | MO_ALIGN_16 | s->be_data);
2434 tcg_gen_addi_i64(a2, clean_addr, 8);
2435 tcg_gen_qemu_ld_i64(d2, a2, memidx, MO_64 | s->be_data);
2437 /* Compare the two words, also in memory order. */
2438 tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1);
2439 tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2);
2440 tcg_gen_and_i64(c2, c2, c1);
2442 /* If compare equal, write back new data, else write back old data. */
2443 tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1);
2444 tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2);
2445 tcg_gen_qemu_st_i64(c1, clean_addr, memidx, MO_64 | s->be_data);
2446 tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data);
2447 tcg_temp_free_i64(a2);
2448 tcg_temp_free_i64(c1);
2449 tcg_temp_free_i64(c2);
2450 tcg_temp_free_i64(zero);
2452 /* Write back the data from memory to Rs. */
2453 tcg_gen_mov_i64(s1, d1);
2454 tcg_gen_mov_i64(s2, d2);
2455 tcg_temp_free_i64(d1);
2456 tcg_temp_free_i64(d2);
2460 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2461 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2463 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2465 int opc0 = extract32(opc, 0, 1);
2466 int regsize;
2468 if (is_signed) {
2469 regsize = opc0 ? 32 : 64;
2470 } else {
2471 regsize = size == 3 ? 64 : 32;
2473 return regsize == 64;
2476 /* Load/store exclusive
2478 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2479 * +-----+-------------+----+---+----+------+----+-------+------+------+
2480 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2481 * +-----+-------------+----+---+----+------+----+-------+------+------+
2483 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2484 * L: 0 -> store, 1 -> load
2485 * o2: 0 -> exclusive, 1 -> not
2486 * o1: 0 -> single register, 1 -> register pair
2487 * o0: 1 -> load-acquire/store-release, 0 -> not
2489 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2491 int rt = extract32(insn, 0, 5);
2492 int rn = extract32(insn, 5, 5);
2493 int rt2 = extract32(insn, 10, 5);
2494 int rs = extract32(insn, 16, 5);
2495 int is_lasr = extract32(insn, 15, 1);
2496 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2497 int size = extract32(insn, 30, 2);
2498 TCGv_i64 clean_addr;
2500 switch (o2_L_o1_o0) {
2501 case 0x0: /* STXR */
2502 case 0x1: /* STLXR */
2503 if (rn == 31) {
2504 gen_check_sp_alignment(s);
2506 if (is_lasr) {
2507 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2509 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2510 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2511 return;
2513 case 0x4: /* LDXR */
2514 case 0x5: /* LDAXR */
2515 if (rn == 31) {
2516 gen_check_sp_alignment(s);
2518 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2519 s->is_ldex = true;
2520 gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2521 if (is_lasr) {
2522 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2524 return;
2526 case 0x8: /* STLLR */
2527 if (!dc_isar_feature(aa64_lor, s)) {
2528 break;
2530 /* StoreLORelease is the same as Store-Release for QEMU. */
2531 /* fall through */
2532 case 0x9: /* STLR */
2533 /* Generate ISS for non-exclusive accesses including LASR. */
2534 if (rn == 31) {
2535 gen_check_sp_alignment(s);
2537 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2538 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2539 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size, true, rt,
2540 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2541 return;
2543 case 0xc: /* LDLAR */
2544 if (!dc_isar_feature(aa64_lor, s)) {
2545 break;
2547 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2548 /* fall through */
2549 case 0xd: /* LDAR */
2550 /* Generate ISS for non-exclusive accesses including LASR. */
2551 if (rn == 31) {
2552 gen_check_sp_alignment(s);
2554 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2555 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, false, true, rt,
2556 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2557 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2558 return;
2560 case 0x2: case 0x3: /* CASP / STXP */
2561 if (size & 2) { /* STXP / STLXP */
2562 if (rn == 31) {
2563 gen_check_sp_alignment(s);
2565 if (is_lasr) {
2566 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2568 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2569 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2570 return;
2572 if (rt2 == 31
2573 && ((rt | rs) & 1) == 0
2574 && dc_isar_feature(aa64_atomics, s)) {
2575 /* CASP / CASPL */
2576 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2577 return;
2579 break;
2581 case 0x6: case 0x7: /* CASPA / LDXP */
2582 if (size & 2) { /* LDXP / LDAXP */
2583 if (rn == 31) {
2584 gen_check_sp_alignment(s);
2586 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2587 s->is_ldex = true;
2588 gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2589 if (is_lasr) {
2590 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2592 return;
2594 if (rt2 == 31
2595 && ((rt | rs) & 1) == 0
2596 && dc_isar_feature(aa64_atomics, s)) {
2597 /* CASPA / CASPAL */
2598 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2599 return;
2601 break;
2603 case 0xa: /* CAS */
2604 case 0xb: /* CASL */
2605 case 0xe: /* CASA */
2606 case 0xf: /* CASAL */
2607 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2608 gen_compare_and_swap(s, rs, rt, rn, size);
2609 return;
2611 break;
2613 unallocated_encoding(s);
2617 * Load register (literal)
2619 * 31 30 29 27 26 25 24 23 5 4 0
2620 * +-----+-------+---+-----+-------------------+-------+
2621 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2622 * +-----+-------+---+-----+-------------------+-------+
2624 * V: 1 -> vector (simd/fp)
2625 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2626 * 10-> 32 bit signed, 11 -> prefetch
2627 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2629 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2631 int rt = extract32(insn, 0, 5);
2632 int64_t imm = sextract32(insn, 5, 19) << 2;
2633 bool is_vector = extract32(insn, 26, 1);
2634 int opc = extract32(insn, 30, 2);
2635 bool is_signed = false;
2636 int size = 2;
2637 TCGv_i64 tcg_rt, clean_addr;
2639 if (is_vector) {
2640 if (opc == 3) {
2641 unallocated_encoding(s);
2642 return;
2644 size = 2 + opc;
2645 if (!fp_access_check(s)) {
2646 return;
2648 } else {
2649 if (opc == 3) {
2650 /* PRFM (literal) : prefetch */
2651 return;
2653 size = 2 + extract32(opc, 0, 1);
2654 is_signed = extract32(opc, 1, 1);
2657 tcg_rt = cpu_reg(s, rt);
2659 clean_addr = tcg_const_i64(s->pc_curr + imm);
2660 if (is_vector) {
2661 do_fp_ld(s, rt, clean_addr, size);
2662 } else {
2663 /* Only unsigned 32bit loads target 32bit registers. */
2664 bool iss_sf = opc != 0;
2666 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, false,
2667 true, rt, iss_sf, false);
2669 tcg_temp_free_i64(clean_addr);
2673 * LDNP (Load Pair - non-temporal hint)
2674 * LDP (Load Pair - non vector)
2675 * LDPSW (Load Pair Signed Word - non vector)
2676 * STNP (Store Pair - non-temporal hint)
2677 * STP (Store Pair - non vector)
2678 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2679 * LDP (Load Pair of SIMD&FP)
2680 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2681 * STP (Store Pair of SIMD&FP)
2683 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2684 * +-----+-------+---+---+-------+---+-----------------------------+
2685 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2686 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2688 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2689 * LDPSW 01
2690 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2691 * V: 0 -> GPR, 1 -> Vector
2692 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2693 * 10 -> signed offset, 11 -> pre-index
2694 * L: 0 -> Store 1 -> Load
2696 * Rt, Rt2 = GPR or SIMD registers to be stored
2697 * Rn = general purpose register containing address
2698 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2700 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2702 int rt = extract32(insn, 0, 5);
2703 int rn = extract32(insn, 5, 5);
2704 int rt2 = extract32(insn, 10, 5);
2705 uint64_t offset = sextract64(insn, 15, 7);
2706 int index = extract32(insn, 23, 2);
2707 bool is_vector = extract32(insn, 26, 1);
2708 bool is_load = extract32(insn, 22, 1);
2709 int opc = extract32(insn, 30, 2);
2711 bool is_signed = false;
2712 bool postindex = false;
2713 bool wback = false;
2715 TCGv_i64 clean_addr, dirty_addr;
2717 int size;
2719 if (opc == 3) {
2720 unallocated_encoding(s);
2721 return;
2724 if (is_vector) {
2725 size = 2 + opc;
2726 } else {
2727 size = 2 + extract32(opc, 1, 1);
2728 is_signed = extract32(opc, 0, 1);
2729 if (!is_load && is_signed) {
2730 unallocated_encoding(s);
2731 return;
2735 switch (index) {
2736 case 1: /* post-index */
2737 postindex = true;
2738 wback = true;
2739 break;
2740 case 0:
2741 /* signed offset with "non-temporal" hint. Since we don't emulate
2742 * caches we don't care about hints to the cache system about
2743 * data access patterns, and handle this identically to plain
2744 * signed offset.
2746 if (is_signed) {
2747 /* There is no non-temporal-hint version of LDPSW */
2748 unallocated_encoding(s);
2749 return;
2751 postindex = false;
2752 break;
2753 case 2: /* signed offset, rn not updated */
2754 postindex = false;
2755 break;
2756 case 3: /* pre-index */
2757 postindex = false;
2758 wback = true;
2759 break;
2762 if (is_vector && !fp_access_check(s)) {
2763 return;
2766 offset <<= size;
2768 if (rn == 31) {
2769 gen_check_sp_alignment(s);
2772 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2773 if (!postindex) {
2774 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2776 clean_addr = clean_data_tbi(s, dirty_addr);
2778 if (is_vector) {
2779 if (is_load) {
2780 do_fp_ld(s, rt, clean_addr, size);
2781 } else {
2782 do_fp_st(s, rt, clean_addr, size);
2784 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2785 if (is_load) {
2786 do_fp_ld(s, rt2, clean_addr, size);
2787 } else {
2788 do_fp_st(s, rt2, clean_addr, size);
2790 } else {
2791 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2792 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2794 if (is_load) {
2795 TCGv_i64 tmp = tcg_temp_new_i64();
2797 /* Do not modify tcg_rt before recognizing any exception
2798 * from the second load.
2800 do_gpr_ld(s, tmp, clean_addr, size, is_signed, false,
2801 false, 0, false, false);
2802 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2803 do_gpr_ld(s, tcg_rt2, clean_addr, size, is_signed, false,
2804 false, 0, false, false);
2806 tcg_gen_mov_i64(tcg_rt, tmp);
2807 tcg_temp_free_i64(tmp);
2808 } else {
2809 do_gpr_st(s, tcg_rt, clean_addr, size,
2810 false, 0, false, false);
2811 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2812 do_gpr_st(s, tcg_rt2, clean_addr, size,
2813 false, 0, false, false);
2817 if (wback) {
2818 if (postindex) {
2819 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2821 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
2826 * Load/store (immediate post-indexed)
2827 * Load/store (immediate pre-indexed)
2828 * Load/store (unscaled immediate)
2830 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2831 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2832 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2833 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2835 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2836 10 -> unprivileged
2837 * V = 0 -> non-vector
2838 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2839 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2841 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2842 int opc,
2843 int size,
2844 int rt,
2845 bool is_vector)
2847 int rn = extract32(insn, 5, 5);
2848 int imm9 = sextract32(insn, 12, 9);
2849 int idx = extract32(insn, 10, 2);
2850 bool is_signed = false;
2851 bool is_store = false;
2852 bool is_extended = false;
2853 bool is_unpriv = (idx == 2);
2854 bool iss_valid = !is_vector;
2855 bool post_index;
2856 bool writeback;
2858 TCGv_i64 clean_addr, dirty_addr;
2860 if (is_vector) {
2861 size |= (opc & 2) << 1;
2862 if (size > 4 || is_unpriv) {
2863 unallocated_encoding(s);
2864 return;
2866 is_store = ((opc & 1) == 0);
2867 if (!fp_access_check(s)) {
2868 return;
2870 } else {
2871 if (size == 3 && opc == 2) {
2872 /* PRFM - prefetch */
2873 if (idx != 0) {
2874 unallocated_encoding(s);
2875 return;
2877 return;
2879 if (opc == 3 && size > 1) {
2880 unallocated_encoding(s);
2881 return;
2883 is_store = (opc == 0);
2884 is_signed = extract32(opc, 1, 1);
2885 is_extended = (size < 3) && extract32(opc, 0, 1);
2888 switch (idx) {
2889 case 0:
2890 case 2:
2891 post_index = false;
2892 writeback = false;
2893 break;
2894 case 1:
2895 post_index = true;
2896 writeback = true;
2897 break;
2898 case 3:
2899 post_index = false;
2900 writeback = true;
2901 break;
2902 default:
2903 g_assert_not_reached();
2906 if (rn == 31) {
2907 gen_check_sp_alignment(s);
2910 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2911 if (!post_index) {
2912 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
2914 clean_addr = clean_data_tbi(s, dirty_addr);
2916 if (is_vector) {
2917 if (is_store) {
2918 do_fp_st(s, rt, clean_addr, size);
2919 } else {
2920 do_fp_ld(s, rt, clean_addr, size);
2922 } else {
2923 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2924 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2925 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2927 if (is_store) {
2928 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
2929 iss_valid, rt, iss_sf, false);
2930 } else {
2931 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size,
2932 is_signed, is_extended, memidx,
2933 iss_valid, rt, iss_sf, false);
2937 if (writeback) {
2938 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2939 if (post_index) {
2940 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
2942 tcg_gen_mov_i64(tcg_rn, dirty_addr);
2947 * Load/store (register offset)
2949 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2950 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2951 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2952 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2954 * For non-vector:
2955 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2956 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2957 * For vector:
2958 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2959 * opc<0>: 0 -> store, 1 -> load
2960 * V: 1 -> vector/simd
2961 * opt: extend encoding (see DecodeRegExtend)
2962 * S: if S=1 then scale (essentially index by sizeof(size))
2963 * Rt: register to transfer into/out of
2964 * Rn: address register or SP for base
2965 * Rm: offset register or ZR for offset
2967 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
2968 int opc,
2969 int size,
2970 int rt,
2971 bool is_vector)
2973 int rn = extract32(insn, 5, 5);
2974 int shift = extract32(insn, 12, 1);
2975 int rm = extract32(insn, 16, 5);
2976 int opt = extract32(insn, 13, 3);
2977 bool is_signed = false;
2978 bool is_store = false;
2979 bool is_extended = false;
2981 TCGv_i64 tcg_rm, clean_addr, dirty_addr;
2983 if (extract32(opt, 1, 1) == 0) {
2984 unallocated_encoding(s);
2985 return;
2988 if (is_vector) {
2989 size |= (opc & 2) << 1;
2990 if (size > 4) {
2991 unallocated_encoding(s);
2992 return;
2994 is_store = !extract32(opc, 0, 1);
2995 if (!fp_access_check(s)) {
2996 return;
2998 } else {
2999 if (size == 3 && opc == 2) {
3000 /* PRFM - prefetch */
3001 return;
3003 if (opc == 3 && size > 1) {
3004 unallocated_encoding(s);
3005 return;
3007 is_store = (opc == 0);
3008 is_signed = extract32(opc, 1, 1);
3009 is_extended = (size < 3) && extract32(opc, 0, 1);
3012 if (rn == 31) {
3013 gen_check_sp_alignment(s);
3015 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3017 tcg_rm = read_cpu_reg(s, rm, 1);
3018 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3020 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3021 clean_addr = clean_data_tbi(s, dirty_addr);
3023 if (is_vector) {
3024 if (is_store) {
3025 do_fp_st(s, rt, clean_addr, size);
3026 } else {
3027 do_fp_ld(s, rt, clean_addr, size);
3029 } else {
3030 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3031 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3032 if (is_store) {
3033 do_gpr_st(s, tcg_rt, clean_addr, size,
3034 true, rt, iss_sf, false);
3035 } else {
3036 do_gpr_ld(s, tcg_rt, clean_addr, size,
3037 is_signed, is_extended,
3038 true, rt, iss_sf, false);
3044 * Load/store (unsigned immediate)
3046 * 31 30 29 27 26 25 24 23 22 21 10 9 5
3047 * +----+-------+---+-----+-----+------------+-------+------+
3048 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
3049 * +----+-------+---+-----+-----+------------+-------+------+
3051 * For non-vector:
3052 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3053 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3054 * For vector:
3055 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3056 * opc<0>: 0 -> store, 1 -> load
3057 * Rn: base address register (inc SP)
3058 * Rt: target register
3060 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3061 int opc,
3062 int size,
3063 int rt,
3064 bool is_vector)
3066 int rn = extract32(insn, 5, 5);
3067 unsigned int imm12 = extract32(insn, 10, 12);
3068 unsigned int offset;
3070 TCGv_i64 clean_addr, dirty_addr;
3072 bool is_store;
3073 bool is_signed = false;
3074 bool is_extended = false;
3076 if (is_vector) {
3077 size |= (opc & 2) << 1;
3078 if (size > 4) {
3079 unallocated_encoding(s);
3080 return;
3082 is_store = !extract32(opc, 0, 1);
3083 if (!fp_access_check(s)) {
3084 return;
3086 } else {
3087 if (size == 3 && opc == 2) {
3088 /* PRFM - prefetch */
3089 return;
3091 if (opc == 3 && size > 1) {
3092 unallocated_encoding(s);
3093 return;
3095 is_store = (opc == 0);
3096 is_signed = extract32(opc, 1, 1);
3097 is_extended = (size < 3) && extract32(opc, 0, 1);
3100 if (rn == 31) {
3101 gen_check_sp_alignment(s);
3103 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3104 offset = imm12 << size;
3105 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3106 clean_addr = clean_data_tbi(s, dirty_addr);
3108 if (is_vector) {
3109 if (is_store) {
3110 do_fp_st(s, rt, clean_addr, size);
3111 } else {
3112 do_fp_ld(s, rt, clean_addr, size);
3114 } else {
3115 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3116 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3117 if (is_store) {
3118 do_gpr_st(s, tcg_rt, clean_addr, size,
3119 true, rt, iss_sf, false);
3120 } else {
3121 do_gpr_ld(s, tcg_rt, clean_addr, size, is_signed, is_extended,
3122 true, rt, iss_sf, false);
3127 /* Atomic memory operations
3129 * 31 30 27 26 24 22 21 16 15 12 10 5 0
3130 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3131 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
3132 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3134 * Rt: the result register
3135 * Rn: base address or SP
3136 * Rs: the source register for the operation
3137 * V: vector flag (always 0 as of v8.3)
3138 * A: acquire flag
3139 * R: release flag
3141 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3142 int size, int rt, bool is_vector)
3144 int rs = extract32(insn, 16, 5);
3145 int rn = extract32(insn, 5, 5);
3146 int o3_opc = extract32(insn, 12, 4);
3147 bool r = extract32(insn, 22, 1);
3148 bool a = extract32(insn, 23, 1);
3149 TCGv_i64 tcg_rs, clean_addr;
3150 AtomicThreeOpFn *fn;
3152 if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3153 unallocated_encoding(s);
3154 return;
3156 switch (o3_opc) {
3157 case 000: /* LDADD */
3158 fn = tcg_gen_atomic_fetch_add_i64;
3159 break;
3160 case 001: /* LDCLR */
3161 fn = tcg_gen_atomic_fetch_and_i64;
3162 break;
3163 case 002: /* LDEOR */
3164 fn = tcg_gen_atomic_fetch_xor_i64;
3165 break;
3166 case 003: /* LDSET */
3167 fn = tcg_gen_atomic_fetch_or_i64;
3168 break;
3169 case 004: /* LDSMAX */
3170 fn = tcg_gen_atomic_fetch_smax_i64;
3171 break;
3172 case 005: /* LDSMIN */
3173 fn = tcg_gen_atomic_fetch_smin_i64;
3174 break;
3175 case 006: /* LDUMAX */
3176 fn = tcg_gen_atomic_fetch_umax_i64;
3177 break;
3178 case 007: /* LDUMIN */
3179 fn = tcg_gen_atomic_fetch_umin_i64;
3180 break;
3181 case 010: /* SWP */
3182 fn = tcg_gen_atomic_xchg_i64;
3183 break;
3184 case 014: /* LDAPR, LDAPRH, LDAPRB */
3185 if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3186 rs != 31 || a != 1 || r != 0) {
3187 unallocated_encoding(s);
3188 return;
3190 break;
3191 default:
3192 unallocated_encoding(s);
3193 return;
3196 if (rn == 31) {
3197 gen_check_sp_alignment(s);
3199 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
3201 if (o3_opc == 014) {
3203 * LDAPR* are a special case because they are a simple load, not a
3204 * fetch-and-do-something op.
3205 * The architectural consistency requirements here are weaker than
3206 * full load-acquire (we only need "load-acquire processor consistent"),
3207 * but we choose to implement them as full LDAQ.
3209 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false, false,
3210 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3211 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3212 return;
3215 tcg_rs = read_cpu_reg(s, rs, true);
3217 if (o3_opc == 1) { /* LDCLR */
3218 tcg_gen_not_i64(tcg_rs, tcg_rs);
3221 /* The tcg atomic primitives are all full barriers. Therefore we
3222 * can ignore the Acquire and Release bits of this instruction.
3224 fn(cpu_reg(s, rt), clean_addr, tcg_rs, get_mem_index(s),
3225 s->be_data | size | MO_ALIGN);
3229 * PAC memory operations
3231 * 31 30 27 26 24 22 21 12 11 10 5 0
3232 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3233 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt |
3234 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3236 * Rt: the result register
3237 * Rn: base address or SP
3238 * V: vector flag (always 0 as of v8.3)
3239 * M: clear for key DA, set for key DB
3240 * W: pre-indexing flag
3241 * S: sign for imm9.
3243 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3244 int size, int rt, bool is_vector)
3246 int rn = extract32(insn, 5, 5);
3247 bool is_wback = extract32(insn, 11, 1);
3248 bool use_key_a = !extract32(insn, 23, 1);
3249 int offset;
3250 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3252 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3253 unallocated_encoding(s);
3254 return;
3257 if (rn == 31) {
3258 gen_check_sp_alignment(s);
3260 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3262 if (s->pauth_active) {
3263 if (use_key_a) {
3264 gen_helper_autda(dirty_addr, cpu_env, dirty_addr, cpu_X[31]);
3265 } else {
3266 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr, cpu_X[31]);
3270 /* Form the 10-bit signed, scaled offset. */
3271 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3272 offset = sextract32(offset << size, 0, 10 + size);
3273 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3275 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3276 clean_addr = clean_data_tbi(s, dirty_addr);
3278 tcg_rt = cpu_reg(s, rt);
3279 do_gpr_ld(s, tcg_rt, clean_addr, size, /* is_signed */ false,
3280 /* extend */ false, /* iss_valid */ !is_wback,
3281 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3283 if (is_wback) {
3284 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3289 * LDAPR/STLR (unscaled immediate)
3291 * 31 30 24 22 21 12 10 5 0
3292 * +------+-------------+-----+---+--------+-----+----+-----+
3293 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt |
3294 * +------+-------------+-----+---+--------+-----+----+-----+
3296 * Rt: source or destination register
3297 * Rn: base register
3298 * imm9: unscaled immediate offset
3299 * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3300 * size: size of load/store
3302 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3304 int rt = extract32(insn, 0, 5);
3305 int rn = extract32(insn, 5, 5);
3306 int offset = sextract32(insn, 12, 9);
3307 int opc = extract32(insn, 22, 2);
3308 int size = extract32(insn, 30, 2);
3309 TCGv_i64 clean_addr, dirty_addr;
3310 bool is_store = false;
3311 bool is_signed = false;
3312 bool extend = false;
3313 bool iss_sf;
3315 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3316 unallocated_encoding(s);
3317 return;
3320 switch (opc) {
3321 case 0: /* STLURB */
3322 is_store = true;
3323 break;
3324 case 1: /* LDAPUR* */
3325 break;
3326 case 2: /* LDAPURS* 64-bit variant */
3327 if (size == 3) {
3328 unallocated_encoding(s);
3329 return;
3331 is_signed = true;
3332 break;
3333 case 3: /* LDAPURS* 32-bit variant */
3334 if (size > 1) {
3335 unallocated_encoding(s);
3336 return;
3338 is_signed = true;
3339 extend = true; /* zero-extend 32->64 after signed load */
3340 break;
3341 default:
3342 g_assert_not_reached();
3345 iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3347 if (rn == 31) {
3348 gen_check_sp_alignment(s);
3351 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3352 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3353 clean_addr = clean_data_tbi(s, dirty_addr);
3355 if (is_store) {
3356 /* Store-Release semantics */
3357 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3358 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size, true, rt, iss_sf, true);
3359 } else {
3361 * Load-AcquirePC semantics; we implement as the slightly more
3362 * restrictive Load-Acquire.
3364 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, is_signed, extend,
3365 true, rt, iss_sf, true);
3366 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3370 /* Load/store register (all forms) */
3371 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3373 int rt = extract32(insn, 0, 5);
3374 int opc = extract32(insn, 22, 2);
3375 bool is_vector = extract32(insn, 26, 1);
3376 int size = extract32(insn, 30, 2);
3378 switch (extract32(insn, 24, 2)) {
3379 case 0:
3380 if (extract32(insn, 21, 1) == 0) {
3381 /* Load/store register (unscaled immediate)
3382 * Load/store immediate pre/post-indexed
3383 * Load/store register unprivileged
3385 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3386 return;
3388 switch (extract32(insn, 10, 2)) {
3389 case 0:
3390 disas_ldst_atomic(s, insn, size, rt, is_vector);
3391 return;
3392 case 2:
3393 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3394 return;
3395 default:
3396 disas_ldst_pac(s, insn, size, rt, is_vector);
3397 return;
3399 break;
3400 case 1:
3401 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3402 return;
3404 unallocated_encoding(s);
3407 /* AdvSIMD load/store multiple structures
3409 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
3410 * +---+---+---------------+---+-------------+--------+------+------+------+
3411 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
3412 * +---+---+---------------+---+-------------+--------+------+------+------+
3414 * AdvSIMD load/store multiple structures (post-indexed)
3416 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3417 * +---+---+---------------+---+---+---------+--------+------+------+------+
3418 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3419 * +---+---+---------------+---+---+---------+--------+------+------+------+
3421 * Rt: first (or only) SIMD&FP register to be transferred
3422 * Rn: base address or SP
3423 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3425 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3427 int rt = extract32(insn, 0, 5);
3428 int rn = extract32(insn, 5, 5);
3429 int rm = extract32(insn, 16, 5);
3430 int size = extract32(insn, 10, 2);
3431 int opcode = extract32(insn, 12, 4);
3432 bool is_store = !extract32(insn, 22, 1);
3433 bool is_postidx = extract32(insn, 23, 1);
3434 bool is_q = extract32(insn, 30, 1);
3435 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3436 MemOp endian = s->be_data;
3438 int ebytes; /* bytes per element */
3439 int elements; /* elements per vector */
3440 int rpt; /* num iterations */
3441 int selem; /* structure elements */
3442 int r;
3444 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3445 unallocated_encoding(s);
3446 return;
3449 if (!is_postidx && rm != 0) {
3450 unallocated_encoding(s);
3451 return;
3454 /* From the shared decode logic */
3455 switch (opcode) {
3456 case 0x0:
3457 rpt = 1;
3458 selem = 4;
3459 break;
3460 case 0x2:
3461 rpt = 4;
3462 selem = 1;
3463 break;
3464 case 0x4:
3465 rpt = 1;
3466 selem = 3;
3467 break;
3468 case 0x6:
3469 rpt = 3;
3470 selem = 1;
3471 break;
3472 case 0x7:
3473 rpt = 1;
3474 selem = 1;
3475 break;
3476 case 0x8:
3477 rpt = 1;
3478 selem = 2;
3479 break;
3480 case 0xa:
3481 rpt = 2;
3482 selem = 1;
3483 break;
3484 default:
3485 unallocated_encoding(s);
3486 return;
3489 if (size == 3 && !is_q && selem != 1) {
3490 /* reserved */
3491 unallocated_encoding(s);
3492 return;
3495 if (!fp_access_check(s)) {
3496 return;
3499 if (rn == 31) {
3500 gen_check_sp_alignment(s);
3503 /* For our purposes, bytes are always little-endian. */
3504 if (size == 0) {
3505 endian = MO_LE;
3508 /* Consecutive little-endian elements from a single register
3509 * can be promoted to a larger little-endian operation.
3511 if (selem == 1 && endian == MO_LE) {
3512 size = 3;
3514 ebytes = 1 << size;
3515 elements = (is_q ? 16 : 8) / ebytes;
3517 tcg_rn = cpu_reg_sp(s, rn);
3518 clean_addr = clean_data_tbi(s, tcg_rn);
3519 tcg_ebytes = tcg_const_i64(ebytes);
3521 for (r = 0; r < rpt; r++) {
3522 int e;
3523 for (e = 0; e < elements; e++) {
3524 int xs;
3525 for (xs = 0; xs < selem; xs++) {
3526 int tt = (rt + r + xs) % 32;
3527 if (is_store) {
3528 do_vec_st(s, tt, e, clean_addr, size, endian);
3529 } else {
3530 do_vec_ld(s, tt, e, clean_addr, size, endian);
3532 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3536 tcg_temp_free_i64(tcg_ebytes);
3538 if (!is_store) {
3539 /* For non-quad operations, setting a slice of the low
3540 * 64 bits of the register clears the high 64 bits (in
3541 * the ARM ARM pseudocode this is implicit in the fact
3542 * that 'rval' is a 64 bit wide variable).
3543 * For quad operations, we might still need to zero the
3544 * high bits of SVE.
3546 for (r = 0; r < rpt * selem; r++) {
3547 int tt = (rt + r) % 32;
3548 clear_vec_high(s, is_q, tt);
3552 if (is_postidx) {
3553 if (rm == 31) {
3554 tcg_gen_addi_i64(tcg_rn, tcg_rn, rpt * elements * selem * ebytes);
3555 } else {
3556 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3561 /* AdvSIMD load/store single structure
3563 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3564 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3565 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3566 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3568 * AdvSIMD load/store single structure (post-indexed)
3570 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3571 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3572 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3573 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3575 * Rt: first (or only) SIMD&FP register to be transferred
3576 * Rn: base address or SP
3577 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3578 * index = encoded in Q:S:size dependent on size
3580 * lane_size = encoded in R, opc
3581 * transfer width = encoded in opc, S, size
3583 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3585 int rt = extract32(insn, 0, 5);
3586 int rn = extract32(insn, 5, 5);
3587 int rm = extract32(insn, 16, 5);
3588 int size = extract32(insn, 10, 2);
3589 int S = extract32(insn, 12, 1);
3590 int opc = extract32(insn, 13, 3);
3591 int R = extract32(insn, 21, 1);
3592 int is_load = extract32(insn, 22, 1);
3593 int is_postidx = extract32(insn, 23, 1);
3594 int is_q = extract32(insn, 30, 1);
3596 int scale = extract32(opc, 1, 2);
3597 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3598 bool replicate = false;
3599 int index = is_q << 3 | S << 2 | size;
3600 int ebytes, xs;
3601 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3603 if (extract32(insn, 31, 1)) {
3604 unallocated_encoding(s);
3605 return;
3607 if (!is_postidx && rm != 0) {
3608 unallocated_encoding(s);
3609 return;
3612 switch (scale) {
3613 case 3:
3614 if (!is_load || S) {
3615 unallocated_encoding(s);
3616 return;
3618 scale = size;
3619 replicate = true;
3620 break;
3621 case 0:
3622 break;
3623 case 1:
3624 if (extract32(size, 0, 1)) {
3625 unallocated_encoding(s);
3626 return;
3628 index >>= 1;
3629 break;
3630 case 2:
3631 if (extract32(size, 1, 1)) {
3632 unallocated_encoding(s);
3633 return;
3635 if (!extract32(size, 0, 1)) {
3636 index >>= 2;
3637 } else {
3638 if (S) {
3639 unallocated_encoding(s);
3640 return;
3642 index >>= 3;
3643 scale = 3;
3645 break;
3646 default:
3647 g_assert_not_reached();
3650 if (!fp_access_check(s)) {
3651 return;
3654 ebytes = 1 << scale;
3656 if (rn == 31) {
3657 gen_check_sp_alignment(s);
3660 tcg_rn = cpu_reg_sp(s, rn);
3661 clean_addr = clean_data_tbi(s, tcg_rn);
3662 tcg_ebytes = tcg_const_i64(ebytes);
3664 for (xs = 0; xs < selem; xs++) {
3665 if (replicate) {
3666 /* Load and replicate to all elements */
3667 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3669 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr,
3670 get_mem_index(s), s->be_data + scale);
3671 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3672 (is_q + 1) * 8, vec_full_reg_size(s),
3673 tcg_tmp);
3674 tcg_temp_free_i64(tcg_tmp);
3675 } else {
3676 /* Load/store one element per register */
3677 if (is_load) {
3678 do_vec_ld(s, rt, index, clean_addr, scale, s->be_data);
3679 } else {
3680 do_vec_st(s, rt, index, clean_addr, scale, s->be_data);
3683 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3684 rt = (rt + 1) % 32;
3686 tcg_temp_free_i64(tcg_ebytes);
3688 if (is_postidx) {
3689 if (rm == 31) {
3690 tcg_gen_addi_i64(tcg_rn, tcg_rn, selem * ebytes);
3691 } else {
3692 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3697 /* Loads and stores */
3698 static void disas_ldst(DisasContext *s, uint32_t insn)
3700 switch (extract32(insn, 24, 6)) {
3701 case 0x08: /* Load/store exclusive */
3702 disas_ldst_excl(s, insn);
3703 break;
3704 case 0x18: case 0x1c: /* Load register (literal) */
3705 disas_ld_lit(s, insn);
3706 break;
3707 case 0x28: case 0x29:
3708 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
3709 disas_ldst_pair(s, insn);
3710 break;
3711 case 0x38: case 0x39:
3712 case 0x3c: case 0x3d: /* Load/store register (all forms) */
3713 disas_ldst_reg(s, insn);
3714 break;
3715 case 0x0c: /* AdvSIMD load/store multiple structures */
3716 disas_ldst_multiple_struct(s, insn);
3717 break;
3718 case 0x0d: /* AdvSIMD load/store single structure */
3719 disas_ldst_single_struct(s, insn);
3720 break;
3721 case 0x19: /* LDAPR/STLR (unscaled immediate) */
3722 if (extract32(insn, 10, 2) != 0 ||
3723 extract32(insn, 21, 1) != 0) {
3724 unallocated_encoding(s);
3725 break;
3727 disas_ldst_ldapr_stlr(s, insn);
3728 break;
3729 default:
3730 unallocated_encoding(s);
3731 break;
3735 /* PC-rel. addressing
3736 * 31 30 29 28 24 23 5 4 0
3737 * +----+-------+-----------+-------------------+------+
3738 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
3739 * +----+-------+-----------+-------------------+------+
3741 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
3743 unsigned int page, rd;
3744 uint64_t base;
3745 uint64_t offset;
3747 page = extract32(insn, 31, 1);
3748 /* SignExtend(immhi:immlo) -> offset */
3749 offset = sextract64(insn, 5, 19);
3750 offset = offset << 2 | extract32(insn, 29, 2);
3751 rd = extract32(insn, 0, 5);
3752 base = s->pc_curr;
3754 if (page) {
3755 /* ADRP (page based) */
3756 base &= ~0xfff;
3757 offset <<= 12;
3760 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
3764 * Add/subtract (immediate)
3766 * 31 30 29 28 24 23 22 21 10 9 5 4 0
3767 * +--+--+--+-----------+-----+-------------+-----+-----+
3768 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
3769 * +--+--+--+-----------+-----+-------------+-----+-----+
3771 * sf: 0 -> 32bit, 1 -> 64bit
3772 * op: 0 -> add , 1 -> sub
3773 * S: 1 -> set flags
3774 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
3776 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
3778 int rd = extract32(insn, 0, 5);
3779 int rn = extract32(insn, 5, 5);
3780 uint64_t imm = extract32(insn, 10, 12);
3781 int shift = extract32(insn, 22, 2);
3782 bool setflags = extract32(insn, 29, 1);
3783 bool sub_op = extract32(insn, 30, 1);
3784 bool is_64bit = extract32(insn, 31, 1);
3786 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3787 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
3788 TCGv_i64 tcg_result;
3790 switch (shift) {
3791 case 0x0:
3792 break;
3793 case 0x1:
3794 imm <<= 12;
3795 break;
3796 default:
3797 unallocated_encoding(s);
3798 return;
3801 tcg_result = tcg_temp_new_i64();
3802 if (!setflags) {
3803 if (sub_op) {
3804 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
3805 } else {
3806 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
3808 } else {
3809 TCGv_i64 tcg_imm = tcg_const_i64(imm);
3810 if (sub_op) {
3811 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3812 } else {
3813 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3815 tcg_temp_free_i64(tcg_imm);
3818 if (is_64bit) {
3819 tcg_gen_mov_i64(tcg_rd, tcg_result);
3820 } else {
3821 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3824 tcg_temp_free_i64(tcg_result);
3827 /* The input should be a value in the bottom e bits (with higher
3828 * bits zero); returns that value replicated into every element
3829 * of size e in a 64 bit integer.
3831 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
3833 assert(e != 0);
3834 while (e < 64) {
3835 mask |= mask << e;
3836 e *= 2;
3838 return mask;
3841 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
3842 static inline uint64_t bitmask64(unsigned int length)
3844 assert(length > 0 && length <= 64);
3845 return ~0ULL >> (64 - length);
3848 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
3849 * only require the wmask. Returns false if the imms/immr/immn are a reserved
3850 * value (ie should cause a guest UNDEF exception), and true if they are
3851 * valid, in which case the decoded bit pattern is written to result.
3853 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
3854 unsigned int imms, unsigned int immr)
3856 uint64_t mask;
3857 unsigned e, levels, s, r;
3858 int len;
3860 assert(immn < 2 && imms < 64 && immr < 64);
3862 /* The bit patterns we create here are 64 bit patterns which
3863 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
3864 * 64 bits each. Each element contains the same value: a run
3865 * of between 1 and e-1 non-zero bits, rotated within the
3866 * element by between 0 and e-1 bits.
3868 * The element size and run length are encoded into immn (1 bit)
3869 * and imms (6 bits) as follows:
3870 * 64 bit elements: immn = 1, imms = <length of run - 1>
3871 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3872 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3873 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3874 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3875 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3876 * Notice that immn = 0, imms = 11111x is the only combination
3877 * not covered by one of the above options; this is reserved.
3878 * Further, <length of run - 1> all-ones is a reserved pattern.
3880 * In all cases the rotation is by immr % e (and immr is 6 bits).
3883 /* First determine the element size */
3884 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3885 if (len < 1) {
3886 /* This is the immn == 0, imms == 0x11111x case */
3887 return false;
3889 e = 1 << len;
3891 levels = e - 1;
3892 s = imms & levels;
3893 r = immr & levels;
3895 if (s == levels) {
3896 /* <length of run - 1> mustn't be all-ones. */
3897 return false;
3900 /* Create the value of one element: s+1 set bits rotated
3901 * by r within the element (which is e bits wide)...
3903 mask = bitmask64(s + 1);
3904 if (r) {
3905 mask = (mask >> r) | (mask << (e - r));
3906 mask &= bitmask64(e);
3908 /* ...then replicate the element over the whole 64 bit value */
3909 mask = bitfield_replicate(mask, e);
3910 *result = mask;
3911 return true;
3914 /* Logical (immediate)
3915 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3916 * +----+-----+-------------+---+------+------+------+------+
3917 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3918 * +----+-----+-------------+---+------+------+------+------+
3920 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3922 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3923 TCGv_i64 tcg_rd, tcg_rn;
3924 uint64_t wmask;
3925 bool is_and = false;
3927 sf = extract32(insn, 31, 1);
3928 opc = extract32(insn, 29, 2);
3929 is_n = extract32(insn, 22, 1);
3930 immr = extract32(insn, 16, 6);
3931 imms = extract32(insn, 10, 6);
3932 rn = extract32(insn, 5, 5);
3933 rd = extract32(insn, 0, 5);
3935 if (!sf && is_n) {
3936 unallocated_encoding(s);
3937 return;
3940 if (opc == 0x3) { /* ANDS */
3941 tcg_rd = cpu_reg(s, rd);
3942 } else {
3943 tcg_rd = cpu_reg_sp(s, rd);
3945 tcg_rn = cpu_reg(s, rn);
3947 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3948 /* some immediate field values are reserved */
3949 unallocated_encoding(s);
3950 return;
3953 if (!sf) {
3954 wmask &= 0xffffffff;
3957 switch (opc) {
3958 case 0x3: /* ANDS */
3959 case 0x0: /* AND */
3960 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3961 is_and = true;
3962 break;
3963 case 0x1: /* ORR */
3964 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3965 break;
3966 case 0x2: /* EOR */
3967 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3968 break;
3969 default:
3970 assert(FALSE); /* must handle all above */
3971 break;
3974 if (!sf && !is_and) {
3975 /* zero extend final result; we know we can skip this for AND
3976 * since the immediate had the high 32 bits clear.
3978 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3981 if (opc == 3) { /* ANDS */
3982 gen_logic_CC(sf, tcg_rd);
3987 * Move wide (immediate)
3989 * 31 30 29 28 23 22 21 20 5 4 0
3990 * +--+-----+-------------+-----+----------------+------+
3991 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
3992 * +--+-----+-------------+-----+----------------+------+
3994 * sf: 0 -> 32 bit, 1 -> 64 bit
3995 * opc: 00 -> N, 10 -> Z, 11 -> K
3996 * hw: shift/16 (0,16, and sf only 32, 48)
3998 static void disas_movw_imm(DisasContext *s, uint32_t insn)
4000 int rd = extract32(insn, 0, 5);
4001 uint64_t imm = extract32(insn, 5, 16);
4002 int sf = extract32(insn, 31, 1);
4003 int opc = extract32(insn, 29, 2);
4004 int pos = extract32(insn, 21, 2) << 4;
4005 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4006 TCGv_i64 tcg_imm;
4008 if (!sf && (pos >= 32)) {
4009 unallocated_encoding(s);
4010 return;
4013 switch (opc) {
4014 case 0: /* MOVN */
4015 case 2: /* MOVZ */
4016 imm <<= pos;
4017 if (opc == 0) {
4018 imm = ~imm;
4020 if (!sf) {
4021 imm &= 0xffffffffu;
4023 tcg_gen_movi_i64(tcg_rd, imm);
4024 break;
4025 case 3: /* MOVK */
4026 tcg_imm = tcg_const_i64(imm);
4027 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
4028 tcg_temp_free_i64(tcg_imm);
4029 if (!sf) {
4030 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4032 break;
4033 default:
4034 unallocated_encoding(s);
4035 break;
4039 /* Bitfield
4040 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4041 * +----+-----+-------------+---+------+------+------+------+
4042 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
4043 * +----+-----+-------------+---+------+------+------+------+
4045 static void disas_bitfield(DisasContext *s, uint32_t insn)
4047 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
4048 TCGv_i64 tcg_rd, tcg_tmp;
4050 sf = extract32(insn, 31, 1);
4051 opc = extract32(insn, 29, 2);
4052 n = extract32(insn, 22, 1);
4053 ri = extract32(insn, 16, 6);
4054 si = extract32(insn, 10, 6);
4055 rn = extract32(insn, 5, 5);
4056 rd = extract32(insn, 0, 5);
4057 bitsize = sf ? 64 : 32;
4059 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
4060 unallocated_encoding(s);
4061 return;
4064 tcg_rd = cpu_reg(s, rd);
4066 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
4067 to be smaller than bitsize, we'll never reference data outside the
4068 low 32-bits anyway. */
4069 tcg_tmp = read_cpu_reg(s, rn, 1);
4071 /* Recognize simple(r) extractions. */
4072 if (si >= ri) {
4073 /* Wd<s-r:0> = Wn<s:r> */
4074 len = (si - ri) + 1;
4075 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
4076 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4077 goto done;
4078 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
4079 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4080 return;
4082 /* opc == 1, BFXIL fall through to deposit */
4083 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4084 pos = 0;
4085 } else {
4086 /* Handle the ri > si case with a deposit
4087 * Wd<32+s-r,32-r> = Wn<s:0>
4089 len = si + 1;
4090 pos = (bitsize - ri) & (bitsize - 1);
4093 if (opc == 0 && len < ri) {
4094 /* SBFM: sign extend the destination field from len to fill
4095 the balance of the word. Let the deposit below insert all
4096 of those sign bits. */
4097 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4098 len = ri;
4101 if (opc == 1) { /* BFM, BFXIL */
4102 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4103 } else {
4104 /* SBFM or UBFM: We start with zero, and we haven't modified
4105 any bits outside bitsize, therefore the zero-extension
4106 below is unneeded. */
4107 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4108 return;
4111 done:
4112 if (!sf) { /* zero extend final result */
4113 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4117 /* Extract
4118 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
4119 * +----+------+-------------+---+----+------+--------+------+------+
4120 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
4121 * +----+------+-------------+---+----+------+--------+------+------+
4123 static void disas_extract(DisasContext *s, uint32_t insn)
4125 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
4127 sf = extract32(insn, 31, 1);
4128 n = extract32(insn, 22, 1);
4129 rm = extract32(insn, 16, 5);
4130 imm = extract32(insn, 10, 6);
4131 rn = extract32(insn, 5, 5);
4132 rd = extract32(insn, 0, 5);
4133 op21 = extract32(insn, 29, 2);
4134 op0 = extract32(insn, 21, 1);
4135 bitsize = sf ? 64 : 32;
4137 if (sf != n || op21 || op0 || imm >= bitsize) {
4138 unallocated_encoding(s);
4139 } else {
4140 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4142 tcg_rd = cpu_reg(s, rd);
4144 if (unlikely(imm == 0)) {
4145 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4146 * so an extract from bit 0 is a special case.
4148 if (sf) {
4149 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
4150 } else {
4151 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
4153 } else {
4154 tcg_rm = cpu_reg(s, rm);
4155 tcg_rn = cpu_reg(s, rn);
4157 if (sf) {
4158 /* Specialization to ROR happens in EXTRACT2. */
4159 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm);
4160 } else {
4161 TCGv_i32 t0 = tcg_temp_new_i32();
4163 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4164 if (rm == rn) {
4165 tcg_gen_rotri_i32(t0, t0, imm);
4166 } else {
4167 TCGv_i32 t1 = tcg_temp_new_i32();
4168 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4169 tcg_gen_extract2_i32(t0, t0, t1, imm);
4170 tcg_temp_free_i32(t1);
4172 tcg_gen_extu_i32_i64(tcg_rd, t0);
4173 tcg_temp_free_i32(t0);
4179 /* Data processing - immediate */
4180 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
4182 switch (extract32(insn, 23, 6)) {
4183 case 0x20: case 0x21: /* PC-rel. addressing */
4184 disas_pc_rel_adr(s, insn);
4185 break;
4186 case 0x22: case 0x23: /* Add/subtract (immediate) */
4187 disas_add_sub_imm(s, insn);
4188 break;
4189 case 0x24: /* Logical (immediate) */
4190 disas_logic_imm(s, insn);
4191 break;
4192 case 0x25: /* Move wide (immediate) */
4193 disas_movw_imm(s, insn);
4194 break;
4195 case 0x26: /* Bitfield */
4196 disas_bitfield(s, insn);
4197 break;
4198 case 0x27: /* Extract */
4199 disas_extract(s, insn);
4200 break;
4201 default:
4202 unallocated_encoding(s);
4203 break;
4207 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4208 * Note that it is the caller's responsibility to ensure that the
4209 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4210 * mandated semantics for out of range shifts.
4212 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4213 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4215 switch (shift_type) {
4216 case A64_SHIFT_TYPE_LSL:
4217 tcg_gen_shl_i64(dst, src, shift_amount);
4218 break;
4219 case A64_SHIFT_TYPE_LSR:
4220 tcg_gen_shr_i64(dst, src, shift_amount);
4221 break;
4222 case A64_SHIFT_TYPE_ASR:
4223 if (!sf) {
4224 tcg_gen_ext32s_i64(dst, src);
4226 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4227 break;
4228 case A64_SHIFT_TYPE_ROR:
4229 if (sf) {
4230 tcg_gen_rotr_i64(dst, src, shift_amount);
4231 } else {
4232 TCGv_i32 t0, t1;
4233 t0 = tcg_temp_new_i32();
4234 t1 = tcg_temp_new_i32();
4235 tcg_gen_extrl_i64_i32(t0, src);
4236 tcg_gen_extrl_i64_i32(t1, shift_amount);
4237 tcg_gen_rotr_i32(t0, t0, t1);
4238 tcg_gen_extu_i32_i64(dst, t0);
4239 tcg_temp_free_i32(t0);
4240 tcg_temp_free_i32(t1);
4242 break;
4243 default:
4244 assert(FALSE); /* all shift types should be handled */
4245 break;
4248 if (!sf) { /* zero extend final result */
4249 tcg_gen_ext32u_i64(dst, dst);
4253 /* Shift a TCGv src by immediate, put result in dst.
4254 * The shift amount must be in range (this should always be true as the
4255 * relevant instructions will UNDEF on bad shift immediates).
4257 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4258 enum a64_shift_type shift_type, unsigned int shift_i)
4260 assert(shift_i < (sf ? 64 : 32));
4262 if (shift_i == 0) {
4263 tcg_gen_mov_i64(dst, src);
4264 } else {
4265 TCGv_i64 shift_const;
4267 shift_const = tcg_const_i64(shift_i);
4268 shift_reg(dst, src, sf, shift_type, shift_const);
4269 tcg_temp_free_i64(shift_const);
4273 /* Logical (shifted register)
4274 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4275 * +----+-----+-----------+-------+---+------+--------+------+------+
4276 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4277 * +----+-----+-----------+-------+---+------+--------+------+------+
4279 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4281 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4282 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4284 sf = extract32(insn, 31, 1);
4285 opc = extract32(insn, 29, 2);
4286 shift_type = extract32(insn, 22, 2);
4287 invert = extract32(insn, 21, 1);
4288 rm = extract32(insn, 16, 5);
4289 shift_amount = extract32(insn, 10, 6);
4290 rn = extract32(insn, 5, 5);
4291 rd = extract32(insn, 0, 5);
4293 if (!sf && (shift_amount & (1 << 5))) {
4294 unallocated_encoding(s);
4295 return;
4298 tcg_rd = cpu_reg(s, rd);
4300 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4301 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4302 * register-register MOV and MVN, so it is worth special casing.
4304 tcg_rm = cpu_reg(s, rm);
4305 if (invert) {
4306 tcg_gen_not_i64(tcg_rd, tcg_rm);
4307 if (!sf) {
4308 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4310 } else {
4311 if (sf) {
4312 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4313 } else {
4314 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4317 return;
4320 tcg_rm = read_cpu_reg(s, rm, sf);
4322 if (shift_amount) {
4323 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4326 tcg_rn = cpu_reg(s, rn);
4328 switch (opc | (invert << 2)) {
4329 case 0: /* AND */
4330 case 3: /* ANDS */
4331 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4332 break;
4333 case 1: /* ORR */
4334 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4335 break;
4336 case 2: /* EOR */
4337 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4338 break;
4339 case 4: /* BIC */
4340 case 7: /* BICS */
4341 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4342 break;
4343 case 5: /* ORN */
4344 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4345 break;
4346 case 6: /* EON */
4347 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4348 break;
4349 default:
4350 assert(FALSE);
4351 break;
4354 if (!sf) {
4355 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4358 if (opc == 3) {
4359 gen_logic_CC(sf, tcg_rd);
4364 * Add/subtract (extended register)
4366 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4367 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4368 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4369 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4371 * sf: 0 -> 32bit, 1 -> 64bit
4372 * op: 0 -> add , 1 -> sub
4373 * S: 1 -> set flags
4374 * opt: 00
4375 * option: extension type (see DecodeRegExtend)
4376 * imm3: optional shift to Rm
4378 * Rd = Rn + LSL(extend(Rm), amount)
4380 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4382 int rd = extract32(insn, 0, 5);
4383 int rn = extract32(insn, 5, 5);
4384 int imm3 = extract32(insn, 10, 3);
4385 int option = extract32(insn, 13, 3);
4386 int rm = extract32(insn, 16, 5);
4387 int opt = extract32(insn, 22, 2);
4388 bool setflags = extract32(insn, 29, 1);
4389 bool sub_op = extract32(insn, 30, 1);
4390 bool sf = extract32(insn, 31, 1);
4392 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4393 TCGv_i64 tcg_rd;
4394 TCGv_i64 tcg_result;
4396 if (imm3 > 4 || opt != 0) {
4397 unallocated_encoding(s);
4398 return;
4401 /* non-flag setting ops may use SP */
4402 if (!setflags) {
4403 tcg_rd = cpu_reg_sp(s, rd);
4404 } else {
4405 tcg_rd = cpu_reg(s, rd);
4407 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4409 tcg_rm = read_cpu_reg(s, rm, sf);
4410 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4412 tcg_result = tcg_temp_new_i64();
4414 if (!setflags) {
4415 if (sub_op) {
4416 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4417 } else {
4418 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4420 } else {
4421 if (sub_op) {
4422 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4423 } else {
4424 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4428 if (sf) {
4429 tcg_gen_mov_i64(tcg_rd, tcg_result);
4430 } else {
4431 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4434 tcg_temp_free_i64(tcg_result);
4438 * Add/subtract (shifted register)
4440 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4441 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4442 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4443 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4445 * sf: 0 -> 32bit, 1 -> 64bit
4446 * op: 0 -> add , 1 -> sub
4447 * S: 1 -> set flags
4448 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4449 * imm6: Shift amount to apply to Rm before the add/sub
4451 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4453 int rd = extract32(insn, 0, 5);
4454 int rn = extract32(insn, 5, 5);
4455 int imm6 = extract32(insn, 10, 6);
4456 int rm = extract32(insn, 16, 5);
4457 int shift_type = extract32(insn, 22, 2);
4458 bool setflags = extract32(insn, 29, 1);
4459 bool sub_op = extract32(insn, 30, 1);
4460 bool sf = extract32(insn, 31, 1);
4462 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4463 TCGv_i64 tcg_rn, tcg_rm;
4464 TCGv_i64 tcg_result;
4466 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4467 unallocated_encoding(s);
4468 return;
4471 tcg_rn = read_cpu_reg(s, rn, sf);
4472 tcg_rm = read_cpu_reg(s, rm, sf);
4474 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4476 tcg_result = tcg_temp_new_i64();
4478 if (!setflags) {
4479 if (sub_op) {
4480 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4481 } else {
4482 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4484 } else {
4485 if (sub_op) {
4486 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4487 } else {
4488 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4492 if (sf) {
4493 tcg_gen_mov_i64(tcg_rd, tcg_result);
4494 } else {
4495 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4498 tcg_temp_free_i64(tcg_result);
4501 /* Data-processing (3 source)
4503 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4504 * +--+------+-----------+------+------+----+------+------+------+
4505 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4506 * +--+------+-----------+------+------+----+------+------+------+
4508 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4510 int rd = extract32(insn, 0, 5);
4511 int rn = extract32(insn, 5, 5);
4512 int ra = extract32(insn, 10, 5);
4513 int rm = extract32(insn, 16, 5);
4514 int op_id = (extract32(insn, 29, 3) << 4) |
4515 (extract32(insn, 21, 3) << 1) |
4516 extract32(insn, 15, 1);
4517 bool sf = extract32(insn, 31, 1);
4518 bool is_sub = extract32(op_id, 0, 1);
4519 bool is_high = extract32(op_id, 2, 1);
4520 bool is_signed = false;
4521 TCGv_i64 tcg_op1;
4522 TCGv_i64 tcg_op2;
4523 TCGv_i64 tcg_tmp;
4525 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4526 switch (op_id) {
4527 case 0x42: /* SMADDL */
4528 case 0x43: /* SMSUBL */
4529 case 0x44: /* SMULH */
4530 is_signed = true;
4531 break;
4532 case 0x0: /* MADD (32bit) */
4533 case 0x1: /* MSUB (32bit) */
4534 case 0x40: /* MADD (64bit) */
4535 case 0x41: /* MSUB (64bit) */
4536 case 0x4a: /* UMADDL */
4537 case 0x4b: /* UMSUBL */
4538 case 0x4c: /* UMULH */
4539 break;
4540 default:
4541 unallocated_encoding(s);
4542 return;
4545 if (is_high) {
4546 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4547 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4548 TCGv_i64 tcg_rn = cpu_reg(s, rn);
4549 TCGv_i64 tcg_rm = cpu_reg(s, rm);
4551 if (is_signed) {
4552 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4553 } else {
4554 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4557 tcg_temp_free_i64(low_bits);
4558 return;
4561 tcg_op1 = tcg_temp_new_i64();
4562 tcg_op2 = tcg_temp_new_i64();
4563 tcg_tmp = tcg_temp_new_i64();
4565 if (op_id < 0x42) {
4566 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4567 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4568 } else {
4569 if (is_signed) {
4570 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4571 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4572 } else {
4573 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4574 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4578 if (ra == 31 && !is_sub) {
4579 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4580 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4581 } else {
4582 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4583 if (is_sub) {
4584 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4585 } else {
4586 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4590 if (!sf) {
4591 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4594 tcg_temp_free_i64(tcg_op1);
4595 tcg_temp_free_i64(tcg_op2);
4596 tcg_temp_free_i64(tcg_tmp);
4599 /* Add/subtract (with carry)
4600 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
4601 * +--+--+--+------------------------+------+-------------+------+-----+
4602 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
4603 * +--+--+--+------------------------+------+-------------+------+-----+
4606 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4608 unsigned int sf, op, setflags, rm, rn, rd;
4609 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4611 sf = extract32(insn, 31, 1);
4612 op = extract32(insn, 30, 1);
4613 setflags = extract32(insn, 29, 1);
4614 rm = extract32(insn, 16, 5);
4615 rn = extract32(insn, 5, 5);
4616 rd = extract32(insn, 0, 5);
4618 tcg_rd = cpu_reg(s, rd);
4619 tcg_rn = cpu_reg(s, rn);
4621 if (op) {
4622 tcg_y = new_tmp_a64(s);
4623 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4624 } else {
4625 tcg_y = cpu_reg(s, rm);
4628 if (setflags) {
4629 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4630 } else {
4631 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4636 * Rotate right into flags
4637 * 31 30 29 21 15 10 5 4 0
4638 * +--+--+--+-----------------+--------+-----------+------+--+------+
4639 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
4640 * +--+--+--+-----------------+--------+-----------+------+--+------+
4642 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
4644 int mask = extract32(insn, 0, 4);
4645 int o2 = extract32(insn, 4, 1);
4646 int rn = extract32(insn, 5, 5);
4647 int imm6 = extract32(insn, 15, 6);
4648 int sf_op_s = extract32(insn, 29, 3);
4649 TCGv_i64 tcg_rn;
4650 TCGv_i32 nzcv;
4652 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
4653 unallocated_encoding(s);
4654 return;
4657 tcg_rn = read_cpu_reg(s, rn, 1);
4658 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
4660 nzcv = tcg_temp_new_i32();
4661 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
4663 if (mask & 8) { /* N */
4664 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
4666 if (mask & 4) { /* Z */
4667 tcg_gen_not_i32(cpu_ZF, nzcv);
4668 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
4670 if (mask & 2) { /* C */
4671 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
4673 if (mask & 1) { /* V */
4674 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
4677 tcg_temp_free_i32(nzcv);
4681 * Evaluate into flags
4682 * 31 30 29 21 15 14 10 5 4 0
4683 * +--+--+--+-----------------+---------+----+---------+------+--+------+
4684 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
4685 * +--+--+--+-----------------+---------+----+---------+------+--+------+
4687 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
4689 int o3_mask = extract32(insn, 0, 5);
4690 int rn = extract32(insn, 5, 5);
4691 int o2 = extract32(insn, 15, 6);
4692 int sz = extract32(insn, 14, 1);
4693 int sf_op_s = extract32(insn, 29, 3);
4694 TCGv_i32 tmp;
4695 int shift;
4697 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
4698 !dc_isar_feature(aa64_condm_4, s)) {
4699 unallocated_encoding(s);
4700 return;
4702 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
4704 tmp = tcg_temp_new_i32();
4705 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
4706 tcg_gen_shli_i32(cpu_NF, tmp, shift);
4707 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
4708 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
4709 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
4710 tcg_temp_free_i32(tmp);
4713 /* Conditional compare (immediate / register)
4714 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4715 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4716 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
4717 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4718 * [1] y [0] [0]
4720 static void disas_cc(DisasContext *s, uint32_t insn)
4722 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
4723 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
4724 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
4725 DisasCompare c;
4727 if (!extract32(insn, 29, 1)) {
4728 unallocated_encoding(s);
4729 return;
4731 if (insn & (1 << 10 | 1 << 4)) {
4732 unallocated_encoding(s);
4733 return;
4735 sf = extract32(insn, 31, 1);
4736 op = extract32(insn, 30, 1);
4737 is_imm = extract32(insn, 11, 1);
4738 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
4739 cond = extract32(insn, 12, 4);
4740 rn = extract32(insn, 5, 5);
4741 nzcv = extract32(insn, 0, 4);
4743 /* Set T0 = !COND. */
4744 tcg_t0 = tcg_temp_new_i32();
4745 arm_test_cc(&c, cond);
4746 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
4747 arm_free_cc(&c);
4749 /* Load the arguments for the new comparison. */
4750 if (is_imm) {
4751 tcg_y = new_tmp_a64(s);
4752 tcg_gen_movi_i64(tcg_y, y);
4753 } else {
4754 tcg_y = cpu_reg(s, y);
4756 tcg_rn = cpu_reg(s, rn);
4758 /* Set the flags for the new comparison. */
4759 tcg_tmp = tcg_temp_new_i64();
4760 if (op) {
4761 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4762 } else {
4763 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4765 tcg_temp_free_i64(tcg_tmp);
4767 /* If COND was false, force the flags to #nzcv. Compute two masks
4768 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4769 * For tcg hosts that support ANDC, we can make do with just T1.
4770 * In either case, allow the tcg optimizer to delete any unused mask.
4772 tcg_t1 = tcg_temp_new_i32();
4773 tcg_t2 = tcg_temp_new_i32();
4774 tcg_gen_neg_i32(tcg_t1, tcg_t0);
4775 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
4777 if (nzcv & 8) { /* N */
4778 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
4779 } else {
4780 if (TCG_TARGET_HAS_andc_i32) {
4781 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
4782 } else {
4783 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
4786 if (nzcv & 4) { /* Z */
4787 if (TCG_TARGET_HAS_andc_i32) {
4788 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
4789 } else {
4790 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
4792 } else {
4793 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
4795 if (nzcv & 2) { /* C */
4796 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
4797 } else {
4798 if (TCG_TARGET_HAS_andc_i32) {
4799 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
4800 } else {
4801 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
4804 if (nzcv & 1) { /* V */
4805 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
4806 } else {
4807 if (TCG_TARGET_HAS_andc_i32) {
4808 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
4809 } else {
4810 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
4813 tcg_temp_free_i32(tcg_t0);
4814 tcg_temp_free_i32(tcg_t1);
4815 tcg_temp_free_i32(tcg_t2);
4818 /* Conditional select
4819 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
4820 * +----+----+---+-----------------+------+------+-----+------+------+
4821 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
4822 * +----+----+---+-----------------+------+------+-----+------+------+
4824 static void disas_cond_select(DisasContext *s, uint32_t insn)
4826 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
4827 TCGv_i64 tcg_rd, zero;
4828 DisasCompare64 c;
4830 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
4831 /* S == 1 or op2<1> == 1 */
4832 unallocated_encoding(s);
4833 return;
4835 sf = extract32(insn, 31, 1);
4836 else_inv = extract32(insn, 30, 1);
4837 rm = extract32(insn, 16, 5);
4838 cond = extract32(insn, 12, 4);
4839 else_inc = extract32(insn, 10, 1);
4840 rn = extract32(insn, 5, 5);
4841 rd = extract32(insn, 0, 5);
4843 tcg_rd = cpu_reg(s, rd);
4845 a64_test_cc(&c, cond);
4846 zero = tcg_const_i64(0);
4848 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
4849 /* CSET & CSETM. */
4850 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
4851 if (else_inv) {
4852 tcg_gen_neg_i64(tcg_rd, tcg_rd);
4854 } else {
4855 TCGv_i64 t_true = cpu_reg(s, rn);
4856 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
4857 if (else_inv && else_inc) {
4858 tcg_gen_neg_i64(t_false, t_false);
4859 } else if (else_inv) {
4860 tcg_gen_not_i64(t_false, t_false);
4861 } else if (else_inc) {
4862 tcg_gen_addi_i64(t_false, t_false, 1);
4864 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
4867 tcg_temp_free_i64(zero);
4868 a64_free_cc(&c);
4870 if (!sf) {
4871 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4875 static void handle_clz(DisasContext *s, unsigned int sf,
4876 unsigned int rn, unsigned int rd)
4878 TCGv_i64 tcg_rd, tcg_rn;
4879 tcg_rd = cpu_reg(s, rd);
4880 tcg_rn = cpu_reg(s, rn);
4882 if (sf) {
4883 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
4884 } else {
4885 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4886 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4887 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
4888 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4889 tcg_temp_free_i32(tcg_tmp32);
4893 static void handle_cls(DisasContext *s, unsigned int sf,
4894 unsigned int rn, unsigned int rd)
4896 TCGv_i64 tcg_rd, tcg_rn;
4897 tcg_rd = cpu_reg(s, rd);
4898 tcg_rn = cpu_reg(s, rn);
4900 if (sf) {
4901 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
4902 } else {
4903 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4904 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4905 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
4906 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4907 tcg_temp_free_i32(tcg_tmp32);
4911 static void handle_rbit(DisasContext *s, unsigned int sf,
4912 unsigned int rn, unsigned int rd)
4914 TCGv_i64 tcg_rd, tcg_rn;
4915 tcg_rd = cpu_reg(s, rd);
4916 tcg_rn = cpu_reg(s, rn);
4918 if (sf) {
4919 gen_helper_rbit64(tcg_rd, tcg_rn);
4920 } else {
4921 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4922 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4923 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
4924 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4925 tcg_temp_free_i32(tcg_tmp32);
4929 /* REV with sf==1, opcode==3 ("REV64") */
4930 static void handle_rev64(DisasContext *s, unsigned int sf,
4931 unsigned int rn, unsigned int rd)
4933 if (!sf) {
4934 unallocated_encoding(s);
4935 return;
4937 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4940 /* REV with sf==0, opcode==2
4941 * REV32 (sf==1, opcode==2)
4943 static void handle_rev32(DisasContext *s, unsigned int sf,
4944 unsigned int rn, unsigned int rd)
4946 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4948 if (sf) {
4949 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4950 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4952 /* bswap32_i64 requires zero high word */
4953 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4954 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4955 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4956 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4957 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4959 tcg_temp_free_i64(tcg_tmp);
4960 } else {
4961 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4962 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4966 /* REV16 (opcode==1) */
4967 static void handle_rev16(DisasContext *s, unsigned int sf,
4968 unsigned int rn, unsigned int rd)
4970 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4971 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4972 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4973 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
4975 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
4976 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
4977 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
4978 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
4979 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
4981 tcg_temp_free_i64(mask);
4982 tcg_temp_free_i64(tcg_tmp);
4985 /* Data-processing (1 source)
4986 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4987 * +----+---+---+-----------------+---------+--------+------+------+
4988 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4989 * +----+---+---+-----------------+---------+--------+------+------+
4991 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
4993 unsigned int sf, opcode, opcode2, rn, rd;
4994 TCGv_i64 tcg_rd;
4996 if (extract32(insn, 29, 1)) {
4997 unallocated_encoding(s);
4998 return;
5001 sf = extract32(insn, 31, 1);
5002 opcode = extract32(insn, 10, 6);
5003 opcode2 = extract32(insn, 16, 5);
5004 rn = extract32(insn, 5, 5);
5005 rd = extract32(insn, 0, 5);
5007 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5009 switch (MAP(sf, opcode2, opcode)) {
5010 case MAP(0, 0x00, 0x00): /* RBIT */
5011 case MAP(1, 0x00, 0x00):
5012 handle_rbit(s, sf, rn, rd);
5013 break;
5014 case MAP(0, 0x00, 0x01): /* REV16 */
5015 case MAP(1, 0x00, 0x01):
5016 handle_rev16(s, sf, rn, rd);
5017 break;
5018 case MAP(0, 0x00, 0x02): /* REV/REV32 */
5019 case MAP(1, 0x00, 0x02):
5020 handle_rev32(s, sf, rn, rd);
5021 break;
5022 case MAP(1, 0x00, 0x03): /* REV64 */
5023 handle_rev64(s, sf, rn, rd);
5024 break;
5025 case MAP(0, 0x00, 0x04): /* CLZ */
5026 case MAP(1, 0x00, 0x04):
5027 handle_clz(s, sf, rn, rd);
5028 break;
5029 case MAP(0, 0x00, 0x05): /* CLS */
5030 case MAP(1, 0x00, 0x05):
5031 handle_cls(s, sf, rn, rd);
5032 break;
5033 case MAP(1, 0x01, 0x00): /* PACIA */
5034 if (s->pauth_active) {
5035 tcg_rd = cpu_reg(s, rd);
5036 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5037 } else if (!dc_isar_feature(aa64_pauth, s)) {
5038 goto do_unallocated;
5040 break;
5041 case MAP(1, 0x01, 0x01): /* PACIB */
5042 if (s->pauth_active) {
5043 tcg_rd = cpu_reg(s, rd);
5044 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5045 } else if (!dc_isar_feature(aa64_pauth, s)) {
5046 goto do_unallocated;
5048 break;
5049 case MAP(1, 0x01, 0x02): /* PACDA */
5050 if (s->pauth_active) {
5051 tcg_rd = cpu_reg(s, rd);
5052 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5053 } else if (!dc_isar_feature(aa64_pauth, s)) {
5054 goto do_unallocated;
5056 break;
5057 case MAP(1, 0x01, 0x03): /* PACDB */
5058 if (s->pauth_active) {
5059 tcg_rd = cpu_reg(s, rd);
5060 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5061 } else if (!dc_isar_feature(aa64_pauth, s)) {
5062 goto do_unallocated;
5064 break;
5065 case MAP(1, 0x01, 0x04): /* AUTIA */
5066 if (s->pauth_active) {
5067 tcg_rd = cpu_reg(s, rd);
5068 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5069 } else if (!dc_isar_feature(aa64_pauth, s)) {
5070 goto do_unallocated;
5072 break;
5073 case MAP(1, 0x01, 0x05): /* AUTIB */
5074 if (s->pauth_active) {
5075 tcg_rd = cpu_reg(s, rd);
5076 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5077 } else if (!dc_isar_feature(aa64_pauth, s)) {
5078 goto do_unallocated;
5080 break;
5081 case MAP(1, 0x01, 0x06): /* AUTDA */
5082 if (s->pauth_active) {
5083 tcg_rd = cpu_reg(s, rd);
5084 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5085 } else if (!dc_isar_feature(aa64_pauth, s)) {
5086 goto do_unallocated;
5088 break;
5089 case MAP(1, 0x01, 0x07): /* AUTDB */
5090 if (s->pauth_active) {
5091 tcg_rd = cpu_reg(s, rd);
5092 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5093 } else if (!dc_isar_feature(aa64_pauth, s)) {
5094 goto do_unallocated;
5096 break;
5097 case MAP(1, 0x01, 0x08): /* PACIZA */
5098 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5099 goto do_unallocated;
5100 } else if (s->pauth_active) {
5101 tcg_rd = cpu_reg(s, rd);
5102 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5104 break;
5105 case MAP(1, 0x01, 0x09): /* PACIZB */
5106 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5107 goto do_unallocated;
5108 } else if (s->pauth_active) {
5109 tcg_rd = cpu_reg(s, rd);
5110 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5112 break;
5113 case MAP(1, 0x01, 0x0a): /* PACDZA */
5114 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5115 goto do_unallocated;
5116 } else if (s->pauth_active) {
5117 tcg_rd = cpu_reg(s, rd);
5118 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5120 break;
5121 case MAP(1, 0x01, 0x0b): /* PACDZB */
5122 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5123 goto do_unallocated;
5124 } else if (s->pauth_active) {
5125 tcg_rd = cpu_reg(s, rd);
5126 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5128 break;
5129 case MAP(1, 0x01, 0x0c): /* AUTIZA */
5130 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5131 goto do_unallocated;
5132 } else if (s->pauth_active) {
5133 tcg_rd = cpu_reg(s, rd);
5134 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5136 break;
5137 case MAP(1, 0x01, 0x0d): /* AUTIZB */
5138 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5139 goto do_unallocated;
5140 } else if (s->pauth_active) {
5141 tcg_rd = cpu_reg(s, rd);
5142 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5144 break;
5145 case MAP(1, 0x01, 0x0e): /* AUTDZA */
5146 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5147 goto do_unallocated;
5148 } else if (s->pauth_active) {
5149 tcg_rd = cpu_reg(s, rd);
5150 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5152 break;
5153 case MAP(1, 0x01, 0x0f): /* AUTDZB */
5154 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5155 goto do_unallocated;
5156 } else if (s->pauth_active) {
5157 tcg_rd = cpu_reg(s, rd);
5158 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5160 break;
5161 case MAP(1, 0x01, 0x10): /* XPACI */
5162 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5163 goto do_unallocated;
5164 } else if (s->pauth_active) {
5165 tcg_rd = cpu_reg(s, rd);
5166 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5168 break;
5169 case MAP(1, 0x01, 0x11): /* XPACD */
5170 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5171 goto do_unallocated;
5172 } else if (s->pauth_active) {
5173 tcg_rd = cpu_reg(s, rd);
5174 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5176 break;
5177 default:
5178 do_unallocated:
5179 unallocated_encoding(s);
5180 break;
5183 #undef MAP
5186 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5187 unsigned int rm, unsigned int rn, unsigned int rd)
5189 TCGv_i64 tcg_n, tcg_m, tcg_rd;
5190 tcg_rd = cpu_reg(s, rd);
5192 if (!sf && is_signed) {
5193 tcg_n = new_tmp_a64(s);
5194 tcg_m = new_tmp_a64(s);
5195 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5196 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5197 } else {
5198 tcg_n = read_cpu_reg(s, rn, sf);
5199 tcg_m = read_cpu_reg(s, rm, sf);
5202 if (is_signed) {
5203 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5204 } else {
5205 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5208 if (!sf) { /* zero extend final result */
5209 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5213 /* LSLV, LSRV, ASRV, RORV */
5214 static void handle_shift_reg(DisasContext *s,
5215 enum a64_shift_type shift_type, unsigned int sf,
5216 unsigned int rm, unsigned int rn, unsigned int rd)
5218 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5219 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5220 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5222 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5223 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5224 tcg_temp_free_i64(tcg_shift);
5227 /* CRC32[BHWX], CRC32C[BHWX] */
5228 static void handle_crc32(DisasContext *s,
5229 unsigned int sf, unsigned int sz, bool crc32c,
5230 unsigned int rm, unsigned int rn, unsigned int rd)
5232 TCGv_i64 tcg_acc, tcg_val;
5233 TCGv_i32 tcg_bytes;
5235 if (!dc_isar_feature(aa64_crc32, s)
5236 || (sf == 1 && sz != 3)
5237 || (sf == 0 && sz == 3)) {
5238 unallocated_encoding(s);
5239 return;
5242 if (sz == 3) {
5243 tcg_val = cpu_reg(s, rm);
5244 } else {
5245 uint64_t mask;
5246 switch (sz) {
5247 case 0:
5248 mask = 0xFF;
5249 break;
5250 case 1:
5251 mask = 0xFFFF;
5252 break;
5253 case 2:
5254 mask = 0xFFFFFFFF;
5255 break;
5256 default:
5257 g_assert_not_reached();
5259 tcg_val = new_tmp_a64(s);
5260 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5263 tcg_acc = cpu_reg(s, rn);
5264 tcg_bytes = tcg_const_i32(1 << sz);
5266 if (crc32c) {
5267 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5268 } else {
5269 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5272 tcg_temp_free_i32(tcg_bytes);
5275 /* Data-processing (2 source)
5276 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5277 * +----+---+---+-----------------+------+--------+------+------+
5278 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5279 * +----+---+---+-----------------+------+--------+------+------+
5281 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5283 unsigned int sf, rm, opcode, rn, rd;
5284 sf = extract32(insn, 31, 1);
5285 rm = extract32(insn, 16, 5);
5286 opcode = extract32(insn, 10, 6);
5287 rn = extract32(insn, 5, 5);
5288 rd = extract32(insn, 0, 5);
5290 if (extract32(insn, 29, 1)) {
5291 unallocated_encoding(s);
5292 return;
5295 switch (opcode) {
5296 case 2: /* UDIV */
5297 handle_div(s, false, sf, rm, rn, rd);
5298 break;
5299 case 3: /* SDIV */
5300 handle_div(s, true, sf, rm, rn, rd);
5301 break;
5302 case 8: /* LSLV */
5303 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5304 break;
5305 case 9: /* LSRV */
5306 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5307 break;
5308 case 10: /* ASRV */
5309 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5310 break;
5311 case 11: /* RORV */
5312 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5313 break;
5314 case 12: /* PACGA */
5315 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5316 goto do_unallocated;
5318 gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5319 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5320 break;
5321 case 16:
5322 case 17:
5323 case 18:
5324 case 19:
5325 case 20:
5326 case 21:
5327 case 22:
5328 case 23: /* CRC32 */
5330 int sz = extract32(opcode, 0, 2);
5331 bool crc32c = extract32(opcode, 2, 1);
5332 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5333 break;
5335 default:
5336 do_unallocated:
5337 unallocated_encoding(s);
5338 break;
5343 * Data processing - register
5344 * 31 30 29 28 25 21 20 16 10 0
5345 * +--+---+--+---+-------+-----+-------+-------+---------+
5346 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
5347 * +--+---+--+---+-------+-----+-------+-------+---------+
5349 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5351 int op0 = extract32(insn, 30, 1);
5352 int op1 = extract32(insn, 28, 1);
5353 int op2 = extract32(insn, 21, 4);
5354 int op3 = extract32(insn, 10, 6);
5356 if (!op1) {
5357 if (op2 & 8) {
5358 if (op2 & 1) {
5359 /* Add/sub (extended register) */
5360 disas_add_sub_ext_reg(s, insn);
5361 } else {
5362 /* Add/sub (shifted register) */
5363 disas_add_sub_reg(s, insn);
5365 } else {
5366 /* Logical (shifted register) */
5367 disas_logic_reg(s, insn);
5369 return;
5372 switch (op2) {
5373 case 0x0:
5374 switch (op3) {
5375 case 0x00: /* Add/subtract (with carry) */
5376 disas_adc_sbc(s, insn);
5377 break;
5379 case 0x01: /* Rotate right into flags */
5380 case 0x21:
5381 disas_rotate_right_into_flags(s, insn);
5382 break;
5384 case 0x02: /* Evaluate into flags */
5385 case 0x12:
5386 case 0x22:
5387 case 0x32:
5388 disas_evaluate_into_flags(s, insn);
5389 break;
5391 default:
5392 goto do_unallocated;
5394 break;
5396 case 0x2: /* Conditional compare */
5397 disas_cc(s, insn); /* both imm and reg forms */
5398 break;
5400 case 0x4: /* Conditional select */
5401 disas_cond_select(s, insn);
5402 break;
5404 case 0x6: /* Data-processing */
5405 if (op0) { /* (1 source) */
5406 disas_data_proc_1src(s, insn);
5407 } else { /* (2 source) */
5408 disas_data_proc_2src(s, insn);
5410 break;
5411 case 0x8 ... 0xf: /* (3 source) */
5412 disas_data_proc_3src(s, insn);
5413 break;
5415 default:
5416 do_unallocated:
5417 unallocated_encoding(s);
5418 break;
5422 static void handle_fp_compare(DisasContext *s, int size,
5423 unsigned int rn, unsigned int rm,
5424 bool cmp_with_zero, bool signal_all_nans)
5426 TCGv_i64 tcg_flags = tcg_temp_new_i64();
5427 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
5429 if (size == MO_64) {
5430 TCGv_i64 tcg_vn, tcg_vm;
5432 tcg_vn = read_fp_dreg(s, rn);
5433 if (cmp_with_zero) {
5434 tcg_vm = tcg_const_i64(0);
5435 } else {
5436 tcg_vm = read_fp_dreg(s, rm);
5438 if (signal_all_nans) {
5439 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5440 } else {
5441 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5443 tcg_temp_free_i64(tcg_vn);
5444 tcg_temp_free_i64(tcg_vm);
5445 } else {
5446 TCGv_i32 tcg_vn = tcg_temp_new_i32();
5447 TCGv_i32 tcg_vm = tcg_temp_new_i32();
5449 read_vec_element_i32(s, tcg_vn, rn, 0, size);
5450 if (cmp_with_zero) {
5451 tcg_gen_movi_i32(tcg_vm, 0);
5452 } else {
5453 read_vec_element_i32(s, tcg_vm, rm, 0, size);
5456 switch (size) {
5457 case MO_32:
5458 if (signal_all_nans) {
5459 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5460 } else {
5461 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5463 break;
5464 case MO_16:
5465 if (signal_all_nans) {
5466 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5467 } else {
5468 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5470 break;
5471 default:
5472 g_assert_not_reached();
5475 tcg_temp_free_i32(tcg_vn);
5476 tcg_temp_free_i32(tcg_vm);
5479 tcg_temp_free_ptr(fpst);
5481 gen_set_nzcv(tcg_flags);
5483 tcg_temp_free_i64(tcg_flags);
5486 /* Floating point compare
5487 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5488 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5489 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5490 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5492 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5494 unsigned int mos, type, rm, op, rn, opc, op2r;
5495 int size;
5497 mos = extract32(insn, 29, 3);
5498 type = extract32(insn, 22, 2);
5499 rm = extract32(insn, 16, 5);
5500 op = extract32(insn, 14, 2);
5501 rn = extract32(insn, 5, 5);
5502 opc = extract32(insn, 3, 2);
5503 op2r = extract32(insn, 0, 3);
5505 if (mos || op || op2r) {
5506 unallocated_encoding(s);
5507 return;
5510 switch (type) {
5511 case 0:
5512 size = MO_32;
5513 break;
5514 case 1:
5515 size = MO_64;
5516 break;
5517 case 3:
5518 size = MO_16;
5519 if (dc_isar_feature(aa64_fp16, s)) {
5520 break;
5522 /* fallthru */
5523 default:
5524 unallocated_encoding(s);
5525 return;
5528 if (!fp_access_check(s)) {
5529 return;
5532 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5535 /* Floating point conditional compare
5536 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5537 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5538 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
5539 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5541 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5543 unsigned int mos, type, rm, cond, rn, op, nzcv;
5544 TCGv_i64 tcg_flags;
5545 TCGLabel *label_continue = NULL;
5546 int size;
5548 mos = extract32(insn, 29, 3);
5549 type = extract32(insn, 22, 2);
5550 rm = extract32(insn, 16, 5);
5551 cond = extract32(insn, 12, 4);
5552 rn = extract32(insn, 5, 5);
5553 op = extract32(insn, 4, 1);
5554 nzcv = extract32(insn, 0, 4);
5556 if (mos) {
5557 unallocated_encoding(s);
5558 return;
5561 switch (type) {
5562 case 0:
5563 size = MO_32;
5564 break;
5565 case 1:
5566 size = MO_64;
5567 break;
5568 case 3:
5569 size = MO_16;
5570 if (dc_isar_feature(aa64_fp16, s)) {
5571 break;
5573 /* fallthru */
5574 default:
5575 unallocated_encoding(s);
5576 return;
5579 if (!fp_access_check(s)) {
5580 return;
5583 if (cond < 0x0e) { /* not always */
5584 TCGLabel *label_match = gen_new_label();
5585 label_continue = gen_new_label();
5586 arm_gen_test_cc(cond, label_match);
5587 /* nomatch: */
5588 tcg_flags = tcg_const_i64(nzcv << 28);
5589 gen_set_nzcv(tcg_flags);
5590 tcg_temp_free_i64(tcg_flags);
5591 tcg_gen_br(label_continue);
5592 gen_set_label(label_match);
5595 handle_fp_compare(s, size, rn, rm, false, op);
5597 if (cond < 0x0e) {
5598 gen_set_label(label_continue);
5602 /* Floating point conditional select
5603 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5604 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5605 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
5606 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5608 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5610 unsigned int mos, type, rm, cond, rn, rd;
5611 TCGv_i64 t_true, t_false, t_zero;
5612 DisasCompare64 c;
5613 MemOp sz;
5615 mos = extract32(insn, 29, 3);
5616 type = extract32(insn, 22, 2);
5617 rm = extract32(insn, 16, 5);
5618 cond = extract32(insn, 12, 4);
5619 rn = extract32(insn, 5, 5);
5620 rd = extract32(insn, 0, 5);
5622 if (mos) {
5623 unallocated_encoding(s);
5624 return;
5627 switch (type) {
5628 case 0:
5629 sz = MO_32;
5630 break;
5631 case 1:
5632 sz = MO_64;
5633 break;
5634 case 3:
5635 sz = MO_16;
5636 if (dc_isar_feature(aa64_fp16, s)) {
5637 break;
5639 /* fallthru */
5640 default:
5641 unallocated_encoding(s);
5642 return;
5645 if (!fp_access_check(s)) {
5646 return;
5649 /* Zero extend sreg & hreg inputs to 64 bits now. */
5650 t_true = tcg_temp_new_i64();
5651 t_false = tcg_temp_new_i64();
5652 read_vec_element(s, t_true, rn, 0, sz);
5653 read_vec_element(s, t_false, rm, 0, sz);
5655 a64_test_cc(&c, cond);
5656 t_zero = tcg_const_i64(0);
5657 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
5658 tcg_temp_free_i64(t_zero);
5659 tcg_temp_free_i64(t_false);
5660 a64_free_cc(&c);
5662 /* Note that sregs & hregs write back zeros to the high bits,
5663 and we've already done the zero-extension. */
5664 write_fp_dreg(s, rd, t_true);
5665 tcg_temp_free_i64(t_true);
5668 /* Floating-point data-processing (1 source) - half precision */
5669 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5671 TCGv_ptr fpst = NULL;
5672 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
5673 TCGv_i32 tcg_res = tcg_temp_new_i32();
5675 switch (opcode) {
5676 case 0x0: /* FMOV */
5677 tcg_gen_mov_i32(tcg_res, tcg_op);
5678 break;
5679 case 0x1: /* FABS */
5680 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
5681 break;
5682 case 0x2: /* FNEG */
5683 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
5684 break;
5685 case 0x3: /* FSQRT */
5686 fpst = get_fpstatus_ptr(true);
5687 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
5688 break;
5689 case 0x8: /* FRINTN */
5690 case 0x9: /* FRINTP */
5691 case 0xa: /* FRINTM */
5692 case 0xb: /* FRINTZ */
5693 case 0xc: /* FRINTA */
5695 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
5696 fpst = get_fpstatus_ptr(true);
5698 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5699 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5701 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5702 tcg_temp_free_i32(tcg_rmode);
5703 break;
5705 case 0xe: /* FRINTX */
5706 fpst = get_fpstatus_ptr(true);
5707 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
5708 break;
5709 case 0xf: /* FRINTI */
5710 fpst = get_fpstatus_ptr(true);
5711 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5712 break;
5713 default:
5714 abort();
5717 write_fp_sreg(s, rd, tcg_res);
5719 if (fpst) {
5720 tcg_temp_free_ptr(fpst);
5722 tcg_temp_free_i32(tcg_op);
5723 tcg_temp_free_i32(tcg_res);
5726 /* Floating-point data-processing (1 source) - single precision */
5727 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
5729 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
5730 TCGv_i32 tcg_op, tcg_res;
5731 TCGv_ptr fpst;
5732 int rmode = -1;
5734 tcg_op = read_fp_sreg(s, rn);
5735 tcg_res = tcg_temp_new_i32();
5737 switch (opcode) {
5738 case 0x0: /* FMOV */
5739 tcg_gen_mov_i32(tcg_res, tcg_op);
5740 goto done;
5741 case 0x1: /* FABS */
5742 gen_helper_vfp_abss(tcg_res, tcg_op);
5743 goto done;
5744 case 0x2: /* FNEG */
5745 gen_helper_vfp_negs(tcg_res, tcg_op);
5746 goto done;
5747 case 0x3: /* FSQRT */
5748 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
5749 goto done;
5750 case 0x8: /* FRINTN */
5751 case 0x9: /* FRINTP */
5752 case 0xa: /* FRINTM */
5753 case 0xb: /* FRINTZ */
5754 case 0xc: /* FRINTA */
5755 rmode = arm_rmode_to_sf(opcode & 7);
5756 gen_fpst = gen_helper_rints;
5757 break;
5758 case 0xe: /* FRINTX */
5759 gen_fpst = gen_helper_rints_exact;
5760 break;
5761 case 0xf: /* FRINTI */
5762 gen_fpst = gen_helper_rints;
5763 break;
5764 case 0x10: /* FRINT32Z */
5765 rmode = float_round_to_zero;
5766 gen_fpst = gen_helper_frint32_s;
5767 break;
5768 case 0x11: /* FRINT32X */
5769 gen_fpst = gen_helper_frint32_s;
5770 break;
5771 case 0x12: /* FRINT64Z */
5772 rmode = float_round_to_zero;
5773 gen_fpst = gen_helper_frint64_s;
5774 break;
5775 case 0x13: /* FRINT64X */
5776 gen_fpst = gen_helper_frint64_s;
5777 break;
5778 default:
5779 g_assert_not_reached();
5782 fpst = get_fpstatus_ptr(false);
5783 if (rmode >= 0) {
5784 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
5785 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5786 gen_fpst(tcg_res, tcg_op, fpst);
5787 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5788 tcg_temp_free_i32(tcg_rmode);
5789 } else {
5790 gen_fpst(tcg_res, tcg_op, fpst);
5792 tcg_temp_free_ptr(fpst);
5794 done:
5795 write_fp_sreg(s, rd, tcg_res);
5796 tcg_temp_free_i32(tcg_op);
5797 tcg_temp_free_i32(tcg_res);
5800 /* Floating-point data-processing (1 source) - double precision */
5801 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
5803 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
5804 TCGv_i64 tcg_op, tcg_res;
5805 TCGv_ptr fpst;
5806 int rmode = -1;
5808 switch (opcode) {
5809 case 0x0: /* FMOV */
5810 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
5811 return;
5814 tcg_op = read_fp_dreg(s, rn);
5815 tcg_res = tcg_temp_new_i64();
5817 switch (opcode) {
5818 case 0x1: /* FABS */
5819 gen_helper_vfp_absd(tcg_res, tcg_op);
5820 goto done;
5821 case 0x2: /* FNEG */
5822 gen_helper_vfp_negd(tcg_res, tcg_op);
5823 goto done;
5824 case 0x3: /* FSQRT */
5825 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
5826 goto done;
5827 case 0x8: /* FRINTN */
5828 case 0x9: /* FRINTP */
5829 case 0xa: /* FRINTM */
5830 case 0xb: /* FRINTZ */
5831 case 0xc: /* FRINTA */
5832 rmode = arm_rmode_to_sf(opcode & 7);
5833 gen_fpst = gen_helper_rintd;
5834 break;
5835 case 0xe: /* FRINTX */
5836 gen_fpst = gen_helper_rintd_exact;
5837 break;
5838 case 0xf: /* FRINTI */
5839 gen_fpst = gen_helper_rintd;
5840 break;
5841 case 0x10: /* FRINT32Z */
5842 rmode = float_round_to_zero;
5843 gen_fpst = gen_helper_frint32_d;
5844 break;
5845 case 0x11: /* FRINT32X */
5846 gen_fpst = gen_helper_frint32_d;
5847 break;
5848 case 0x12: /* FRINT64Z */
5849 rmode = float_round_to_zero;
5850 gen_fpst = gen_helper_frint64_d;
5851 break;
5852 case 0x13: /* FRINT64X */
5853 gen_fpst = gen_helper_frint64_d;
5854 break;
5855 default:
5856 g_assert_not_reached();
5859 fpst = get_fpstatus_ptr(false);
5860 if (rmode >= 0) {
5861 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
5862 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5863 gen_fpst(tcg_res, tcg_op, fpst);
5864 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
5865 tcg_temp_free_i32(tcg_rmode);
5866 } else {
5867 gen_fpst(tcg_res, tcg_op, fpst);
5869 tcg_temp_free_ptr(fpst);
5871 done:
5872 write_fp_dreg(s, rd, tcg_res);
5873 tcg_temp_free_i64(tcg_op);
5874 tcg_temp_free_i64(tcg_res);
5877 static void handle_fp_fcvt(DisasContext *s, int opcode,
5878 int rd, int rn, int dtype, int ntype)
5880 switch (ntype) {
5881 case 0x0:
5883 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5884 if (dtype == 1) {
5885 /* Single to double */
5886 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5887 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
5888 write_fp_dreg(s, rd, tcg_rd);
5889 tcg_temp_free_i64(tcg_rd);
5890 } else {
5891 /* Single to half */
5892 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5893 TCGv_i32 ahp = get_ahp_flag();
5894 TCGv_ptr fpst = get_fpstatus_ptr(false);
5896 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5897 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5898 write_fp_sreg(s, rd, tcg_rd);
5899 tcg_temp_free_i32(tcg_rd);
5900 tcg_temp_free_i32(ahp);
5901 tcg_temp_free_ptr(fpst);
5903 tcg_temp_free_i32(tcg_rn);
5904 break;
5906 case 0x1:
5908 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
5909 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5910 if (dtype == 0) {
5911 /* Double to single */
5912 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
5913 } else {
5914 TCGv_ptr fpst = get_fpstatus_ptr(false);
5915 TCGv_i32 ahp = get_ahp_flag();
5916 /* Double to half */
5917 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
5918 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
5919 tcg_temp_free_ptr(fpst);
5920 tcg_temp_free_i32(ahp);
5922 write_fp_sreg(s, rd, tcg_rd);
5923 tcg_temp_free_i32(tcg_rd);
5924 tcg_temp_free_i64(tcg_rn);
5925 break;
5927 case 0x3:
5929 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
5930 TCGv_ptr tcg_fpst = get_fpstatus_ptr(false);
5931 TCGv_i32 tcg_ahp = get_ahp_flag();
5932 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
5933 if (dtype == 0) {
5934 /* Half to single */
5935 TCGv_i32 tcg_rd = tcg_temp_new_i32();
5936 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5937 write_fp_sreg(s, rd, tcg_rd);
5938 tcg_temp_free_i32(tcg_rd);
5939 } else {
5940 /* Half to double */
5941 TCGv_i64 tcg_rd = tcg_temp_new_i64();
5942 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
5943 write_fp_dreg(s, rd, tcg_rd);
5944 tcg_temp_free_i64(tcg_rd);
5946 tcg_temp_free_i32(tcg_rn);
5947 tcg_temp_free_ptr(tcg_fpst);
5948 tcg_temp_free_i32(tcg_ahp);
5949 break;
5951 default:
5952 abort();
5956 /* Floating point data-processing (1 source)
5957 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
5958 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5959 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
5960 * +---+---+---+-----------+------+---+--------+-----------+------+------+
5962 static void disas_fp_1src(DisasContext *s, uint32_t insn)
5964 int mos = extract32(insn, 29, 3);
5965 int type = extract32(insn, 22, 2);
5966 int opcode = extract32(insn, 15, 6);
5967 int rn = extract32(insn, 5, 5);
5968 int rd = extract32(insn, 0, 5);
5970 if (mos) {
5971 unallocated_encoding(s);
5972 return;
5975 switch (opcode) {
5976 case 0x4: case 0x5: case 0x7:
5978 /* FCVT between half, single and double precision */
5979 int dtype = extract32(opcode, 0, 2);
5980 if (type == 2 || dtype == type) {
5981 unallocated_encoding(s);
5982 return;
5984 if (!fp_access_check(s)) {
5985 return;
5988 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
5989 break;
5992 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
5993 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
5994 unallocated_encoding(s);
5995 return;
5997 /* fall through */
5998 case 0x0 ... 0x3:
5999 case 0x8 ... 0xc:
6000 case 0xe ... 0xf:
6001 /* 32-to-32 and 64-to-64 ops */
6002 switch (type) {
6003 case 0:
6004 if (!fp_access_check(s)) {
6005 return;
6007 handle_fp_1src_single(s, opcode, rd, rn);
6008 break;
6009 case 1:
6010 if (!fp_access_check(s)) {
6011 return;
6013 handle_fp_1src_double(s, opcode, rd, rn);
6014 break;
6015 case 3:
6016 if (!dc_isar_feature(aa64_fp16, s)) {
6017 unallocated_encoding(s);
6018 return;
6021 if (!fp_access_check(s)) {
6022 return;
6024 handle_fp_1src_half(s, opcode, rd, rn);
6025 break;
6026 default:
6027 unallocated_encoding(s);
6029 break;
6031 default:
6032 unallocated_encoding(s);
6033 break;
6037 /* Floating-point data-processing (2 source) - single precision */
6038 static void handle_fp_2src_single(DisasContext *s, int opcode,
6039 int rd, int rn, int rm)
6041 TCGv_i32 tcg_op1;
6042 TCGv_i32 tcg_op2;
6043 TCGv_i32 tcg_res;
6044 TCGv_ptr fpst;
6046 tcg_res = tcg_temp_new_i32();
6047 fpst = get_fpstatus_ptr(false);
6048 tcg_op1 = read_fp_sreg(s, rn);
6049 tcg_op2 = read_fp_sreg(s, rm);
6051 switch (opcode) {
6052 case 0x0: /* FMUL */
6053 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6054 break;
6055 case 0x1: /* FDIV */
6056 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6057 break;
6058 case 0x2: /* FADD */
6059 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6060 break;
6061 case 0x3: /* FSUB */
6062 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6063 break;
6064 case 0x4: /* FMAX */
6065 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6066 break;
6067 case 0x5: /* FMIN */
6068 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6069 break;
6070 case 0x6: /* FMAXNM */
6071 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6072 break;
6073 case 0x7: /* FMINNM */
6074 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6075 break;
6076 case 0x8: /* FNMUL */
6077 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6078 gen_helper_vfp_negs(tcg_res, tcg_res);
6079 break;
6082 write_fp_sreg(s, rd, tcg_res);
6084 tcg_temp_free_ptr(fpst);
6085 tcg_temp_free_i32(tcg_op1);
6086 tcg_temp_free_i32(tcg_op2);
6087 tcg_temp_free_i32(tcg_res);
6090 /* Floating-point data-processing (2 source) - double precision */
6091 static void handle_fp_2src_double(DisasContext *s, int opcode,
6092 int rd, int rn, int rm)
6094 TCGv_i64 tcg_op1;
6095 TCGv_i64 tcg_op2;
6096 TCGv_i64 tcg_res;
6097 TCGv_ptr fpst;
6099 tcg_res = tcg_temp_new_i64();
6100 fpst = get_fpstatus_ptr(false);
6101 tcg_op1 = read_fp_dreg(s, rn);
6102 tcg_op2 = read_fp_dreg(s, rm);
6104 switch (opcode) {
6105 case 0x0: /* FMUL */
6106 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6107 break;
6108 case 0x1: /* FDIV */
6109 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6110 break;
6111 case 0x2: /* FADD */
6112 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6113 break;
6114 case 0x3: /* FSUB */
6115 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6116 break;
6117 case 0x4: /* FMAX */
6118 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6119 break;
6120 case 0x5: /* FMIN */
6121 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6122 break;
6123 case 0x6: /* FMAXNM */
6124 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6125 break;
6126 case 0x7: /* FMINNM */
6127 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6128 break;
6129 case 0x8: /* FNMUL */
6130 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6131 gen_helper_vfp_negd(tcg_res, tcg_res);
6132 break;
6135 write_fp_dreg(s, rd, tcg_res);
6137 tcg_temp_free_ptr(fpst);
6138 tcg_temp_free_i64(tcg_op1);
6139 tcg_temp_free_i64(tcg_op2);
6140 tcg_temp_free_i64(tcg_res);
6143 /* Floating-point data-processing (2 source) - half precision */
6144 static void handle_fp_2src_half(DisasContext *s, int opcode,
6145 int rd, int rn, int rm)
6147 TCGv_i32 tcg_op1;
6148 TCGv_i32 tcg_op2;
6149 TCGv_i32 tcg_res;
6150 TCGv_ptr fpst;
6152 tcg_res = tcg_temp_new_i32();
6153 fpst = get_fpstatus_ptr(true);
6154 tcg_op1 = read_fp_hreg(s, rn);
6155 tcg_op2 = read_fp_hreg(s, rm);
6157 switch (opcode) {
6158 case 0x0: /* FMUL */
6159 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6160 break;
6161 case 0x1: /* FDIV */
6162 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6163 break;
6164 case 0x2: /* FADD */
6165 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6166 break;
6167 case 0x3: /* FSUB */
6168 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6169 break;
6170 case 0x4: /* FMAX */
6171 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6172 break;
6173 case 0x5: /* FMIN */
6174 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6175 break;
6176 case 0x6: /* FMAXNM */
6177 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6178 break;
6179 case 0x7: /* FMINNM */
6180 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6181 break;
6182 case 0x8: /* FNMUL */
6183 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6184 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6185 break;
6186 default:
6187 g_assert_not_reached();
6190 write_fp_sreg(s, rd, tcg_res);
6192 tcg_temp_free_ptr(fpst);
6193 tcg_temp_free_i32(tcg_op1);
6194 tcg_temp_free_i32(tcg_op2);
6195 tcg_temp_free_i32(tcg_res);
6198 /* Floating point data-processing (2 source)
6199 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6200 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6201 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
6202 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6204 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6206 int mos = extract32(insn, 29, 3);
6207 int type = extract32(insn, 22, 2);
6208 int rd = extract32(insn, 0, 5);
6209 int rn = extract32(insn, 5, 5);
6210 int rm = extract32(insn, 16, 5);
6211 int opcode = extract32(insn, 12, 4);
6213 if (opcode > 8 || mos) {
6214 unallocated_encoding(s);
6215 return;
6218 switch (type) {
6219 case 0:
6220 if (!fp_access_check(s)) {
6221 return;
6223 handle_fp_2src_single(s, opcode, rd, rn, rm);
6224 break;
6225 case 1:
6226 if (!fp_access_check(s)) {
6227 return;
6229 handle_fp_2src_double(s, opcode, rd, rn, rm);
6230 break;
6231 case 3:
6232 if (!dc_isar_feature(aa64_fp16, s)) {
6233 unallocated_encoding(s);
6234 return;
6236 if (!fp_access_check(s)) {
6237 return;
6239 handle_fp_2src_half(s, opcode, rd, rn, rm);
6240 break;
6241 default:
6242 unallocated_encoding(s);
6246 /* Floating-point data-processing (3 source) - single precision */
6247 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6248 int rd, int rn, int rm, int ra)
6250 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6251 TCGv_i32 tcg_res = tcg_temp_new_i32();
6252 TCGv_ptr fpst = get_fpstatus_ptr(false);
6254 tcg_op1 = read_fp_sreg(s, rn);
6255 tcg_op2 = read_fp_sreg(s, rm);
6256 tcg_op3 = read_fp_sreg(s, ra);
6258 /* These are fused multiply-add, and must be done as one
6259 * floating point operation with no rounding between the
6260 * multiplication and addition steps.
6261 * NB that doing the negations here as separate steps is
6262 * correct : an input NaN should come out with its sign bit
6263 * flipped if it is a negated-input.
6265 if (o1 == true) {
6266 gen_helper_vfp_negs(tcg_op3, tcg_op3);
6269 if (o0 != o1) {
6270 gen_helper_vfp_negs(tcg_op1, tcg_op1);
6273 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6275 write_fp_sreg(s, rd, tcg_res);
6277 tcg_temp_free_ptr(fpst);
6278 tcg_temp_free_i32(tcg_op1);
6279 tcg_temp_free_i32(tcg_op2);
6280 tcg_temp_free_i32(tcg_op3);
6281 tcg_temp_free_i32(tcg_res);
6284 /* Floating-point data-processing (3 source) - double precision */
6285 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6286 int rd, int rn, int rm, int ra)
6288 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6289 TCGv_i64 tcg_res = tcg_temp_new_i64();
6290 TCGv_ptr fpst = get_fpstatus_ptr(false);
6292 tcg_op1 = read_fp_dreg(s, rn);
6293 tcg_op2 = read_fp_dreg(s, rm);
6294 tcg_op3 = read_fp_dreg(s, ra);
6296 /* These are fused multiply-add, and must be done as one
6297 * floating point operation with no rounding between the
6298 * multiplication and addition steps.
6299 * NB that doing the negations here as separate steps is
6300 * correct : an input NaN should come out with its sign bit
6301 * flipped if it is a negated-input.
6303 if (o1 == true) {
6304 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6307 if (o0 != o1) {
6308 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6311 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6313 write_fp_dreg(s, rd, tcg_res);
6315 tcg_temp_free_ptr(fpst);
6316 tcg_temp_free_i64(tcg_op1);
6317 tcg_temp_free_i64(tcg_op2);
6318 tcg_temp_free_i64(tcg_op3);
6319 tcg_temp_free_i64(tcg_res);
6322 /* Floating-point data-processing (3 source) - half precision */
6323 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6324 int rd, int rn, int rm, int ra)
6326 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6327 TCGv_i32 tcg_res = tcg_temp_new_i32();
6328 TCGv_ptr fpst = get_fpstatus_ptr(true);
6330 tcg_op1 = read_fp_hreg(s, rn);
6331 tcg_op2 = read_fp_hreg(s, rm);
6332 tcg_op3 = read_fp_hreg(s, ra);
6334 /* These are fused multiply-add, and must be done as one
6335 * floating point operation with no rounding between the
6336 * multiplication and addition steps.
6337 * NB that doing the negations here as separate steps is
6338 * correct : an input NaN should come out with its sign bit
6339 * flipped if it is a negated-input.
6341 if (o1 == true) {
6342 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6345 if (o0 != o1) {
6346 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6349 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6351 write_fp_sreg(s, rd, tcg_res);
6353 tcg_temp_free_ptr(fpst);
6354 tcg_temp_free_i32(tcg_op1);
6355 tcg_temp_free_i32(tcg_op2);
6356 tcg_temp_free_i32(tcg_op3);
6357 tcg_temp_free_i32(tcg_res);
6360 /* Floating point data-processing (3 source)
6361 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6362 * +---+---+---+-----------+------+----+------+----+------+------+------+
6363 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6364 * +---+---+---+-----------+------+----+------+----+------+------+------+
6366 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6368 int mos = extract32(insn, 29, 3);
6369 int type = extract32(insn, 22, 2);
6370 int rd = extract32(insn, 0, 5);
6371 int rn = extract32(insn, 5, 5);
6372 int ra = extract32(insn, 10, 5);
6373 int rm = extract32(insn, 16, 5);
6374 bool o0 = extract32(insn, 15, 1);
6375 bool o1 = extract32(insn, 21, 1);
6377 if (mos) {
6378 unallocated_encoding(s);
6379 return;
6382 switch (type) {
6383 case 0:
6384 if (!fp_access_check(s)) {
6385 return;
6387 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6388 break;
6389 case 1:
6390 if (!fp_access_check(s)) {
6391 return;
6393 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6394 break;
6395 case 3:
6396 if (!dc_isar_feature(aa64_fp16, s)) {
6397 unallocated_encoding(s);
6398 return;
6400 if (!fp_access_check(s)) {
6401 return;
6403 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6404 break;
6405 default:
6406 unallocated_encoding(s);
6410 /* Floating point immediate
6411 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6412 * +---+---+---+-----------+------+---+------------+-------+------+------+
6413 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6414 * +---+---+---+-----------+------+---+------------+-------+------+------+
6416 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6418 int rd = extract32(insn, 0, 5);
6419 int imm5 = extract32(insn, 5, 5);
6420 int imm8 = extract32(insn, 13, 8);
6421 int type = extract32(insn, 22, 2);
6422 int mos = extract32(insn, 29, 3);
6423 uint64_t imm;
6424 TCGv_i64 tcg_res;
6425 MemOp sz;
6427 if (mos || imm5) {
6428 unallocated_encoding(s);
6429 return;
6432 switch (type) {
6433 case 0:
6434 sz = MO_32;
6435 break;
6436 case 1:
6437 sz = MO_64;
6438 break;
6439 case 3:
6440 sz = MO_16;
6441 if (dc_isar_feature(aa64_fp16, s)) {
6442 break;
6444 /* fallthru */
6445 default:
6446 unallocated_encoding(s);
6447 return;
6450 if (!fp_access_check(s)) {
6451 return;
6454 imm = vfp_expand_imm(sz, imm8);
6456 tcg_res = tcg_const_i64(imm);
6457 write_fp_dreg(s, rd, tcg_res);
6458 tcg_temp_free_i64(tcg_res);
6461 /* Handle floating point <=> fixed point conversions. Note that we can
6462 * also deal with fp <=> integer conversions as a special case (scale == 64)
6463 * OPTME: consider handling that special case specially or at least skipping
6464 * the call to scalbn in the helpers for zero shifts.
6466 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6467 bool itof, int rmode, int scale, int sf, int type)
6469 bool is_signed = !(opcode & 1);
6470 TCGv_ptr tcg_fpstatus;
6471 TCGv_i32 tcg_shift, tcg_single;
6472 TCGv_i64 tcg_double;
6474 tcg_fpstatus = get_fpstatus_ptr(type == 3);
6476 tcg_shift = tcg_const_i32(64 - scale);
6478 if (itof) {
6479 TCGv_i64 tcg_int = cpu_reg(s, rn);
6480 if (!sf) {
6481 TCGv_i64 tcg_extend = new_tmp_a64(s);
6483 if (is_signed) {
6484 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6485 } else {
6486 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6489 tcg_int = tcg_extend;
6492 switch (type) {
6493 case 1: /* float64 */
6494 tcg_double = tcg_temp_new_i64();
6495 if (is_signed) {
6496 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6497 tcg_shift, tcg_fpstatus);
6498 } else {
6499 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6500 tcg_shift, tcg_fpstatus);
6502 write_fp_dreg(s, rd, tcg_double);
6503 tcg_temp_free_i64(tcg_double);
6504 break;
6506 case 0: /* float32 */
6507 tcg_single = tcg_temp_new_i32();
6508 if (is_signed) {
6509 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6510 tcg_shift, tcg_fpstatus);
6511 } else {
6512 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6513 tcg_shift, tcg_fpstatus);
6515 write_fp_sreg(s, rd, tcg_single);
6516 tcg_temp_free_i32(tcg_single);
6517 break;
6519 case 3: /* float16 */
6520 tcg_single = tcg_temp_new_i32();
6521 if (is_signed) {
6522 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6523 tcg_shift, tcg_fpstatus);
6524 } else {
6525 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6526 tcg_shift, tcg_fpstatus);
6528 write_fp_sreg(s, rd, tcg_single);
6529 tcg_temp_free_i32(tcg_single);
6530 break;
6532 default:
6533 g_assert_not_reached();
6535 } else {
6536 TCGv_i64 tcg_int = cpu_reg(s, rd);
6537 TCGv_i32 tcg_rmode;
6539 if (extract32(opcode, 2, 1)) {
6540 /* There are too many rounding modes to all fit into rmode,
6541 * so FCVTA[US] is a special case.
6543 rmode = FPROUNDING_TIEAWAY;
6546 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
6548 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
6550 switch (type) {
6551 case 1: /* float64 */
6552 tcg_double = read_fp_dreg(s, rn);
6553 if (is_signed) {
6554 if (!sf) {
6555 gen_helper_vfp_tosld(tcg_int, tcg_double,
6556 tcg_shift, tcg_fpstatus);
6557 } else {
6558 gen_helper_vfp_tosqd(tcg_int, tcg_double,
6559 tcg_shift, tcg_fpstatus);
6561 } else {
6562 if (!sf) {
6563 gen_helper_vfp_tould(tcg_int, tcg_double,
6564 tcg_shift, tcg_fpstatus);
6565 } else {
6566 gen_helper_vfp_touqd(tcg_int, tcg_double,
6567 tcg_shift, tcg_fpstatus);
6570 if (!sf) {
6571 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6573 tcg_temp_free_i64(tcg_double);
6574 break;
6576 case 0: /* float32 */
6577 tcg_single = read_fp_sreg(s, rn);
6578 if (sf) {
6579 if (is_signed) {
6580 gen_helper_vfp_tosqs(tcg_int, tcg_single,
6581 tcg_shift, tcg_fpstatus);
6582 } else {
6583 gen_helper_vfp_touqs(tcg_int, tcg_single,
6584 tcg_shift, tcg_fpstatus);
6586 } else {
6587 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6588 if (is_signed) {
6589 gen_helper_vfp_tosls(tcg_dest, tcg_single,
6590 tcg_shift, tcg_fpstatus);
6591 } else {
6592 gen_helper_vfp_touls(tcg_dest, tcg_single,
6593 tcg_shift, tcg_fpstatus);
6595 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6596 tcg_temp_free_i32(tcg_dest);
6598 tcg_temp_free_i32(tcg_single);
6599 break;
6601 case 3: /* float16 */
6602 tcg_single = read_fp_sreg(s, rn);
6603 if (sf) {
6604 if (is_signed) {
6605 gen_helper_vfp_tosqh(tcg_int, tcg_single,
6606 tcg_shift, tcg_fpstatus);
6607 } else {
6608 gen_helper_vfp_touqh(tcg_int, tcg_single,
6609 tcg_shift, tcg_fpstatus);
6611 } else {
6612 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6613 if (is_signed) {
6614 gen_helper_vfp_toslh(tcg_dest, tcg_single,
6615 tcg_shift, tcg_fpstatus);
6616 } else {
6617 gen_helper_vfp_toulh(tcg_dest, tcg_single,
6618 tcg_shift, tcg_fpstatus);
6620 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6621 tcg_temp_free_i32(tcg_dest);
6623 tcg_temp_free_i32(tcg_single);
6624 break;
6626 default:
6627 g_assert_not_reached();
6630 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
6631 tcg_temp_free_i32(tcg_rmode);
6634 tcg_temp_free_ptr(tcg_fpstatus);
6635 tcg_temp_free_i32(tcg_shift);
6638 /* Floating point <-> fixed point conversions
6639 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6640 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6641 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
6642 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6644 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6646 int rd = extract32(insn, 0, 5);
6647 int rn = extract32(insn, 5, 5);
6648 int scale = extract32(insn, 10, 6);
6649 int opcode = extract32(insn, 16, 3);
6650 int rmode = extract32(insn, 19, 2);
6651 int type = extract32(insn, 22, 2);
6652 bool sbit = extract32(insn, 29, 1);
6653 bool sf = extract32(insn, 31, 1);
6654 bool itof;
6656 if (sbit || (!sf && scale < 32)) {
6657 unallocated_encoding(s);
6658 return;
6661 switch (type) {
6662 case 0: /* float32 */
6663 case 1: /* float64 */
6664 break;
6665 case 3: /* float16 */
6666 if (dc_isar_feature(aa64_fp16, s)) {
6667 break;
6669 /* fallthru */
6670 default:
6671 unallocated_encoding(s);
6672 return;
6675 switch ((rmode << 3) | opcode) {
6676 case 0x2: /* SCVTF */
6677 case 0x3: /* UCVTF */
6678 itof = true;
6679 break;
6680 case 0x18: /* FCVTZS */
6681 case 0x19: /* FCVTZU */
6682 itof = false;
6683 break;
6684 default:
6685 unallocated_encoding(s);
6686 return;
6689 if (!fp_access_check(s)) {
6690 return;
6693 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6696 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6698 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6699 * without conversion.
6702 if (itof) {
6703 TCGv_i64 tcg_rn = cpu_reg(s, rn);
6704 TCGv_i64 tmp;
6706 switch (type) {
6707 case 0:
6708 /* 32 bit */
6709 tmp = tcg_temp_new_i64();
6710 tcg_gen_ext32u_i64(tmp, tcg_rn);
6711 write_fp_dreg(s, rd, tmp);
6712 tcg_temp_free_i64(tmp);
6713 break;
6714 case 1:
6715 /* 64 bit */
6716 write_fp_dreg(s, rd, tcg_rn);
6717 break;
6718 case 2:
6719 /* 64 bit to top half. */
6720 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
6721 clear_vec_high(s, true, rd);
6722 break;
6723 case 3:
6724 /* 16 bit */
6725 tmp = tcg_temp_new_i64();
6726 tcg_gen_ext16u_i64(tmp, tcg_rn);
6727 write_fp_dreg(s, rd, tmp);
6728 tcg_temp_free_i64(tmp);
6729 break;
6730 default:
6731 g_assert_not_reached();
6733 } else {
6734 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6736 switch (type) {
6737 case 0:
6738 /* 32 bit */
6739 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
6740 break;
6741 case 1:
6742 /* 64 bit */
6743 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
6744 break;
6745 case 2:
6746 /* 64 bits from top half */
6747 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
6748 break;
6749 case 3:
6750 /* 16 bit */
6751 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
6752 break;
6753 default:
6754 g_assert_not_reached();
6759 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
6761 TCGv_i64 t = read_fp_dreg(s, rn);
6762 TCGv_ptr fpstatus = get_fpstatus_ptr(false);
6764 gen_helper_fjcvtzs(t, t, fpstatus);
6766 tcg_temp_free_ptr(fpstatus);
6768 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
6769 tcg_gen_extrh_i64_i32(cpu_ZF, t);
6770 tcg_gen_movi_i32(cpu_CF, 0);
6771 tcg_gen_movi_i32(cpu_NF, 0);
6772 tcg_gen_movi_i32(cpu_VF, 0);
6774 tcg_temp_free_i64(t);
6777 /* Floating point <-> integer conversions
6778 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6779 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6780 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
6781 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6783 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
6785 int rd = extract32(insn, 0, 5);
6786 int rn = extract32(insn, 5, 5);
6787 int opcode = extract32(insn, 16, 3);
6788 int rmode = extract32(insn, 19, 2);
6789 int type = extract32(insn, 22, 2);
6790 bool sbit = extract32(insn, 29, 1);
6791 bool sf = extract32(insn, 31, 1);
6792 bool itof = false;
6794 if (sbit) {
6795 goto do_unallocated;
6798 switch (opcode) {
6799 case 2: /* SCVTF */
6800 case 3: /* UCVTF */
6801 itof = true;
6802 /* fallthru */
6803 case 4: /* FCVTAS */
6804 case 5: /* FCVTAU */
6805 if (rmode != 0) {
6806 goto do_unallocated;
6808 /* fallthru */
6809 case 0: /* FCVT[NPMZ]S */
6810 case 1: /* FCVT[NPMZ]U */
6811 switch (type) {
6812 case 0: /* float32 */
6813 case 1: /* float64 */
6814 break;
6815 case 3: /* float16 */
6816 if (!dc_isar_feature(aa64_fp16, s)) {
6817 goto do_unallocated;
6819 break;
6820 default:
6821 goto do_unallocated;
6823 if (!fp_access_check(s)) {
6824 return;
6826 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
6827 break;
6829 default:
6830 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
6831 case 0b01100110: /* FMOV half <-> 32-bit int */
6832 case 0b01100111:
6833 case 0b11100110: /* FMOV half <-> 64-bit int */
6834 case 0b11100111:
6835 if (!dc_isar_feature(aa64_fp16, s)) {
6836 goto do_unallocated;
6838 /* fallthru */
6839 case 0b00000110: /* FMOV 32-bit */
6840 case 0b00000111:
6841 case 0b10100110: /* FMOV 64-bit */
6842 case 0b10100111:
6843 case 0b11001110: /* FMOV top half of 128-bit */
6844 case 0b11001111:
6845 if (!fp_access_check(s)) {
6846 return;
6848 itof = opcode & 1;
6849 handle_fmov(s, rd, rn, type, itof);
6850 break;
6852 case 0b00111110: /* FJCVTZS */
6853 if (!dc_isar_feature(aa64_jscvt, s)) {
6854 goto do_unallocated;
6855 } else if (fp_access_check(s)) {
6856 handle_fjcvtzs(s, rd, rn);
6858 break;
6860 default:
6861 do_unallocated:
6862 unallocated_encoding(s);
6863 return;
6865 break;
6869 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
6870 * 31 30 29 28 25 24 0
6871 * +---+---+---+---------+-----------------------------+
6872 * | | 0 | | 1 1 1 1 | |
6873 * +---+---+---+---------+-----------------------------+
6875 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
6877 if (extract32(insn, 24, 1)) {
6878 /* Floating point data-processing (3 source) */
6879 disas_fp_3src(s, insn);
6880 } else if (extract32(insn, 21, 1) == 0) {
6881 /* Floating point to fixed point conversions */
6882 disas_fp_fixed_conv(s, insn);
6883 } else {
6884 switch (extract32(insn, 10, 2)) {
6885 case 1:
6886 /* Floating point conditional compare */
6887 disas_fp_ccomp(s, insn);
6888 break;
6889 case 2:
6890 /* Floating point data-processing (2 source) */
6891 disas_fp_2src(s, insn);
6892 break;
6893 case 3:
6894 /* Floating point conditional select */
6895 disas_fp_csel(s, insn);
6896 break;
6897 case 0:
6898 switch (ctz32(extract32(insn, 12, 4))) {
6899 case 0: /* [15:12] == xxx1 */
6900 /* Floating point immediate */
6901 disas_fp_imm(s, insn);
6902 break;
6903 case 1: /* [15:12] == xx10 */
6904 /* Floating point compare */
6905 disas_fp_compare(s, insn);
6906 break;
6907 case 2: /* [15:12] == x100 */
6908 /* Floating point data-processing (1 source) */
6909 disas_fp_1src(s, insn);
6910 break;
6911 case 3: /* [15:12] == 1000 */
6912 unallocated_encoding(s);
6913 break;
6914 default: /* [15:12] == 0000 */
6915 /* Floating point <-> integer conversions */
6916 disas_fp_int_conv(s, insn);
6917 break;
6919 break;
6924 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
6925 int pos)
6927 /* Extract 64 bits from the middle of two concatenated 64 bit
6928 * vector register slices left:right. The extracted bits start
6929 * at 'pos' bits into the right (least significant) side.
6930 * We return the result in tcg_right, and guarantee not to
6931 * trash tcg_left.
6933 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
6934 assert(pos > 0 && pos < 64);
6936 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
6937 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
6938 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
6940 tcg_temp_free_i64(tcg_tmp);
6943 /* EXT
6944 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
6945 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6946 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
6947 * +---+---+-------------+-----+---+------+---+------+---+------+------+
6949 static void disas_simd_ext(DisasContext *s, uint32_t insn)
6951 int is_q = extract32(insn, 30, 1);
6952 int op2 = extract32(insn, 22, 2);
6953 int imm4 = extract32(insn, 11, 4);
6954 int rm = extract32(insn, 16, 5);
6955 int rn = extract32(insn, 5, 5);
6956 int rd = extract32(insn, 0, 5);
6957 int pos = imm4 << 3;
6958 TCGv_i64 tcg_resl, tcg_resh;
6960 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
6961 unallocated_encoding(s);
6962 return;
6965 if (!fp_access_check(s)) {
6966 return;
6969 tcg_resh = tcg_temp_new_i64();
6970 tcg_resl = tcg_temp_new_i64();
6972 /* Vd gets bits starting at pos bits into Vm:Vn. This is
6973 * either extracting 128 bits from a 128:128 concatenation, or
6974 * extracting 64 bits from a 64:64 concatenation.
6976 if (!is_q) {
6977 read_vec_element(s, tcg_resl, rn, 0, MO_64);
6978 if (pos != 0) {
6979 read_vec_element(s, tcg_resh, rm, 0, MO_64);
6980 do_ext64(s, tcg_resh, tcg_resl, pos);
6982 tcg_gen_movi_i64(tcg_resh, 0);
6983 } else {
6984 TCGv_i64 tcg_hh;
6985 typedef struct {
6986 int reg;
6987 int elt;
6988 } EltPosns;
6989 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
6990 EltPosns *elt = eltposns;
6992 if (pos >= 64) {
6993 elt++;
6994 pos -= 64;
6997 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
6998 elt++;
6999 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7000 elt++;
7001 if (pos != 0) {
7002 do_ext64(s, tcg_resh, tcg_resl, pos);
7003 tcg_hh = tcg_temp_new_i64();
7004 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7005 do_ext64(s, tcg_hh, tcg_resh, pos);
7006 tcg_temp_free_i64(tcg_hh);
7010 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7011 tcg_temp_free_i64(tcg_resl);
7012 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7013 tcg_temp_free_i64(tcg_resh);
7014 clear_vec_high(s, true, rd);
7017 /* TBL/TBX
7018 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
7019 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7020 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
7021 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7023 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7025 int op2 = extract32(insn, 22, 2);
7026 int is_q = extract32(insn, 30, 1);
7027 int rm = extract32(insn, 16, 5);
7028 int rn = extract32(insn, 5, 5);
7029 int rd = extract32(insn, 0, 5);
7030 int is_tblx = extract32(insn, 12, 1);
7031 int len = extract32(insn, 13, 2);
7032 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
7033 TCGv_i32 tcg_regno, tcg_numregs;
7035 if (op2 != 0) {
7036 unallocated_encoding(s);
7037 return;
7040 if (!fp_access_check(s)) {
7041 return;
7044 /* This does a table lookup: for every byte element in the input
7045 * we index into a table formed from up to four vector registers,
7046 * and then the output is the result of the lookups. Our helper
7047 * function does the lookup operation for a single 64 bit part of
7048 * the input.
7050 tcg_resl = tcg_temp_new_i64();
7051 tcg_resh = tcg_temp_new_i64();
7053 if (is_tblx) {
7054 read_vec_element(s, tcg_resl, rd, 0, MO_64);
7055 } else {
7056 tcg_gen_movi_i64(tcg_resl, 0);
7058 if (is_tblx && is_q) {
7059 read_vec_element(s, tcg_resh, rd, 1, MO_64);
7060 } else {
7061 tcg_gen_movi_i64(tcg_resh, 0);
7064 tcg_idx = tcg_temp_new_i64();
7065 tcg_regno = tcg_const_i32(rn);
7066 tcg_numregs = tcg_const_i32(len + 1);
7067 read_vec_element(s, tcg_idx, rm, 0, MO_64);
7068 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
7069 tcg_regno, tcg_numregs);
7070 if (is_q) {
7071 read_vec_element(s, tcg_idx, rm, 1, MO_64);
7072 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
7073 tcg_regno, tcg_numregs);
7075 tcg_temp_free_i64(tcg_idx);
7076 tcg_temp_free_i32(tcg_regno);
7077 tcg_temp_free_i32(tcg_numregs);
7079 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7080 tcg_temp_free_i64(tcg_resl);
7081 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7082 tcg_temp_free_i64(tcg_resh);
7083 clear_vec_high(s, true, rd);
7086 /* ZIP/UZP/TRN
7087 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
7088 * +---+---+-------------+------+---+------+---+------------------+------+
7089 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
7090 * +---+---+-------------+------+---+------+---+------------------+------+
7092 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7094 int rd = extract32(insn, 0, 5);
7095 int rn = extract32(insn, 5, 5);
7096 int rm = extract32(insn, 16, 5);
7097 int size = extract32(insn, 22, 2);
7098 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7099 * bit 2 indicates 1 vs 2 variant of the insn.
7101 int opcode = extract32(insn, 12, 2);
7102 bool part = extract32(insn, 14, 1);
7103 bool is_q = extract32(insn, 30, 1);
7104 int esize = 8 << size;
7105 int i, ofs;
7106 int datasize = is_q ? 128 : 64;
7107 int elements = datasize / esize;
7108 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
7110 if (opcode == 0 || (size == 3 && !is_q)) {
7111 unallocated_encoding(s);
7112 return;
7115 if (!fp_access_check(s)) {
7116 return;
7119 tcg_resl = tcg_const_i64(0);
7120 tcg_resh = tcg_const_i64(0);
7121 tcg_res = tcg_temp_new_i64();
7123 for (i = 0; i < elements; i++) {
7124 switch (opcode) {
7125 case 1: /* UZP1/2 */
7127 int midpoint = elements / 2;
7128 if (i < midpoint) {
7129 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
7130 } else {
7131 read_vec_element(s, tcg_res, rm,
7132 2 * (i - midpoint) + part, size);
7134 break;
7136 case 2: /* TRN1/2 */
7137 if (i & 1) {
7138 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
7139 } else {
7140 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
7142 break;
7143 case 3: /* ZIP1/2 */
7145 int base = part * elements / 2;
7146 if (i & 1) {
7147 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
7148 } else {
7149 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
7151 break;
7153 default:
7154 g_assert_not_reached();
7157 ofs = i * esize;
7158 if (ofs < 64) {
7159 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
7160 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
7161 } else {
7162 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
7163 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
7167 tcg_temp_free_i64(tcg_res);
7169 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7170 tcg_temp_free_i64(tcg_resl);
7171 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7172 tcg_temp_free_i64(tcg_resh);
7173 clear_vec_high(s, true, rd);
7177 * do_reduction_op helper
7179 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7180 * important for correct NaN propagation that we do these
7181 * operations in exactly the order specified by the pseudocode.
7183 * This is a recursive function, TCG temps should be freed by the
7184 * calling function once it is done with the values.
7186 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7187 int esize, int size, int vmap, TCGv_ptr fpst)
7189 if (esize == size) {
7190 int element;
7191 MemOp msize = esize == 16 ? MO_16 : MO_32;
7192 TCGv_i32 tcg_elem;
7194 /* We should have one register left here */
7195 assert(ctpop8(vmap) == 1);
7196 element = ctz32(vmap);
7197 assert(element < 8);
7199 tcg_elem = tcg_temp_new_i32();
7200 read_vec_element_i32(s, tcg_elem, rn, element, msize);
7201 return tcg_elem;
7202 } else {
7203 int bits = size / 2;
7204 int shift = ctpop8(vmap) / 2;
7205 int vmap_lo = (vmap >> shift) & vmap;
7206 int vmap_hi = (vmap & ~vmap_lo);
7207 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7209 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7210 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7211 tcg_res = tcg_temp_new_i32();
7213 switch (fpopcode) {
7214 case 0x0c: /* fmaxnmv half-precision */
7215 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7216 break;
7217 case 0x0f: /* fmaxv half-precision */
7218 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7219 break;
7220 case 0x1c: /* fminnmv half-precision */
7221 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7222 break;
7223 case 0x1f: /* fminv half-precision */
7224 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7225 break;
7226 case 0x2c: /* fmaxnmv */
7227 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7228 break;
7229 case 0x2f: /* fmaxv */
7230 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7231 break;
7232 case 0x3c: /* fminnmv */
7233 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7234 break;
7235 case 0x3f: /* fminv */
7236 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7237 break;
7238 default:
7239 g_assert_not_reached();
7242 tcg_temp_free_i32(tcg_hi);
7243 tcg_temp_free_i32(tcg_lo);
7244 return tcg_res;
7248 /* AdvSIMD across lanes
7249 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7250 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7251 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7252 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7254 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7256 int rd = extract32(insn, 0, 5);
7257 int rn = extract32(insn, 5, 5);
7258 int size = extract32(insn, 22, 2);
7259 int opcode = extract32(insn, 12, 5);
7260 bool is_q = extract32(insn, 30, 1);
7261 bool is_u = extract32(insn, 29, 1);
7262 bool is_fp = false;
7263 bool is_min = false;
7264 int esize;
7265 int elements;
7266 int i;
7267 TCGv_i64 tcg_res, tcg_elt;
7269 switch (opcode) {
7270 case 0x1b: /* ADDV */
7271 if (is_u) {
7272 unallocated_encoding(s);
7273 return;
7275 /* fall through */
7276 case 0x3: /* SADDLV, UADDLV */
7277 case 0xa: /* SMAXV, UMAXV */
7278 case 0x1a: /* SMINV, UMINV */
7279 if (size == 3 || (size == 2 && !is_q)) {
7280 unallocated_encoding(s);
7281 return;
7283 break;
7284 case 0xc: /* FMAXNMV, FMINNMV */
7285 case 0xf: /* FMAXV, FMINV */
7286 /* Bit 1 of size field encodes min vs max and the actual size
7287 * depends on the encoding of the U bit. If not set (and FP16
7288 * enabled) then we do half-precision float instead of single
7289 * precision.
7291 is_min = extract32(size, 1, 1);
7292 is_fp = true;
7293 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7294 size = 1;
7295 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7296 unallocated_encoding(s);
7297 return;
7298 } else {
7299 size = 2;
7301 break;
7302 default:
7303 unallocated_encoding(s);
7304 return;
7307 if (!fp_access_check(s)) {
7308 return;
7311 esize = 8 << size;
7312 elements = (is_q ? 128 : 64) / esize;
7314 tcg_res = tcg_temp_new_i64();
7315 tcg_elt = tcg_temp_new_i64();
7317 /* These instructions operate across all lanes of a vector
7318 * to produce a single result. We can guarantee that a 64
7319 * bit intermediate is sufficient:
7320 * + for [US]ADDLV the maximum element size is 32 bits, and
7321 * the result type is 64 bits
7322 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7323 * same as the element size, which is 32 bits at most
7324 * For the integer operations we can choose to work at 64
7325 * or 32 bits and truncate at the end; for simplicity
7326 * we use 64 bits always. The floating point
7327 * ops do require 32 bit intermediates, though.
7329 if (!is_fp) {
7330 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7332 for (i = 1; i < elements; i++) {
7333 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7335 switch (opcode) {
7336 case 0x03: /* SADDLV / UADDLV */
7337 case 0x1b: /* ADDV */
7338 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7339 break;
7340 case 0x0a: /* SMAXV / UMAXV */
7341 if (is_u) {
7342 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7343 } else {
7344 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7346 break;
7347 case 0x1a: /* SMINV / UMINV */
7348 if (is_u) {
7349 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7350 } else {
7351 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7353 break;
7354 default:
7355 g_assert_not_reached();
7359 } else {
7360 /* Floating point vector reduction ops which work across 32
7361 * bit (single) or 16 bit (half-precision) intermediates.
7362 * Note that correct NaN propagation requires that we do these
7363 * operations in exactly the order specified by the pseudocode.
7365 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
7366 int fpopcode = opcode | is_min << 4 | is_u << 5;
7367 int vmap = (1 << elements) - 1;
7368 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7369 (is_q ? 128 : 64), vmap, fpst);
7370 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7371 tcg_temp_free_i32(tcg_res32);
7372 tcg_temp_free_ptr(fpst);
7375 tcg_temp_free_i64(tcg_elt);
7377 /* Now truncate the result to the width required for the final output */
7378 if (opcode == 0x03) {
7379 /* SADDLV, UADDLV: result is 2*esize */
7380 size++;
7383 switch (size) {
7384 case 0:
7385 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7386 break;
7387 case 1:
7388 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7389 break;
7390 case 2:
7391 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7392 break;
7393 case 3:
7394 break;
7395 default:
7396 g_assert_not_reached();
7399 write_fp_dreg(s, rd, tcg_res);
7400 tcg_temp_free_i64(tcg_res);
7403 /* DUP (Element, Vector)
7405 * 31 30 29 21 20 16 15 10 9 5 4 0
7406 * +---+---+-------------------+--------+-------------+------+------+
7407 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7408 * +---+---+-------------------+--------+-------------+------+------+
7410 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7412 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7413 int imm5)
7415 int size = ctz32(imm5);
7416 int index;
7418 if (size > 3 || (size == 3 && !is_q)) {
7419 unallocated_encoding(s);
7420 return;
7423 if (!fp_access_check(s)) {
7424 return;
7427 index = imm5 >> (size + 1);
7428 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7429 vec_reg_offset(s, rn, index, size),
7430 is_q ? 16 : 8, vec_full_reg_size(s));
7433 /* DUP (element, scalar)
7434 * 31 21 20 16 15 10 9 5 4 0
7435 * +-----------------------+--------+-------------+------+------+
7436 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7437 * +-----------------------+--------+-------------+------+------+
7439 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7440 int imm5)
7442 int size = ctz32(imm5);
7443 int index;
7444 TCGv_i64 tmp;
7446 if (size > 3) {
7447 unallocated_encoding(s);
7448 return;
7451 if (!fp_access_check(s)) {
7452 return;
7455 index = imm5 >> (size + 1);
7457 /* This instruction just extracts the specified element and
7458 * zero-extends it into the bottom of the destination register.
7460 tmp = tcg_temp_new_i64();
7461 read_vec_element(s, tmp, rn, index, size);
7462 write_fp_dreg(s, rd, tmp);
7463 tcg_temp_free_i64(tmp);
7466 /* DUP (General)
7468 * 31 30 29 21 20 16 15 10 9 5 4 0
7469 * +---+---+-------------------+--------+-------------+------+------+
7470 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7471 * +---+---+-------------------+--------+-------------+------+------+
7473 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7475 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7476 int imm5)
7478 int size = ctz32(imm5);
7479 uint32_t dofs, oprsz, maxsz;
7481 if (size > 3 || ((size == 3) && !is_q)) {
7482 unallocated_encoding(s);
7483 return;
7486 if (!fp_access_check(s)) {
7487 return;
7490 dofs = vec_full_reg_offset(s, rd);
7491 oprsz = is_q ? 16 : 8;
7492 maxsz = vec_full_reg_size(s);
7494 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7497 /* INS (Element)
7499 * 31 21 20 16 15 14 11 10 9 5 4 0
7500 * +-----------------------+--------+------------+---+------+------+
7501 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7502 * +-----------------------+--------+------------+---+------+------+
7504 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7505 * index: encoded in imm5<4:size+1>
7507 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7508 int imm4, int imm5)
7510 int size = ctz32(imm5);
7511 int src_index, dst_index;
7512 TCGv_i64 tmp;
7514 if (size > 3) {
7515 unallocated_encoding(s);
7516 return;
7519 if (!fp_access_check(s)) {
7520 return;
7523 dst_index = extract32(imm5, 1+size, 5);
7524 src_index = extract32(imm4, size, 4);
7526 tmp = tcg_temp_new_i64();
7528 read_vec_element(s, tmp, rn, src_index, size);
7529 write_vec_element(s, tmp, rd, dst_index, size);
7531 tcg_temp_free_i64(tmp);
7533 /* INS is considered a 128-bit write for SVE. */
7534 clear_vec_high(s, true, rd);
7538 /* INS (General)
7540 * 31 21 20 16 15 10 9 5 4 0
7541 * +-----------------------+--------+-------------+------+------+
7542 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
7543 * +-----------------------+--------+-------------+------+------+
7545 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7546 * index: encoded in imm5<4:size+1>
7548 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7550 int size = ctz32(imm5);
7551 int idx;
7553 if (size > 3) {
7554 unallocated_encoding(s);
7555 return;
7558 if (!fp_access_check(s)) {
7559 return;
7562 idx = extract32(imm5, 1 + size, 4 - size);
7563 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7565 /* INS is considered a 128-bit write for SVE. */
7566 clear_vec_high(s, true, rd);
7570 * UMOV (General)
7571 * SMOV (General)
7573 * 31 30 29 21 20 16 15 12 10 9 5 4 0
7574 * +---+---+-------------------+--------+-------------+------+------+
7575 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
7576 * +---+---+-------------------+--------+-------------+------+------+
7578 * U: unsigned when set
7579 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7581 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7582 int rn, int rd, int imm5)
7584 int size = ctz32(imm5);
7585 int element;
7586 TCGv_i64 tcg_rd;
7588 /* Check for UnallocatedEncodings */
7589 if (is_signed) {
7590 if (size > 2 || (size == 2 && !is_q)) {
7591 unallocated_encoding(s);
7592 return;
7594 } else {
7595 if (size > 3
7596 || (size < 3 && is_q)
7597 || (size == 3 && !is_q)) {
7598 unallocated_encoding(s);
7599 return;
7603 if (!fp_access_check(s)) {
7604 return;
7607 element = extract32(imm5, 1+size, 4);
7609 tcg_rd = cpu_reg(s, rd);
7610 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7611 if (is_signed && !is_q) {
7612 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7616 /* AdvSIMD copy
7617 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7618 * +---+---+----+-----------------+------+---+------+---+------+------+
7619 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7620 * +---+---+----+-----------------+------+---+------+---+------+------+
7622 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7624 int rd = extract32(insn, 0, 5);
7625 int rn = extract32(insn, 5, 5);
7626 int imm4 = extract32(insn, 11, 4);
7627 int op = extract32(insn, 29, 1);
7628 int is_q = extract32(insn, 30, 1);
7629 int imm5 = extract32(insn, 16, 5);
7631 if (op) {
7632 if (is_q) {
7633 /* INS (element) */
7634 handle_simd_inse(s, rd, rn, imm4, imm5);
7635 } else {
7636 unallocated_encoding(s);
7638 } else {
7639 switch (imm4) {
7640 case 0:
7641 /* DUP (element - vector) */
7642 handle_simd_dupe(s, is_q, rd, rn, imm5);
7643 break;
7644 case 1:
7645 /* DUP (general) */
7646 handle_simd_dupg(s, is_q, rd, rn, imm5);
7647 break;
7648 case 3:
7649 if (is_q) {
7650 /* INS (general) */
7651 handle_simd_insg(s, rd, rn, imm5);
7652 } else {
7653 unallocated_encoding(s);
7655 break;
7656 case 5:
7657 case 7:
7658 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7659 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7660 break;
7661 default:
7662 unallocated_encoding(s);
7663 break;
7668 /* AdvSIMD modified immediate
7669 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
7670 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7671 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
7672 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7674 * There are a number of operations that can be carried out here:
7675 * MOVI - move (shifted) imm into register
7676 * MVNI - move inverted (shifted) imm into register
7677 * ORR - bitwise OR of (shifted) imm with register
7678 * BIC - bitwise clear of (shifted) imm with register
7679 * With ARMv8.2 we also have:
7680 * FMOV half-precision
7682 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7684 int rd = extract32(insn, 0, 5);
7685 int cmode = extract32(insn, 12, 4);
7686 int cmode_3_1 = extract32(cmode, 1, 3);
7687 int cmode_0 = extract32(cmode, 0, 1);
7688 int o2 = extract32(insn, 11, 1);
7689 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7690 bool is_neg = extract32(insn, 29, 1);
7691 bool is_q = extract32(insn, 30, 1);
7692 uint64_t imm = 0;
7694 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7695 /* Check for FMOV (vector, immediate) - half-precision */
7696 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7697 unallocated_encoding(s);
7698 return;
7702 if (!fp_access_check(s)) {
7703 return;
7706 /* See AdvSIMDExpandImm() in ARM ARM */
7707 switch (cmode_3_1) {
7708 case 0: /* Replicate(Zeros(24):imm8, 2) */
7709 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
7710 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
7711 case 3: /* Replicate(imm8:Zeros(24), 2) */
7713 int shift = cmode_3_1 * 8;
7714 imm = bitfield_replicate(abcdefgh << shift, 32);
7715 break;
7717 case 4: /* Replicate(Zeros(8):imm8, 4) */
7718 case 5: /* Replicate(imm8:Zeros(8), 4) */
7720 int shift = (cmode_3_1 & 0x1) * 8;
7721 imm = bitfield_replicate(abcdefgh << shift, 16);
7722 break;
7724 case 6:
7725 if (cmode_0) {
7726 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
7727 imm = (abcdefgh << 16) | 0xffff;
7728 } else {
7729 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
7730 imm = (abcdefgh << 8) | 0xff;
7732 imm = bitfield_replicate(imm, 32);
7733 break;
7734 case 7:
7735 if (!cmode_0 && !is_neg) {
7736 imm = bitfield_replicate(abcdefgh, 8);
7737 } else if (!cmode_0 && is_neg) {
7738 int i;
7739 imm = 0;
7740 for (i = 0; i < 8; i++) {
7741 if ((abcdefgh) & (1 << i)) {
7742 imm |= 0xffULL << (i * 8);
7745 } else if (cmode_0) {
7746 if (is_neg) {
7747 imm = (abcdefgh & 0x3f) << 48;
7748 if (abcdefgh & 0x80) {
7749 imm |= 0x8000000000000000ULL;
7751 if (abcdefgh & 0x40) {
7752 imm |= 0x3fc0000000000000ULL;
7753 } else {
7754 imm |= 0x4000000000000000ULL;
7756 } else {
7757 if (o2) {
7758 /* FMOV (vector, immediate) - half-precision */
7759 imm = vfp_expand_imm(MO_16, abcdefgh);
7760 /* now duplicate across the lanes */
7761 imm = bitfield_replicate(imm, 16);
7762 } else {
7763 imm = (abcdefgh & 0x3f) << 19;
7764 if (abcdefgh & 0x80) {
7765 imm |= 0x80000000;
7767 if (abcdefgh & 0x40) {
7768 imm |= 0x3e000000;
7769 } else {
7770 imm |= 0x40000000;
7772 imm |= (imm << 32);
7776 break;
7777 default:
7778 fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1);
7779 g_assert_not_reached();
7782 if (cmode_3_1 != 7 && is_neg) {
7783 imm = ~imm;
7786 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7787 /* MOVI or MVNI, with MVNI negation handled above. */
7788 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7789 vec_full_reg_size(s), imm);
7790 } else {
7791 /* ORR or BIC, with BIC negation to AND handled above. */
7792 if (is_neg) {
7793 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7794 } else {
7795 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7800 /* AdvSIMD scalar copy
7801 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7802 * +-----+----+-----------------+------+---+------+---+------+------+
7803 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7804 * +-----+----+-----------------+------+---+------+---+------+------+
7806 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7808 int rd = extract32(insn, 0, 5);
7809 int rn = extract32(insn, 5, 5);
7810 int imm4 = extract32(insn, 11, 4);
7811 int imm5 = extract32(insn, 16, 5);
7812 int op = extract32(insn, 29, 1);
7814 if (op != 0 || imm4 != 0) {
7815 unallocated_encoding(s);
7816 return;
7819 /* DUP (element, scalar) */
7820 handle_simd_dupes(s, rd, rn, imm5);
7823 /* AdvSIMD scalar pairwise
7824 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7825 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7826 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7827 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7829 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7831 int u = extract32(insn, 29, 1);
7832 int size = extract32(insn, 22, 2);
7833 int opcode = extract32(insn, 12, 5);
7834 int rn = extract32(insn, 5, 5);
7835 int rd = extract32(insn, 0, 5);
7836 TCGv_ptr fpst;
7838 /* For some ops (the FP ones), size[1] is part of the encoding.
7839 * For ADDP strictly it is not but size[1] is always 1 for valid
7840 * encodings.
7842 opcode |= (extract32(size, 1, 1) << 5);
7844 switch (opcode) {
7845 case 0x3b: /* ADDP */
7846 if (u || size != 3) {
7847 unallocated_encoding(s);
7848 return;
7850 if (!fp_access_check(s)) {
7851 return;
7854 fpst = NULL;
7855 break;
7856 case 0xc: /* FMAXNMP */
7857 case 0xd: /* FADDP */
7858 case 0xf: /* FMAXP */
7859 case 0x2c: /* FMINNMP */
7860 case 0x2f: /* FMINP */
7861 /* FP op, size[0] is 32 or 64 bit*/
7862 if (!u) {
7863 if (!dc_isar_feature(aa64_fp16, s)) {
7864 unallocated_encoding(s);
7865 return;
7866 } else {
7867 size = MO_16;
7869 } else {
7870 size = extract32(size, 0, 1) ? MO_64 : MO_32;
7873 if (!fp_access_check(s)) {
7874 return;
7877 fpst = get_fpstatus_ptr(size == MO_16);
7878 break;
7879 default:
7880 unallocated_encoding(s);
7881 return;
7884 if (size == MO_64) {
7885 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7886 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7887 TCGv_i64 tcg_res = tcg_temp_new_i64();
7889 read_vec_element(s, tcg_op1, rn, 0, MO_64);
7890 read_vec_element(s, tcg_op2, rn, 1, MO_64);
7892 switch (opcode) {
7893 case 0x3b: /* ADDP */
7894 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
7895 break;
7896 case 0xc: /* FMAXNMP */
7897 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7898 break;
7899 case 0xd: /* FADDP */
7900 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7901 break;
7902 case 0xf: /* FMAXP */
7903 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7904 break;
7905 case 0x2c: /* FMINNMP */
7906 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7907 break;
7908 case 0x2f: /* FMINP */
7909 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7910 break;
7911 default:
7912 g_assert_not_reached();
7915 write_fp_dreg(s, rd, tcg_res);
7917 tcg_temp_free_i64(tcg_op1);
7918 tcg_temp_free_i64(tcg_op2);
7919 tcg_temp_free_i64(tcg_res);
7920 } else {
7921 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7922 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7923 TCGv_i32 tcg_res = tcg_temp_new_i32();
7925 read_vec_element_i32(s, tcg_op1, rn, 0, size);
7926 read_vec_element_i32(s, tcg_op2, rn, 1, size);
7928 if (size == MO_16) {
7929 switch (opcode) {
7930 case 0xc: /* FMAXNMP */
7931 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7932 break;
7933 case 0xd: /* FADDP */
7934 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
7935 break;
7936 case 0xf: /* FMAXP */
7937 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
7938 break;
7939 case 0x2c: /* FMINNMP */
7940 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7941 break;
7942 case 0x2f: /* FMINP */
7943 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
7944 break;
7945 default:
7946 g_assert_not_reached();
7948 } else {
7949 switch (opcode) {
7950 case 0xc: /* FMAXNMP */
7951 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7952 break;
7953 case 0xd: /* FADDP */
7954 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7955 break;
7956 case 0xf: /* FMAXP */
7957 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7958 break;
7959 case 0x2c: /* FMINNMP */
7960 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7961 break;
7962 case 0x2f: /* FMINP */
7963 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7964 break;
7965 default:
7966 g_assert_not_reached();
7970 write_fp_sreg(s, rd, tcg_res);
7972 tcg_temp_free_i32(tcg_op1);
7973 tcg_temp_free_i32(tcg_op2);
7974 tcg_temp_free_i32(tcg_res);
7977 if (fpst) {
7978 tcg_temp_free_ptr(fpst);
7983 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
7985 * This code is handles the common shifting code and is used by both
7986 * the vector and scalar code.
7988 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
7989 TCGv_i64 tcg_rnd, bool accumulate,
7990 bool is_u, int size, int shift)
7992 bool extended_result = false;
7993 bool round = tcg_rnd != NULL;
7994 int ext_lshift = 0;
7995 TCGv_i64 tcg_src_hi;
7997 if (round && size == 3) {
7998 extended_result = true;
7999 ext_lshift = 64 - shift;
8000 tcg_src_hi = tcg_temp_new_i64();
8001 } else if (shift == 64) {
8002 if (!accumulate && is_u) {
8003 /* result is zero */
8004 tcg_gen_movi_i64(tcg_res, 0);
8005 return;
8009 /* Deal with the rounding step */
8010 if (round) {
8011 if (extended_result) {
8012 TCGv_i64 tcg_zero = tcg_const_i64(0);
8013 if (!is_u) {
8014 /* take care of sign extending tcg_res */
8015 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8016 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8017 tcg_src, tcg_src_hi,
8018 tcg_rnd, tcg_zero);
8019 } else {
8020 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8021 tcg_src, tcg_zero,
8022 tcg_rnd, tcg_zero);
8024 tcg_temp_free_i64(tcg_zero);
8025 } else {
8026 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8030 /* Now do the shift right */
8031 if (round && extended_result) {
8032 /* extended case, >64 bit precision required */
8033 if (ext_lshift == 0) {
8034 /* special case, only high bits matter */
8035 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8036 } else {
8037 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8038 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8039 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8041 } else {
8042 if (is_u) {
8043 if (shift == 64) {
8044 /* essentially shifting in 64 zeros */
8045 tcg_gen_movi_i64(tcg_src, 0);
8046 } else {
8047 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8049 } else {
8050 if (shift == 64) {
8051 /* effectively extending the sign-bit */
8052 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8053 } else {
8054 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8059 if (accumulate) {
8060 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8061 } else {
8062 tcg_gen_mov_i64(tcg_res, tcg_src);
8065 if (extended_result) {
8066 tcg_temp_free_i64(tcg_src_hi);
8070 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8071 static void handle_scalar_simd_shri(DisasContext *s,
8072 bool is_u, int immh, int immb,
8073 int opcode, int rn, int rd)
8075 const int size = 3;
8076 int immhb = immh << 3 | immb;
8077 int shift = 2 * (8 << size) - immhb;
8078 bool accumulate = false;
8079 bool round = false;
8080 bool insert = false;
8081 TCGv_i64 tcg_rn;
8082 TCGv_i64 tcg_rd;
8083 TCGv_i64 tcg_round;
8085 if (!extract32(immh, 3, 1)) {
8086 unallocated_encoding(s);
8087 return;
8090 if (!fp_access_check(s)) {
8091 return;
8094 switch (opcode) {
8095 case 0x02: /* SSRA / USRA (accumulate) */
8096 accumulate = true;
8097 break;
8098 case 0x04: /* SRSHR / URSHR (rounding) */
8099 round = true;
8100 break;
8101 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8102 accumulate = round = true;
8103 break;
8104 case 0x08: /* SRI */
8105 insert = true;
8106 break;
8109 if (round) {
8110 uint64_t round_const = 1ULL << (shift - 1);
8111 tcg_round = tcg_const_i64(round_const);
8112 } else {
8113 tcg_round = NULL;
8116 tcg_rn = read_fp_dreg(s, rn);
8117 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8119 if (insert) {
8120 /* shift count same as element size is valid but does nothing;
8121 * special case to avoid potential shift by 64.
8123 int esize = 8 << size;
8124 if (shift != esize) {
8125 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8126 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8128 } else {
8129 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8130 accumulate, is_u, size, shift);
8133 write_fp_dreg(s, rd, tcg_rd);
8135 tcg_temp_free_i64(tcg_rn);
8136 tcg_temp_free_i64(tcg_rd);
8137 if (round) {
8138 tcg_temp_free_i64(tcg_round);
8142 /* SHL/SLI - Scalar shift left */
8143 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8144 int immh, int immb, int opcode,
8145 int rn, int rd)
8147 int size = 32 - clz32(immh) - 1;
8148 int immhb = immh << 3 | immb;
8149 int shift = immhb - (8 << size);
8150 TCGv_i64 tcg_rn = new_tmp_a64(s);
8151 TCGv_i64 tcg_rd = new_tmp_a64(s);
8153 if (!extract32(immh, 3, 1)) {
8154 unallocated_encoding(s);
8155 return;
8158 if (!fp_access_check(s)) {
8159 return;
8162 tcg_rn = read_fp_dreg(s, rn);
8163 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8165 if (insert) {
8166 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8167 } else {
8168 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8171 write_fp_dreg(s, rd, tcg_rd);
8173 tcg_temp_free_i64(tcg_rn);
8174 tcg_temp_free_i64(tcg_rd);
8177 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8178 * (signed/unsigned) narrowing */
8179 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8180 bool is_u_shift, bool is_u_narrow,
8181 int immh, int immb, int opcode,
8182 int rn, int rd)
8184 int immhb = immh << 3 | immb;
8185 int size = 32 - clz32(immh) - 1;
8186 int esize = 8 << size;
8187 int shift = (2 * esize) - immhb;
8188 int elements = is_scalar ? 1 : (64 / esize);
8189 bool round = extract32(opcode, 0, 1);
8190 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8191 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8192 TCGv_i32 tcg_rd_narrowed;
8193 TCGv_i64 tcg_final;
8195 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8196 { gen_helper_neon_narrow_sat_s8,
8197 gen_helper_neon_unarrow_sat8 },
8198 { gen_helper_neon_narrow_sat_s16,
8199 gen_helper_neon_unarrow_sat16 },
8200 { gen_helper_neon_narrow_sat_s32,
8201 gen_helper_neon_unarrow_sat32 },
8202 { NULL, NULL },
8204 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8205 gen_helper_neon_narrow_sat_u8,
8206 gen_helper_neon_narrow_sat_u16,
8207 gen_helper_neon_narrow_sat_u32,
8208 NULL
8210 NeonGenNarrowEnvFn *narrowfn;
8212 int i;
8214 assert(size < 4);
8216 if (extract32(immh, 3, 1)) {
8217 unallocated_encoding(s);
8218 return;
8221 if (!fp_access_check(s)) {
8222 return;
8225 if (is_u_shift) {
8226 narrowfn = unsigned_narrow_fns[size];
8227 } else {
8228 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8231 tcg_rn = tcg_temp_new_i64();
8232 tcg_rd = tcg_temp_new_i64();
8233 tcg_rd_narrowed = tcg_temp_new_i32();
8234 tcg_final = tcg_const_i64(0);
8236 if (round) {
8237 uint64_t round_const = 1ULL << (shift - 1);
8238 tcg_round = tcg_const_i64(round_const);
8239 } else {
8240 tcg_round = NULL;
8243 for (i = 0; i < elements; i++) {
8244 read_vec_element(s, tcg_rn, rn, i, ldop);
8245 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8246 false, is_u_shift, size+1, shift);
8247 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8248 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8249 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8252 if (!is_q) {
8253 write_vec_element(s, tcg_final, rd, 0, MO_64);
8254 } else {
8255 write_vec_element(s, tcg_final, rd, 1, MO_64);
8258 if (round) {
8259 tcg_temp_free_i64(tcg_round);
8261 tcg_temp_free_i64(tcg_rn);
8262 tcg_temp_free_i64(tcg_rd);
8263 tcg_temp_free_i32(tcg_rd_narrowed);
8264 tcg_temp_free_i64(tcg_final);
8266 clear_vec_high(s, is_q, rd);
8269 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8270 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8271 bool src_unsigned, bool dst_unsigned,
8272 int immh, int immb, int rn, int rd)
8274 int immhb = immh << 3 | immb;
8275 int size = 32 - clz32(immh) - 1;
8276 int shift = immhb - (8 << size);
8277 int pass;
8279 assert(immh != 0);
8280 assert(!(scalar && is_q));
8282 if (!scalar) {
8283 if (!is_q && extract32(immh, 3, 1)) {
8284 unallocated_encoding(s);
8285 return;
8288 /* Since we use the variable-shift helpers we must
8289 * replicate the shift count into each element of
8290 * the tcg_shift value.
8292 switch (size) {
8293 case 0:
8294 shift |= shift << 8;
8295 /* fall through */
8296 case 1:
8297 shift |= shift << 16;
8298 break;
8299 case 2:
8300 case 3:
8301 break;
8302 default:
8303 g_assert_not_reached();
8307 if (!fp_access_check(s)) {
8308 return;
8311 if (size == 3) {
8312 TCGv_i64 tcg_shift = tcg_const_i64(shift);
8313 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8314 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8315 { NULL, gen_helper_neon_qshl_u64 },
8317 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8318 int maxpass = is_q ? 2 : 1;
8320 for (pass = 0; pass < maxpass; pass++) {
8321 TCGv_i64 tcg_op = tcg_temp_new_i64();
8323 read_vec_element(s, tcg_op, rn, pass, MO_64);
8324 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8325 write_vec_element(s, tcg_op, rd, pass, MO_64);
8327 tcg_temp_free_i64(tcg_op);
8329 tcg_temp_free_i64(tcg_shift);
8330 clear_vec_high(s, is_q, rd);
8331 } else {
8332 TCGv_i32 tcg_shift = tcg_const_i32(shift);
8333 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8335 { gen_helper_neon_qshl_s8,
8336 gen_helper_neon_qshl_s16,
8337 gen_helper_neon_qshl_s32 },
8338 { gen_helper_neon_qshlu_s8,
8339 gen_helper_neon_qshlu_s16,
8340 gen_helper_neon_qshlu_s32 }
8341 }, {
8342 { NULL, NULL, NULL },
8343 { gen_helper_neon_qshl_u8,
8344 gen_helper_neon_qshl_u16,
8345 gen_helper_neon_qshl_u32 }
8348 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8349 MemOp memop = scalar ? size : MO_32;
8350 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8352 for (pass = 0; pass < maxpass; pass++) {
8353 TCGv_i32 tcg_op = tcg_temp_new_i32();
8355 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8356 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8357 if (scalar) {
8358 switch (size) {
8359 case 0:
8360 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8361 break;
8362 case 1:
8363 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8364 break;
8365 case 2:
8366 break;
8367 default:
8368 g_assert_not_reached();
8370 write_fp_sreg(s, rd, tcg_op);
8371 } else {
8372 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8375 tcg_temp_free_i32(tcg_op);
8377 tcg_temp_free_i32(tcg_shift);
8379 if (!scalar) {
8380 clear_vec_high(s, is_q, rd);
8385 /* Common vector code for handling integer to FP conversion */
8386 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8387 int elements, int is_signed,
8388 int fracbits, int size)
8390 TCGv_ptr tcg_fpst = get_fpstatus_ptr(size == MO_16);
8391 TCGv_i32 tcg_shift = NULL;
8393 MemOp mop = size | (is_signed ? MO_SIGN : 0);
8394 int pass;
8396 if (fracbits || size == MO_64) {
8397 tcg_shift = tcg_const_i32(fracbits);
8400 if (size == MO_64) {
8401 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8402 TCGv_i64 tcg_double = tcg_temp_new_i64();
8404 for (pass = 0; pass < elements; pass++) {
8405 read_vec_element(s, tcg_int64, rn, pass, mop);
8407 if (is_signed) {
8408 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8409 tcg_shift, tcg_fpst);
8410 } else {
8411 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8412 tcg_shift, tcg_fpst);
8414 if (elements == 1) {
8415 write_fp_dreg(s, rd, tcg_double);
8416 } else {
8417 write_vec_element(s, tcg_double, rd, pass, MO_64);
8421 tcg_temp_free_i64(tcg_int64);
8422 tcg_temp_free_i64(tcg_double);
8424 } else {
8425 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8426 TCGv_i32 tcg_float = tcg_temp_new_i32();
8428 for (pass = 0; pass < elements; pass++) {
8429 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8431 switch (size) {
8432 case MO_32:
8433 if (fracbits) {
8434 if (is_signed) {
8435 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8436 tcg_shift, tcg_fpst);
8437 } else {
8438 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8439 tcg_shift, tcg_fpst);
8441 } else {
8442 if (is_signed) {
8443 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8444 } else {
8445 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8448 break;
8449 case MO_16:
8450 if (fracbits) {
8451 if (is_signed) {
8452 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8453 tcg_shift, tcg_fpst);
8454 } else {
8455 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8456 tcg_shift, tcg_fpst);
8458 } else {
8459 if (is_signed) {
8460 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8461 } else {
8462 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8465 break;
8466 default:
8467 g_assert_not_reached();
8470 if (elements == 1) {
8471 write_fp_sreg(s, rd, tcg_float);
8472 } else {
8473 write_vec_element_i32(s, tcg_float, rd, pass, size);
8477 tcg_temp_free_i32(tcg_int32);
8478 tcg_temp_free_i32(tcg_float);
8481 tcg_temp_free_ptr(tcg_fpst);
8482 if (tcg_shift) {
8483 tcg_temp_free_i32(tcg_shift);
8486 clear_vec_high(s, elements << size == 16, rd);
8489 /* UCVTF/SCVTF - Integer to FP conversion */
8490 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8491 bool is_q, bool is_u,
8492 int immh, int immb, int opcode,
8493 int rn, int rd)
8495 int size, elements, fracbits;
8496 int immhb = immh << 3 | immb;
8498 if (immh & 8) {
8499 size = MO_64;
8500 if (!is_scalar && !is_q) {
8501 unallocated_encoding(s);
8502 return;
8504 } else if (immh & 4) {
8505 size = MO_32;
8506 } else if (immh & 2) {
8507 size = MO_16;
8508 if (!dc_isar_feature(aa64_fp16, s)) {
8509 unallocated_encoding(s);
8510 return;
8512 } else {
8513 /* immh == 0 would be a failure of the decode logic */
8514 g_assert(immh == 1);
8515 unallocated_encoding(s);
8516 return;
8519 if (is_scalar) {
8520 elements = 1;
8521 } else {
8522 elements = (8 << is_q) >> size;
8524 fracbits = (16 << size) - immhb;
8526 if (!fp_access_check(s)) {
8527 return;
8530 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8533 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8534 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8535 bool is_q, bool is_u,
8536 int immh, int immb, int rn, int rd)
8538 int immhb = immh << 3 | immb;
8539 int pass, size, fracbits;
8540 TCGv_ptr tcg_fpstatus;
8541 TCGv_i32 tcg_rmode, tcg_shift;
8543 if (immh & 0x8) {
8544 size = MO_64;
8545 if (!is_scalar && !is_q) {
8546 unallocated_encoding(s);
8547 return;
8549 } else if (immh & 0x4) {
8550 size = MO_32;
8551 } else if (immh & 0x2) {
8552 size = MO_16;
8553 if (!dc_isar_feature(aa64_fp16, s)) {
8554 unallocated_encoding(s);
8555 return;
8557 } else {
8558 /* Should have split out AdvSIMD modified immediate earlier. */
8559 assert(immh == 1);
8560 unallocated_encoding(s);
8561 return;
8564 if (!fp_access_check(s)) {
8565 return;
8568 assert(!(is_scalar && is_q));
8570 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
8571 tcg_fpstatus = get_fpstatus_ptr(size == MO_16);
8572 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8573 fracbits = (16 << size) - immhb;
8574 tcg_shift = tcg_const_i32(fracbits);
8576 if (size == MO_64) {
8577 int maxpass = is_scalar ? 1 : 2;
8579 for (pass = 0; pass < maxpass; pass++) {
8580 TCGv_i64 tcg_op = tcg_temp_new_i64();
8582 read_vec_element(s, tcg_op, rn, pass, MO_64);
8583 if (is_u) {
8584 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8585 } else {
8586 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8588 write_vec_element(s, tcg_op, rd, pass, MO_64);
8589 tcg_temp_free_i64(tcg_op);
8591 clear_vec_high(s, is_q, rd);
8592 } else {
8593 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8594 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8596 switch (size) {
8597 case MO_16:
8598 if (is_u) {
8599 fn = gen_helper_vfp_touhh;
8600 } else {
8601 fn = gen_helper_vfp_toshh;
8603 break;
8604 case MO_32:
8605 if (is_u) {
8606 fn = gen_helper_vfp_touls;
8607 } else {
8608 fn = gen_helper_vfp_tosls;
8610 break;
8611 default:
8612 g_assert_not_reached();
8615 for (pass = 0; pass < maxpass; pass++) {
8616 TCGv_i32 tcg_op = tcg_temp_new_i32();
8618 read_vec_element_i32(s, tcg_op, rn, pass, size);
8619 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8620 if (is_scalar) {
8621 write_fp_sreg(s, rd, tcg_op);
8622 } else {
8623 write_vec_element_i32(s, tcg_op, rd, pass, size);
8625 tcg_temp_free_i32(tcg_op);
8627 if (!is_scalar) {
8628 clear_vec_high(s, is_q, rd);
8632 tcg_temp_free_ptr(tcg_fpstatus);
8633 tcg_temp_free_i32(tcg_shift);
8634 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8635 tcg_temp_free_i32(tcg_rmode);
8638 /* AdvSIMD scalar shift by immediate
8639 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8640 * +-----+---+-------------+------+------+--------+---+------+------+
8641 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8642 * +-----+---+-------------+------+------+--------+---+------+------+
8644 * This is the scalar version so it works on a fixed sized registers
8646 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8648 int rd = extract32(insn, 0, 5);
8649 int rn = extract32(insn, 5, 5);
8650 int opcode = extract32(insn, 11, 5);
8651 int immb = extract32(insn, 16, 3);
8652 int immh = extract32(insn, 19, 4);
8653 bool is_u = extract32(insn, 29, 1);
8655 if (immh == 0) {
8656 unallocated_encoding(s);
8657 return;
8660 switch (opcode) {
8661 case 0x08: /* SRI */
8662 if (!is_u) {
8663 unallocated_encoding(s);
8664 return;
8666 /* fall through */
8667 case 0x00: /* SSHR / USHR */
8668 case 0x02: /* SSRA / USRA */
8669 case 0x04: /* SRSHR / URSHR */
8670 case 0x06: /* SRSRA / URSRA */
8671 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8672 break;
8673 case 0x0a: /* SHL / SLI */
8674 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8675 break;
8676 case 0x1c: /* SCVTF, UCVTF */
8677 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8678 opcode, rn, rd);
8679 break;
8680 case 0x10: /* SQSHRUN, SQSHRUN2 */
8681 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8682 if (!is_u) {
8683 unallocated_encoding(s);
8684 return;
8686 handle_vec_simd_sqshrn(s, true, false, false, true,
8687 immh, immb, opcode, rn, rd);
8688 break;
8689 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8690 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8691 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8692 immh, immb, opcode, rn, rd);
8693 break;
8694 case 0xc: /* SQSHLU */
8695 if (!is_u) {
8696 unallocated_encoding(s);
8697 return;
8699 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8700 break;
8701 case 0xe: /* SQSHL, UQSHL */
8702 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8703 break;
8704 case 0x1f: /* FCVTZS, FCVTZU */
8705 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8706 break;
8707 default:
8708 unallocated_encoding(s);
8709 break;
8713 /* AdvSIMD scalar three different
8714 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8715 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8716 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8717 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8719 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8721 bool is_u = extract32(insn, 29, 1);
8722 int size = extract32(insn, 22, 2);
8723 int opcode = extract32(insn, 12, 4);
8724 int rm = extract32(insn, 16, 5);
8725 int rn = extract32(insn, 5, 5);
8726 int rd = extract32(insn, 0, 5);
8728 if (is_u) {
8729 unallocated_encoding(s);
8730 return;
8733 switch (opcode) {
8734 case 0x9: /* SQDMLAL, SQDMLAL2 */
8735 case 0xb: /* SQDMLSL, SQDMLSL2 */
8736 case 0xd: /* SQDMULL, SQDMULL2 */
8737 if (size == 0 || size == 3) {
8738 unallocated_encoding(s);
8739 return;
8741 break;
8742 default:
8743 unallocated_encoding(s);
8744 return;
8747 if (!fp_access_check(s)) {
8748 return;
8751 if (size == 2) {
8752 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8753 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8754 TCGv_i64 tcg_res = tcg_temp_new_i64();
8756 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8757 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8759 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8760 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
8762 switch (opcode) {
8763 case 0xd: /* SQDMULL, SQDMULL2 */
8764 break;
8765 case 0xb: /* SQDMLSL, SQDMLSL2 */
8766 tcg_gen_neg_i64(tcg_res, tcg_res);
8767 /* fall through */
8768 case 0x9: /* SQDMLAL, SQDMLAL2 */
8769 read_vec_element(s, tcg_op1, rd, 0, MO_64);
8770 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
8771 tcg_res, tcg_op1);
8772 break;
8773 default:
8774 g_assert_not_reached();
8777 write_fp_dreg(s, rd, tcg_res);
8779 tcg_temp_free_i64(tcg_op1);
8780 tcg_temp_free_i64(tcg_op2);
8781 tcg_temp_free_i64(tcg_res);
8782 } else {
8783 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8784 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8785 TCGv_i64 tcg_res = tcg_temp_new_i64();
8787 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8788 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
8790 switch (opcode) {
8791 case 0xd: /* SQDMULL, SQDMULL2 */
8792 break;
8793 case 0xb: /* SQDMLSL, SQDMLSL2 */
8794 gen_helper_neon_negl_u32(tcg_res, tcg_res);
8795 /* fall through */
8796 case 0x9: /* SQDMLAL, SQDMLAL2 */
8798 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8799 read_vec_element(s, tcg_op3, rd, 0, MO_32);
8800 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
8801 tcg_res, tcg_op3);
8802 tcg_temp_free_i64(tcg_op3);
8803 break;
8805 default:
8806 g_assert_not_reached();
8809 tcg_gen_ext32u_i64(tcg_res, tcg_res);
8810 write_fp_dreg(s, rd, tcg_res);
8812 tcg_temp_free_i32(tcg_op1);
8813 tcg_temp_free_i32(tcg_op2);
8814 tcg_temp_free_i64(tcg_res);
8818 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8819 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8821 /* Handle 64x64->64 opcodes which are shared between the scalar
8822 * and vector 3-same groups. We cover every opcode where size == 3
8823 * is valid in either the three-reg-same (integer, not pairwise)
8824 * or scalar-three-reg-same groups.
8826 TCGCond cond;
8828 switch (opcode) {
8829 case 0x1: /* SQADD */
8830 if (u) {
8831 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8832 } else {
8833 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8835 break;
8836 case 0x5: /* SQSUB */
8837 if (u) {
8838 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8839 } else {
8840 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8842 break;
8843 case 0x6: /* CMGT, CMHI */
8844 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
8845 * We implement this using setcond (test) and then negating.
8847 cond = u ? TCG_COND_GTU : TCG_COND_GT;
8848 do_cmop:
8849 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8850 tcg_gen_neg_i64(tcg_rd, tcg_rd);
8851 break;
8852 case 0x7: /* CMGE, CMHS */
8853 cond = u ? TCG_COND_GEU : TCG_COND_GE;
8854 goto do_cmop;
8855 case 0x11: /* CMTST, CMEQ */
8856 if (u) {
8857 cond = TCG_COND_EQ;
8858 goto do_cmop;
8860 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8861 break;
8862 case 0x8: /* SSHL, USHL */
8863 if (u) {
8864 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
8865 } else {
8866 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
8868 break;
8869 case 0x9: /* SQSHL, UQSHL */
8870 if (u) {
8871 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8872 } else {
8873 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8875 break;
8876 case 0xa: /* SRSHL, URSHL */
8877 if (u) {
8878 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8879 } else {
8880 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8882 break;
8883 case 0xb: /* SQRSHL, UQRSHL */
8884 if (u) {
8885 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8886 } else {
8887 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
8889 break;
8890 case 0x10: /* ADD, SUB */
8891 if (u) {
8892 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8893 } else {
8894 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8896 break;
8897 default:
8898 g_assert_not_reached();
8902 /* Handle the 3-same-operands float operations; shared by the scalar
8903 * and vector encodings. The caller must filter out any encodings
8904 * not allocated for the encoding it is dealing with.
8906 static void handle_3same_float(DisasContext *s, int size, int elements,
8907 int fpopcode, int rd, int rn, int rm)
8909 int pass;
8910 TCGv_ptr fpst = get_fpstatus_ptr(false);
8912 for (pass = 0; pass < elements; pass++) {
8913 if (size) {
8914 /* Double */
8915 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8916 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8917 TCGv_i64 tcg_res = tcg_temp_new_i64();
8919 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8920 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8922 switch (fpopcode) {
8923 case 0x39: /* FMLS */
8924 /* As usual for ARM, separate negation for fused multiply-add */
8925 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8926 /* fall through */
8927 case 0x19: /* FMLA */
8928 read_vec_element(s, tcg_res, rd, pass, MO_64);
8929 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8930 tcg_res, fpst);
8931 break;
8932 case 0x18: /* FMAXNM */
8933 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8934 break;
8935 case 0x1a: /* FADD */
8936 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8937 break;
8938 case 0x1b: /* FMULX */
8939 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8940 break;
8941 case 0x1c: /* FCMEQ */
8942 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8943 break;
8944 case 0x1e: /* FMAX */
8945 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8946 break;
8947 case 0x1f: /* FRECPS */
8948 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8949 break;
8950 case 0x38: /* FMINNM */
8951 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8952 break;
8953 case 0x3a: /* FSUB */
8954 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8955 break;
8956 case 0x3e: /* FMIN */
8957 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8958 break;
8959 case 0x3f: /* FRSQRTS */
8960 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8961 break;
8962 case 0x5b: /* FMUL */
8963 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
8964 break;
8965 case 0x5c: /* FCMGE */
8966 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8967 break;
8968 case 0x5d: /* FACGE */
8969 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8970 break;
8971 case 0x5f: /* FDIV */
8972 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
8973 break;
8974 case 0x7a: /* FABD */
8975 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8976 gen_helper_vfp_absd(tcg_res, tcg_res);
8977 break;
8978 case 0x7c: /* FCMGT */
8979 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8980 break;
8981 case 0x7d: /* FACGT */
8982 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8983 break;
8984 default:
8985 g_assert_not_reached();
8988 write_vec_element(s, tcg_res, rd, pass, MO_64);
8990 tcg_temp_free_i64(tcg_res);
8991 tcg_temp_free_i64(tcg_op1);
8992 tcg_temp_free_i64(tcg_op2);
8993 } else {
8994 /* Single */
8995 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8996 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8997 TCGv_i32 tcg_res = tcg_temp_new_i32();
8999 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9000 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9002 switch (fpopcode) {
9003 case 0x39: /* FMLS */
9004 /* As usual for ARM, separate negation for fused multiply-add */
9005 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9006 /* fall through */
9007 case 0x19: /* FMLA */
9008 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9009 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9010 tcg_res, fpst);
9011 break;
9012 case 0x1a: /* FADD */
9013 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9014 break;
9015 case 0x1b: /* FMULX */
9016 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9017 break;
9018 case 0x1c: /* FCMEQ */
9019 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9020 break;
9021 case 0x1e: /* FMAX */
9022 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9023 break;
9024 case 0x1f: /* FRECPS */
9025 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9026 break;
9027 case 0x18: /* FMAXNM */
9028 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9029 break;
9030 case 0x38: /* FMINNM */
9031 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9032 break;
9033 case 0x3a: /* FSUB */
9034 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9035 break;
9036 case 0x3e: /* FMIN */
9037 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9038 break;
9039 case 0x3f: /* FRSQRTS */
9040 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9041 break;
9042 case 0x5b: /* FMUL */
9043 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9044 break;
9045 case 0x5c: /* FCMGE */
9046 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9047 break;
9048 case 0x5d: /* FACGE */
9049 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9050 break;
9051 case 0x5f: /* FDIV */
9052 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9053 break;
9054 case 0x7a: /* FABD */
9055 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9056 gen_helper_vfp_abss(tcg_res, tcg_res);
9057 break;
9058 case 0x7c: /* FCMGT */
9059 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9060 break;
9061 case 0x7d: /* FACGT */
9062 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9063 break;
9064 default:
9065 g_assert_not_reached();
9068 if (elements == 1) {
9069 /* scalar single so clear high part */
9070 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9072 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9073 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9074 tcg_temp_free_i64(tcg_tmp);
9075 } else {
9076 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9079 tcg_temp_free_i32(tcg_res);
9080 tcg_temp_free_i32(tcg_op1);
9081 tcg_temp_free_i32(tcg_op2);
9085 tcg_temp_free_ptr(fpst);
9087 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9090 /* AdvSIMD scalar three same
9091 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9092 * +-----+---+-----------+------+---+------+--------+---+------+------+
9093 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9094 * +-----+---+-----------+------+---+------+--------+---+------+------+
9096 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9098 int rd = extract32(insn, 0, 5);
9099 int rn = extract32(insn, 5, 5);
9100 int opcode = extract32(insn, 11, 5);
9101 int rm = extract32(insn, 16, 5);
9102 int size = extract32(insn, 22, 2);
9103 bool u = extract32(insn, 29, 1);
9104 TCGv_i64 tcg_rd;
9106 if (opcode >= 0x18) {
9107 /* Floating point: U, size[1] and opcode indicate operation */
9108 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9109 switch (fpopcode) {
9110 case 0x1b: /* FMULX */
9111 case 0x1f: /* FRECPS */
9112 case 0x3f: /* FRSQRTS */
9113 case 0x5d: /* FACGE */
9114 case 0x7d: /* FACGT */
9115 case 0x1c: /* FCMEQ */
9116 case 0x5c: /* FCMGE */
9117 case 0x7c: /* FCMGT */
9118 case 0x7a: /* FABD */
9119 break;
9120 default:
9121 unallocated_encoding(s);
9122 return;
9125 if (!fp_access_check(s)) {
9126 return;
9129 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9130 return;
9133 switch (opcode) {
9134 case 0x1: /* SQADD, UQADD */
9135 case 0x5: /* SQSUB, UQSUB */
9136 case 0x9: /* SQSHL, UQSHL */
9137 case 0xb: /* SQRSHL, UQRSHL */
9138 break;
9139 case 0x8: /* SSHL, USHL */
9140 case 0xa: /* SRSHL, URSHL */
9141 case 0x6: /* CMGT, CMHI */
9142 case 0x7: /* CMGE, CMHS */
9143 case 0x11: /* CMTST, CMEQ */
9144 case 0x10: /* ADD, SUB (vector) */
9145 if (size != 3) {
9146 unallocated_encoding(s);
9147 return;
9149 break;
9150 case 0x16: /* SQDMULH, SQRDMULH (vector) */
9151 if (size != 1 && size != 2) {
9152 unallocated_encoding(s);
9153 return;
9155 break;
9156 default:
9157 unallocated_encoding(s);
9158 return;
9161 if (!fp_access_check(s)) {
9162 return;
9165 tcg_rd = tcg_temp_new_i64();
9167 if (size == 3) {
9168 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9169 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9171 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9172 tcg_temp_free_i64(tcg_rn);
9173 tcg_temp_free_i64(tcg_rm);
9174 } else {
9175 /* Do a single operation on the lowest element in the vector.
9176 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9177 * no side effects for all these operations.
9178 * OPTME: special-purpose helpers would avoid doing some
9179 * unnecessary work in the helper for the 8 and 16 bit cases.
9181 NeonGenTwoOpEnvFn *genenvfn;
9182 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9183 TCGv_i32 tcg_rm = tcg_temp_new_i32();
9184 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9186 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9187 read_vec_element_i32(s, tcg_rm, rm, 0, size);
9189 switch (opcode) {
9190 case 0x1: /* SQADD, UQADD */
9192 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9193 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9194 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9195 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9197 genenvfn = fns[size][u];
9198 break;
9200 case 0x5: /* SQSUB, UQSUB */
9202 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9203 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9204 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9205 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9207 genenvfn = fns[size][u];
9208 break;
9210 case 0x9: /* SQSHL, UQSHL */
9212 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9213 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9214 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9215 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9217 genenvfn = fns[size][u];
9218 break;
9220 case 0xb: /* SQRSHL, UQRSHL */
9222 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9223 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9224 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9225 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9227 genenvfn = fns[size][u];
9228 break;
9230 case 0x16: /* SQDMULH, SQRDMULH */
9232 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9233 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9234 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9236 assert(size == 1 || size == 2);
9237 genenvfn = fns[size - 1][u];
9238 break;
9240 default:
9241 g_assert_not_reached();
9244 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9245 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9246 tcg_temp_free_i32(tcg_rd32);
9247 tcg_temp_free_i32(tcg_rn);
9248 tcg_temp_free_i32(tcg_rm);
9251 write_fp_dreg(s, rd, tcg_rd);
9253 tcg_temp_free_i64(tcg_rd);
9256 /* AdvSIMD scalar three same FP16
9257 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
9258 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9259 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
9260 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9261 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9262 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9264 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9265 uint32_t insn)
9267 int rd = extract32(insn, 0, 5);
9268 int rn = extract32(insn, 5, 5);
9269 int opcode = extract32(insn, 11, 3);
9270 int rm = extract32(insn, 16, 5);
9271 bool u = extract32(insn, 29, 1);
9272 bool a = extract32(insn, 23, 1);
9273 int fpopcode = opcode | (a << 3) | (u << 4);
9274 TCGv_ptr fpst;
9275 TCGv_i32 tcg_op1;
9276 TCGv_i32 tcg_op2;
9277 TCGv_i32 tcg_res;
9279 switch (fpopcode) {
9280 case 0x03: /* FMULX */
9281 case 0x04: /* FCMEQ (reg) */
9282 case 0x07: /* FRECPS */
9283 case 0x0f: /* FRSQRTS */
9284 case 0x14: /* FCMGE (reg) */
9285 case 0x15: /* FACGE */
9286 case 0x1a: /* FABD */
9287 case 0x1c: /* FCMGT (reg) */
9288 case 0x1d: /* FACGT */
9289 break;
9290 default:
9291 unallocated_encoding(s);
9292 return;
9295 if (!dc_isar_feature(aa64_fp16, s)) {
9296 unallocated_encoding(s);
9299 if (!fp_access_check(s)) {
9300 return;
9303 fpst = get_fpstatus_ptr(true);
9305 tcg_op1 = read_fp_hreg(s, rn);
9306 tcg_op2 = read_fp_hreg(s, rm);
9307 tcg_res = tcg_temp_new_i32();
9309 switch (fpopcode) {
9310 case 0x03: /* FMULX */
9311 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9312 break;
9313 case 0x04: /* FCMEQ (reg) */
9314 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9315 break;
9316 case 0x07: /* FRECPS */
9317 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9318 break;
9319 case 0x0f: /* FRSQRTS */
9320 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9321 break;
9322 case 0x14: /* FCMGE (reg) */
9323 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9324 break;
9325 case 0x15: /* FACGE */
9326 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9327 break;
9328 case 0x1a: /* FABD */
9329 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9330 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9331 break;
9332 case 0x1c: /* FCMGT (reg) */
9333 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9334 break;
9335 case 0x1d: /* FACGT */
9336 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9337 break;
9338 default:
9339 g_assert_not_reached();
9342 write_fp_sreg(s, rd, tcg_res);
9345 tcg_temp_free_i32(tcg_res);
9346 tcg_temp_free_i32(tcg_op1);
9347 tcg_temp_free_i32(tcg_op2);
9348 tcg_temp_free_ptr(fpst);
9351 /* AdvSIMD scalar three same extra
9352 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9353 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9354 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9355 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9357 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9358 uint32_t insn)
9360 int rd = extract32(insn, 0, 5);
9361 int rn = extract32(insn, 5, 5);
9362 int opcode = extract32(insn, 11, 4);
9363 int rm = extract32(insn, 16, 5);
9364 int size = extract32(insn, 22, 2);
9365 bool u = extract32(insn, 29, 1);
9366 TCGv_i32 ele1, ele2, ele3;
9367 TCGv_i64 res;
9368 bool feature;
9370 switch (u * 16 + opcode) {
9371 case 0x10: /* SQRDMLAH (vector) */
9372 case 0x11: /* SQRDMLSH (vector) */
9373 if (size != 1 && size != 2) {
9374 unallocated_encoding(s);
9375 return;
9377 feature = dc_isar_feature(aa64_rdm, s);
9378 break;
9379 default:
9380 unallocated_encoding(s);
9381 return;
9383 if (!feature) {
9384 unallocated_encoding(s);
9385 return;
9387 if (!fp_access_check(s)) {
9388 return;
9391 /* Do a single operation on the lowest element in the vector.
9392 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9393 * with no side effects for all these operations.
9394 * OPTME: special-purpose helpers would avoid doing some
9395 * unnecessary work in the helper for the 16 bit cases.
9397 ele1 = tcg_temp_new_i32();
9398 ele2 = tcg_temp_new_i32();
9399 ele3 = tcg_temp_new_i32();
9401 read_vec_element_i32(s, ele1, rn, 0, size);
9402 read_vec_element_i32(s, ele2, rm, 0, size);
9403 read_vec_element_i32(s, ele3, rd, 0, size);
9405 switch (opcode) {
9406 case 0x0: /* SQRDMLAH */
9407 if (size == 1) {
9408 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9409 } else {
9410 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9412 break;
9413 case 0x1: /* SQRDMLSH */
9414 if (size == 1) {
9415 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9416 } else {
9417 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9419 break;
9420 default:
9421 g_assert_not_reached();
9423 tcg_temp_free_i32(ele1);
9424 tcg_temp_free_i32(ele2);
9426 res = tcg_temp_new_i64();
9427 tcg_gen_extu_i32_i64(res, ele3);
9428 tcg_temp_free_i32(ele3);
9430 write_fp_dreg(s, rd, res);
9431 tcg_temp_free_i64(res);
9434 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9435 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9436 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9438 /* Handle 64->64 opcodes which are shared between the scalar and
9439 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9440 * is valid in either group and also the double-precision fp ops.
9441 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9442 * requires them.
9444 TCGCond cond;
9446 switch (opcode) {
9447 case 0x4: /* CLS, CLZ */
9448 if (u) {
9449 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9450 } else {
9451 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9453 break;
9454 case 0x5: /* NOT */
9455 /* This opcode is shared with CNT and RBIT but we have earlier
9456 * enforced that size == 3 if and only if this is the NOT insn.
9458 tcg_gen_not_i64(tcg_rd, tcg_rn);
9459 break;
9460 case 0x7: /* SQABS, SQNEG */
9461 if (u) {
9462 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9463 } else {
9464 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9466 break;
9467 case 0xa: /* CMLT */
9468 /* 64 bit integer comparison against zero, result is
9469 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9470 * subtracting 1.
9472 cond = TCG_COND_LT;
9473 do_cmop:
9474 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9475 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9476 break;
9477 case 0x8: /* CMGT, CMGE */
9478 cond = u ? TCG_COND_GE : TCG_COND_GT;
9479 goto do_cmop;
9480 case 0x9: /* CMEQ, CMLE */
9481 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9482 goto do_cmop;
9483 case 0xb: /* ABS, NEG */
9484 if (u) {
9485 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9486 } else {
9487 tcg_gen_abs_i64(tcg_rd, tcg_rn);
9489 break;
9490 case 0x2f: /* FABS */
9491 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9492 break;
9493 case 0x6f: /* FNEG */
9494 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9495 break;
9496 case 0x7f: /* FSQRT */
9497 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9498 break;
9499 case 0x1a: /* FCVTNS */
9500 case 0x1b: /* FCVTMS */
9501 case 0x1c: /* FCVTAS */
9502 case 0x3a: /* FCVTPS */
9503 case 0x3b: /* FCVTZS */
9505 TCGv_i32 tcg_shift = tcg_const_i32(0);
9506 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9507 tcg_temp_free_i32(tcg_shift);
9508 break;
9510 case 0x5a: /* FCVTNU */
9511 case 0x5b: /* FCVTMU */
9512 case 0x5c: /* FCVTAU */
9513 case 0x7a: /* FCVTPU */
9514 case 0x7b: /* FCVTZU */
9516 TCGv_i32 tcg_shift = tcg_const_i32(0);
9517 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9518 tcg_temp_free_i32(tcg_shift);
9519 break;
9521 case 0x18: /* FRINTN */
9522 case 0x19: /* FRINTM */
9523 case 0x38: /* FRINTP */
9524 case 0x39: /* FRINTZ */
9525 case 0x58: /* FRINTA */
9526 case 0x79: /* FRINTI */
9527 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9528 break;
9529 case 0x59: /* FRINTX */
9530 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9531 break;
9532 case 0x1e: /* FRINT32Z */
9533 case 0x5e: /* FRINT32X */
9534 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9535 break;
9536 case 0x1f: /* FRINT64Z */
9537 case 0x5f: /* FRINT64X */
9538 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9539 break;
9540 default:
9541 g_assert_not_reached();
9545 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9546 bool is_scalar, bool is_u, bool is_q,
9547 int size, int rn, int rd)
9549 bool is_double = (size == MO_64);
9550 TCGv_ptr fpst;
9552 if (!fp_access_check(s)) {
9553 return;
9556 fpst = get_fpstatus_ptr(size == MO_16);
9558 if (is_double) {
9559 TCGv_i64 tcg_op = tcg_temp_new_i64();
9560 TCGv_i64 tcg_zero = tcg_const_i64(0);
9561 TCGv_i64 tcg_res = tcg_temp_new_i64();
9562 NeonGenTwoDoubleOPFn *genfn;
9563 bool swap = false;
9564 int pass;
9566 switch (opcode) {
9567 case 0x2e: /* FCMLT (zero) */
9568 swap = true;
9569 /* fallthrough */
9570 case 0x2c: /* FCMGT (zero) */
9571 genfn = gen_helper_neon_cgt_f64;
9572 break;
9573 case 0x2d: /* FCMEQ (zero) */
9574 genfn = gen_helper_neon_ceq_f64;
9575 break;
9576 case 0x6d: /* FCMLE (zero) */
9577 swap = true;
9578 /* fall through */
9579 case 0x6c: /* FCMGE (zero) */
9580 genfn = gen_helper_neon_cge_f64;
9581 break;
9582 default:
9583 g_assert_not_reached();
9586 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9587 read_vec_element(s, tcg_op, rn, pass, MO_64);
9588 if (swap) {
9589 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9590 } else {
9591 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9593 write_vec_element(s, tcg_res, rd, pass, MO_64);
9595 tcg_temp_free_i64(tcg_res);
9596 tcg_temp_free_i64(tcg_zero);
9597 tcg_temp_free_i64(tcg_op);
9599 clear_vec_high(s, !is_scalar, rd);
9600 } else {
9601 TCGv_i32 tcg_op = tcg_temp_new_i32();
9602 TCGv_i32 tcg_zero = tcg_const_i32(0);
9603 TCGv_i32 tcg_res = tcg_temp_new_i32();
9604 NeonGenTwoSingleOPFn *genfn;
9605 bool swap = false;
9606 int pass, maxpasses;
9608 if (size == MO_16) {
9609 switch (opcode) {
9610 case 0x2e: /* FCMLT (zero) */
9611 swap = true;
9612 /* fall through */
9613 case 0x2c: /* FCMGT (zero) */
9614 genfn = gen_helper_advsimd_cgt_f16;
9615 break;
9616 case 0x2d: /* FCMEQ (zero) */
9617 genfn = gen_helper_advsimd_ceq_f16;
9618 break;
9619 case 0x6d: /* FCMLE (zero) */
9620 swap = true;
9621 /* fall through */
9622 case 0x6c: /* FCMGE (zero) */
9623 genfn = gen_helper_advsimd_cge_f16;
9624 break;
9625 default:
9626 g_assert_not_reached();
9628 } else {
9629 switch (opcode) {
9630 case 0x2e: /* FCMLT (zero) */
9631 swap = true;
9632 /* fall through */
9633 case 0x2c: /* FCMGT (zero) */
9634 genfn = gen_helper_neon_cgt_f32;
9635 break;
9636 case 0x2d: /* FCMEQ (zero) */
9637 genfn = gen_helper_neon_ceq_f32;
9638 break;
9639 case 0x6d: /* FCMLE (zero) */
9640 swap = true;
9641 /* fall through */
9642 case 0x6c: /* FCMGE (zero) */
9643 genfn = gen_helper_neon_cge_f32;
9644 break;
9645 default:
9646 g_assert_not_reached();
9650 if (is_scalar) {
9651 maxpasses = 1;
9652 } else {
9653 int vector_size = 8 << is_q;
9654 maxpasses = vector_size >> size;
9657 for (pass = 0; pass < maxpasses; pass++) {
9658 read_vec_element_i32(s, tcg_op, rn, pass, size);
9659 if (swap) {
9660 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9661 } else {
9662 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9664 if (is_scalar) {
9665 write_fp_sreg(s, rd, tcg_res);
9666 } else {
9667 write_vec_element_i32(s, tcg_res, rd, pass, size);
9670 tcg_temp_free_i32(tcg_res);
9671 tcg_temp_free_i32(tcg_zero);
9672 tcg_temp_free_i32(tcg_op);
9673 if (!is_scalar) {
9674 clear_vec_high(s, is_q, rd);
9678 tcg_temp_free_ptr(fpst);
9681 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9682 bool is_scalar, bool is_u, bool is_q,
9683 int size, int rn, int rd)
9685 bool is_double = (size == 3);
9686 TCGv_ptr fpst = get_fpstatus_ptr(false);
9688 if (is_double) {
9689 TCGv_i64 tcg_op = tcg_temp_new_i64();
9690 TCGv_i64 tcg_res = tcg_temp_new_i64();
9691 int pass;
9693 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9694 read_vec_element(s, tcg_op, rn, pass, MO_64);
9695 switch (opcode) {
9696 case 0x3d: /* FRECPE */
9697 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9698 break;
9699 case 0x3f: /* FRECPX */
9700 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9701 break;
9702 case 0x7d: /* FRSQRTE */
9703 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9704 break;
9705 default:
9706 g_assert_not_reached();
9708 write_vec_element(s, tcg_res, rd, pass, MO_64);
9710 tcg_temp_free_i64(tcg_res);
9711 tcg_temp_free_i64(tcg_op);
9712 clear_vec_high(s, !is_scalar, rd);
9713 } else {
9714 TCGv_i32 tcg_op = tcg_temp_new_i32();
9715 TCGv_i32 tcg_res = tcg_temp_new_i32();
9716 int pass, maxpasses;
9718 if (is_scalar) {
9719 maxpasses = 1;
9720 } else {
9721 maxpasses = is_q ? 4 : 2;
9724 for (pass = 0; pass < maxpasses; pass++) {
9725 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9727 switch (opcode) {
9728 case 0x3c: /* URECPE */
9729 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
9730 break;
9731 case 0x3d: /* FRECPE */
9732 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9733 break;
9734 case 0x3f: /* FRECPX */
9735 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9736 break;
9737 case 0x7d: /* FRSQRTE */
9738 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9739 break;
9740 default:
9741 g_assert_not_reached();
9744 if (is_scalar) {
9745 write_fp_sreg(s, rd, tcg_res);
9746 } else {
9747 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9750 tcg_temp_free_i32(tcg_res);
9751 tcg_temp_free_i32(tcg_op);
9752 if (!is_scalar) {
9753 clear_vec_high(s, is_q, rd);
9756 tcg_temp_free_ptr(fpst);
9759 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9760 int opcode, bool u, bool is_q,
9761 int size, int rn, int rd)
9763 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9764 * in the source becomes a size element in the destination).
9766 int pass;
9767 TCGv_i32 tcg_res[2];
9768 int destelt = is_q ? 2 : 0;
9769 int passes = scalar ? 1 : 2;
9771 if (scalar) {
9772 tcg_res[1] = tcg_const_i32(0);
9775 for (pass = 0; pass < passes; pass++) {
9776 TCGv_i64 tcg_op = tcg_temp_new_i64();
9777 NeonGenNarrowFn *genfn = NULL;
9778 NeonGenNarrowEnvFn *genenvfn = NULL;
9780 if (scalar) {
9781 read_vec_element(s, tcg_op, rn, pass, size + 1);
9782 } else {
9783 read_vec_element(s, tcg_op, rn, pass, MO_64);
9785 tcg_res[pass] = tcg_temp_new_i32();
9787 switch (opcode) {
9788 case 0x12: /* XTN, SQXTUN */
9790 static NeonGenNarrowFn * const xtnfns[3] = {
9791 gen_helper_neon_narrow_u8,
9792 gen_helper_neon_narrow_u16,
9793 tcg_gen_extrl_i64_i32,
9795 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9796 gen_helper_neon_unarrow_sat8,
9797 gen_helper_neon_unarrow_sat16,
9798 gen_helper_neon_unarrow_sat32,
9800 if (u) {
9801 genenvfn = sqxtunfns[size];
9802 } else {
9803 genfn = xtnfns[size];
9805 break;
9807 case 0x14: /* SQXTN, UQXTN */
9809 static NeonGenNarrowEnvFn * const fns[3][2] = {
9810 { gen_helper_neon_narrow_sat_s8,
9811 gen_helper_neon_narrow_sat_u8 },
9812 { gen_helper_neon_narrow_sat_s16,
9813 gen_helper_neon_narrow_sat_u16 },
9814 { gen_helper_neon_narrow_sat_s32,
9815 gen_helper_neon_narrow_sat_u32 },
9817 genenvfn = fns[size][u];
9818 break;
9820 case 0x16: /* FCVTN, FCVTN2 */
9821 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9822 if (size == 2) {
9823 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
9824 } else {
9825 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9826 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9827 TCGv_ptr fpst = get_fpstatus_ptr(false);
9828 TCGv_i32 ahp = get_ahp_flag();
9830 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9831 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9832 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9833 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9834 tcg_temp_free_i32(tcg_lo);
9835 tcg_temp_free_i32(tcg_hi);
9836 tcg_temp_free_ptr(fpst);
9837 tcg_temp_free_i32(ahp);
9839 break;
9840 case 0x56: /* FCVTXN, FCVTXN2 */
9841 /* 64 bit to 32 bit float conversion
9842 * with von Neumann rounding (round to odd)
9844 assert(size == 2);
9845 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
9846 break;
9847 default:
9848 g_assert_not_reached();
9851 if (genfn) {
9852 genfn(tcg_res[pass], tcg_op);
9853 } else if (genenvfn) {
9854 genenvfn(tcg_res[pass], cpu_env, tcg_op);
9857 tcg_temp_free_i64(tcg_op);
9860 for (pass = 0; pass < 2; pass++) {
9861 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9862 tcg_temp_free_i32(tcg_res[pass]);
9864 clear_vec_high(s, is_q, rd);
9867 /* Remaining saturating accumulating ops */
9868 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9869 bool is_q, int size, int rn, int rd)
9871 bool is_double = (size == 3);
9873 if (is_double) {
9874 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9875 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9876 int pass;
9878 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9879 read_vec_element(s, tcg_rn, rn, pass, MO_64);
9880 read_vec_element(s, tcg_rd, rd, pass, MO_64);
9882 if (is_u) { /* USQADD */
9883 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9884 } else { /* SUQADD */
9885 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9887 write_vec_element(s, tcg_rd, rd, pass, MO_64);
9889 tcg_temp_free_i64(tcg_rd);
9890 tcg_temp_free_i64(tcg_rn);
9891 clear_vec_high(s, !is_scalar, rd);
9892 } else {
9893 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9894 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9895 int pass, maxpasses;
9897 if (is_scalar) {
9898 maxpasses = 1;
9899 } else {
9900 maxpasses = is_q ? 4 : 2;
9903 for (pass = 0; pass < maxpasses; pass++) {
9904 if (is_scalar) {
9905 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9906 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9907 } else {
9908 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9909 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9912 if (is_u) { /* USQADD */
9913 switch (size) {
9914 case 0:
9915 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9916 break;
9917 case 1:
9918 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9919 break;
9920 case 2:
9921 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9922 break;
9923 default:
9924 g_assert_not_reached();
9926 } else { /* SUQADD */
9927 switch (size) {
9928 case 0:
9929 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9930 break;
9931 case 1:
9932 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9933 break;
9934 case 2:
9935 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
9936 break;
9937 default:
9938 g_assert_not_reached();
9942 if (is_scalar) {
9943 TCGv_i64 tcg_zero = tcg_const_i64(0);
9944 write_vec_element(s, tcg_zero, rd, 0, MO_64);
9945 tcg_temp_free_i64(tcg_zero);
9947 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9949 tcg_temp_free_i32(tcg_rd);
9950 tcg_temp_free_i32(tcg_rn);
9951 clear_vec_high(s, is_q, rd);
9955 /* AdvSIMD scalar two reg misc
9956 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9957 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9958 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9959 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9961 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9963 int rd = extract32(insn, 0, 5);
9964 int rn = extract32(insn, 5, 5);
9965 int opcode = extract32(insn, 12, 5);
9966 int size = extract32(insn, 22, 2);
9967 bool u = extract32(insn, 29, 1);
9968 bool is_fcvt = false;
9969 int rmode;
9970 TCGv_i32 tcg_rmode;
9971 TCGv_ptr tcg_fpstatus;
9973 switch (opcode) {
9974 case 0x3: /* USQADD / SUQADD*/
9975 if (!fp_access_check(s)) {
9976 return;
9978 handle_2misc_satacc(s, true, u, false, size, rn, rd);
9979 return;
9980 case 0x7: /* SQABS / SQNEG */
9981 break;
9982 case 0xa: /* CMLT */
9983 if (u) {
9984 unallocated_encoding(s);
9985 return;
9987 /* fall through */
9988 case 0x8: /* CMGT, CMGE */
9989 case 0x9: /* CMEQ, CMLE */
9990 case 0xb: /* ABS, NEG */
9991 if (size != 3) {
9992 unallocated_encoding(s);
9993 return;
9995 break;
9996 case 0x12: /* SQXTUN */
9997 if (!u) {
9998 unallocated_encoding(s);
9999 return;
10001 /* fall through */
10002 case 0x14: /* SQXTN, UQXTN */
10003 if (size == 3) {
10004 unallocated_encoding(s);
10005 return;
10007 if (!fp_access_check(s)) {
10008 return;
10010 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10011 return;
10012 case 0xc ... 0xf:
10013 case 0x16 ... 0x1d:
10014 case 0x1f:
10015 /* Floating point: U, size[1] and opcode indicate operation;
10016 * size[0] indicates single or double precision.
10018 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10019 size = extract32(size, 0, 1) ? 3 : 2;
10020 switch (opcode) {
10021 case 0x2c: /* FCMGT (zero) */
10022 case 0x2d: /* FCMEQ (zero) */
10023 case 0x2e: /* FCMLT (zero) */
10024 case 0x6c: /* FCMGE (zero) */
10025 case 0x6d: /* FCMLE (zero) */
10026 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10027 return;
10028 case 0x1d: /* SCVTF */
10029 case 0x5d: /* UCVTF */
10031 bool is_signed = (opcode == 0x1d);
10032 if (!fp_access_check(s)) {
10033 return;
10035 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10036 return;
10038 case 0x3d: /* FRECPE */
10039 case 0x3f: /* FRECPX */
10040 case 0x7d: /* FRSQRTE */
10041 if (!fp_access_check(s)) {
10042 return;
10044 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10045 return;
10046 case 0x1a: /* FCVTNS */
10047 case 0x1b: /* FCVTMS */
10048 case 0x3a: /* FCVTPS */
10049 case 0x3b: /* FCVTZS */
10050 case 0x5a: /* FCVTNU */
10051 case 0x5b: /* FCVTMU */
10052 case 0x7a: /* FCVTPU */
10053 case 0x7b: /* FCVTZU */
10054 is_fcvt = true;
10055 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10056 break;
10057 case 0x1c: /* FCVTAS */
10058 case 0x5c: /* FCVTAU */
10059 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10060 is_fcvt = true;
10061 rmode = FPROUNDING_TIEAWAY;
10062 break;
10063 case 0x56: /* FCVTXN, FCVTXN2 */
10064 if (size == 2) {
10065 unallocated_encoding(s);
10066 return;
10068 if (!fp_access_check(s)) {
10069 return;
10071 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10072 return;
10073 default:
10074 unallocated_encoding(s);
10075 return;
10077 break;
10078 default:
10079 unallocated_encoding(s);
10080 return;
10083 if (!fp_access_check(s)) {
10084 return;
10087 if (is_fcvt) {
10088 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10089 tcg_fpstatus = get_fpstatus_ptr(false);
10090 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10091 } else {
10092 tcg_rmode = NULL;
10093 tcg_fpstatus = NULL;
10096 if (size == 3) {
10097 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10098 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10100 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10101 write_fp_dreg(s, rd, tcg_rd);
10102 tcg_temp_free_i64(tcg_rd);
10103 tcg_temp_free_i64(tcg_rn);
10104 } else {
10105 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10106 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10108 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10110 switch (opcode) {
10111 case 0x7: /* SQABS, SQNEG */
10113 NeonGenOneOpEnvFn *genfn;
10114 static NeonGenOneOpEnvFn * const fns[3][2] = {
10115 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10116 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10117 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10119 genfn = fns[size][u];
10120 genfn(tcg_rd, cpu_env, tcg_rn);
10121 break;
10123 case 0x1a: /* FCVTNS */
10124 case 0x1b: /* FCVTMS */
10125 case 0x1c: /* FCVTAS */
10126 case 0x3a: /* FCVTPS */
10127 case 0x3b: /* FCVTZS */
10129 TCGv_i32 tcg_shift = tcg_const_i32(0);
10130 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
10131 tcg_temp_free_i32(tcg_shift);
10132 break;
10134 case 0x5a: /* FCVTNU */
10135 case 0x5b: /* FCVTMU */
10136 case 0x5c: /* FCVTAU */
10137 case 0x7a: /* FCVTPU */
10138 case 0x7b: /* FCVTZU */
10140 TCGv_i32 tcg_shift = tcg_const_i32(0);
10141 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
10142 tcg_temp_free_i32(tcg_shift);
10143 break;
10145 default:
10146 g_assert_not_reached();
10149 write_fp_sreg(s, rd, tcg_rd);
10150 tcg_temp_free_i32(tcg_rd);
10151 tcg_temp_free_i32(tcg_rn);
10154 if (is_fcvt) {
10155 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10156 tcg_temp_free_i32(tcg_rmode);
10157 tcg_temp_free_ptr(tcg_fpstatus);
10161 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10162 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10163 int immh, int immb, int opcode, int rn, int rd)
10165 int size = 32 - clz32(immh) - 1;
10166 int immhb = immh << 3 | immb;
10167 int shift = 2 * (8 << size) - immhb;
10168 bool accumulate = false;
10169 int dsize = is_q ? 128 : 64;
10170 int esize = 8 << size;
10171 int elements = dsize/esize;
10172 MemOp memop = size | (is_u ? 0 : MO_SIGN);
10173 TCGv_i64 tcg_rn = new_tmp_a64(s);
10174 TCGv_i64 tcg_rd = new_tmp_a64(s);
10175 TCGv_i64 tcg_round;
10176 uint64_t round_const;
10177 int i;
10179 if (extract32(immh, 3, 1) && !is_q) {
10180 unallocated_encoding(s);
10181 return;
10183 tcg_debug_assert(size <= 3);
10185 if (!fp_access_check(s)) {
10186 return;
10189 switch (opcode) {
10190 case 0x02: /* SSRA / USRA (accumulate) */
10191 gen_gvec_fn2i(s, is_q, rd, rn, shift,
10192 is_u ? gen_gvec_usra : gen_gvec_ssra, size);
10193 return;
10194 case 0x08: /* SRI */
10195 /* Shift count same as element size is valid but does nothing. */
10196 if (shift == 8 << size) {
10197 goto done;
10199 gen_gvec_op2i(s, is_q, rd, rn, shift, &sri_op[size]);
10200 return;
10202 case 0x00: /* SSHR / USHR */
10203 if (is_u) {
10204 if (shift == 8 << size) {
10205 /* Shift count the same size as element size produces zero. */
10206 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10207 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10208 } else {
10209 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shri, size);
10211 } else {
10212 /* Shift count the same size as element size produces all sign. */
10213 if (shift == 8 << size) {
10214 shift -= 1;
10216 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_sari, size);
10218 return;
10220 case 0x04: /* SRSHR / URSHR (rounding) */
10221 gen_gvec_fn2i(s, is_q, rd, rn, shift,
10222 is_u ? gen_gvec_urshr : gen_gvec_srshr, size);
10223 return;
10225 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10226 gen_gvec_fn2i(s, is_q, rd, rn, shift,
10227 is_u ? gen_gvec_ursra : gen_gvec_srsra, size);
10228 return;
10230 default:
10231 g_assert_not_reached();
10234 round_const = 1ULL << (shift - 1);
10235 tcg_round = tcg_const_i64(round_const);
10237 for (i = 0; i < elements; i++) {
10238 read_vec_element(s, tcg_rn, rn, i, memop);
10239 if (accumulate) {
10240 read_vec_element(s, tcg_rd, rd, i, memop);
10243 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10244 accumulate, is_u, size, shift);
10246 write_vec_element(s, tcg_rd, rd, i, size);
10248 tcg_temp_free_i64(tcg_round);
10250 done:
10251 clear_vec_high(s, is_q, rd);
10254 /* SHL/SLI - Vector shift left */
10255 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10256 int immh, int immb, int opcode, int rn, int rd)
10258 int size = 32 - clz32(immh) - 1;
10259 int immhb = immh << 3 | immb;
10260 int shift = immhb - (8 << size);
10262 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10263 assert(size >= 0 && size <= 3);
10265 if (extract32(immh, 3, 1) && !is_q) {
10266 unallocated_encoding(s);
10267 return;
10270 if (!fp_access_check(s)) {
10271 return;
10274 if (insert) {
10275 gen_gvec_op2i(s, is_q, rd, rn, shift, &sli_op[size]);
10276 } else {
10277 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10281 /* USHLL/SHLL - Vector shift left with widening */
10282 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10283 int immh, int immb, int opcode, int rn, int rd)
10285 int size = 32 - clz32(immh) - 1;
10286 int immhb = immh << 3 | immb;
10287 int shift = immhb - (8 << size);
10288 int dsize = 64;
10289 int esize = 8 << size;
10290 int elements = dsize/esize;
10291 TCGv_i64 tcg_rn = new_tmp_a64(s);
10292 TCGv_i64 tcg_rd = new_tmp_a64(s);
10293 int i;
10295 if (size >= 3) {
10296 unallocated_encoding(s);
10297 return;
10300 if (!fp_access_check(s)) {
10301 return;
10304 /* For the LL variants the store is larger than the load,
10305 * so if rd == rn we would overwrite parts of our input.
10306 * So load everything right now and use shifts in the main loop.
10308 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10310 for (i = 0; i < elements; i++) {
10311 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10312 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10313 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10314 write_vec_element(s, tcg_rd, rd, i, size + 1);
10318 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10319 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10320 int immh, int immb, int opcode, int rn, int rd)
10322 int immhb = immh << 3 | immb;
10323 int size = 32 - clz32(immh) - 1;
10324 int dsize = 64;
10325 int esize = 8 << size;
10326 int elements = dsize/esize;
10327 int shift = (2 * esize) - immhb;
10328 bool round = extract32(opcode, 0, 1);
10329 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10330 TCGv_i64 tcg_round;
10331 int i;
10333 if (extract32(immh, 3, 1)) {
10334 unallocated_encoding(s);
10335 return;
10338 if (!fp_access_check(s)) {
10339 return;
10342 tcg_rn = tcg_temp_new_i64();
10343 tcg_rd = tcg_temp_new_i64();
10344 tcg_final = tcg_temp_new_i64();
10345 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10347 if (round) {
10348 uint64_t round_const = 1ULL << (shift - 1);
10349 tcg_round = tcg_const_i64(round_const);
10350 } else {
10351 tcg_round = NULL;
10354 for (i = 0; i < elements; i++) {
10355 read_vec_element(s, tcg_rn, rn, i, size+1);
10356 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10357 false, true, size+1, shift);
10359 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10362 if (!is_q) {
10363 write_vec_element(s, tcg_final, rd, 0, MO_64);
10364 } else {
10365 write_vec_element(s, tcg_final, rd, 1, MO_64);
10367 if (round) {
10368 tcg_temp_free_i64(tcg_round);
10370 tcg_temp_free_i64(tcg_rn);
10371 tcg_temp_free_i64(tcg_rd);
10372 tcg_temp_free_i64(tcg_final);
10374 clear_vec_high(s, is_q, rd);
10378 /* AdvSIMD shift by immediate
10379 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10380 * +---+---+---+-------------+------+------+--------+---+------+------+
10381 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10382 * +---+---+---+-------------+------+------+--------+---+------+------+
10384 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10386 int rd = extract32(insn, 0, 5);
10387 int rn = extract32(insn, 5, 5);
10388 int opcode = extract32(insn, 11, 5);
10389 int immb = extract32(insn, 16, 3);
10390 int immh = extract32(insn, 19, 4);
10391 bool is_u = extract32(insn, 29, 1);
10392 bool is_q = extract32(insn, 30, 1);
10394 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10395 assert(immh != 0);
10397 switch (opcode) {
10398 case 0x08: /* SRI */
10399 if (!is_u) {
10400 unallocated_encoding(s);
10401 return;
10403 /* fall through */
10404 case 0x00: /* SSHR / USHR */
10405 case 0x02: /* SSRA / USRA (accumulate) */
10406 case 0x04: /* SRSHR / URSHR (rounding) */
10407 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10408 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10409 break;
10410 case 0x0a: /* SHL / SLI */
10411 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10412 break;
10413 case 0x10: /* SHRN */
10414 case 0x11: /* RSHRN / SQRSHRUN */
10415 if (is_u) {
10416 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10417 opcode, rn, rd);
10418 } else {
10419 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10421 break;
10422 case 0x12: /* SQSHRN / UQSHRN */
10423 case 0x13: /* SQRSHRN / UQRSHRN */
10424 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10425 opcode, rn, rd);
10426 break;
10427 case 0x14: /* SSHLL / USHLL */
10428 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10429 break;
10430 case 0x1c: /* SCVTF / UCVTF */
10431 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10432 opcode, rn, rd);
10433 break;
10434 case 0xc: /* SQSHLU */
10435 if (!is_u) {
10436 unallocated_encoding(s);
10437 return;
10439 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10440 break;
10441 case 0xe: /* SQSHL, UQSHL */
10442 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10443 break;
10444 case 0x1f: /* FCVTZS/ FCVTZU */
10445 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10446 return;
10447 default:
10448 unallocated_encoding(s);
10449 return;
10453 /* Generate code to do a "long" addition or subtraction, ie one done in
10454 * TCGv_i64 on vector lanes twice the width specified by size.
10456 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10457 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10459 static NeonGenTwo64OpFn * const fns[3][2] = {
10460 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10461 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10462 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10464 NeonGenTwo64OpFn *genfn;
10465 assert(size < 3);
10467 genfn = fns[size][is_sub];
10468 genfn(tcg_res, tcg_op1, tcg_op2);
10471 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10472 int opcode, int rd, int rn, int rm)
10474 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10475 TCGv_i64 tcg_res[2];
10476 int pass, accop;
10478 tcg_res[0] = tcg_temp_new_i64();
10479 tcg_res[1] = tcg_temp_new_i64();
10481 /* Does this op do an adding accumulate, a subtracting accumulate,
10482 * or no accumulate at all?
10484 switch (opcode) {
10485 case 5:
10486 case 8:
10487 case 9:
10488 accop = 1;
10489 break;
10490 case 10:
10491 case 11:
10492 accop = -1;
10493 break;
10494 default:
10495 accop = 0;
10496 break;
10499 if (accop != 0) {
10500 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10501 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10504 /* size == 2 means two 32x32->64 operations; this is worth special
10505 * casing because we can generally handle it inline.
10507 if (size == 2) {
10508 for (pass = 0; pass < 2; pass++) {
10509 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10510 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10511 TCGv_i64 tcg_passres;
10512 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10514 int elt = pass + is_q * 2;
10516 read_vec_element(s, tcg_op1, rn, elt, memop);
10517 read_vec_element(s, tcg_op2, rm, elt, memop);
10519 if (accop == 0) {
10520 tcg_passres = tcg_res[pass];
10521 } else {
10522 tcg_passres = tcg_temp_new_i64();
10525 switch (opcode) {
10526 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10527 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10528 break;
10529 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10530 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10531 break;
10532 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10533 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10535 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10536 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10538 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10539 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10540 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10541 tcg_passres,
10542 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10543 tcg_temp_free_i64(tcg_tmp1);
10544 tcg_temp_free_i64(tcg_tmp2);
10545 break;
10547 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10548 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10549 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10550 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10551 break;
10552 case 9: /* SQDMLAL, SQDMLAL2 */
10553 case 11: /* SQDMLSL, SQDMLSL2 */
10554 case 13: /* SQDMULL, SQDMULL2 */
10555 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10556 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10557 tcg_passres, tcg_passres);
10558 break;
10559 default:
10560 g_assert_not_reached();
10563 if (opcode == 9 || opcode == 11) {
10564 /* saturating accumulate ops */
10565 if (accop < 0) {
10566 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10568 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10569 tcg_res[pass], tcg_passres);
10570 } else if (accop > 0) {
10571 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10572 } else if (accop < 0) {
10573 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10576 if (accop != 0) {
10577 tcg_temp_free_i64(tcg_passres);
10580 tcg_temp_free_i64(tcg_op1);
10581 tcg_temp_free_i64(tcg_op2);
10583 } else {
10584 /* size 0 or 1, generally helper functions */
10585 for (pass = 0; pass < 2; pass++) {
10586 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10587 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10588 TCGv_i64 tcg_passres;
10589 int elt = pass + is_q * 2;
10591 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10592 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10594 if (accop == 0) {
10595 tcg_passres = tcg_res[pass];
10596 } else {
10597 tcg_passres = tcg_temp_new_i64();
10600 switch (opcode) {
10601 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10602 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10604 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10605 static NeonGenWidenFn * const widenfns[2][2] = {
10606 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10607 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10609 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10611 widenfn(tcg_op2_64, tcg_op2);
10612 widenfn(tcg_passres, tcg_op1);
10613 gen_neon_addl(size, (opcode == 2), tcg_passres,
10614 tcg_passres, tcg_op2_64);
10615 tcg_temp_free_i64(tcg_op2_64);
10616 break;
10618 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10619 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10620 if (size == 0) {
10621 if (is_u) {
10622 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10623 } else {
10624 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10626 } else {
10627 if (is_u) {
10628 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10629 } else {
10630 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10633 break;
10634 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10635 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10636 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10637 if (size == 0) {
10638 if (is_u) {
10639 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10640 } else {
10641 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10643 } else {
10644 if (is_u) {
10645 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10646 } else {
10647 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10650 break;
10651 case 9: /* SQDMLAL, SQDMLAL2 */
10652 case 11: /* SQDMLSL, SQDMLSL2 */
10653 case 13: /* SQDMULL, SQDMULL2 */
10654 assert(size == 1);
10655 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10656 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10657 tcg_passres, tcg_passres);
10658 break;
10659 default:
10660 g_assert_not_reached();
10662 tcg_temp_free_i32(tcg_op1);
10663 tcg_temp_free_i32(tcg_op2);
10665 if (accop != 0) {
10666 if (opcode == 9 || opcode == 11) {
10667 /* saturating accumulate ops */
10668 if (accop < 0) {
10669 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10671 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10672 tcg_res[pass],
10673 tcg_passres);
10674 } else {
10675 gen_neon_addl(size, (accop < 0), tcg_res[pass],
10676 tcg_res[pass], tcg_passres);
10678 tcg_temp_free_i64(tcg_passres);
10683 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10684 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10685 tcg_temp_free_i64(tcg_res[0]);
10686 tcg_temp_free_i64(tcg_res[1]);
10689 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10690 int opcode, int rd, int rn, int rm)
10692 TCGv_i64 tcg_res[2];
10693 int part = is_q ? 2 : 0;
10694 int pass;
10696 for (pass = 0; pass < 2; pass++) {
10697 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10698 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10699 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10700 static NeonGenWidenFn * const widenfns[3][2] = {
10701 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10702 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10703 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10705 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10707 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10708 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10709 widenfn(tcg_op2_wide, tcg_op2);
10710 tcg_temp_free_i32(tcg_op2);
10711 tcg_res[pass] = tcg_temp_new_i64();
10712 gen_neon_addl(size, (opcode == 3),
10713 tcg_res[pass], tcg_op1, tcg_op2_wide);
10714 tcg_temp_free_i64(tcg_op1);
10715 tcg_temp_free_i64(tcg_op2_wide);
10718 for (pass = 0; pass < 2; pass++) {
10719 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10720 tcg_temp_free_i64(tcg_res[pass]);
10724 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10726 tcg_gen_addi_i64(in, in, 1U << 31);
10727 tcg_gen_extrh_i64_i32(res, in);
10730 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10731 int opcode, int rd, int rn, int rm)
10733 TCGv_i32 tcg_res[2];
10734 int part = is_q ? 2 : 0;
10735 int pass;
10737 for (pass = 0; pass < 2; pass++) {
10738 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10739 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10740 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10741 static NeonGenNarrowFn * const narrowfns[3][2] = {
10742 { gen_helper_neon_narrow_high_u8,
10743 gen_helper_neon_narrow_round_high_u8 },
10744 { gen_helper_neon_narrow_high_u16,
10745 gen_helper_neon_narrow_round_high_u16 },
10746 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10748 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10750 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10751 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10753 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10755 tcg_temp_free_i64(tcg_op1);
10756 tcg_temp_free_i64(tcg_op2);
10758 tcg_res[pass] = tcg_temp_new_i32();
10759 gennarrow(tcg_res[pass], tcg_wideres);
10760 tcg_temp_free_i64(tcg_wideres);
10763 for (pass = 0; pass < 2; pass++) {
10764 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10765 tcg_temp_free_i32(tcg_res[pass]);
10767 clear_vec_high(s, is_q, rd);
10770 /* AdvSIMD three different
10771 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10772 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10773 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10774 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10776 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10778 /* Instructions in this group fall into three basic classes
10779 * (in each case with the operation working on each element in
10780 * the input vectors):
10781 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10782 * 128 bit input)
10783 * (2) wide 64 x 128 -> 128
10784 * (3) narrowing 128 x 128 -> 64
10785 * Here we do initial decode, catch unallocated cases and
10786 * dispatch to separate functions for each class.
10788 int is_q = extract32(insn, 30, 1);
10789 int is_u = extract32(insn, 29, 1);
10790 int size = extract32(insn, 22, 2);
10791 int opcode = extract32(insn, 12, 4);
10792 int rm = extract32(insn, 16, 5);
10793 int rn = extract32(insn, 5, 5);
10794 int rd = extract32(insn, 0, 5);
10796 switch (opcode) {
10797 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10798 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10799 /* 64 x 128 -> 128 */
10800 if (size == 3) {
10801 unallocated_encoding(s);
10802 return;
10804 if (!fp_access_check(s)) {
10805 return;
10807 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10808 break;
10809 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10810 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10811 /* 128 x 128 -> 64 */
10812 if (size == 3) {
10813 unallocated_encoding(s);
10814 return;
10816 if (!fp_access_check(s)) {
10817 return;
10819 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10820 break;
10821 case 14: /* PMULL, PMULL2 */
10822 if (is_u) {
10823 unallocated_encoding(s);
10824 return;
10826 switch (size) {
10827 case 0: /* PMULL.P8 */
10828 if (!fp_access_check(s)) {
10829 return;
10831 /* The Q field specifies lo/hi half input for this insn. */
10832 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10833 gen_helper_neon_pmull_h);
10834 break;
10836 case 3: /* PMULL.P64 */
10837 if (!dc_isar_feature(aa64_pmull, s)) {
10838 unallocated_encoding(s);
10839 return;
10841 if (!fp_access_check(s)) {
10842 return;
10844 /* The Q field specifies lo/hi half input for this insn. */
10845 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10846 gen_helper_gvec_pmull_q);
10847 break;
10849 default:
10850 unallocated_encoding(s);
10851 break;
10853 return;
10854 case 9: /* SQDMLAL, SQDMLAL2 */
10855 case 11: /* SQDMLSL, SQDMLSL2 */
10856 case 13: /* SQDMULL, SQDMULL2 */
10857 if (is_u || size == 0) {
10858 unallocated_encoding(s);
10859 return;
10861 /* fall through */
10862 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10863 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10864 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10865 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10866 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10867 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10868 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10869 /* 64 x 64 -> 128 */
10870 if (size == 3) {
10871 unallocated_encoding(s);
10872 return;
10874 if (!fp_access_check(s)) {
10875 return;
10878 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10879 break;
10880 default:
10881 /* opcode 15 not allocated */
10882 unallocated_encoding(s);
10883 break;
10887 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10888 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10890 int rd = extract32(insn, 0, 5);
10891 int rn = extract32(insn, 5, 5);
10892 int rm = extract32(insn, 16, 5);
10893 int size = extract32(insn, 22, 2);
10894 bool is_u = extract32(insn, 29, 1);
10895 bool is_q = extract32(insn, 30, 1);
10897 if (!fp_access_check(s)) {
10898 return;
10901 switch (size + 4 * is_u) {
10902 case 0: /* AND */
10903 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10904 return;
10905 case 1: /* BIC */
10906 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10907 return;
10908 case 2: /* ORR */
10909 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10910 return;
10911 case 3: /* ORN */
10912 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10913 return;
10914 case 4: /* EOR */
10915 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10916 return;
10918 case 5: /* BSL bitwise select */
10919 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10920 return;
10921 case 6: /* BIT, bitwise insert if true */
10922 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10923 return;
10924 case 7: /* BIF, bitwise insert if false */
10925 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10926 return;
10928 default:
10929 g_assert_not_reached();
10933 /* Pairwise op subgroup of C3.6.16.
10935 * This is called directly or via the handle_3same_float for float pairwise
10936 * operations where the opcode and size are calculated differently.
10938 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10939 int size, int rn, int rm, int rd)
10941 TCGv_ptr fpst;
10942 int pass;
10944 /* Floating point operations need fpst */
10945 if (opcode >= 0x58) {
10946 fpst = get_fpstatus_ptr(false);
10947 } else {
10948 fpst = NULL;
10951 if (!fp_access_check(s)) {
10952 return;
10955 /* These operations work on the concatenated rm:rn, with each pair of
10956 * adjacent elements being operated on to produce an element in the result.
10958 if (size == 3) {
10959 TCGv_i64 tcg_res[2];
10961 for (pass = 0; pass < 2; pass++) {
10962 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10963 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10964 int passreg = (pass == 0) ? rn : rm;
10966 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10967 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10968 tcg_res[pass] = tcg_temp_new_i64();
10970 switch (opcode) {
10971 case 0x17: /* ADDP */
10972 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10973 break;
10974 case 0x58: /* FMAXNMP */
10975 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10976 break;
10977 case 0x5a: /* FADDP */
10978 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10979 break;
10980 case 0x5e: /* FMAXP */
10981 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10982 break;
10983 case 0x78: /* FMINNMP */
10984 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10985 break;
10986 case 0x7e: /* FMINP */
10987 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10988 break;
10989 default:
10990 g_assert_not_reached();
10993 tcg_temp_free_i64(tcg_op1);
10994 tcg_temp_free_i64(tcg_op2);
10997 for (pass = 0; pass < 2; pass++) {
10998 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10999 tcg_temp_free_i64(tcg_res[pass]);
11001 } else {
11002 int maxpass = is_q ? 4 : 2;
11003 TCGv_i32 tcg_res[4];
11005 for (pass = 0; pass < maxpass; pass++) {
11006 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11007 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11008 NeonGenTwoOpFn *genfn = NULL;
11009 int passreg = pass < (maxpass / 2) ? rn : rm;
11010 int passelt = (is_q && (pass & 1)) ? 2 : 0;
11012 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11013 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11014 tcg_res[pass] = tcg_temp_new_i32();
11016 switch (opcode) {
11017 case 0x17: /* ADDP */
11019 static NeonGenTwoOpFn * const fns[3] = {
11020 gen_helper_neon_padd_u8,
11021 gen_helper_neon_padd_u16,
11022 tcg_gen_add_i32,
11024 genfn = fns[size];
11025 break;
11027 case 0x14: /* SMAXP, UMAXP */
11029 static NeonGenTwoOpFn * const fns[3][2] = {
11030 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11031 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11032 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11034 genfn = fns[size][u];
11035 break;
11037 case 0x15: /* SMINP, UMINP */
11039 static NeonGenTwoOpFn * const fns[3][2] = {
11040 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11041 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11042 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11044 genfn = fns[size][u];
11045 break;
11047 /* The FP operations are all on single floats (32 bit) */
11048 case 0x58: /* FMAXNMP */
11049 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11050 break;
11051 case 0x5a: /* FADDP */
11052 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11053 break;
11054 case 0x5e: /* FMAXP */
11055 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11056 break;
11057 case 0x78: /* FMINNMP */
11058 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11059 break;
11060 case 0x7e: /* FMINP */
11061 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11062 break;
11063 default:
11064 g_assert_not_reached();
11067 /* FP ops called directly, otherwise call now */
11068 if (genfn) {
11069 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11072 tcg_temp_free_i32(tcg_op1);
11073 tcg_temp_free_i32(tcg_op2);
11076 for (pass = 0; pass < maxpass; pass++) {
11077 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11078 tcg_temp_free_i32(tcg_res[pass]);
11080 clear_vec_high(s, is_q, rd);
11083 if (fpst) {
11084 tcg_temp_free_ptr(fpst);
11088 /* Floating point op subgroup of C3.6.16. */
11089 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11091 /* For floating point ops, the U, size[1] and opcode bits
11092 * together indicate the operation. size[0] indicates single
11093 * or double.
11095 int fpopcode = extract32(insn, 11, 5)
11096 | (extract32(insn, 23, 1) << 5)
11097 | (extract32(insn, 29, 1) << 6);
11098 int is_q = extract32(insn, 30, 1);
11099 int size = extract32(insn, 22, 1);
11100 int rm = extract32(insn, 16, 5);
11101 int rn = extract32(insn, 5, 5);
11102 int rd = extract32(insn, 0, 5);
11104 int datasize = is_q ? 128 : 64;
11105 int esize = 32 << size;
11106 int elements = datasize / esize;
11108 if (size == 1 && !is_q) {
11109 unallocated_encoding(s);
11110 return;
11113 switch (fpopcode) {
11114 case 0x58: /* FMAXNMP */
11115 case 0x5a: /* FADDP */
11116 case 0x5e: /* FMAXP */
11117 case 0x78: /* FMINNMP */
11118 case 0x7e: /* FMINP */
11119 if (size && !is_q) {
11120 unallocated_encoding(s);
11121 return;
11123 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11124 rn, rm, rd);
11125 return;
11126 case 0x1b: /* FMULX */
11127 case 0x1f: /* FRECPS */
11128 case 0x3f: /* FRSQRTS */
11129 case 0x5d: /* FACGE */
11130 case 0x7d: /* FACGT */
11131 case 0x19: /* FMLA */
11132 case 0x39: /* FMLS */
11133 case 0x18: /* FMAXNM */
11134 case 0x1a: /* FADD */
11135 case 0x1c: /* FCMEQ */
11136 case 0x1e: /* FMAX */
11137 case 0x38: /* FMINNM */
11138 case 0x3a: /* FSUB */
11139 case 0x3e: /* FMIN */
11140 case 0x5b: /* FMUL */
11141 case 0x5c: /* FCMGE */
11142 case 0x5f: /* FDIV */
11143 case 0x7a: /* FABD */
11144 case 0x7c: /* FCMGT */
11145 if (!fp_access_check(s)) {
11146 return;
11148 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11149 return;
11151 case 0x1d: /* FMLAL */
11152 case 0x3d: /* FMLSL */
11153 case 0x59: /* FMLAL2 */
11154 case 0x79: /* FMLSL2 */
11155 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11156 unallocated_encoding(s);
11157 return;
11159 if (fp_access_check(s)) {
11160 int is_s = extract32(insn, 23, 1);
11161 int is_2 = extract32(insn, 29, 1);
11162 int data = (is_2 << 1) | is_s;
11163 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11164 vec_full_reg_offset(s, rn),
11165 vec_full_reg_offset(s, rm), cpu_env,
11166 is_q ? 16 : 8, vec_full_reg_size(s),
11167 data, gen_helper_gvec_fmlal_a64);
11169 return;
11171 default:
11172 unallocated_encoding(s);
11173 return;
11177 /* Integer op subgroup of C3.6.16. */
11178 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11180 int is_q = extract32(insn, 30, 1);
11181 int u = extract32(insn, 29, 1);
11182 int size = extract32(insn, 22, 2);
11183 int opcode = extract32(insn, 11, 5);
11184 int rm = extract32(insn, 16, 5);
11185 int rn = extract32(insn, 5, 5);
11186 int rd = extract32(insn, 0, 5);
11187 int pass;
11188 TCGCond cond;
11190 switch (opcode) {
11191 case 0x13: /* MUL, PMUL */
11192 if (u && size != 0) {
11193 unallocated_encoding(s);
11194 return;
11196 /* fall through */
11197 case 0x0: /* SHADD, UHADD */
11198 case 0x2: /* SRHADD, URHADD */
11199 case 0x4: /* SHSUB, UHSUB */
11200 case 0xc: /* SMAX, UMAX */
11201 case 0xd: /* SMIN, UMIN */
11202 case 0xe: /* SABD, UABD */
11203 case 0xf: /* SABA, UABA */
11204 case 0x12: /* MLA, MLS */
11205 if (size == 3) {
11206 unallocated_encoding(s);
11207 return;
11209 break;
11210 case 0x16: /* SQDMULH, SQRDMULH */
11211 if (size == 0 || size == 3) {
11212 unallocated_encoding(s);
11213 return;
11215 break;
11216 default:
11217 if (size == 3 && !is_q) {
11218 unallocated_encoding(s);
11219 return;
11221 break;
11224 if (!fp_access_check(s)) {
11225 return;
11228 switch (opcode) {
11229 case 0x01: /* SQADD, UQADD */
11230 tcg_gen_gvec_4(vec_full_reg_offset(s, rd),
11231 offsetof(CPUARMState, vfp.qc),
11232 vec_full_reg_offset(s, rn),
11233 vec_full_reg_offset(s, rm),
11234 is_q ? 16 : 8, vec_full_reg_size(s),
11235 (u ? uqadd_op : sqadd_op) + size);
11236 return;
11237 case 0x05: /* SQSUB, UQSUB */
11238 tcg_gen_gvec_4(vec_full_reg_offset(s, rd),
11239 offsetof(CPUARMState, vfp.qc),
11240 vec_full_reg_offset(s, rn),
11241 vec_full_reg_offset(s, rm),
11242 is_q ? 16 : 8, vec_full_reg_size(s),
11243 (u ? uqsub_op : sqsub_op) + size);
11244 return;
11245 case 0x08: /* SSHL, USHL */
11246 gen_gvec_op3(s, is_q, rd, rn, rm,
11247 u ? &ushl_op[size] : &sshl_op[size]);
11248 return;
11249 case 0x0c: /* SMAX, UMAX */
11250 if (u) {
11251 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11252 } else {
11253 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11255 return;
11256 case 0x0d: /* SMIN, UMIN */
11257 if (u) {
11258 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11259 } else {
11260 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11262 return;
11263 case 0x10: /* ADD, SUB */
11264 if (u) {
11265 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11266 } else {
11267 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11269 return;
11270 case 0x13: /* MUL, PMUL */
11271 if (!u) { /* MUL */
11272 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11273 } else { /* PMUL */
11274 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11276 return;
11277 case 0x12: /* MLA, MLS */
11278 if (u) {
11279 gen_gvec_op3(s, is_q, rd, rn, rm, &mls_op[size]);
11280 } else {
11281 gen_gvec_op3(s, is_q, rd, rn, rm, &mla_op[size]);
11283 return;
11284 case 0x11:
11285 if (!u) { /* CMTST */
11286 gen_gvec_op3(s, is_q, rd, rn, rm, &cmtst_op[size]);
11287 return;
11289 /* else CMEQ */
11290 cond = TCG_COND_EQ;
11291 goto do_gvec_cmp;
11292 case 0x06: /* CMGT, CMHI */
11293 cond = u ? TCG_COND_GTU : TCG_COND_GT;
11294 goto do_gvec_cmp;
11295 case 0x07: /* CMGE, CMHS */
11296 cond = u ? TCG_COND_GEU : TCG_COND_GE;
11297 do_gvec_cmp:
11298 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11299 vec_full_reg_offset(s, rn),
11300 vec_full_reg_offset(s, rm),
11301 is_q ? 16 : 8, vec_full_reg_size(s));
11302 return;
11305 if (size == 3) {
11306 assert(is_q);
11307 for (pass = 0; pass < 2; pass++) {
11308 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11309 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11310 TCGv_i64 tcg_res = tcg_temp_new_i64();
11312 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11313 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11315 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11317 write_vec_element(s, tcg_res, rd, pass, MO_64);
11319 tcg_temp_free_i64(tcg_res);
11320 tcg_temp_free_i64(tcg_op1);
11321 tcg_temp_free_i64(tcg_op2);
11323 } else {
11324 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11325 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11326 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11327 TCGv_i32 tcg_res = tcg_temp_new_i32();
11328 NeonGenTwoOpFn *genfn = NULL;
11329 NeonGenTwoOpEnvFn *genenvfn = NULL;
11331 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11332 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11334 switch (opcode) {
11335 case 0x0: /* SHADD, UHADD */
11337 static NeonGenTwoOpFn * const fns[3][2] = {
11338 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11339 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11340 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11342 genfn = fns[size][u];
11343 break;
11345 case 0x2: /* SRHADD, URHADD */
11347 static NeonGenTwoOpFn * const fns[3][2] = {
11348 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11349 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11350 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11352 genfn = fns[size][u];
11353 break;
11355 case 0x4: /* SHSUB, UHSUB */
11357 static NeonGenTwoOpFn * const fns[3][2] = {
11358 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11359 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11360 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11362 genfn = fns[size][u];
11363 break;
11365 case 0x9: /* SQSHL, UQSHL */
11367 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11368 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11369 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11370 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11372 genenvfn = fns[size][u];
11373 break;
11375 case 0xa: /* SRSHL, URSHL */
11377 static NeonGenTwoOpFn * const fns[3][2] = {
11378 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11379 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11380 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11382 genfn = fns[size][u];
11383 break;
11385 case 0xb: /* SQRSHL, UQRSHL */
11387 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11388 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11389 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11390 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11392 genenvfn = fns[size][u];
11393 break;
11395 case 0xe: /* SABD, UABD */
11396 case 0xf: /* SABA, UABA */
11398 static NeonGenTwoOpFn * const fns[3][2] = {
11399 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
11400 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
11401 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
11403 genfn = fns[size][u];
11404 break;
11406 case 0x16: /* SQDMULH, SQRDMULH */
11408 static NeonGenTwoOpEnvFn * const fns[2][2] = {
11409 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
11410 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
11412 assert(size == 1 || size == 2);
11413 genenvfn = fns[size - 1][u];
11414 break;
11416 default:
11417 g_assert_not_reached();
11420 if (genenvfn) {
11421 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11422 } else {
11423 genfn(tcg_res, tcg_op1, tcg_op2);
11426 if (opcode == 0xf) {
11427 /* SABA, UABA: accumulating ops */
11428 static NeonGenTwoOpFn * const fns[3] = {
11429 gen_helper_neon_add_u8,
11430 gen_helper_neon_add_u16,
11431 tcg_gen_add_i32,
11434 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
11435 fns[size](tcg_res, tcg_op1, tcg_res);
11438 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11440 tcg_temp_free_i32(tcg_res);
11441 tcg_temp_free_i32(tcg_op1);
11442 tcg_temp_free_i32(tcg_op2);
11445 clear_vec_high(s, is_q, rd);
11448 /* AdvSIMD three same
11449 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11450 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11451 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11452 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11454 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11456 int opcode = extract32(insn, 11, 5);
11458 switch (opcode) {
11459 case 0x3: /* logic ops */
11460 disas_simd_3same_logic(s, insn);
11461 break;
11462 case 0x17: /* ADDP */
11463 case 0x14: /* SMAXP, UMAXP */
11464 case 0x15: /* SMINP, UMINP */
11466 /* Pairwise operations */
11467 int is_q = extract32(insn, 30, 1);
11468 int u = extract32(insn, 29, 1);
11469 int size = extract32(insn, 22, 2);
11470 int rm = extract32(insn, 16, 5);
11471 int rn = extract32(insn, 5, 5);
11472 int rd = extract32(insn, 0, 5);
11473 if (opcode == 0x17) {
11474 if (u || (size == 3 && !is_q)) {
11475 unallocated_encoding(s);
11476 return;
11478 } else {
11479 if (size == 3) {
11480 unallocated_encoding(s);
11481 return;
11484 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11485 break;
11487 case 0x18 ... 0x31:
11488 /* floating point ops, sz[1] and U are part of opcode */
11489 disas_simd_3same_float(s, insn);
11490 break;
11491 default:
11492 disas_simd_3same_int(s, insn);
11493 break;
11498 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11500 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11501 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11502 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11503 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11505 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11506 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11509 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11511 int opcode, fpopcode;
11512 int is_q, u, a, rm, rn, rd;
11513 int datasize, elements;
11514 int pass;
11515 TCGv_ptr fpst;
11516 bool pairwise = false;
11518 if (!dc_isar_feature(aa64_fp16, s)) {
11519 unallocated_encoding(s);
11520 return;
11523 if (!fp_access_check(s)) {
11524 return;
11527 /* For these floating point ops, the U, a and opcode bits
11528 * together indicate the operation.
11530 opcode = extract32(insn, 11, 3);
11531 u = extract32(insn, 29, 1);
11532 a = extract32(insn, 23, 1);
11533 is_q = extract32(insn, 30, 1);
11534 rm = extract32(insn, 16, 5);
11535 rn = extract32(insn, 5, 5);
11536 rd = extract32(insn, 0, 5);
11538 fpopcode = opcode | (a << 3) | (u << 4);
11539 datasize = is_q ? 128 : 64;
11540 elements = datasize / 16;
11542 switch (fpopcode) {
11543 case 0x10: /* FMAXNMP */
11544 case 0x12: /* FADDP */
11545 case 0x16: /* FMAXP */
11546 case 0x18: /* FMINNMP */
11547 case 0x1e: /* FMINP */
11548 pairwise = true;
11549 break;
11552 fpst = get_fpstatus_ptr(true);
11554 if (pairwise) {
11555 int maxpass = is_q ? 8 : 4;
11556 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11557 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11558 TCGv_i32 tcg_res[8];
11560 for (pass = 0; pass < maxpass; pass++) {
11561 int passreg = pass < (maxpass / 2) ? rn : rm;
11562 int passelt = (pass << 1) & (maxpass - 1);
11564 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11565 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11566 tcg_res[pass] = tcg_temp_new_i32();
11568 switch (fpopcode) {
11569 case 0x10: /* FMAXNMP */
11570 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11571 fpst);
11572 break;
11573 case 0x12: /* FADDP */
11574 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11575 break;
11576 case 0x16: /* FMAXP */
11577 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11578 break;
11579 case 0x18: /* FMINNMP */
11580 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11581 fpst);
11582 break;
11583 case 0x1e: /* FMINP */
11584 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11585 break;
11586 default:
11587 g_assert_not_reached();
11591 for (pass = 0; pass < maxpass; pass++) {
11592 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11593 tcg_temp_free_i32(tcg_res[pass]);
11596 tcg_temp_free_i32(tcg_op1);
11597 tcg_temp_free_i32(tcg_op2);
11599 } else {
11600 for (pass = 0; pass < elements; pass++) {
11601 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11602 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11603 TCGv_i32 tcg_res = tcg_temp_new_i32();
11605 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11606 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11608 switch (fpopcode) {
11609 case 0x0: /* FMAXNM */
11610 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11611 break;
11612 case 0x1: /* FMLA */
11613 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11614 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11615 fpst);
11616 break;
11617 case 0x2: /* FADD */
11618 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11619 break;
11620 case 0x3: /* FMULX */
11621 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11622 break;
11623 case 0x4: /* FCMEQ */
11624 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11625 break;
11626 case 0x6: /* FMAX */
11627 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11628 break;
11629 case 0x7: /* FRECPS */
11630 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11631 break;
11632 case 0x8: /* FMINNM */
11633 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11634 break;
11635 case 0x9: /* FMLS */
11636 /* As usual for ARM, separate negation for fused multiply-add */
11637 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11638 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11639 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11640 fpst);
11641 break;
11642 case 0xa: /* FSUB */
11643 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11644 break;
11645 case 0xe: /* FMIN */
11646 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11647 break;
11648 case 0xf: /* FRSQRTS */
11649 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11650 break;
11651 case 0x13: /* FMUL */
11652 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11653 break;
11654 case 0x14: /* FCMGE */
11655 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11656 break;
11657 case 0x15: /* FACGE */
11658 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11659 break;
11660 case 0x17: /* FDIV */
11661 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11662 break;
11663 case 0x1a: /* FABD */
11664 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11665 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11666 break;
11667 case 0x1c: /* FCMGT */
11668 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11669 break;
11670 case 0x1d: /* FACGT */
11671 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11672 break;
11673 default:
11674 fprintf(stderr, "%s: insn %#04x, fpop %#2x @ %#" PRIx64 "\n",
11675 __func__, insn, fpopcode, s->pc_curr);
11676 g_assert_not_reached();
11679 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11680 tcg_temp_free_i32(tcg_res);
11681 tcg_temp_free_i32(tcg_op1);
11682 tcg_temp_free_i32(tcg_op2);
11686 tcg_temp_free_ptr(fpst);
11688 clear_vec_high(s, is_q, rd);
11691 /* AdvSIMD three same extra
11692 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
11693 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11694 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
11695 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11697 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11699 int rd = extract32(insn, 0, 5);
11700 int rn = extract32(insn, 5, 5);
11701 int opcode = extract32(insn, 11, 4);
11702 int rm = extract32(insn, 16, 5);
11703 int size = extract32(insn, 22, 2);
11704 bool u = extract32(insn, 29, 1);
11705 bool is_q = extract32(insn, 30, 1);
11706 bool feature;
11707 int rot;
11709 switch (u * 16 + opcode) {
11710 case 0x10: /* SQRDMLAH (vector) */
11711 case 0x11: /* SQRDMLSH (vector) */
11712 if (size != 1 && size != 2) {
11713 unallocated_encoding(s);
11714 return;
11716 feature = dc_isar_feature(aa64_rdm, s);
11717 break;
11718 case 0x02: /* SDOT (vector) */
11719 case 0x12: /* UDOT (vector) */
11720 if (size != MO_32) {
11721 unallocated_encoding(s);
11722 return;
11724 feature = dc_isar_feature(aa64_dp, s);
11725 break;
11726 case 0x18: /* FCMLA, #0 */
11727 case 0x19: /* FCMLA, #90 */
11728 case 0x1a: /* FCMLA, #180 */
11729 case 0x1b: /* FCMLA, #270 */
11730 case 0x1c: /* FCADD, #90 */
11731 case 0x1e: /* FCADD, #270 */
11732 if (size == 0
11733 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11734 || (size == 3 && !is_q)) {
11735 unallocated_encoding(s);
11736 return;
11738 feature = dc_isar_feature(aa64_fcma, s);
11739 break;
11740 default:
11741 unallocated_encoding(s);
11742 return;
11744 if (!feature) {
11745 unallocated_encoding(s);
11746 return;
11748 if (!fp_access_check(s)) {
11749 return;
11752 switch (opcode) {
11753 case 0x0: /* SQRDMLAH (vector) */
11754 switch (size) {
11755 case 1:
11756 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s16);
11757 break;
11758 case 2:
11759 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s32);
11760 break;
11761 default:
11762 g_assert_not_reached();
11764 return;
11766 case 0x1: /* SQRDMLSH (vector) */
11767 switch (size) {
11768 case 1:
11769 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s16);
11770 break;
11771 case 2:
11772 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s32);
11773 break;
11774 default:
11775 g_assert_not_reached();
11777 return;
11779 case 0x2: /* SDOT / UDOT */
11780 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0,
11781 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11782 return;
11784 case 0x8: /* FCMLA, #0 */
11785 case 0x9: /* FCMLA, #90 */
11786 case 0xa: /* FCMLA, #180 */
11787 case 0xb: /* FCMLA, #270 */
11788 rot = extract32(opcode, 0, 2);
11789 switch (size) {
11790 case 1:
11791 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, true, rot,
11792 gen_helper_gvec_fcmlah);
11793 break;
11794 case 2:
11795 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11796 gen_helper_gvec_fcmlas);
11797 break;
11798 case 3:
11799 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
11800 gen_helper_gvec_fcmlad);
11801 break;
11802 default:
11803 g_assert_not_reached();
11805 return;
11807 case 0xc: /* FCADD, #90 */
11808 case 0xe: /* FCADD, #270 */
11809 rot = extract32(opcode, 1, 1);
11810 switch (size) {
11811 case 1:
11812 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11813 gen_helper_gvec_fcaddh);
11814 break;
11815 case 2:
11816 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11817 gen_helper_gvec_fcadds);
11818 break;
11819 case 3:
11820 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11821 gen_helper_gvec_fcaddd);
11822 break;
11823 default:
11824 g_assert_not_reached();
11826 return;
11828 default:
11829 g_assert_not_reached();
11833 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11834 int size, int rn, int rd)
11836 /* Handle 2-reg-misc ops which are widening (so each size element
11837 * in the source becomes a 2*size element in the destination.
11838 * The only instruction like this is FCVTL.
11840 int pass;
11842 if (size == 3) {
11843 /* 32 -> 64 bit fp conversion */
11844 TCGv_i64 tcg_res[2];
11845 int srcelt = is_q ? 2 : 0;
11847 for (pass = 0; pass < 2; pass++) {
11848 TCGv_i32 tcg_op = tcg_temp_new_i32();
11849 tcg_res[pass] = tcg_temp_new_i64();
11851 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11852 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
11853 tcg_temp_free_i32(tcg_op);
11855 for (pass = 0; pass < 2; pass++) {
11856 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11857 tcg_temp_free_i64(tcg_res[pass]);
11859 } else {
11860 /* 16 -> 32 bit fp conversion */
11861 int srcelt = is_q ? 4 : 0;
11862 TCGv_i32 tcg_res[4];
11863 TCGv_ptr fpst = get_fpstatus_ptr(false);
11864 TCGv_i32 ahp = get_ahp_flag();
11866 for (pass = 0; pass < 4; pass++) {
11867 tcg_res[pass] = tcg_temp_new_i32();
11869 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11870 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11871 fpst, ahp);
11873 for (pass = 0; pass < 4; pass++) {
11874 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11875 tcg_temp_free_i32(tcg_res[pass]);
11878 tcg_temp_free_ptr(fpst);
11879 tcg_temp_free_i32(ahp);
11883 static void handle_rev(DisasContext *s, int opcode, bool u,
11884 bool is_q, int size, int rn, int rd)
11886 int op = (opcode << 1) | u;
11887 int opsz = op + size;
11888 int grp_size = 3 - opsz;
11889 int dsize = is_q ? 128 : 64;
11890 int i;
11892 if (opsz >= 3) {
11893 unallocated_encoding(s);
11894 return;
11897 if (!fp_access_check(s)) {
11898 return;
11901 if (size == 0) {
11902 /* Special case bytes, use bswap op on each group of elements */
11903 int groups = dsize / (8 << grp_size);
11905 for (i = 0; i < groups; i++) {
11906 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11908 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11909 switch (grp_size) {
11910 case MO_16:
11911 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
11912 break;
11913 case MO_32:
11914 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
11915 break;
11916 case MO_64:
11917 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11918 break;
11919 default:
11920 g_assert_not_reached();
11922 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11923 tcg_temp_free_i64(tcg_tmp);
11925 clear_vec_high(s, is_q, rd);
11926 } else {
11927 int revmask = (1 << grp_size) - 1;
11928 int esize = 8 << size;
11929 int elements = dsize / esize;
11930 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11931 TCGv_i64 tcg_rd = tcg_const_i64(0);
11932 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
11934 for (i = 0; i < elements; i++) {
11935 int e_rev = (i & 0xf) ^ revmask;
11936 int off = e_rev * esize;
11937 read_vec_element(s, tcg_rn, rn, i, size);
11938 if (off >= 64) {
11939 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
11940 tcg_rn, off - 64, esize);
11941 } else {
11942 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
11945 write_vec_element(s, tcg_rd, rd, 0, MO_64);
11946 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
11948 tcg_temp_free_i64(tcg_rd_hi);
11949 tcg_temp_free_i64(tcg_rd);
11950 tcg_temp_free_i64(tcg_rn);
11954 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11955 bool is_q, int size, int rn, int rd)
11957 /* Implement the pairwise operations from 2-misc:
11958 * SADDLP, UADDLP, SADALP, UADALP.
11959 * These all add pairs of elements in the input to produce a
11960 * double-width result element in the output (possibly accumulating).
11962 bool accum = (opcode == 0x6);
11963 int maxpass = is_q ? 2 : 1;
11964 int pass;
11965 TCGv_i64 tcg_res[2];
11967 if (size == 2) {
11968 /* 32 + 32 -> 64 op */
11969 MemOp memop = size + (u ? 0 : MO_SIGN);
11971 for (pass = 0; pass < maxpass; pass++) {
11972 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11973 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11975 tcg_res[pass] = tcg_temp_new_i64();
11977 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11978 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11979 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11980 if (accum) {
11981 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11982 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11985 tcg_temp_free_i64(tcg_op1);
11986 tcg_temp_free_i64(tcg_op2);
11988 } else {
11989 for (pass = 0; pass < maxpass; pass++) {
11990 TCGv_i64 tcg_op = tcg_temp_new_i64();
11991 NeonGenOneOpFn *genfn;
11992 static NeonGenOneOpFn * const fns[2][2] = {
11993 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11994 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11997 genfn = fns[size][u];
11999 tcg_res[pass] = tcg_temp_new_i64();
12001 read_vec_element(s, tcg_op, rn, pass, MO_64);
12002 genfn(tcg_res[pass], tcg_op);
12004 if (accum) {
12005 read_vec_element(s, tcg_op, rd, pass, MO_64);
12006 if (size == 0) {
12007 gen_helper_neon_addl_u16(tcg_res[pass],
12008 tcg_res[pass], tcg_op);
12009 } else {
12010 gen_helper_neon_addl_u32(tcg_res[pass],
12011 tcg_res[pass], tcg_op);
12014 tcg_temp_free_i64(tcg_op);
12017 if (!is_q) {
12018 tcg_res[1] = tcg_const_i64(0);
12020 for (pass = 0; pass < 2; pass++) {
12021 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12022 tcg_temp_free_i64(tcg_res[pass]);
12026 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12028 /* Implement SHLL and SHLL2 */
12029 int pass;
12030 int part = is_q ? 2 : 0;
12031 TCGv_i64 tcg_res[2];
12033 for (pass = 0; pass < 2; pass++) {
12034 static NeonGenWidenFn * const widenfns[3] = {
12035 gen_helper_neon_widen_u8,
12036 gen_helper_neon_widen_u16,
12037 tcg_gen_extu_i32_i64,
12039 NeonGenWidenFn *widenfn = widenfns[size];
12040 TCGv_i32 tcg_op = tcg_temp_new_i32();
12042 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12043 tcg_res[pass] = tcg_temp_new_i64();
12044 widenfn(tcg_res[pass], tcg_op);
12045 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12047 tcg_temp_free_i32(tcg_op);
12050 for (pass = 0; pass < 2; pass++) {
12051 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12052 tcg_temp_free_i64(tcg_res[pass]);
12056 /* AdvSIMD two reg misc
12057 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
12058 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12059 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
12060 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12062 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12064 int size = extract32(insn, 22, 2);
12065 int opcode = extract32(insn, 12, 5);
12066 bool u = extract32(insn, 29, 1);
12067 bool is_q = extract32(insn, 30, 1);
12068 int rn = extract32(insn, 5, 5);
12069 int rd = extract32(insn, 0, 5);
12070 bool need_fpstatus = false;
12071 bool need_rmode = false;
12072 int rmode = -1;
12073 TCGv_i32 tcg_rmode;
12074 TCGv_ptr tcg_fpstatus;
12076 switch (opcode) {
12077 case 0x0: /* REV64, REV32 */
12078 case 0x1: /* REV16 */
12079 handle_rev(s, opcode, u, is_q, size, rn, rd);
12080 return;
12081 case 0x5: /* CNT, NOT, RBIT */
12082 if (u && size == 0) {
12083 /* NOT */
12084 break;
12085 } else if (u && size == 1) {
12086 /* RBIT */
12087 break;
12088 } else if (!u && size == 0) {
12089 /* CNT */
12090 break;
12092 unallocated_encoding(s);
12093 return;
12094 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12095 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12096 if (size == 3) {
12097 unallocated_encoding(s);
12098 return;
12100 if (!fp_access_check(s)) {
12101 return;
12104 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12105 return;
12106 case 0x4: /* CLS, CLZ */
12107 if (size == 3) {
12108 unallocated_encoding(s);
12109 return;
12111 break;
12112 case 0x2: /* SADDLP, UADDLP */
12113 case 0x6: /* SADALP, UADALP */
12114 if (size == 3) {
12115 unallocated_encoding(s);
12116 return;
12118 if (!fp_access_check(s)) {
12119 return;
12121 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12122 return;
12123 case 0x13: /* SHLL, SHLL2 */
12124 if (u == 0 || size == 3) {
12125 unallocated_encoding(s);
12126 return;
12128 if (!fp_access_check(s)) {
12129 return;
12131 handle_shll(s, is_q, size, rn, rd);
12132 return;
12133 case 0xa: /* CMLT */
12134 if (u == 1) {
12135 unallocated_encoding(s);
12136 return;
12138 /* fall through */
12139 case 0x8: /* CMGT, CMGE */
12140 case 0x9: /* CMEQ, CMLE */
12141 case 0xb: /* ABS, NEG */
12142 if (size == 3 && !is_q) {
12143 unallocated_encoding(s);
12144 return;
12146 break;
12147 case 0x3: /* SUQADD, USQADD */
12148 if (size == 3 && !is_q) {
12149 unallocated_encoding(s);
12150 return;
12152 if (!fp_access_check(s)) {
12153 return;
12155 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12156 return;
12157 case 0x7: /* SQABS, SQNEG */
12158 if (size == 3 && !is_q) {
12159 unallocated_encoding(s);
12160 return;
12162 break;
12163 case 0xc ... 0xf:
12164 case 0x16 ... 0x1f:
12166 /* Floating point: U, size[1] and opcode indicate operation;
12167 * size[0] indicates single or double precision.
12169 int is_double = extract32(size, 0, 1);
12170 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12171 size = is_double ? 3 : 2;
12172 switch (opcode) {
12173 case 0x2f: /* FABS */
12174 case 0x6f: /* FNEG */
12175 if (size == 3 && !is_q) {
12176 unallocated_encoding(s);
12177 return;
12179 break;
12180 case 0x1d: /* SCVTF */
12181 case 0x5d: /* UCVTF */
12183 bool is_signed = (opcode == 0x1d) ? true : false;
12184 int elements = is_double ? 2 : is_q ? 4 : 2;
12185 if (is_double && !is_q) {
12186 unallocated_encoding(s);
12187 return;
12189 if (!fp_access_check(s)) {
12190 return;
12192 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12193 return;
12195 case 0x2c: /* FCMGT (zero) */
12196 case 0x2d: /* FCMEQ (zero) */
12197 case 0x2e: /* FCMLT (zero) */
12198 case 0x6c: /* FCMGE (zero) */
12199 case 0x6d: /* FCMLE (zero) */
12200 if (size == 3 && !is_q) {
12201 unallocated_encoding(s);
12202 return;
12204 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12205 return;
12206 case 0x7f: /* FSQRT */
12207 if (size == 3 && !is_q) {
12208 unallocated_encoding(s);
12209 return;
12211 break;
12212 case 0x1a: /* FCVTNS */
12213 case 0x1b: /* FCVTMS */
12214 case 0x3a: /* FCVTPS */
12215 case 0x3b: /* FCVTZS */
12216 case 0x5a: /* FCVTNU */
12217 case 0x5b: /* FCVTMU */
12218 case 0x7a: /* FCVTPU */
12219 case 0x7b: /* FCVTZU */
12220 need_fpstatus = true;
12221 need_rmode = true;
12222 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12223 if (size == 3 && !is_q) {
12224 unallocated_encoding(s);
12225 return;
12227 break;
12228 case 0x5c: /* FCVTAU */
12229 case 0x1c: /* FCVTAS */
12230 need_fpstatus = true;
12231 need_rmode = true;
12232 rmode = FPROUNDING_TIEAWAY;
12233 if (size == 3 && !is_q) {
12234 unallocated_encoding(s);
12235 return;
12237 break;
12238 case 0x3c: /* URECPE */
12239 if (size == 3) {
12240 unallocated_encoding(s);
12241 return;
12243 /* fall through */
12244 case 0x3d: /* FRECPE */
12245 case 0x7d: /* FRSQRTE */
12246 if (size == 3 && !is_q) {
12247 unallocated_encoding(s);
12248 return;
12250 if (!fp_access_check(s)) {
12251 return;
12253 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12254 return;
12255 case 0x56: /* FCVTXN, FCVTXN2 */
12256 if (size == 2) {
12257 unallocated_encoding(s);
12258 return;
12260 /* fall through */
12261 case 0x16: /* FCVTN, FCVTN2 */
12262 /* handle_2misc_narrow does a 2*size -> size operation, but these
12263 * instructions encode the source size rather than dest size.
12265 if (!fp_access_check(s)) {
12266 return;
12268 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12269 return;
12270 case 0x17: /* FCVTL, FCVTL2 */
12271 if (!fp_access_check(s)) {
12272 return;
12274 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12275 return;
12276 case 0x18: /* FRINTN */
12277 case 0x19: /* FRINTM */
12278 case 0x38: /* FRINTP */
12279 case 0x39: /* FRINTZ */
12280 need_rmode = true;
12281 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12282 /* fall through */
12283 case 0x59: /* FRINTX */
12284 case 0x79: /* FRINTI */
12285 need_fpstatus = true;
12286 if (size == 3 && !is_q) {
12287 unallocated_encoding(s);
12288 return;
12290 break;
12291 case 0x58: /* FRINTA */
12292 need_rmode = true;
12293 rmode = FPROUNDING_TIEAWAY;
12294 need_fpstatus = true;
12295 if (size == 3 && !is_q) {
12296 unallocated_encoding(s);
12297 return;
12299 break;
12300 case 0x7c: /* URSQRTE */
12301 if (size == 3) {
12302 unallocated_encoding(s);
12303 return;
12305 need_fpstatus = true;
12306 break;
12307 case 0x1e: /* FRINT32Z */
12308 case 0x1f: /* FRINT64Z */
12309 need_rmode = true;
12310 rmode = FPROUNDING_ZERO;
12311 /* fall through */
12312 case 0x5e: /* FRINT32X */
12313 case 0x5f: /* FRINT64X */
12314 need_fpstatus = true;
12315 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12316 unallocated_encoding(s);
12317 return;
12319 break;
12320 default:
12321 unallocated_encoding(s);
12322 return;
12324 break;
12326 default:
12327 unallocated_encoding(s);
12328 return;
12331 if (!fp_access_check(s)) {
12332 return;
12335 if (need_fpstatus || need_rmode) {
12336 tcg_fpstatus = get_fpstatus_ptr(false);
12337 } else {
12338 tcg_fpstatus = NULL;
12340 if (need_rmode) {
12341 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12342 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12343 } else {
12344 tcg_rmode = NULL;
12347 switch (opcode) {
12348 case 0x5:
12349 if (u && size == 0) { /* NOT */
12350 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12351 return;
12353 break;
12354 case 0x8: /* CMGT, CMGE */
12355 gen_gvec_op2(s, is_q, rd, rn, u ? &cge0_op[size] : &cgt0_op[size]);
12356 return;
12357 case 0x9: /* CMEQ, CMLE */
12358 gen_gvec_op2(s, is_q, rd, rn, u ? &cle0_op[size] : &ceq0_op[size]);
12359 return;
12360 case 0xa: /* CMLT */
12361 gen_gvec_op2(s, is_q, rd, rn, &clt0_op[size]);
12362 return;
12363 case 0xb:
12364 if (u) { /* ABS, NEG */
12365 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12366 } else {
12367 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12369 return;
12372 if (size == 3) {
12373 /* All 64-bit element operations can be shared with scalar 2misc */
12374 int pass;
12376 /* Coverity claims (size == 3 && !is_q) has been eliminated
12377 * from all paths leading to here.
12379 tcg_debug_assert(is_q);
12380 for (pass = 0; pass < 2; pass++) {
12381 TCGv_i64 tcg_op = tcg_temp_new_i64();
12382 TCGv_i64 tcg_res = tcg_temp_new_i64();
12384 read_vec_element(s, tcg_op, rn, pass, MO_64);
12386 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12387 tcg_rmode, tcg_fpstatus);
12389 write_vec_element(s, tcg_res, rd, pass, MO_64);
12391 tcg_temp_free_i64(tcg_res);
12392 tcg_temp_free_i64(tcg_op);
12394 } else {
12395 int pass;
12397 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12398 TCGv_i32 tcg_op = tcg_temp_new_i32();
12399 TCGv_i32 tcg_res = tcg_temp_new_i32();
12401 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12403 if (size == 2) {
12404 /* Special cases for 32 bit elements */
12405 switch (opcode) {
12406 case 0x4: /* CLS */
12407 if (u) {
12408 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12409 } else {
12410 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12412 break;
12413 case 0x7: /* SQABS, SQNEG */
12414 if (u) {
12415 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12416 } else {
12417 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12419 break;
12420 case 0x2f: /* FABS */
12421 gen_helper_vfp_abss(tcg_res, tcg_op);
12422 break;
12423 case 0x6f: /* FNEG */
12424 gen_helper_vfp_negs(tcg_res, tcg_op);
12425 break;
12426 case 0x7f: /* FSQRT */
12427 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12428 break;
12429 case 0x1a: /* FCVTNS */
12430 case 0x1b: /* FCVTMS */
12431 case 0x1c: /* FCVTAS */
12432 case 0x3a: /* FCVTPS */
12433 case 0x3b: /* FCVTZS */
12435 TCGv_i32 tcg_shift = tcg_const_i32(0);
12436 gen_helper_vfp_tosls(tcg_res, tcg_op,
12437 tcg_shift, tcg_fpstatus);
12438 tcg_temp_free_i32(tcg_shift);
12439 break;
12441 case 0x5a: /* FCVTNU */
12442 case 0x5b: /* FCVTMU */
12443 case 0x5c: /* FCVTAU */
12444 case 0x7a: /* FCVTPU */
12445 case 0x7b: /* FCVTZU */
12447 TCGv_i32 tcg_shift = tcg_const_i32(0);
12448 gen_helper_vfp_touls(tcg_res, tcg_op,
12449 tcg_shift, tcg_fpstatus);
12450 tcg_temp_free_i32(tcg_shift);
12451 break;
12453 case 0x18: /* FRINTN */
12454 case 0x19: /* FRINTM */
12455 case 0x38: /* FRINTP */
12456 case 0x39: /* FRINTZ */
12457 case 0x58: /* FRINTA */
12458 case 0x79: /* FRINTI */
12459 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12460 break;
12461 case 0x59: /* FRINTX */
12462 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12463 break;
12464 case 0x7c: /* URSQRTE */
12465 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
12466 break;
12467 case 0x1e: /* FRINT32Z */
12468 case 0x5e: /* FRINT32X */
12469 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12470 break;
12471 case 0x1f: /* FRINT64Z */
12472 case 0x5f: /* FRINT64X */
12473 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12474 break;
12475 default:
12476 g_assert_not_reached();
12478 } else {
12479 /* Use helpers for 8 and 16 bit elements */
12480 switch (opcode) {
12481 case 0x5: /* CNT, RBIT */
12482 /* For these two insns size is part of the opcode specifier
12483 * (handled earlier); they always operate on byte elements.
12485 if (u) {
12486 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12487 } else {
12488 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12490 break;
12491 case 0x7: /* SQABS, SQNEG */
12493 NeonGenOneOpEnvFn *genfn;
12494 static NeonGenOneOpEnvFn * const fns[2][2] = {
12495 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12496 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12498 genfn = fns[size][u];
12499 genfn(tcg_res, cpu_env, tcg_op);
12500 break;
12502 case 0x4: /* CLS, CLZ */
12503 if (u) {
12504 if (size == 0) {
12505 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12506 } else {
12507 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12509 } else {
12510 if (size == 0) {
12511 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12512 } else {
12513 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12516 break;
12517 default:
12518 g_assert_not_reached();
12522 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12524 tcg_temp_free_i32(tcg_res);
12525 tcg_temp_free_i32(tcg_op);
12528 clear_vec_high(s, is_q, rd);
12530 if (need_rmode) {
12531 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12532 tcg_temp_free_i32(tcg_rmode);
12534 if (need_fpstatus) {
12535 tcg_temp_free_ptr(tcg_fpstatus);
12539 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12541 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12542 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12543 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12544 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12545 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12546 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12548 * This actually covers two groups where scalar access is governed by
12549 * bit 28. A bunch of the instructions (float to integral) only exist
12550 * in the vector form and are un-allocated for the scalar decode. Also
12551 * in the scalar decode Q is always 1.
12553 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12555 int fpop, opcode, a, u;
12556 int rn, rd;
12557 bool is_q;
12558 bool is_scalar;
12559 bool only_in_vector = false;
12561 int pass;
12562 TCGv_i32 tcg_rmode = NULL;
12563 TCGv_ptr tcg_fpstatus = NULL;
12564 bool need_rmode = false;
12565 bool need_fpst = true;
12566 int rmode;
12568 if (!dc_isar_feature(aa64_fp16, s)) {
12569 unallocated_encoding(s);
12570 return;
12573 rd = extract32(insn, 0, 5);
12574 rn = extract32(insn, 5, 5);
12576 a = extract32(insn, 23, 1);
12577 u = extract32(insn, 29, 1);
12578 is_scalar = extract32(insn, 28, 1);
12579 is_q = extract32(insn, 30, 1);
12581 opcode = extract32(insn, 12, 5);
12582 fpop = deposit32(opcode, 5, 1, a);
12583 fpop = deposit32(fpop, 6, 1, u);
12585 rd = extract32(insn, 0, 5);
12586 rn = extract32(insn, 5, 5);
12588 switch (fpop) {
12589 case 0x1d: /* SCVTF */
12590 case 0x5d: /* UCVTF */
12592 int elements;
12594 if (is_scalar) {
12595 elements = 1;
12596 } else {
12597 elements = (is_q ? 8 : 4);
12600 if (!fp_access_check(s)) {
12601 return;
12603 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12604 return;
12606 break;
12607 case 0x2c: /* FCMGT (zero) */
12608 case 0x2d: /* FCMEQ (zero) */
12609 case 0x2e: /* FCMLT (zero) */
12610 case 0x6c: /* FCMGE (zero) */
12611 case 0x6d: /* FCMLE (zero) */
12612 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12613 return;
12614 case 0x3d: /* FRECPE */
12615 case 0x3f: /* FRECPX */
12616 break;
12617 case 0x18: /* FRINTN */
12618 need_rmode = true;
12619 only_in_vector = true;
12620 rmode = FPROUNDING_TIEEVEN;
12621 break;
12622 case 0x19: /* FRINTM */
12623 need_rmode = true;
12624 only_in_vector = true;
12625 rmode = FPROUNDING_NEGINF;
12626 break;
12627 case 0x38: /* FRINTP */
12628 need_rmode = true;
12629 only_in_vector = true;
12630 rmode = FPROUNDING_POSINF;
12631 break;
12632 case 0x39: /* FRINTZ */
12633 need_rmode = true;
12634 only_in_vector = true;
12635 rmode = FPROUNDING_ZERO;
12636 break;
12637 case 0x58: /* FRINTA */
12638 need_rmode = true;
12639 only_in_vector = true;
12640 rmode = FPROUNDING_TIEAWAY;
12641 break;
12642 case 0x59: /* FRINTX */
12643 case 0x79: /* FRINTI */
12644 only_in_vector = true;
12645 /* current rounding mode */
12646 break;
12647 case 0x1a: /* FCVTNS */
12648 need_rmode = true;
12649 rmode = FPROUNDING_TIEEVEN;
12650 break;
12651 case 0x1b: /* FCVTMS */
12652 need_rmode = true;
12653 rmode = FPROUNDING_NEGINF;
12654 break;
12655 case 0x1c: /* FCVTAS */
12656 need_rmode = true;
12657 rmode = FPROUNDING_TIEAWAY;
12658 break;
12659 case 0x3a: /* FCVTPS */
12660 need_rmode = true;
12661 rmode = FPROUNDING_POSINF;
12662 break;
12663 case 0x3b: /* FCVTZS */
12664 need_rmode = true;
12665 rmode = FPROUNDING_ZERO;
12666 break;
12667 case 0x5a: /* FCVTNU */
12668 need_rmode = true;
12669 rmode = FPROUNDING_TIEEVEN;
12670 break;
12671 case 0x5b: /* FCVTMU */
12672 need_rmode = true;
12673 rmode = FPROUNDING_NEGINF;
12674 break;
12675 case 0x5c: /* FCVTAU */
12676 need_rmode = true;
12677 rmode = FPROUNDING_TIEAWAY;
12678 break;
12679 case 0x7a: /* FCVTPU */
12680 need_rmode = true;
12681 rmode = FPROUNDING_POSINF;
12682 break;
12683 case 0x7b: /* FCVTZU */
12684 need_rmode = true;
12685 rmode = FPROUNDING_ZERO;
12686 break;
12687 case 0x2f: /* FABS */
12688 case 0x6f: /* FNEG */
12689 need_fpst = false;
12690 break;
12691 case 0x7d: /* FRSQRTE */
12692 case 0x7f: /* FSQRT (vector) */
12693 break;
12694 default:
12695 fprintf(stderr, "%s: insn %#04x fpop %#2x\n", __func__, insn, fpop);
12696 g_assert_not_reached();
12700 /* Check additional constraints for the scalar encoding */
12701 if (is_scalar) {
12702 if (!is_q) {
12703 unallocated_encoding(s);
12704 return;
12706 /* FRINTxx is only in the vector form */
12707 if (only_in_vector) {
12708 unallocated_encoding(s);
12709 return;
12713 if (!fp_access_check(s)) {
12714 return;
12717 if (need_rmode || need_fpst) {
12718 tcg_fpstatus = get_fpstatus_ptr(true);
12721 if (need_rmode) {
12722 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12723 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12726 if (is_scalar) {
12727 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12728 TCGv_i32 tcg_res = tcg_temp_new_i32();
12730 switch (fpop) {
12731 case 0x1a: /* FCVTNS */
12732 case 0x1b: /* FCVTMS */
12733 case 0x1c: /* FCVTAS */
12734 case 0x3a: /* FCVTPS */
12735 case 0x3b: /* FCVTZS */
12736 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12737 break;
12738 case 0x3d: /* FRECPE */
12739 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12740 break;
12741 case 0x3f: /* FRECPX */
12742 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12743 break;
12744 case 0x5a: /* FCVTNU */
12745 case 0x5b: /* FCVTMU */
12746 case 0x5c: /* FCVTAU */
12747 case 0x7a: /* FCVTPU */
12748 case 0x7b: /* FCVTZU */
12749 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12750 break;
12751 case 0x6f: /* FNEG */
12752 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12753 break;
12754 case 0x7d: /* FRSQRTE */
12755 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12756 break;
12757 default:
12758 g_assert_not_reached();
12761 /* limit any sign extension going on */
12762 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12763 write_fp_sreg(s, rd, tcg_res);
12765 tcg_temp_free_i32(tcg_res);
12766 tcg_temp_free_i32(tcg_op);
12767 } else {
12768 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12769 TCGv_i32 tcg_op = tcg_temp_new_i32();
12770 TCGv_i32 tcg_res = tcg_temp_new_i32();
12772 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12774 switch (fpop) {
12775 case 0x1a: /* FCVTNS */
12776 case 0x1b: /* FCVTMS */
12777 case 0x1c: /* FCVTAS */
12778 case 0x3a: /* FCVTPS */
12779 case 0x3b: /* FCVTZS */
12780 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12781 break;
12782 case 0x3d: /* FRECPE */
12783 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12784 break;
12785 case 0x5a: /* FCVTNU */
12786 case 0x5b: /* FCVTMU */
12787 case 0x5c: /* FCVTAU */
12788 case 0x7a: /* FCVTPU */
12789 case 0x7b: /* FCVTZU */
12790 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12791 break;
12792 case 0x18: /* FRINTN */
12793 case 0x19: /* FRINTM */
12794 case 0x38: /* FRINTP */
12795 case 0x39: /* FRINTZ */
12796 case 0x58: /* FRINTA */
12797 case 0x79: /* FRINTI */
12798 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12799 break;
12800 case 0x59: /* FRINTX */
12801 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12802 break;
12803 case 0x2f: /* FABS */
12804 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12805 break;
12806 case 0x6f: /* FNEG */
12807 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12808 break;
12809 case 0x7d: /* FRSQRTE */
12810 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12811 break;
12812 case 0x7f: /* FSQRT */
12813 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12814 break;
12815 default:
12816 g_assert_not_reached();
12819 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12821 tcg_temp_free_i32(tcg_res);
12822 tcg_temp_free_i32(tcg_op);
12825 clear_vec_high(s, is_q, rd);
12828 if (tcg_rmode) {
12829 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12830 tcg_temp_free_i32(tcg_rmode);
12833 if (tcg_fpstatus) {
12834 tcg_temp_free_ptr(tcg_fpstatus);
12838 /* AdvSIMD scalar x indexed element
12839 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12840 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12841 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12842 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12843 * AdvSIMD vector x indexed element
12844 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12845 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12846 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12847 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12849 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12851 /* This encoding has two kinds of instruction:
12852 * normal, where we perform elt x idxelt => elt for each
12853 * element in the vector
12854 * long, where we perform elt x idxelt and generate a result of
12855 * double the width of the input element
12856 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12858 bool is_scalar = extract32(insn, 28, 1);
12859 bool is_q = extract32(insn, 30, 1);
12860 bool u = extract32(insn, 29, 1);
12861 int size = extract32(insn, 22, 2);
12862 int l = extract32(insn, 21, 1);
12863 int m = extract32(insn, 20, 1);
12864 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12865 int rm = extract32(insn, 16, 4);
12866 int opcode = extract32(insn, 12, 4);
12867 int h = extract32(insn, 11, 1);
12868 int rn = extract32(insn, 5, 5);
12869 int rd = extract32(insn, 0, 5);
12870 bool is_long = false;
12871 int is_fp = 0;
12872 bool is_fp16 = false;
12873 int index;
12874 TCGv_ptr fpst;
12876 switch (16 * u + opcode) {
12877 case 0x08: /* MUL */
12878 case 0x10: /* MLA */
12879 case 0x14: /* MLS */
12880 if (is_scalar) {
12881 unallocated_encoding(s);
12882 return;
12884 break;
12885 case 0x02: /* SMLAL, SMLAL2 */
12886 case 0x12: /* UMLAL, UMLAL2 */
12887 case 0x06: /* SMLSL, SMLSL2 */
12888 case 0x16: /* UMLSL, UMLSL2 */
12889 case 0x0a: /* SMULL, SMULL2 */
12890 case 0x1a: /* UMULL, UMULL2 */
12891 if (is_scalar) {
12892 unallocated_encoding(s);
12893 return;
12895 is_long = true;
12896 break;
12897 case 0x03: /* SQDMLAL, SQDMLAL2 */
12898 case 0x07: /* SQDMLSL, SQDMLSL2 */
12899 case 0x0b: /* SQDMULL, SQDMULL2 */
12900 is_long = true;
12901 break;
12902 case 0x0c: /* SQDMULH */
12903 case 0x0d: /* SQRDMULH */
12904 break;
12905 case 0x01: /* FMLA */
12906 case 0x05: /* FMLS */
12907 case 0x09: /* FMUL */
12908 case 0x19: /* FMULX */
12909 is_fp = 1;
12910 break;
12911 case 0x1d: /* SQRDMLAH */
12912 case 0x1f: /* SQRDMLSH */
12913 if (!dc_isar_feature(aa64_rdm, s)) {
12914 unallocated_encoding(s);
12915 return;
12917 break;
12918 case 0x0e: /* SDOT */
12919 case 0x1e: /* UDOT */
12920 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12921 unallocated_encoding(s);
12922 return;
12924 break;
12925 case 0x11: /* FCMLA #0 */
12926 case 0x13: /* FCMLA #90 */
12927 case 0x15: /* FCMLA #180 */
12928 case 0x17: /* FCMLA #270 */
12929 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12930 unallocated_encoding(s);
12931 return;
12933 is_fp = 2;
12934 break;
12935 case 0x00: /* FMLAL */
12936 case 0x04: /* FMLSL */
12937 case 0x18: /* FMLAL2 */
12938 case 0x1c: /* FMLSL2 */
12939 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12940 unallocated_encoding(s);
12941 return;
12943 size = MO_16;
12944 /* is_fp, but we pass cpu_env not fp_status. */
12945 break;
12946 default:
12947 unallocated_encoding(s);
12948 return;
12951 switch (is_fp) {
12952 case 1: /* normal fp */
12953 /* convert insn encoded size to MemOp size */
12954 switch (size) {
12955 case 0: /* half-precision */
12956 size = MO_16;
12957 is_fp16 = true;
12958 break;
12959 case MO_32: /* single precision */
12960 case MO_64: /* double precision */
12961 break;
12962 default:
12963 unallocated_encoding(s);
12964 return;
12966 break;
12968 case 2: /* complex fp */
12969 /* Each indexable element is a complex pair. */
12970 size += 1;
12971 switch (size) {
12972 case MO_32:
12973 if (h && !is_q) {
12974 unallocated_encoding(s);
12975 return;
12977 is_fp16 = true;
12978 break;
12979 case MO_64:
12980 break;
12981 default:
12982 unallocated_encoding(s);
12983 return;
12985 break;
12987 default: /* integer */
12988 switch (size) {
12989 case MO_8:
12990 case MO_64:
12991 unallocated_encoding(s);
12992 return;
12994 break;
12996 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12997 unallocated_encoding(s);
12998 return;
13001 /* Given MemOp size, adjust register and indexing. */
13002 switch (size) {
13003 case MO_16:
13004 index = h << 2 | l << 1 | m;
13005 break;
13006 case MO_32:
13007 index = h << 1 | l;
13008 rm |= m << 4;
13009 break;
13010 case MO_64:
13011 if (l || !is_q) {
13012 unallocated_encoding(s);
13013 return;
13015 index = h;
13016 rm |= m << 4;
13017 break;
13018 default:
13019 g_assert_not_reached();
13022 if (!fp_access_check(s)) {
13023 return;
13026 if (is_fp) {
13027 fpst = get_fpstatus_ptr(is_fp16);
13028 } else {
13029 fpst = NULL;
13032 switch (16 * u + opcode) {
13033 case 0x0e: /* SDOT */
13034 case 0x1e: /* UDOT */
13035 gen_gvec_op3_ool(s, is_q, rd, rn, rm, index,
13036 u ? gen_helper_gvec_udot_idx_b
13037 : gen_helper_gvec_sdot_idx_b);
13038 return;
13039 case 0x11: /* FCMLA #0 */
13040 case 0x13: /* FCMLA #90 */
13041 case 0x15: /* FCMLA #180 */
13042 case 0x17: /* FCMLA #270 */
13044 int rot = extract32(insn, 13, 2);
13045 int data = (index << 2) | rot;
13046 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13047 vec_full_reg_offset(s, rn),
13048 vec_full_reg_offset(s, rm), fpst,
13049 is_q ? 16 : 8, vec_full_reg_size(s), data,
13050 size == MO_64
13051 ? gen_helper_gvec_fcmlas_idx
13052 : gen_helper_gvec_fcmlah_idx);
13053 tcg_temp_free_ptr(fpst);
13055 return;
13057 case 0x00: /* FMLAL */
13058 case 0x04: /* FMLSL */
13059 case 0x18: /* FMLAL2 */
13060 case 0x1c: /* FMLSL2 */
13062 int is_s = extract32(opcode, 2, 1);
13063 int is_2 = u;
13064 int data = (index << 2) | (is_2 << 1) | is_s;
13065 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13066 vec_full_reg_offset(s, rn),
13067 vec_full_reg_offset(s, rm), cpu_env,
13068 is_q ? 16 : 8, vec_full_reg_size(s),
13069 data, gen_helper_gvec_fmlal_idx_a64);
13071 return;
13074 if (size == 3) {
13075 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13076 int pass;
13078 assert(is_fp && is_q && !is_long);
13080 read_vec_element(s, tcg_idx, rm, index, MO_64);
13082 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13083 TCGv_i64 tcg_op = tcg_temp_new_i64();
13084 TCGv_i64 tcg_res = tcg_temp_new_i64();
13086 read_vec_element(s, tcg_op, rn, pass, MO_64);
13088 switch (16 * u + opcode) {
13089 case 0x05: /* FMLS */
13090 /* As usual for ARM, separate negation for fused multiply-add */
13091 gen_helper_vfp_negd(tcg_op, tcg_op);
13092 /* fall through */
13093 case 0x01: /* FMLA */
13094 read_vec_element(s, tcg_res, rd, pass, MO_64);
13095 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13096 break;
13097 case 0x09: /* FMUL */
13098 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13099 break;
13100 case 0x19: /* FMULX */
13101 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13102 break;
13103 default:
13104 g_assert_not_reached();
13107 write_vec_element(s, tcg_res, rd, pass, MO_64);
13108 tcg_temp_free_i64(tcg_op);
13109 tcg_temp_free_i64(tcg_res);
13112 tcg_temp_free_i64(tcg_idx);
13113 clear_vec_high(s, !is_scalar, rd);
13114 } else if (!is_long) {
13115 /* 32 bit floating point, or 16 or 32 bit integer.
13116 * For the 16 bit scalar case we use the usual Neon helpers and
13117 * rely on the fact that 0 op 0 == 0 with no side effects.
13119 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13120 int pass, maxpasses;
13122 if (is_scalar) {
13123 maxpasses = 1;
13124 } else {
13125 maxpasses = is_q ? 4 : 2;
13128 read_vec_element_i32(s, tcg_idx, rm, index, size);
13130 if (size == 1 && !is_scalar) {
13131 /* The simplest way to handle the 16x16 indexed ops is to duplicate
13132 * the index into both halves of the 32 bit tcg_idx and then use
13133 * the usual Neon helpers.
13135 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13138 for (pass = 0; pass < maxpasses; pass++) {
13139 TCGv_i32 tcg_op = tcg_temp_new_i32();
13140 TCGv_i32 tcg_res = tcg_temp_new_i32();
13142 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13144 switch (16 * u + opcode) {
13145 case 0x08: /* MUL */
13146 case 0x10: /* MLA */
13147 case 0x14: /* MLS */
13149 static NeonGenTwoOpFn * const fns[2][2] = {
13150 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13151 { tcg_gen_add_i32, tcg_gen_sub_i32 },
13153 NeonGenTwoOpFn *genfn;
13154 bool is_sub = opcode == 0x4;
13156 if (size == 1) {
13157 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13158 } else {
13159 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13161 if (opcode == 0x8) {
13162 break;
13164 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13165 genfn = fns[size - 1][is_sub];
13166 genfn(tcg_res, tcg_op, tcg_res);
13167 break;
13169 case 0x05: /* FMLS */
13170 case 0x01: /* FMLA */
13171 read_vec_element_i32(s, tcg_res, rd, pass,
13172 is_scalar ? size : MO_32);
13173 switch (size) {
13174 case 1:
13175 if (opcode == 0x5) {
13176 /* As usual for ARM, separate negation for fused
13177 * multiply-add */
13178 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13180 if (is_scalar) {
13181 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13182 tcg_res, fpst);
13183 } else {
13184 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13185 tcg_res, fpst);
13187 break;
13188 case 2:
13189 if (opcode == 0x5) {
13190 /* As usual for ARM, separate negation for
13191 * fused multiply-add */
13192 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13194 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13195 tcg_res, fpst);
13196 break;
13197 default:
13198 g_assert_not_reached();
13200 break;
13201 case 0x09: /* FMUL */
13202 switch (size) {
13203 case 1:
13204 if (is_scalar) {
13205 gen_helper_advsimd_mulh(tcg_res, tcg_op,
13206 tcg_idx, fpst);
13207 } else {
13208 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13209 tcg_idx, fpst);
13211 break;
13212 case 2:
13213 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13214 break;
13215 default:
13216 g_assert_not_reached();
13218 break;
13219 case 0x19: /* FMULX */
13220 switch (size) {
13221 case 1:
13222 if (is_scalar) {
13223 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13224 tcg_idx, fpst);
13225 } else {
13226 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13227 tcg_idx, fpst);
13229 break;
13230 case 2:
13231 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13232 break;
13233 default:
13234 g_assert_not_reached();
13236 break;
13237 case 0x0c: /* SQDMULH */
13238 if (size == 1) {
13239 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13240 tcg_op, tcg_idx);
13241 } else {
13242 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13243 tcg_op, tcg_idx);
13245 break;
13246 case 0x0d: /* SQRDMULH */
13247 if (size == 1) {
13248 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13249 tcg_op, tcg_idx);
13250 } else {
13251 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13252 tcg_op, tcg_idx);
13254 break;
13255 case 0x1d: /* SQRDMLAH */
13256 read_vec_element_i32(s, tcg_res, rd, pass,
13257 is_scalar ? size : MO_32);
13258 if (size == 1) {
13259 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13260 tcg_op, tcg_idx, tcg_res);
13261 } else {
13262 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13263 tcg_op, tcg_idx, tcg_res);
13265 break;
13266 case 0x1f: /* SQRDMLSH */
13267 read_vec_element_i32(s, tcg_res, rd, pass,
13268 is_scalar ? size : MO_32);
13269 if (size == 1) {
13270 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13271 tcg_op, tcg_idx, tcg_res);
13272 } else {
13273 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13274 tcg_op, tcg_idx, tcg_res);
13276 break;
13277 default:
13278 g_assert_not_reached();
13281 if (is_scalar) {
13282 write_fp_sreg(s, rd, tcg_res);
13283 } else {
13284 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13287 tcg_temp_free_i32(tcg_op);
13288 tcg_temp_free_i32(tcg_res);
13291 tcg_temp_free_i32(tcg_idx);
13292 clear_vec_high(s, is_q, rd);
13293 } else {
13294 /* long ops: 16x16->32 or 32x32->64 */
13295 TCGv_i64 tcg_res[2];
13296 int pass;
13297 bool satop = extract32(opcode, 0, 1);
13298 MemOp memop = MO_32;
13300 if (satop || !u) {
13301 memop |= MO_SIGN;
13304 if (size == 2) {
13305 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13307 read_vec_element(s, tcg_idx, rm, index, memop);
13309 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13310 TCGv_i64 tcg_op = tcg_temp_new_i64();
13311 TCGv_i64 tcg_passres;
13312 int passelt;
13314 if (is_scalar) {
13315 passelt = 0;
13316 } else {
13317 passelt = pass + (is_q * 2);
13320 read_vec_element(s, tcg_op, rn, passelt, memop);
13322 tcg_res[pass] = tcg_temp_new_i64();
13324 if (opcode == 0xa || opcode == 0xb) {
13325 /* Non-accumulating ops */
13326 tcg_passres = tcg_res[pass];
13327 } else {
13328 tcg_passres = tcg_temp_new_i64();
13331 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13332 tcg_temp_free_i64(tcg_op);
13334 if (satop) {
13335 /* saturating, doubling */
13336 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13337 tcg_passres, tcg_passres);
13340 if (opcode == 0xa || opcode == 0xb) {
13341 continue;
13344 /* Accumulating op: handle accumulate step */
13345 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13347 switch (opcode) {
13348 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13349 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13350 break;
13351 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13352 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13353 break;
13354 case 0x7: /* SQDMLSL, SQDMLSL2 */
13355 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13356 /* fall through */
13357 case 0x3: /* SQDMLAL, SQDMLAL2 */
13358 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13359 tcg_res[pass],
13360 tcg_passres);
13361 break;
13362 default:
13363 g_assert_not_reached();
13365 tcg_temp_free_i64(tcg_passres);
13367 tcg_temp_free_i64(tcg_idx);
13369 clear_vec_high(s, !is_scalar, rd);
13370 } else {
13371 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13373 assert(size == 1);
13374 read_vec_element_i32(s, tcg_idx, rm, index, size);
13376 if (!is_scalar) {
13377 /* The simplest way to handle the 16x16 indexed ops is to
13378 * duplicate the index into both halves of the 32 bit tcg_idx
13379 * and then use the usual Neon helpers.
13381 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13384 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13385 TCGv_i32 tcg_op = tcg_temp_new_i32();
13386 TCGv_i64 tcg_passres;
13388 if (is_scalar) {
13389 read_vec_element_i32(s, tcg_op, rn, pass, size);
13390 } else {
13391 read_vec_element_i32(s, tcg_op, rn,
13392 pass + (is_q * 2), MO_32);
13395 tcg_res[pass] = tcg_temp_new_i64();
13397 if (opcode == 0xa || opcode == 0xb) {
13398 /* Non-accumulating ops */
13399 tcg_passres = tcg_res[pass];
13400 } else {
13401 tcg_passres = tcg_temp_new_i64();
13404 if (memop & MO_SIGN) {
13405 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13406 } else {
13407 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13409 if (satop) {
13410 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13411 tcg_passres, tcg_passres);
13413 tcg_temp_free_i32(tcg_op);
13415 if (opcode == 0xa || opcode == 0xb) {
13416 continue;
13419 /* Accumulating op: handle accumulate step */
13420 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13422 switch (opcode) {
13423 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13424 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13425 tcg_passres);
13426 break;
13427 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13428 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13429 tcg_passres);
13430 break;
13431 case 0x7: /* SQDMLSL, SQDMLSL2 */
13432 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13433 /* fall through */
13434 case 0x3: /* SQDMLAL, SQDMLAL2 */
13435 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13436 tcg_res[pass],
13437 tcg_passres);
13438 break;
13439 default:
13440 g_assert_not_reached();
13442 tcg_temp_free_i64(tcg_passres);
13444 tcg_temp_free_i32(tcg_idx);
13446 if (is_scalar) {
13447 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13451 if (is_scalar) {
13452 tcg_res[1] = tcg_const_i64(0);
13455 for (pass = 0; pass < 2; pass++) {
13456 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13457 tcg_temp_free_i64(tcg_res[pass]);
13461 if (fpst) {
13462 tcg_temp_free_ptr(fpst);
13466 /* Crypto AES
13467 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13468 * +-----------------+------+-----------+--------+-----+------+------+
13469 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13470 * +-----------------+------+-----------+--------+-----+------+------+
13472 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13474 int size = extract32(insn, 22, 2);
13475 int opcode = extract32(insn, 12, 5);
13476 int rn = extract32(insn, 5, 5);
13477 int rd = extract32(insn, 0, 5);
13478 int decrypt;
13479 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13480 TCGv_i32 tcg_decrypt;
13481 CryptoThreeOpIntFn *genfn;
13483 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13484 unallocated_encoding(s);
13485 return;
13488 switch (opcode) {
13489 case 0x4: /* AESE */
13490 decrypt = 0;
13491 genfn = gen_helper_crypto_aese;
13492 break;
13493 case 0x6: /* AESMC */
13494 decrypt = 0;
13495 genfn = gen_helper_crypto_aesmc;
13496 break;
13497 case 0x5: /* AESD */
13498 decrypt = 1;
13499 genfn = gen_helper_crypto_aese;
13500 break;
13501 case 0x7: /* AESIMC */
13502 decrypt = 1;
13503 genfn = gen_helper_crypto_aesmc;
13504 break;
13505 default:
13506 unallocated_encoding(s);
13507 return;
13510 if (!fp_access_check(s)) {
13511 return;
13514 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13515 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13516 tcg_decrypt = tcg_const_i32(decrypt);
13518 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_decrypt);
13520 tcg_temp_free_ptr(tcg_rd_ptr);
13521 tcg_temp_free_ptr(tcg_rn_ptr);
13522 tcg_temp_free_i32(tcg_decrypt);
13525 /* Crypto three-reg SHA
13526 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13527 * +-----------------+------+---+------+---+--------+-----+------+------+
13528 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13529 * +-----------------+------+---+------+---+--------+-----+------+------+
13531 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13533 int size = extract32(insn, 22, 2);
13534 int opcode = extract32(insn, 12, 3);
13535 int rm = extract32(insn, 16, 5);
13536 int rn = extract32(insn, 5, 5);
13537 int rd = extract32(insn, 0, 5);
13538 CryptoThreeOpFn *genfn;
13539 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13540 bool feature;
13542 if (size != 0) {
13543 unallocated_encoding(s);
13544 return;
13547 switch (opcode) {
13548 case 0: /* SHA1C */
13549 case 1: /* SHA1P */
13550 case 2: /* SHA1M */
13551 case 3: /* SHA1SU0 */
13552 genfn = NULL;
13553 feature = dc_isar_feature(aa64_sha1, s);
13554 break;
13555 case 4: /* SHA256H */
13556 genfn = gen_helper_crypto_sha256h;
13557 feature = dc_isar_feature(aa64_sha256, s);
13558 break;
13559 case 5: /* SHA256H2 */
13560 genfn = gen_helper_crypto_sha256h2;
13561 feature = dc_isar_feature(aa64_sha256, s);
13562 break;
13563 case 6: /* SHA256SU1 */
13564 genfn = gen_helper_crypto_sha256su1;
13565 feature = dc_isar_feature(aa64_sha256, s);
13566 break;
13567 default:
13568 unallocated_encoding(s);
13569 return;
13572 if (!feature) {
13573 unallocated_encoding(s);
13574 return;
13577 if (!fp_access_check(s)) {
13578 return;
13581 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13582 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13583 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13585 if (genfn) {
13586 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13587 } else {
13588 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
13590 gen_helper_crypto_sha1_3reg(tcg_rd_ptr, tcg_rn_ptr,
13591 tcg_rm_ptr, tcg_opcode);
13592 tcg_temp_free_i32(tcg_opcode);
13595 tcg_temp_free_ptr(tcg_rd_ptr);
13596 tcg_temp_free_ptr(tcg_rn_ptr);
13597 tcg_temp_free_ptr(tcg_rm_ptr);
13600 /* Crypto two-reg SHA
13601 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13602 * +-----------------+------+-----------+--------+-----+------+------+
13603 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13604 * +-----------------+------+-----------+--------+-----+------+------+
13606 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13608 int size = extract32(insn, 22, 2);
13609 int opcode = extract32(insn, 12, 5);
13610 int rn = extract32(insn, 5, 5);
13611 int rd = extract32(insn, 0, 5);
13612 CryptoTwoOpFn *genfn;
13613 bool feature;
13614 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13616 if (size != 0) {
13617 unallocated_encoding(s);
13618 return;
13621 switch (opcode) {
13622 case 0: /* SHA1H */
13623 feature = dc_isar_feature(aa64_sha1, s);
13624 genfn = gen_helper_crypto_sha1h;
13625 break;
13626 case 1: /* SHA1SU1 */
13627 feature = dc_isar_feature(aa64_sha1, s);
13628 genfn = gen_helper_crypto_sha1su1;
13629 break;
13630 case 2: /* SHA256SU0 */
13631 feature = dc_isar_feature(aa64_sha256, s);
13632 genfn = gen_helper_crypto_sha256su0;
13633 break;
13634 default:
13635 unallocated_encoding(s);
13636 return;
13639 if (!feature) {
13640 unallocated_encoding(s);
13641 return;
13644 if (!fp_access_check(s)) {
13645 return;
13648 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13649 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13651 genfn(tcg_rd_ptr, tcg_rn_ptr);
13653 tcg_temp_free_ptr(tcg_rd_ptr);
13654 tcg_temp_free_ptr(tcg_rn_ptr);
13657 /* Crypto three-reg SHA512
13658 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13659 * +-----------------------+------+---+---+-----+--------+------+------+
13660 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
13661 * +-----------------------+------+---+---+-----+--------+------+------+
13663 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13665 int opcode = extract32(insn, 10, 2);
13666 int o = extract32(insn, 14, 1);
13667 int rm = extract32(insn, 16, 5);
13668 int rn = extract32(insn, 5, 5);
13669 int rd = extract32(insn, 0, 5);
13670 bool feature;
13671 CryptoThreeOpFn *genfn;
13673 if (o == 0) {
13674 switch (opcode) {
13675 case 0: /* SHA512H */
13676 feature = dc_isar_feature(aa64_sha512, s);
13677 genfn = gen_helper_crypto_sha512h;
13678 break;
13679 case 1: /* SHA512H2 */
13680 feature = dc_isar_feature(aa64_sha512, s);
13681 genfn = gen_helper_crypto_sha512h2;
13682 break;
13683 case 2: /* SHA512SU1 */
13684 feature = dc_isar_feature(aa64_sha512, s);
13685 genfn = gen_helper_crypto_sha512su1;
13686 break;
13687 case 3: /* RAX1 */
13688 feature = dc_isar_feature(aa64_sha3, s);
13689 genfn = NULL;
13690 break;
13691 default:
13692 g_assert_not_reached();
13694 } else {
13695 switch (opcode) {
13696 case 0: /* SM3PARTW1 */
13697 feature = dc_isar_feature(aa64_sm3, s);
13698 genfn = gen_helper_crypto_sm3partw1;
13699 break;
13700 case 1: /* SM3PARTW2 */
13701 feature = dc_isar_feature(aa64_sm3, s);
13702 genfn = gen_helper_crypto_sm3partw2;
13703 break;
13704 case 2: /* SM4EKEY */
13705 feature = dc_isar_feature(aa64_sm4, s);
13706 genfn = gen_helper_crypto_sm4ekey;
13707 break;
13708 default:
13709 unallocated_encoding(s);
13710 return;
13714 if (!feature) {
13715 unallocated_encoding(s);
13716 return;
13719 if (!fp_access_check(s)) {
13720 return;
13723 if (genfn) {
13724 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13726 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13727 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13728 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13730 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
13732 tcg_temp_free_ptr(tcg_rd_ptr);
13733 tcg_temp_free_ptr(tcg_rn_ptr);
13734 tcg_temp_free_ptr(tcg_rm_ptr);
13735 } else {
13736 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13737 int pass;
13739 tcg_op1 = tcg_temp_new_i64();
13740 tcg_op2 = tcg_temp_new_i64();
13741 tcg_res[0] = tcg_temp_new_i64();
13742 tcg_res[1] = tcg_temp_new_i64();
13744 for (pass = 0; pass < 2; pass++) {
13745 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13746 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13748 tcg_gen_rotli_i64(tcg_res[pass], tcg_op2, 1);
13749 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13751 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13752 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13754 tcg_temp_free_i64(tcg_op1);
13755 tcg_temp_free_i64(tcg_op2);
13756 tcg_temp_free_i64(tcg_res[0]);
13757 tcg_temp_free_i64(tcg_res[1]);
13761 /* Crypto two-reg SHA512
13762 * 31 12 11 10 9 5 4 0
13763 * +-----------------------------------------+--------+------+------+
13764 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
13765 * +-----------------------------------------+--------+------+------+
13767 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13769 int opcode = extract32(insn, 10, 2);
13770 int rn = extract32(insn, 5, 5);
13771 int rd = extract32(insn, 0, 5);
13772 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
13773 bool feature;
13774 CryptoTwoOpFn *genfn;
13776 switch (opcode) {
13777 case 0: /* SHA512SU0 */
13778 feature = dc_isar_feature(aa64_sha512, s);
13779 genfn = gen_helper_crypto_sha512su0;
13780 break;
13781 case 1: /* SM4E */
13782 feature = dc_isar_feature(aa64_sm4, s);
13783 genfn = gen_helper_crypto_sm4e;
13784 break;
13785 default:
13786 unallocated_encoding(s);
13787 return;
13790 if (!feature) {
13791 unallocated_encoding(s);
13792 return;
13795 if (!fp_access_check(s)) {
13796 return;
13799 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13800 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13802 genfn(tcg_rd_ptr, tcg_rn_ptr);
13804 tcg_temp_free_ptr(tcg_rd_ptr);
13805 tcg_temp_free_ptr(tcg_rn_ptr);
13808 /* Crypto four-register
13809 * 31 23 22 21 20 16 15 14 10 9 5 4 0
13810 * +-------------------+-----+------+---+------+------+------+
13811 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
13812 * +-------------------+-----+------+---+------+------+------+
13814 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13816 int op0 = extract32(insn, 21, 2);
13817 int rm = extract32(insn, 16, 5);
13818 int ra = extract32(insn, 10, 5);
13819 int rn = extract32(insn, 5, 5);
13820 int rd = extract32(insn, 0, 5);
13821 bool feature;
13823 switch (op0) {
13824 case 0: /* EOR3 */
13825 case 1: /* BCAX */
13826 feature = dc_isar_feature(aa64_sha3, s);
13827 break;
13828 case 2: /* SM3SS1 */
13829 feature = dc_isar_feature(aa64_sm3, s);
13830 break;
13831 default:
13832 unallocated_encoding(s);
13833 return;
13836 if (!feature) {
13837 unallocated_encoding(s);
13838 return;
13841 if (!fp_access_check(s)) {
13842 return;
13845 if (op0 < 2) {
13846 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13847 int pass;
13849 tcg_op1 = tcg_temp_new_i64();
13850 tcg_op2 = tcg_temp_new_i64();
13851 tcg_op3 = tcg_temp_new_i64();
13852 tcg_res[0] = tcg_temp_new_i64();
13853 tcg_res[1] = tcg_temp_new_i64();
13855 for (pass = 0; pass < 2; pass++) {
13856 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13857 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13858 read_vec_element(s, tcg_op3, ra, pass, MO_64);
13860 if (op0 == 0) {
13861 /* EOR3 */
13862 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13863 } else {
13864 /* BCAX */
13865 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13867 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13869 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13870 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13872 tcg_temp_free_i64(tcg_op1);
13873 tcg_temp_free_i64(tcg_op2);
13874 tcg_temp_free_i64(tcg_op3);
13875 tcg_temp_free_i64(tcg_res[0]);
13876 tcg_temp_free_i64(tcg_res[1]);
13877 } else {
13878 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13880 tcg_op1 = tcg_temp_new_i32();
13881 tcg_op2 = tcg_temp_new_i32();
13882 tcg_op3 = tcg_temp_new_i32();
13883 tcg_res = tcg_temp_new_i32();
13884 tcg_zero = tcg_const_i32(0);
13886 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13887 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13888 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13890 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13891 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13892 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13893 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13895 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13896 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13897 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13898 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13900 tcg_temp_free_i32(tcg_op1);
13901 tcg_temp_free_i32(tcg_op2);
13902 tcg_temp_free_i32(tcg_op3);
13903 tcg_temp_free_i32(tcg_res);
13904 tcg_temp_free_i32(tcg_zero);
13908 /* Crypto XAR
13909 * 31 21 20 16 15 10 9 5 4 0
13910 * +-----------------------+------+--------+------+------+
13911 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
13912 * +-----------------------+------+--------+------+------+
13914 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13916 int rm = extract32(insn, 16, 5);
13917 int imm6 = extract32(insn, 10, 6);
13918 int rn = extract32(insn, 5, 5);
13919 int rd = extract32(insn, 0, 5);
13920 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13921 int pass;
13923 if (!dc_isar_feature(aa64_sha3, s)) {
13924 unallocated_encoding(s);
13925 return;
13928 if (!fp_access_check(s)) {
13929 return;
13932 tcg_op1 = tcg_temp_new_i64();
13933 tcg_op2 = tcg_temp_new_i64();
13934 tcg_res[0] = tcg_temp_new_i64();
13935 tcg_res[1] = tcg_temp_new_i64();
13937 for (pass = 0; pass < 2; pass++) {
13938 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13939 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13941 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
13942 tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6);
13944 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13945 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13947 tcg_temp_free_i64(tcg_op1);
13948 tcg_temp_free_i64(tcg_op2);
13949 tcg_temp_free_i64(tcg_res[0]);
13950 tcg_temp_free_i64(tcg_res[1]);
13953 /* Crypto three-reg imm2
13954 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13955 * +-----------------------+------+-----+------+--------+------+------+
13956 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
13957 * +-----------------------+------+-----+------+--------+------+------+
13959 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13961 int opcode = extract32(insn, 10, 2);
13962 int imm2 = extract32(insn, 12, 2);
13963 int rm = extract32(insn, 16, 5);
13964 int rn = extract32(insn, 5, 5);
13965 int rd = extract32(insn, 0, 5);
13966 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13967 TCGv_i32 tcg_imm2, tcg_opcode;
13969 if (!dc_isar_feature(aa64_sm3, s)) {
13970 unallocated_encoding(s);
13971 return;
13974 if (!fp_access_check(s)) {
13975 return;
13978 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13979 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13980 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13981 tcg_imm2 = tcg_const_i32(imm2);
13982 tcg_opcode = tcg_const_i32(opcode);
13984 gen_helper_crypto_sm3tt(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr, tcg_imm2,
13985 tcg_opcode);
13987 tcg_temp_free_ptr(tcg_rd_ptr);
13988 tcg_temp_free_ptr(tcg_rn_ptr);
13989 tcg_temp_free_ptr(tcg_rm_ptr);
13990 tcg_temp_free_i32(tcg_imm2);
13991 tcg_temp_free_i32(tcg_opcode);
13994 /* C3.6 Data processing - SIMD, inc Crypto
13996 * As the decode gets a little complex we are using a table based
13997 * approach for this part of the decode.
13999 static const AArch64DecodeTable data_proc_simd[] = {
14000 /* pattern , mask , fn */
14001 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
14002 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
14003 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
14004 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
14005 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
14006 { 0x0e000400, 0x9fe08400, disas_simd_copy },
14007 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
14008 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
14009 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
14010 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
14011 { 0x0e000000, 0xbf208c00, disas_simd_tb },
14012 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
14013 { 0x2e000000, 0xbf208400, disas_simd_ext },
14014 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
14015 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
14016 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
14017 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
14018 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
14019 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
14020 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
14021 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
14022 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
14023 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
14024 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
14025 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
14026 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
14027 { 0xce000000, 0xff808000, disas_crypto_four_reg },
14028 { 0xce800000, 0xffe00000, disas_crypto_xar },
14029 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
14030 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
14031 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
14032 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
14033 { 0x00000000, 0x00000000, NULL }
14036 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
14038 /* Note that this is called with all non-FP cases from
14039 * table C3-6 so it must UNDEF for entries not specifically
14040 * allocated to instructions in that table.
14042 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
14043 if (fn) {
14044 fn(s, insn);
14045 } else {
14046 unallocated_encoding(s);
14050 /* C3.6 Data processing - SIMD and floating point */
14051 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
14053 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
14054 disas_data_proc_fp(s, insn);
14055 } else {
14056 /* SIMD, including crypto */
14057 disas_data_proc_simd(s, insn);
14062 * is_guarded_page:
14063 * @env: The cpu environment
14064 * @s: The DisasContext
14066 * Return true if the page is guarded.
14068 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
14070 #ifdef CONFIG_USER_ONLY
14071 return false; /* FIXME */
14072 #else
14073 uint64_t addr = s->base.pc_first;
14074 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
14075 unsigned int index = tlb_index(env, mmu_idx, addr);
14076 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
14079 * We test this immediately after reading an insn, which means
14080 * that any normal page must be in the TLB. The only exception
14081 * would be for executing from flash or device memory, which
14082 * does not retain the TLB entry.
14084 * FIXME: Assume false for those, for now. We could use
14085 * arm_cpu_get_phys_page_attrs_debug to re-read the page
14086 * table entry even for that case.
14088 return (tlb_hit(entry->addr_code, addr) &&
14089 env_tlb(env)->d[mmu_idx].iotlb[index].attrs.target_tlb_bit0);
14090 #endif
14094 * btype_destination_ok:
14095 * @insn: The instruction at the branch destination
14096 * @bt: SCTLR_ELx.BT
14097 * @btype: PSTATE.BTYPE, and is non-zero
14099 * On a guarded page, there are a limited number of insns
14100 * that may be present at the branch target:
14101 * - branch target identifiers,
14102 * - paciasp, pacibsp,
14103 * - BRK insn
14104 * - HLT insn
14105 * Anything else causes a Branch Target Exception.
14107 * Return true if the branch is compatible, false to raise BTITRAP.
14109 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14111 if ((insn & 0xfffff01fu) == 0xd503201fu) {
14112 /* HINT space */
14113 switch (extract32(insn, 5, 7)) {
14114 case 0b011001: /* PACIASP */
14115 case 0b011011: /* PACIBSP */
14117 * If SCTLR_ELx.BT, then PACI*SP are not compatible
14118 * with btype == 3. Otherwise all btype are ok.
14120 return !bt || btype != 3;
14121 case 0b100000: /* BTI */
14122 /* Not compatible with any btype. */
14123 return false;
14124 case 0b100010: /* BTI c */
14125 /* Not compatible with btype == 3 */
14126 return btype != 3;
14127 case 0b100100: /* BTI j */
14128 /* Not compatible with btype == 2 */
14129 return btype != 2;
14130 case 0b100110: /* BTI jc */
14131 /* Compatible with any btype. */
14132 return true;
14134 } else {
14135 switch (insn & 0xffe0001fu) {
14136 case 0xd4200000u: /* BRK */
14137 case 0xd4400000u: /* HLT */
14138 /* Give priority to the breakpoint exception. */
14139 return true;
14142 return false;
14145 /* C3.1 A64 instruction index by encoding */
14146 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
14148 uint32_t insn;
14150 s->pc_curr = s->base.pc_next;
14151 insn = arm_ldl_code(env, s->base.pc_next, s->sctlr_b);
14152 s->insn = insn;
14153 s->base.pc_next += 4;
14155 s->fp_access_checked = false;
14157 if (dc_isar_feature(aa64_bti, s)) {
14158 if (s->base.num_insns == 1) {
14160 * At the first insn of the TB, compute s->guarded_page.
14161 * We delayed computing this until successfully reading
14162 * the first insn of the TB, above. This (mostly) ensures
14163 * that the softmmu tlb entry has been populated, and the
14164 * page table GP bit is available.
14166 * Note that we need to compute this even if btype == 0,
14167 * because this value is used for BR instructions later
14168 * where ENV is not available.
14170 s->guarded_page = is_guarded_page(env, s);
14172 /* First insn can have btype set to non-zero. */
14173 tcg_debug_assert(s->btype >= 0);
14176 * Note that the Branch Target Exception has fairly high
14177 * priority -- below debugging exceptions but above most
14178 * everything else. This allows us to handle this now
14179 * instead of waiting until the insn is otherwise decoded.
14181 if (s->btype != 0
14182 && s->guarded_page
14183 && !btype_destination_ok(insn, s->bt, s->btype)) {
14184 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
14185 syn_btitrap(s->btype),
14186 default_exception_el(s));
14187 return;
14189 } else {
14190 /* Not the first insn: btype must be 0. */
14191 tcg_debug_assert(s->btype == 0);
14195 switch (extract32(insn, 25, 4)) {
14196 case 0x0: case 0x1: case 0x3: /* UNALLOCATED */
14197 unallocated_encoding(s);
14198 break;
14199 case 0x2:
14200 if (!dc_isar_feature(aa64_sve, s) || !disas_sve(s, insn)) {
14201 unallocated_encoding(s);
14203 break;
14204 case 0x8: case 0x9: /* Data processing - immediate */
14205 disas_data_proc_imm(s, insn);
14206 break;
14207 case 0xa: case 0xb: /* Branch, exception generation and system insns */
14208 disas_b_exc_sys(s, insn);
14209 break;
14210 case 0x4:
14211 case 0x6:
14212 case 0xc:
14213 case 0xe: /* Loads and stores */
14214 disas_ldst(s, insn);
14215 break;
14216 case 0x5:
14217 case 0xd: /* Data processing - register */
14218 disas_data_proc_reg(s, insn);
14219 break;
14220 case 0x7:
14221 case 0xf: /* Data processing - SIMD and floating point */
14222 disas_data_proc_simd_fp(s, insn);
14223 break;
14224 default:
14225 assert(FALSE); /* all 15 cases should be handled above */
14226 break;
14229 /* if we allocated any temporaries, free them here */
14230 free_tmp_a64(s);
14233 * After execution of most insns, btype is reset to 0.
14234 * Note that we set btype == -1 when the insn sets btype.
14236 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14237 reset_btype(s);
14241 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14242 CPUState *cpu)
14244 DisasContext *dc = container_of(dcbase, DisasContext, base);
14245 CPUARMState *env = cpu->env_ptr;
14246 ARMCPU *arm_cpu = env_archcpu(env);
14247 uint32_t tb_flags = dc->base.tb->flags;
14248 int bound, core_mmu_idx;
14250 dc->isar = &arm_cpu->isar;
14251 dc->condjmp = 0;
14253 dc->aarch64 = 1;
14254 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
14255 * there is no secure EL1, so we route exceptions to EL3.
14257 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
14258 !arm_el_is_aa64(env, 3);
14259 dc->thumb = 0;
14260 dc->sctlr_b = 0;
14261 dc->be_data = FIELD_EX32(tb_flags, TBFLAG_ANY, BE_DATA) ? MO_BE : MO_LE;
14262 dc->condexec_mask = 0;
14263 dc->condexec_cond = 0;
14264 core_mmu_idx = FIELD_EX32(tb_flags, TBFLAG_ANY, MMUIDX);
14265 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14266 dc->tbii = FIELD_EX32(tb_flags, TBFLAG_A64, TBII);
14267 dc->tbid = FIELD_EX32(tb_flags, TBFLAG_A64, TBID);
14268 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14269 #if !defined(CONFIG_USER_ONLY)
14270 dc->user = (dc->current_el == 0);
14271 #endif
14272 dc->fp_excp_el = FIELD_EX32(tb_flags, TBFLAG_ANY, FPEXC_EL);
14273 dc->sve_excp_el = FIELD_EX32(tb_flags, TBFLAG_A64, SVEEXC_EL);
14274 dc->sve_len = (FIELD_EX32(tb_flags, TBFLAG_A64, ZCR_LEN) + 1) * 16;
14275 dc->pauth_active = FIELD_EX32(tb_flags, TBFLAG_A64, PAUTH_ACTIVE);
14276 dc->bt = FIELD_EX32(tb_flags, TBFLAG_A64, BT);
14277 dc->btype = FIELD_EX32(tb_flags, TBFLAG_A64, BTYPE);
14278 dc->unpriv = FIELD_EX32(tb_flags, TBFLAG_A64, UNPRIV);
14279 dc->vec_len = 0;
14280 dc->vec_stride = 0;
14281 dc->cp_regs = arm_cpu->cp_regs;
14282 dc->features = env->features;
14284 /* Single step state. The code-generation logic here is:
14285 * SS_ACTIVE == 0:
14286 * generate code with no special handling for single-stepping (except
14287 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14288 * this happens anyway because those changes are all system register or
14289 * PSTATE writes).
14290 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14291 * emit code for one insn
14292 * emit code to clear PSTATE.SS
14293 * emit code to generate software step exception for completed step
14294 * end TB (as usual for having generated an exception)
14295 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14296 * emit code to generate a software step exception
14297 * end the TB
14299 dc->ss_active = FIELD_EX32(tb_flags, TBFLAG_ANY, SS_ACTIVE);
14300 dc->pstate_ss = FIELD_EX32(tb_flags, TBFLAG_ANY, PSTATE_SS);
14301 dc->is_ldex = false;
14302 dc->debug_target_el = FIELD_EX32(tb_flags, TBFLAG_ANY, DEBUG_TARGET_EL);
14304 /* Bound the number of insns to execute to those left on the page. */
14305 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14307 /* If architectural single step active, limit to 1. */
14308 if (dc->ss_active) {
14309 bound = 1;
14311 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14313 init_tmp_a64_array(dc);
14316 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14320 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14322 DisasContext *dc = container_of(dcbase, DisasContext, base);
14324 tcg_gen_insn_start(dc->base.pc_next, 0, 0);
14325 dc->insn_start = tcg_last_op();
14328 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
14329 const CPUBreakpoint *bp)
14331 DisasContext *dc = container_of(dcbase, DisasContext, base);
14333 if (bp->flags & BP_CPU) {
14334 gen_a64_set_pc_im(dc->base.pc_next);
14335 gen_helper_check_breakpoints(cpu_env);
14336 /* End the TB early; it likely won't be executed */
14337 dc->base.is_jmp = DISAS_TOO_MANY;
14338 } else {
14339 gen_exception_internal_insn(dc, dc->base.pc_next, EXCP_DEBUG);
14340 /* The address covered by the breakpoint must be
14341 included in [tb->pc, tb->pc + tb->size) in order
14342 to for it to be properly cleared -- thus we
14343 increment the PC here so that the logic setting
14344 tb->size below does the right thing. */
14345 dc->base.pc_next += 4;
14346 dc->base.is_jmp = DISAS_NORETURN;
14349 return true;
14352 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14354 DisasContext *dc = container_of(dcbase, DisasContext, base);
14355 CPUARMState *env = cpu->env_ptr;
14357 if (dc->ss_active && !dc->pstate_ss) {
14358 /* Singlestep state is Active-pending.
14359 * If we're in this state at the start of a TB then either
14360 * a) we just took an exception to an EL which is being debugged
14361 * and this is the first insn in the exception handler
14362 * b) debug exceptions were masked and we just unmasked them
14363 * without changing EL (eg by clearing PSTATE.D)
14364 * In either case we're going to take a swstep exception in the
14365 * "did not step an insn" case, and so the syndrome ISV and EX
14366 * bits should be zero.
14368 assert(dc->base.num_insns == 1);
14369 gen_swstep_exception(dc, 0, 0);
14370 dc->base.is_jmp = DISAS_NORETURN;
14371 } else {
14372 disas_a64_insn(env, dc);
14375 translator_loop_temp_check(&dc->base);
14378 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14380 DisasContext *dc = container_of(dcbase, DisasContext, base);
14382 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
14383 /* Note that this means single stepping WFI doesn't halt the CPU.
14384 * For conditional branch insns this is harmless unreachable code as
14385 * gen_goto_tb() has already handled emitting the debug exception
14386 * (and thus a tb-jump is not possible when singlestepping).
14388 switch (dc->base.is_jmp) {
14389 default:
14390 gen_a64_set_pc_im(dc->base.pc_next);
14391 /* fall through */
14392 case DISAS_EXIT:
14393 case DISAS_JUMP:
14394 if (dc->base.singlestep_enabled) {
14395 gen_exception_internal(EXCP_DEBUG);
14396 } else {
14397 gen_step_complete_exception(dc);
14399 break;
14400 case DISAS_NORETURN:
14401 break;
14403 } else {
14404 switch (dc->base.is_jmp) {
14405 case DISAS_NEXT:
14406 case DISAS_TOO_MANY:
14407 gen_goto_tb(dc, 1, dc->base.pc_next);
14408 break;
14409 default:
14410 case DISAS_UPDATE:
14411 gen_a64_set_pc_im(dc->base.pc_next);
14412 /* fall through */
14413 case DISAS_EXIT:
14414 tcg_gen_exit_tb(NULL, 0);
14415 break;
14416 case DISAS_JUMP:
14417 tcg_gen_lookup_and_goto_ptr();
14418 break;
14419 case DISAS_NORETURN:
14420 case DISAS_SWI:
14421 break;
14422 case DISAS_WFE:
14423 gen_a64_set_pc_im(dc->base.pc_next);
14424 gen_helper_wfe(cpu_env);
14425 break;
14426 case DISAS_YIELD:
14427 gen_a64_set_pc_im(dc->base.pc_next);
14428 gen_helper_yield(cpu_env);
14429 break;
14430 case DISAS_WFI:
14432 /* This is a special case because we don't want to just halt the CPU
14433 * if trying to debug across a WFI.
14435 TCGv_i32 tmp = tcg_const_i32(4);
14437 gen_a64_set_pc_im(dc->base.pc_next);
14438 gen_helper_wfi(cpu_env, tmp);
14439 tcg_temp_free_i32(tmp);
14440 /* The helper doesn't necessarily throw an exception, but we
14441 * must go back to the main loop to check for interrupts anyway.
14443 tcg_gen_exit_tb(NULL, 0);
14444 break;
14450 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14451 CPUState *cpu)
14453 DisasContext *dc = container_of(dcbase, DisasContext, base);
14455 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
14456 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
14459 const TranslatorOps aarch64_translator_ops = {
14460 .init_disas_context = aarch64_tr_init_disas_context,
14461 .tb_start = aarch64_tr_tb_start,
14462 .insn_start = aarch64_tr_insn_start,
14463 .breakpoint_check = aarch64_tr_breakpoint_check,
14464 .translate_insn = aarch64_tr_translate_insn,
14465 .tb_stop = aarch64_tr_tb_stop,
14466 .disas_log = aarch64_tr_disas_log,