target-arm: Add support for PMU register PMSELR_EL0
[qemu/ar7.git] / hw / i386 / intel_iommu.c
blob3270fb9162a60ae5f98cc3fb620168f3f047f5d5
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
39 /*#define DEBUG_INTEL_IOMMU*/
40 #ifdef DEBUG_INTEL_IOMMU
41 enum {
42 DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
43 DEBUG_CACHE, DEBUG_IR,
45 #define VTD_DBGBIT(x) (1 << DEBUG_##x)
46 static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
48 #define VTD_DPRINTF(what, fmt, ...) do { \
49 if (vtd_dbgflags & VTD_DBGBIT(what)) { \
50 fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
51 ## __VA_ARGS__); } \
52 } while (0)
53 #else
54 #define VTD_DPRINTF(what, fmt, ...) do {} while (0)
55 #endif
57 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
58 uint64_t wmask, uint64_t w1cmask)
60 stq_le_p(&s->csr[addr], val);
61 stq_le_p(&s->wmask[addr], wmask);
62 stq_le_p(&s->w1cmask[addr], w1cmask);
65 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
67 stq_le_p(&s->womask[addr], mask);
70 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
71 uint32_t wmask, uint32_t w1cmask)
73 stl_le_p(&s->csr[addr], val);
74 stl_le_p(&s->wmask[addr], wmask);
75 stl_le_p(&s->w1cmask[addr], w1cmask);
78 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
80 stl_le_p(&s->womask[addr], mask);
83 /* "External" get/set operations */
84 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
86 uint64_t oldval = ldq_le_p(&s->csr[addr]);
87 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
88 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
89 stq_le_p(&s->csr[addr],
90 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
93 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
95 uint32_t oldval = ldl_le_p(&s->csr[addr]);
96 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
97 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
98 stl_le_p(&s->csr[addr],
99 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
102 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
104 uint64_t val = ldq_le_p(&s->csr[addr]);
105 uint64_t womask = ldq_le_p(&s->womask[addr]);
106 return val & ~womask;
109 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
111 uint32_t val = ldl_le_p(&s->csr[addr]);
112 uint32_t womask = ldl_le_p(&s->womask[addr]);
113 return val & ~womask;
116 /* "Internal" get/set operations */
117 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
119 return ldq_le_p(&s->csr[addr]);
122 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
124 return ldl_le_p(&s->csr[addr]);
127 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
129 stq_le_p(&s->csr[addr], val);
132 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
133 uint32_t clear, uint32_t mask)
135 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
136 stl_le_p(&s->csr[addr], new_val);
137 return new_val;
140 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
141 uint64_t clear, uint64_t mask)
143 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
144 stq_le_p(&s->csr[addr], new_val);
145 return new_val;
148 /* GHashTable functions */
149 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
151 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
154 static guint vtd_uint64_hash(gconstpointer v)
156 return (guint)*(const uint64_t *)v;
159 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
160 gpointer user_data)
162 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
163 uint16_t domain_id = *(uint16_t *)user_data;
164 return entry->domain_id == domain_id;
167 /* The shift of an addr for a certain level of paging structure */
168 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
170 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
173 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
175 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
178 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
179 gpointer user_data)
181 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
182 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
183 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
184 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
185 return (entry->domain_id == info->domain_id) &&
186 (((entry->gfn & info->mask) == gfn) ||
187 (entry->gfn == gfn_tlb));
190 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
191 * IntelIOMMUState to 1.
193 static void vtd_reset_context_cache(IntelIOMMUState *s)
195 VTDAddressSpace *vtd_as;
196 VTDBus *vtd_bus;
197 GHashTableIter bus_it;
198 uint32_t devfn_it;
200 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
202 VTD_DPRINTF(CACHE, "global context_cache_gen=1");
203 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
204 for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
205 vtd_as = vtd_bus->dev_as[devfn_it];
206 if (!vtd_as) {
207 continue;
209 vtd_as->context_cache_entry.context_cache_gen = 0;
212 s->context_cache_gen = 1;
215 static void vtd_reset_iotlb(IntelIOMMUState *s)
217 assert(s->iotlb);
218 g_hash_table_remove_all(s->iotlb);
221 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
222 uint32_t level)
224 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
225 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
228 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
230 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
233 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
234 hwaddr addr)
236 VTDIOTLBEntry *entry;
237 uint64_t key;
238 int level;
240 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
241 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
242 source_id, level);
243 entry = g_hash_table_lookup(s->iotlb, &key);
244 if (entry) {
245 goto out;
249 out:
250 return entry;
253 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
254 uint16_t domain_id, hwaddr addr, uint64_t slpte,
255 bool read_flags, bool write_flags,
256 uint32_t level)
258 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
259 uint64_t *key = g_malloc(sizeof(*key));
260 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
262 VTD_DPRINTF(CACHE, "update iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
263 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr, slpte,
264 domain_id);
265 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
266 VTD_DPRINTF(CACHE, "iotlb exceeds size limit, forced to reset");
267 vtd_reset_iotlb(s);
270 entry->gfn = gfn;
271 entry->domain_id = domain_id;
272 entry->slpte = slpte;
273 entry->read_flags = read_flags;
274 entry->write_flags = write_flags;
275 entry->mask = vtd_slpt_level_page_mask(level);
276 *key = vtd_get_iotlb_key(gfn, source_id, level);
277 g_hash_table_replace(s->iotlb, key, entry);
280 /* Given the reg addr of both the message data and address, generate an
281 * interrupt via MSI.
283 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
284 hwaddr mesg_data_reg)
286 MSIMessage msi;
288 assert(mesg_data_reg < DMAR_REG_SIZE);
289 assert(mesg_addr_reg < DMAR_REG_SIZE);
291 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
292 msi.data = vtd_get_long_raw(s, mesg_data_reg);
294 VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32,
295 msi.address, msi.data);
296 apic_get_class()->send_msi(&msi);
299 /* Generate a fault event to software via MSI if conditions are met.
300 * Notice that the value of FSTS_REG being passed to it should be the one
301 * before any update.
303 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
305 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
306 pre_fsts & VTD_FSTS_IQE) {
307 VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
308 "to be serviced by software, fault event is not generated "
309 "(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
310 return;
312 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
313 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
314 VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
315 } else {
316 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
317 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
321 /* Check if the Fault (F) field of the Fault Recording Register referenced by
322 * @index is Set.
324 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
326 /* Each reg is 128-bit */
327 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
328 addr += 8; /* Access the high 64-bit half */
330 assert(index < DMAR_FRCD_REG_NR);
332 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
335 /* Update the PPF field of Fault Status Register.
336 * Should be called whenever change the F field of any fault recording
337 * registers.
339 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
341 uint32_t i;
342 uint32_t ppf_mask = 0;
344 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
345 if (vtd_is_frcd_set(s, i)) {
346 ppf_mask = VTD_FSTS_PPF;
347 break;
350 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
351 VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
354 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
356 /* Each reg is 128-bit */
357 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
358 addr += 8; /* Access the high 64-bit half */
360 assert(index < DMAR_FRCD_REG_NR);
362 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
363 vtd_update_fsts_ppf(s);
366 /* Must not update F field now, should be done later */
367 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
368 uint16_t source_id, hwaddr addr,
369 VTDFaultReason fault, bool is_write)
371 uint64_t hi = 0, lo;
372 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
374 assert(index < DMAR_FRCD_REG_NR);
376 lo = VTD_FRCD_FI(addr);
377 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
378 if (!is_write) {
379 hi |= VTD_FRCD_T;
381 vtd_set_quad_raw(s, frcd_reg_addr, lo);
382 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
383 VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
384 ", lo 0x%"PRIx64, index, hi, lo);
387 /* Try to collapse multiple pending faults from the same requester */
388 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
390 uint32_t i;
391 uint64_t frcd_reg;
392 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
394 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
395 frcd_reg = vtd_get_quad_raw(s, addr);
396 VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
397 if ((frcd_reg & VTD_FRCD_F) &&
398 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
399 return true;
401 addr += 16; /* 128-bit for each */
403 return false;
406 /* Log and report an DMAR (address translation) fault to software */
407 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
408 hwaddr addr, VTDFaultReason fault,
409 bool is_write)
411 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
413 assert(fault < VTD_FR_MAX);
415 if (fault == VTD_FR_RESERVED_ERR) {
416 /* This is not a normal fault reason case. Drop it. */
417 return;
419 VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
420 ", is_write %d", source_id, fault, addr, is_write);
421 if (fsts_reg & VTD_FSTS_PFO) {
422 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
423 "Primary Fault Overflow");
424 return;
426 if (vtd_try_collapse_fault(s, source_id)) {
427 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
428 "compression of faults");
429 return;
431 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
432 VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
433 "new fault is not recorded, set PFO field");
434 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
435 return;
438 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
440 if (fsts_reg & VTD_FSTS_PPF) {
441 VTD_DPRINTF(FLOG, "there are pending faults already, "
442 "fault event is not generated");
443 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
444 s->next_frcd_reg++;
445 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
446 s->next_frcd_reg = 0;
448 } else {
449 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
450 VTD_FSTS_FRI(s->next_frcd_reg));
451 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
452 s->next_frcd_reg++;
453 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
454 s->next_frcd_reg = 0;
456 /* This case actually cause the PPF to be Set.
457 * So generate fault event (interrupt).
459 vtd_generate_fault_event(s, fsts_reg);
463 /* Handle Invalidation Queue Errors of queued invalidation interface error
464 * conditions.
466 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
468 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
470 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
471 vtd_generate_fault_event(s, fsts_reg);
474 /* Set the IWC field and try to generate an invalidation completion interrupt */
475 static void vtd_generate_completion_event(IntelIOMMUState *s)
477 VTD_DPRINTF(INV, "completes an invalidation wait command with "
478 "Interrupt Flag");
479 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
480 VTD_DPRINTF(INV, "there is a previous interrupt condition to be "
481 "serviced by software, "
482 "new invalidation event is not generated");
483 return;
485 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
486 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
487 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
488 VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation "
489 "event is not generated");
490 return;
491 } else {
492 /* Generate the interrupt event */
493 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
494 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
498 static inline bool vtd_root_entry_present(VTDRootEntry *root)
500 return root->val & VTD_ROOT_ENTRY_P;
503 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
504 VTDRootEntry *re)
506 dma_addr_t addr;
508 addr = s->root + index * sizeof(*re);
509 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
510 VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
511 " + %"PRIu8, s->root, index);
512 re->val = 0;
513 return -VTD_FR_ROOT_TABLE_INV;
515 re->val = le64_to_cpu(re->val);
516 return 0;
519 static inline bool vtd_context_entry_present(VTDContextEntry *context)
521 return context->lo & VTD_CONTEXT_ENTRY_P;
524 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
525 VTDContextEntry *ce)
527 dma_addr_t addr;
529 if (!vtd_root_entry_present(root)) {
530 VTD_DPRINTF(GENERAL, "error: root-entry is not present");
531 return -VTD_FR_ROOT_ENTRY_P;
533 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
534 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
535 VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
536 " + %"PRIu8,
537 (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
538 return -VTD_FR_CONTEXT_TABLE_INV;
540 ce->lo = le64_to_cpu(ce->lo);
541 ce->hi = le64_to_cpu(ce->hi);
542 return 0;
545 static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
547 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
550 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
552 return slpte & VTD_SL_PT_BASE_ADDR_MASK;
555 /* Whether the pte indicates the address of the page frame */
556 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
558 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
561 /* Get the content of a spte located in @base_addr[@index] */
562 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
564 uint64_t slpte;
566 assert(index < VTD_SL_PT_ENTRY_NR);
568 if (dma_memory_read(&address_space_memory,
569 base_addr + index * sizeof(slpte), &slpte,
570 sizeof(slpte))) {
571 slpte = (uint64_t)-1;
572 return slpte;
574 slpte = le64_to_cpu(slpte);
575 return slpte;
578 /* Given a gpa and the level of paging structure, return the offset of current
579 * level.
581 static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
583 return (gpa >> vtd_slpt_level_shift(level)) &
584 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
587 /* Check Capability Register to see if the @level of page-table is supported */
588 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
590 return VTD_CAP_SAGAW_MASK & s->cap &
591 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
594 /* Get the page-table level that hardware should use for the second-level
595 * page-table walk from the Address Width field of context-entry.
597 static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
599 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
602 static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
604 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
607 static const uint64_t vtd_paging_entry_rsvd_field[] = {
608 [0] = ~0ULL,
609 /* For not large page */
610 [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
611 [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
612 [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
613 [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
614 /* For large page */
615 [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
616 [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
617 [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
618 [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
621 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
623 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
624 /* Maybe large page */
625 return slpte & vtd_paging_entry_rsvd_field[level + 4];
626 } else {
627 return slpte & vtd_paging_entry_rsvd_field[level];
631 /* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
632 * of the translation, can be used for deciding the size of large page.
634 static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
635 uint64_t *slptep, uint32_t *slpte_level,
636 bool *reads, bool *writes)
638 dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
639 uint32_t level = vtd_get_level_from_context_entry(ce);
640 uint32_t offset;
641 uint64_t slpte;
642 uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
643 uint64_t access_right_check;
645 /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
646 * and AW in context-entry.
648 if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
649 VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
650 return -VTD_FR_ADDR_BEYOND_MGAW;
653 /* FIXME: what is the Atomics request here? */
654 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
656 while (true) {
657 offset = vtd_gpa_level_offset(gpa, level);
658 slpte = vtd_get_slpte(addr, offset);
660 if (slpte == (uint64_t)-1) {
661 VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
662 "entry at level %"PRIu32 " for gpa 0x%"PRIx64,
663 level, gpa);
664 if (level == vtd_get_level_from_context_entry(ce)) {
665 /* Invalid programming of context-entry */
666 return -VTD_FR_CONTEXT_ENTRY_INV;
667 } else {
668 return -VTD_FR_PAGING_ENTRY_INV;
671 *reads = (*reads) && (slpte & VTD_SL_R);
672 *writes = (*writes) && (slpte & VTD_SL_W);
673 if (!(slpte & access_right_check)) {
674 VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
675 "gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
676 (is_write ? "write" : "read"), gpa, slpte);
677 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
679 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
680 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
681 "level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
682 level, slpte);
683 return -VTD_FR_PAGING_ENTRY_RSVD;
686 if (vtd_is_last_slpte(slpte, level)) {
687 *slptep = slpte;
688 *slpte_level = level;
689 return 0;
691 addr = vtd_get_slpte_addr(slpte);
692 level--;
696 /* Map a device to its corresponding domain (context-entry) */
697 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
698 uint8_t devfn, VTDContextEntry *ce)
700 VTDRootEntry re;
701 int ret_fr;
703 ret_fr = vtd_get_root_entry(s, bus_num, &re);
704 if (ret_fr) {
705 return ret_fr;
708 if (!vtd_root_entry_present(&re)) {
709 VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
710 bus_num);
711 return -VTD_FR_ROOT_ENTRY_P;
712 } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
713 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
714 "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
715 return -VTD_FR_ROOT_ENTRY_RSVD;
718 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
719 if (ret_fr) {
720 return ret_fr;
723 if (!vtd_context_entry_present(ce)) {
724 VTD_DPRINTF(GENERAL,
725 "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
726 "is not present", devfn, bus_num);
727 return -VTD_FR_CONTEXT_ENTRY_P;
728 } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
729 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
730 VTD_DPRINTF(GENERAL,
731 "error: non-zero reserved field in context-entry "
732 "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
733 return -VTD_FR_CONTEXT_ENTRY_RSVD;
735 /* Check if the programming of context-entry is valid */
736 if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
737 VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
738 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
739 ce->hi, ce->lo);
740 return -VTD_FR_CONTEXT_ENTRY_INV;
741 } else {
742 switch (ce->lo & VTD_CONTEXT_ENTRY_TT) {
743 case VTD_CONTEXT_TT_MULTI_LEVEL:
744 /* fall through */
745 case VTD_CONTEXT_TT_DEV_IOTLB:
746 break;
747 default:
748 VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
749 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
750 ce->hi, ce->lo);
751 return -VTD_FR_CONTEXT_ENTRY_INV;
754 return 0;
757 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
759 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
762 static const bool vtd_qualified_faults[] = {
763 [VTD_FR_RESERVED] = false,
764 [VTD_FR_ROOT_ENTRY_P] = false,
765 [VTD_FR_CONTEXT_ENTRY_P] = true,
766 [VTD_FR_CONTEXT_ENTRY_INV] = true,
767 [VTD_FR_ADDR_BEYOND_MGAW] = true,
768 [VTD_FR_WRITE] = true,
769 [VTD_FR_READ] = true,
770 [VTD_FR_PAGING_ENTRY_INV] = true,
771 [VTD_FR_ROOT_TABLE_INV] = false,
772 [VTD_FR_CONTEXT_TABLE_INV] = false,
773 [VTD_FR_ROOT_ENTRY_RSVD] = false,
774 [VTD_FR_PAGING_ENTRY_RSVD] = true,
775 [VTD_FR_CONTEXT_ENTRY_TT] = true,
776 [VTD_FR_RESERVED_ERR] = false,
777 [VTD_FR_MAX] = false,
780 /* To see if a fault condition is "qualified", which is reported to software
781 * only if the FPD field in the context-entry used to process the faulting
782 * request is 0.
784 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
786 return vtd_qualified_faults[fault];
789 static inline bool vtd_is_interrupt_addr(hwaddr addr)
791 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
794 /* Map dev to context-entry then do a paging-structures walk to do a iommu
795 * translation.
797 * Called from RCU critical section.
799 * @bus_num: The bus number
800 * @devfn: The devfn, which is the combined of device and function number
801 * @is_write: The access is a write operation
802 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
804 static void vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
805 uint8_t devfn, hwaddr addr, bool is_write,
806 IOMMUTLBEntry *entry)
808 IntelIOMMUState *s = vtd_as->iommu_state;
809 VTDContextEntry ce;
810 uint8_t bus_num = pci_bus_num(bus);
811 VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
812 uint64_t slpte, page_mask;
813 uint32_t level;
814 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
815 int ret_fr;
816 bool is_fpd_set = false;
817 bool reads = true;
818 bool writes = true;
819 VTDIOTLBEntry *iotlb_entry;
821 /* Check if the request is in interrupt address range */
822 if (vtd_is_interrupt_addr(addr)) {
823 if (is_write) {
824 /* FIXME: since we don't know the length of the access here, we
825 * treat Non-DWORD length write requests without PASID as
826 * interrupt requests, too. Withoud interrupt remapping support,
827 * we just use 1:1 mapping.
829 VTD_DPRINTF(MMU, "write request to interrupt address "
830 "gpa 0x%"PRIx64, addr);
831 entry->iova = addr & VTD_PAGE_MASK_4K;
832 entry->translated_addr = addr & VTD_PAGE_MASK_4K;
833 entry->addr_mask = ~VTD_PAGE_MASK_4K;
834 entry->perm = IOMMU_WO;
835 return;
836 } else {
837 VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
838 "gpa 0x%"PRIx64, addr);
839 vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
840 return;
843 /* Try to fetch slpte form IOTLB */
844 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
845 if (iotlb_entry) {
846 VTD_DPRINTF(CACHE, "hit iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
847 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr,
848 iotlb_entry->slpte, iotlb_entry->domain_id);
849 slpte = iotlb_entry->slpte;
850 reads = iotlb_entry->read_flags;
851 writes = iotlb_entry->write_flags;
852 page_mask = iotlb_entry->mask;
853 goto out;
855 /* Try to fetch context-entry from cache first */
856 if (cc_entry->context_cache_gen == s->context_cache_gen) {
857 VTD_DPRINTF(CACHE, "hit context-cache bus %d devfn %d "
858 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 ")",
859 bus_num, devfn, cc_entry->context_entry.hi,
860 cc_entry->context_entry.lo, cc_entry->context_cache_gen);
861 ce = cc_entry->context_entry;
862 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
863 } else {
864 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
865 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
866 if (ret_fr) {
867 ret_fr = -ret_fr;
868 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
869 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA "
870 "requests through this context-entry "
871 "(with FPD Set)");
872 } else {
873 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
875 return;
877 /* Update context-cache */
878 VTD_DPRINTF(CACHE, "update context-cache bus %d devfn %d "
879 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 "->%"PRIu32 ")",
880 bus_num, devfn, ce.hi, ce.lo,
881 cc_entry->context_cache_gen, s->context_cache_gen);
882 cc_entry->context_entry = ce;
883 cc_entry->context_cache_gen = s->context_cache_gen;
886 ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
887 &reads, &writes);
888 if (ret_fr) {
889 ret_fr = -ret_fr;
890 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
891 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
892 "through this context-entry (with FPD Set)");
893 } else {
894 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
896 return;
899 page_mask = vtd_slpt_level_page_mask(level);
900 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
901 reads, writes, level);
902 out:
903 entry->iova = addr & page_mask;
904 entry->translated_addr = vtd_get_slpte_addr(slpte) & page_mask;
905 entry->addr_mask = ~page_mask;
906 entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
909 static void vtd_root_table_setup(IntelIOMMUState *s)
911 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
912 s->root_extended = s->root & VTD_RTADDR_RTT;
913 s->root &= VTD_RTADDR_ADDR_MASK;
915 VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
916 (s->root_extended ? "(extended)" : ""));
919 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
920 uint32_t index, uint32_t mask)
922 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
925 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
927 uint64_t value = 0;
928 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
929 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
930 s->intr_root = value & VTD_IRTA_ADDR_MASK;
931 s->intr_eime = value & VTD_IRTA_EIME;
933 /* Notify global invalidation */
934 vtd_iec_notify_all(s, true, 0, 0);
936 VTD_DPRINTF(CSR, "int remap table addr 0x%"PRIx64 " size %"PRIu32,
937 s->intr_root, s->intr_size);
940 static void vtd_context_global_invalidate(IntelIOMMUState *s)
942 s->context_cache_gen++;
943 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
944 vtd_reset_context_cache(s);
949 /* Find the VTD address space currently associated with a given bus number,
951 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
953 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
954 if (!vtd_bus) {
955 /* Iterate over the registered buses to find the one
956 * which currently hold this bus number, and update the bus_num lookup table:
958 GHashTableIter iter;
960 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
961 while (g_hash_table_iter_next (&iter, NULL, (void**)&vtd_bus)) {
962 if (pci_bus_num(vtd_bus->bus) == bus_num) {
963 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
964 return vtd_bus;
968 return vtd_bus;
971 /* Do a context-cache device-selective invalidation.
972 * @func_mask: FM field after shifting
974 static void vtd_context_device_invalidate(IntelIOMMUState *s,
975 uint16_t source_id,
976 uint16_t func_mask)
978 uint16_t mask;
979 VTDBus *vtd_bus;
980 VTDAddressSpace *vtd_as;
981 uint16_t devfn;
982 uint16_t devfn_it;
984 switch (func_mask & 3) {
985 case 0:
986 mask = 0; /* No bits in the SID field masked */
987 break;
988 case 1:
989 mask = 4; /* Mask bit 2 in the SID field */
990 break;
991 case 2:
992 mask = 6; /* Mask bit 2:1 in the SID field */
993 break;
994 case 3:
995 mask = 7; /* Mask bit 2:0 in the SID field */
996 break;
998 mask = ~mask;
999 VTD_DPRINTF(INV, "device-selective invalidation source 0x%"PRIx16
1000 " mask %"PRIu16, source_id, mask);
1001 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1002 if (vtd_bus) {
1003 devfn = VTD_SID_TO_DEVFN(source_id);
1004 for (devfn_it = 0; devfn_it < X86_IOMMU_PCI_DEVFN_MAX; ++devfn_it) {
1005 vtd_as = vtd_bus->dev_as[devfn_it];
1006 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1007 VTD_DPRINTF(INV, "invalidate context-cahce of devfn 0x%"PRIx16,
1008 devfn_it);
1009 vtd_as->context_cache_entry.context_cache_gen = 0;
1015 /* Context-cache invalidation
1016 * Returns the Context Actual Invalidation Granularity.
1017 * @val: the content of the CCMD_REG
1019 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1021 uint64_t caig;
1022 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1024 switch (type) {
1025 case VTD_CCMD_DOMAIN_INVL:
1026 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1027 (uint16_t)VTD_CCMD_DID(val));
1028 /* Fall through */
1029 case VTD_CCMD_GLOBAL_INVL:
1030 VTD_DPRINTF(INV, "global invalidation");
1031 caig = VTD_CCMD_GLOBAL_INVL_A;
1032 vtd_context_global_invalidate(s);
1033 break;
1035 case VTD_CCMD_DEVICE_INVL:
1036 caig = VTD_CCMD_DEVICE_INVL_A;
1037 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1038 break;
1040 default:
1041 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1042 caig = 0;
1044 return caig;
1047 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1049 vtd_reset_iotlb(s);
1052 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1054 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1055 &domain_id);
1058 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1059 hwaddr addr, uint8_t am)
1061 VTDIOTLBPageInvInfo info;
1063 assert(am <= VTD_MAMV);
1064 info.domain_id = domain_id;
1065 info.addr = addr;
1066 info.mask = ~((1 << am) - 1);
1067 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1070 /* Flush IOTLB
1071 * Returns the IOTLB Actual Invalidation Granularity.
1072 * @val: the content of the IOTLB_REG
1074 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1076 uint64_t iaig;
1077 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1078 uint16_t domain_id;
1079 hwaddr addr;
1080 uint8_t am;
1082 switch (type) {
1083 case VTD_TLB_GLOBAL_FLUSH:
1084 VTD_DPRINTF(INV, "global invalidation");
1085 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1086 vtd_iotlb_global_invalidate(s);
1087 break;
1089 case VTD_TLB_DSI_FLUSH:
1090 domain_id = VTD_TLB_DID(val);
1091 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1092 domain_id);
1093 iaig = VTD_TLB_DSI_FLUSH_A;
1094 vtd_iotlb_domain_invalidate(s, domain_id);
1095 break;
1097 case VTD_TLB_PSI_FLUSH:
1098 domain_id = VTD_TLB_DID(val);
1099 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1100 am = VTD_IVA_AM(addr);
1101 addr = VTD_IVA_ADDR(addr);
1102 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1103 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1104 if (am > VTD_MAMV) {
1105 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1106 "%"PRIu8, (uint8_t)VTD_MAMV);
1107 iaig = 0;
1108 break;
1110 iaig = VTD_TLB_PSI_FLUSH_A;
1111 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1112 break;
1114 default:
1115 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1116 iaig = 0;
1118 return iaig;
1121 static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s)
1123 return s->iq_tail == 0;
1126 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1128 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1129 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1132 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1134 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1136 VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off"));
1137 if (en) {
1138 if (vtd_queued_inv_enable_check(s)) {
1139 s->iq = iqa_val & VTD_IQA_IQA_MASK;
1140 /* 2^(x+8) entries */
1141 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1142 s->qi_enabled = true;
1143 VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val);
1144 VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d",
1145 s->iq, s->iq_size);
1146 /* Ok - report back to driver */
1147 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1148 } else {
1149 VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: "
1150 "tail %"PRIu16, s->iq_tail);
1152 } else {
1153 if (vtd_queued_inv_disable_check(s)) {
1154 /* disable Queued Invalidation */
1155 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1156 s->iq_head = 0;
1157 s->qi_enabled = false;
1158 /* Ok - report back to driver */
1159 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1160 } else {
1161 VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: "
1162 "head %"PRIu16 ", tail %"PRIu16
1163 ", last_descriptor %"PRIu8,
1164 s->iq_head, s->iq_tail, s->iq_last_desc_type);
1169 /* Set Root Table Pointer */
1170 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1172 VTD_DPRINTF(CSR, "set Root Table Pointer");
1174 vtd_root_table_setup(s);
1175 /* Ok - report back to driver */
1176 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1179 /* Set Interrupt Remap Table Pointer */
1180 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1182 VTD_DPRINTF(CSR, "set Interrupt Remap Table Pointer");
1184 vtd_interrupt_remap_table_setup(s);
1185 /* Ok - report back to driver */
1186 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1189 /* Handle Translation Enable/Disable */
1190 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1192 VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
1194 if (en) {
1195 s->dmar_enabled = true;
1196 /* Ok - report back to driver */
1197 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1198 } else {
1199 s->dmar_enabled = false;
1201 /* Clear the index of Fault Recording Register */
1202 s->next_frcd_reg = 0;
1203 /* Ok - report back to driver */
1204 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1208 /* Handle Interrupt Remap Enable/Disable */
1209 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1211 VTD_DPRINTF(CSR, "Interrupt Remap Enable %s", (en ? "on" : "off"));
1213 if (en) {
1214 s->intr_enabled = true;
1215 /* Ok - report back to driver */
1216 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1217 } else {
1218 s->intr_enabled = false;
1219 /* Ok - report back to driver */
1220 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1224 /* Handle write to Global Command Register */
1225 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1227 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1228 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1229 uint32_t changed = status ^ val;
1231 VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
1232 if (changed & VTD_GCMD_TE) {
1233 /* Translation enable/disable */
1234 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1236 if (val & VTD_GCMD_SRTP) {
1237 /* Set/update the root-table pointer */
1238 vtd_handle_gcmd_srtp(s);
1240 if (changed & VTD_GCMD_QIE) {
1241 /* Queued Invalidation Enable */
1242 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1244 if (val & VTD_GCMD_SIRTP) {
1245 /* Set/update the interrupt remapping root-table pointer */
1246 vtd_handle_gcmd_sirtp(s);
1248 if (changed & VTD_GCMD_IRE) {
1249 /* Interrupt remap enable/disable */
1250 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1254 /* Handle write to Context Command Register */
1255 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1257 uint64_t ret;
1258 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1260 /* Context-cache invalidation request */
1261 if (val & VTD_CCMD_ICC) {
1262 if (s->qi_enabled) {
1263 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1264 "should not use register-based invalidation");
1265 return;
1267 ret = vtd_context_cache_invalidate(s, val);
1268 /* Invalidation completed. Change something to show */
1269 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1270 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1271 ret);
1272 VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
1276 /* Handle write to IOTLB Invalidation Register */
1277 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1279 uint64_t ret;
1280 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1282 /* IOTLB invalidation request */
1283 if (val & VTD_TLB_IVT) {
1284 if (s->qi_enabled) {
1285 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1286 "should not use register-based invalidation");
1287 return;
1289 ret = vtd_iotlb_flush(s, val);
1290 /* Invalidation completed. Change something to show */
1291 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1292 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1293 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1294 VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
1298 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1299 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1300 VTDInvDesc *inv_desc)
1302 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1303 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1304 sizeof(*inv_desc))) {
1305 VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor "
1306 "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset);
1307 inv_desc->lo = 0;
1308 inv_desc->hi = 0;
1310 return false;
1312 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1313 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1314 return true;
1317 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1319 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1320 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1321 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation "
1322 "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1323 inv_desc->hi, inv_desc->lo);
1324 return false;
1326 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1327 /* Status Write */
1328 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1329 VTD_INV_DESC_WAIT_DATA_SHIFT);
1331 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1333 /* FIXME: need to be masked with HAW? */
1334 dma_addr_t status_addr = inv_desc->hi;
1335 VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64,
1336 status_data, status_addr);
1337 status_data = cpu_to_le32(status_data);
1338 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1339 sizeof(status_data))) {
1340 VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write");
1341 return false;
1343 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1344 /* Interrupt flag */
1345 VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion");
1346 vtd_generate_completion_event(s);
1347 } else {
1348 VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: "
1349 "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo);
1350 return false;
1352 return true;
1355 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1356 VTDInvDesc *inv_desc)
1358 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1359 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Context-cache "
1360 "Invalidate Descriptor");
1361 return false;
1363 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1364 case VTD_INV_DESC_CC_DOMAIN:
1365 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1366 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1367 /* Fall through */
1368 case VTD_INV_DESC_CC_GLOBAL:
1369 VTD_DPRINTF(INV, "global invalidation");
1370 vtd_context_global_invalidate(s);
1371 break;
1373 case VTD_INV_DESC_CC_DEVICE:
1374 vtd_context_device_invalidate(s, VTD_INV_DESC_CC_SID(inv_desc->lo),
1375 VTD_INV_DESC_CC_FM(inv_desc->lo));
1376 break;
1378 default:
1379 VTD_DPRINTF(GENERAL, "error: invalid granularity in Context-cache "
1380 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1381 inv_desc->hi, inv_desc->lo);
1382 return false;
1384 return true;
1387 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1389 uint16_t domain_id;
1390 uint8_t am;
1391 hwaddr addr;
1393 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1394 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1395 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in IOTLB "
1396 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1397 inv_desc->hi, inv_desc->lo);
1398 return false;
1401 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1402 case VTD_INV_DESC_IOTLB_GLOBAL:
1403 VTD_DPRINTF(INV, "global invalidation");
1404 vtd_iotlb_global_invalidate(s);
1405 break;
1407 case VTD_INV_DESC_IOTLB_DOMAIN:
1408 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1409 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1410 domain_id);
1411 vtd_iotlb_domain_invalidate(s, domain_id);
1412 break;
1414 case VTD_INV_DESC_IOTLB_PAGE:
1415 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1416 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1417 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1418 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1419 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1420 if (am > VTD_MAMV) {
1421 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1422 "%"PRIu8, (uint8_t)VTD_MAMV);
1423 return false;
1425 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1426 break;
1428 default:
1429 VTD_DPRINTF(GENERAL, "error: invalid granularity in IOTLB Invalidate "
1430 "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1431 inv_desc->hi, inv_desc->lo);
1432 return false;
1434 return true;
1437 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1438 VTDInvDesc *inv_desc)
1440 VTD_DPRINTF(INV, "inv ir glob %d index %d mask %d",
1441 inv_desc->iec.granularity,
1442 inv_desc->iec.index,
1443 inv_desc->iec.index_mask);
1445 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1446 inv_desc->iec.index,
1447 inv_desc->iec.index_mask);
1448 return true;
1451 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
1452 VTDInvDesc *inv_desc)
1454 VTDAddressSpace *vtd_dev_as;
1455 IOMMUTLBEntry entry;
1456 struct VTDBus *vtd_bus;
1457 hwaddr addr;
1458 uint64_t sz;
1459 uint16_t sid;
1460 uint8_t devfn;
1461 bool size;
1462 uint8_t bus_num;
1464 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
1465 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
1466 devfn = sid & 0xff;
1467 bus_num = sid >> 8;
1468 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
1470 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
1471 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
1472 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Device "
1473 "IOTLB Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1474 inv_desc->hi, inv_desc->lo);
1475 return false;
1478 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
1479 if (!vtd_bus) {
1480 goto done;
1483 vtd_dev_as = vtd_bus->dev_as[devfn];
1484 if (!vtd_dev_as) {
1485 goto done;
1488 /* According to ATS spec table 2.4:
1489 * S = 0, bits 15:12 = xxxx range size: 4K
1490 * S = 1, bits 15:12 = xxx0 range size: 8K
1491 * S = 1, bits 15:12 = xx01 range size: 16K
1492 * S = 1, bits 15:12 = x011 range size: 32K
1493 * S = 1, bits 15:12 = 0111 range size: 64K
1494 * ...
1496 if (size) {
1497 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
1498 addr &= ~(sz - 1);
1499 } else {
1500 sz = VTD_PAGE_SIZE;
1503 entry.target_as = &vtd_dev_as->as;
1504 entry.addr_mask = sz - 1;
1505 entry.iova = addr;
1506 entry.perm = IOMMU_NONE;
1507 entry.translated_addr = 0;
1508 memory_region_notify_iommu(entry.target_as->root, entry);
1510 done:
1511 return true;
1514 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1516 VTDInvDesc inv_desc;
1517 uint8_t desc_type;
1519 VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head);
1520 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1521 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1522 return false;
1524 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1525 /* FIXME: should update at first or at last? */
1526 s->iq_last_desc_type = desc_type;
1528 switch (desc_type) {
1529 case VTD_INV_DESC_CC:
1530 VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1531 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1532 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1533 return false;
1535 break;
1537 case VTD_INV_DESC_IOTLB:
1538 VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1539 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1540 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1541 return false;
1543 break;
1545 case VTD_INV_DESC_WAIT:
1546 VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64
1547 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1548 if (!vtd_process_wait_desc(s, &inv_desc)) {
1549 return false;
1551 break;
1553 case VTD_INV_DESC_IEC:
1554 VTD_DPRINTF(INV, "Invalidation Interrupt Entry Cache "
1555 "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1556 inv_desc.hi, inv_desc.lo);
1557 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
1558 return false;
1560 break;
1562 case VTD_INV_DESC_DEVICE:
1563 VTD_DPRINTF(INV, "Device IOTLB Invalidation Descriptor hi 0x%"PRIx64
1564 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1565 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
1566 return false;
1568 break;
1570 default:
1571 VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type "
1572 "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8,
1573 inv_desc.hi, inv_desc.lo, desc_type);
1574 return false;
1576 s->iq_head++;
1577 if (s->iq_head == s->iq_size) {
1578 s->iq_head = 0;
1580 return true;
1583 /* Try to fetch and process more Invalidation Descriptors */
1584 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1586 VTD_DPRINTF(INV, "fetch Invalidation Descriptors");
1587 if (s->iq_tail >= s->iq_size) {
1588 /* Detects an invalid Tail pointer */
1589 VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16
1590 " while iq_size is %"PRIu16, s->iq_tail, s->iq_size);
1591 vtd_handle_inv_queue_error(s);
1592 return;
1594 while (s->iq_head != s->iq_tail) {
1595 if (!vtd_process_inv_desc(s)) {
1596 /* Invalidation Queue Errors */
1597 vtd_handle_inv_queue_error(s);
1598 break;
1600 /* Must update the IQH_REG in time */
1601 vtd_set_quad_raw(s, DMAR_IQH_REG,
1602 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1603 VTD_IQH_QH_MASK);
1607 /* Handle write to Invalidation Queue Tail Register */
1608 static void vtd_handle_iqt_write(IntelIOMMUState *s)
1610 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1612 s->iq_tail = VTD_IQT_QT(val);
1613 VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail);
1614 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1615 /* Process Invalidation Queue here */
1616 vtd_fetch_inv_desc(s);
1620 static void vtd_handle_fsts_write(IntelIOMMUState *s)
1622 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1623 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1624 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1626 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1627 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1628 VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
1629 "IP field of FECTL_REG");
1631 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1632 * Descriptors if there are any when Queued Invalidation is enabled?
1636 static void vtd_handle_fectl_write(IntelIOMMUState *s)
1638 uint32_t fectl_reg;
1639 /* FIXME: when software clears the IM field, check the IP field. But do we
1640 * need to compare the old value and the new value to conclude that
1641 * software clears the IM field? Or just check if the IM field is zero?
1643 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1644 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1645 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1646 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1647 VTD_DPRINTF(FLOG, "IM field is cleared, generate "
1648 "fault event interrupt");
1652 static void vtd_handle_ics_write(IntelIOMMUState *s)
1654 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1655 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1657 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1658 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1659 VTD_DPRINTF(INV, "pending completion interrupt condition serviced, "
1660 "clear IP field of IECTL_REG");
1664 static void vtd_handle_iectl_write(IntelIOMMUState *s)
1666 uint32_t iectl_reg;
1667 /* FIXME: when software clears the IM field, check the IP field. But do we
1668 * need to compare the old value and the new value to conclude that
1669 * software clears the IM field? Or just check if the IM field is zero?
1671 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1672 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1673 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1674 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1675 VTD_DPRINTF(INV, "IM field is cleared, generate "
1676 "invalidation event interrupt");
1680 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1682 IntelIOMMUState *s = opaque;
1683 uint64_t val;
1685 if (addr + size > DMAR_REG_SIZE) {
1686 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1687 ", got 0x%"PRIx64 " %d",
1688 (uint64_t)DMAR_REG_SIZE, addr, size);
1689 return (uint64_t)-1;
1692 switch (addr) {
1693 /* Root Table Address Register, 64-bit */
1694 case DMAR_RTADDR_REG:
1695 if (size == 4) {
1696 val = s->root & ((1ULL << 32) - 1);
1697 } else {
1698 val = s->root;
1700 break;
1702 case DMAR_RTADDR_REG_HI:
1703 assert(size == 4);
1704 val = s->root >> 32;
1705 break;
1707 /* Invalidation Queue Address Register, 64-bit */
1708 case DMAR_IQA_REG:
1709 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
1710 if (size == 4) {
1711 val = val & ((1ULL << 32) - 1);
1713 break;
1715 case DMAR_IQA_REG_HI:
1716 assert(size == 4);
1717 val = s->iq >> 32;
1718 break;
1720 default:
1721 if (size == 4) {
1722 val = vtd_get_long(s, addr);
1723 } else {
1724 val = vtd_get_quad(s, addr);
1727 VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
1728 addr, size, val);
1729 return val;
1732 static void vtd_mem_write(void *opaque, hwaddr addr,
1733 uint64_t val, unsigned size)
1735 IntelIOMMUState *s = opaque;
1737 if (addr + size > DMAR_REG_SIZE) {
1738 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1739 ", got 0x%"PRIx64 " %d",
1740 (uint64_t)DMAR_REG_SIZE, addr, size);
1741 return;
1744 switch (addr) {
1745 /* Global Command Register, 32-bit */
1746 case DMAR_GCMD_REG:
1747 VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
1748 ", size %d, val 0x%"PRIx64, addr, size, val);
1749 vtd_set_long(s, addr, val);
1750 vtd_handle_gcmd_write(s);
1751 break;
1753 /* Context Command Register, 64-bit */
1754 case DMAR_CCMD_REG:
1755 VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
1756 ", size %d, val 0x%"PRIx64, addr, size, val);
1757 if (size == 4) {
1758 vtd_set_long(s, addr, val);
1759 } else {
1760 vtd_set_quad(s, addr, val);
1761 vtd_handle_ccmd_write(s);
1763 break;
1765 case DMAR_CCMD_REG_HI:
1766 VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1767 ", size %d, val 0x%"PRIx64, addr, size, val);
1768 assert(size == 4);
1769 vtd_set_long(s, addr, val);
1770 vtd_handle_ccmd_write(s);
1771 break;
1773 /* IOTLB Invalidation Register, 64-bit */
1774 case DMAR_IOTLB_REG:
1775 VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1776 ", size %d, val 0x%"PRIx64, addr, size, val);
1777 if (size == 4) {
1778 vtd_set_long(s, addr, val);
1779 } else {
1780 vtd_set_quad(s, addr, val);
1781 vtd_handle_iotlb_write(s);
1783 break;
1785 case DMAR_IOTLB_REG_HI:
1786 VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1787 ", size %d, val 0x%"PRIx64, addr, size, val);
1788 assert(size == 4);
1789 vtd_set_long(s, addr, val);
1790 vtd_handle_iotlb_write(s);
1791 break;
1793 /* Invalidate Address Register, 64-bit */
1794 case DMAR_IVA_REG:
1795 VTD_DPRINTF(INV, "DMAR_IVA_REG write addr 0x%"PRIx64
1796 ", size %d, val 0x%"PRIx64, addr, size, val);
1797 if (size == 4) {
1798 vtd_set_long(s, addr, val);
1799 } else {
1800 vtd_set_quad(s, addr, val);
1802 break;
1804 case DMAR_IVA_REG_HI:
1805 VTD_DPRINTF(INV, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1806 ", size %d, val 0x%"PRIx64, addr, size, val);
1807 assert(size == 4);
1808 vtd_set_long(s, addr, val);
1809 break;
1811 /* Fault Status Register, 32-bit */
1812 case DMAR_FSTS_REG:
1813 VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
1814 ", size %d, val 0x%"PRIx64, addr, size, val);
1815 assert(size == 4);
1816 vtd_set_long(s, addr, val);
1817 vtd_handle_fsts_write(s);
1818 break;
1820 /* Fault Event Control Register, 32-bit */
1821 case DMAR_FECTL_REG:
1822 VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
1823 ", size %d, val 0x%"PRIx64, addr, size, val);
1824 assert(size == 4);
1825 vtd_set_long(s, addr, val);
1826 vtd_handle_fectl_write(s);
1827 break;
1829 /* Fault Event Data Register, 32-bit */
1830 case DMAR_FEDATA_REG:
1831 VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1832 ", size %d, val 0x%"PRIx64, addr, size, val);
1833 assert(size == 4);
1834 vtd_set_long(s, addr, val);
1835 break;
1837 /* Fault Event Address Register, 32-bit */
1838 case DMAR_FEADDR_REG:
1839 VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1840 ", size %d, val 0x%"PRIx64, addr, size, val);
1841 assert(size == 4);
1842 vtd_set_long(s, addr, val);
1843 break;
1845 /* Fault Event Upper Address Register, 32-bit */
1846 case DMAR_FEUADDR_REG:
1847 VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1848 ", size %d, val 0x%"PRIx64, addr, size, val);
1849 assert(size == 4);
1850 vtd_set_long(s, addr, val);
1851 break;
1853 /* Protected Memory Enable Register, 32-bit */
1854 case DMAR_PMEN_REG:
1855 VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
1856 ", size %d, val 0x%"PRIx64, addr, size, val);
1857 assert(size == 4);
1858 vtd_set_long(s, addr, val);
1859 break;
1861 /* Root Table Address Register, 64-bit */
1862 case DMAR_RTADDR_REG:
1863 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1864 ", size %d, val 0x%"PRIx64, addr, size, val);
1865 if (size == 4) {
1866 vtd_set_long(s, addr, val);
1867 } else {
1868 vtd_set_quad(s, addr, val);
1870 break;
1872 case DMAR_RTADDR_REG_HI:
1873 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1874 ", size %d, val 0x%"PRIx64, addr, size, val);
1875 assert(size == 4);
1876 vtd_set_long(s, addr, val);
1877 break;
1879 /* Invalidation Queue Tail Register, 64-bit */
1880 case DMAR_IQT_REG:
1881 VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64
1882 ", size %d, val 0x%"PRIx64, addr, size, val);
1883 if (size == 4) {
1884 vtd_set_long(s, addr, val);
1885 } else {
1886 vtd_set_quad(s, addr, val);
1888 vtd_handle_iqt_write(s);
1889 break;
1891 case DMAR_IQT_REG_HI:
1892 VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1893 ", size %d, val 0x%"PRIx64, addr, size, val);
1894 assert(size == 4);
1895 vtd_set_long(s, addr, val);
1896 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1897 break;
1899 /* Invalidation Queue Address Register, 64-bit */
1900 case DMAR_IQA_REG:
1901 VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64
1902 ", size %d, val 0x%"PRIx64, addr, size, val);
1903 if (size == 4) {
1904 vtd_set_long(s, addr, val);
1905 } else {
1906 vtd_set_quad(s, addr, val);
1908 break;
1910 case DMAR_IQA_REG_HI:
1911 VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1912 ", size %d, val 0x%"PRIx64, addr, size, val);
1913 assert(size == 4);
1914 vtd_set_long(s, addr, val);
1915 break;
1917 /* Invalidation Completion Status Register, 32-bit */
1918 case DMAR_ICS_REG:
1919 VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64
1920 ", size %d, val 0x%"PRIx64, addr, size, val);
1921 assert(size == 4);
1922 vtd_set_long(s, addr, val);
1923 vtd_handle_ics_write(s);
1924 break;
1926 /* Invalidation Event Control Register, 32-bit */
1927 case DMAR_IECTL_REG:
1928 VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64
1929 ", size %d, val 0x%"PRIx64, addr, size, val);
1930 assert(size == 4);
1931 vtd_set_long(s, addr, val);
1932 vtd_handle_iectl_write(s);
1933 break;
1935 /* Invalidation Event Data Register, 32-bit */
1936 case DMAR_IEDATA_REG:
1937 VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1938 ", size %d, val 0x%"PRIx64, addr, size, val);
1939 assert(size == 4);
1940 vtd_set_long(s, addr, val);
1941 break;
1943 /* Invalidation Event Address Register, 32-bit */
1944 case DMAR_IEADDR_REG:
1945 VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1946 ", size %d, val 0x%"PRIx64, addr, size, val);
1947 assert(size == 4);
1948 vtd_set_long(s, addr, val);
1949 break;
1951 /* Invalidation Event Upper Address Register, 32-bit */
1952 case DMAR_IEUADDR_REG:
1953 VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1954 ", size %d, val 0x%"PRIx64, addr, size, val);
1955 assert(size == 4);
1956 vtd_set_long(s, addr, val);
1957 break;
1959 /* Fault Recording Registers, 128-bit */
1960 case DMAR_FRCD_REG_0_0:
1961 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1962 ", size %d, val 0x%"PRIx64, addr, size, val);
1963 if (size == 4) {
1964 vtd_set_long(s, addr, val);
1965 } else {
1966 vtd_set_quad(s, addr, val);
1968 break;
1970 case DMAR_FRCD_REG_0_1:
1971 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1972 ", size %d, val 0x%"PRIx64, addr, size, val);
1973 assert(size == 4);
1974 vtd_set_long(s, addr, val);
1975 break;
1977 case DMAR_FRCD_REG_0_2:
1978 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1979 ", size %d, val 0x%"PRIx64, addr, size, val);
1980 if (size == 4) {
1981 vtd_set_long(s, addr, val);
1982 } else {
1983 vtd_set_quad(s, addr, val);
1984 /* May clear bit 127 (Fault), update PPF */
1985 vtd_update_fsts_ppf(s);
1987 break;
1989 case DMAR_FRCD_REG_0_3:
1990 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1991 ", size %d, val 0x%"PRIx64, addr, size, val);
1992 assert(size == 4);
1993 vtd_set_long(s, addr, val);
1994 /* May clear bit 127 (Fault), update PPF */
1995 vtd_update_fsts_ppf(s);
1996 break;
1998 case DMAR_IRTA_REG:
1999 VTD_DPRINTF(IR, "DMAR_IRTA_REG write addr 0x%"PRIx64
2000 ", size %d, val 0x%"PRIx64, addr, size, val);
2001 if (size == 4) {
2002 vtd_set_long(s, addr, val);
2003 } else {
2004 vtd_set_quad(s, addr, val);
2006 break;
2008 case DMAR_IRTA_REG_HI:
2009 VTD_DPRINTF(IR, "DMAR_IRTA_REG_HI write addr 0x%"PRIx64
2010 ", size %d, val 0x%"PRIx64, addr, size, val);
2011 assert(size == 4);
2012 vtd_set_long(s, addr, val);
2013 break;
2015 default:
2016 VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
2017 ", size %d, val 0x%"PRIx64, addr, size, val);
2018 if (size == 4) {
2019 vtd_set_long(s, addr, val);
2020 } else {
2021 vtd_set_quad(s, addr, val);
2026 static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
2027 bool is_write)
2029 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2030 IntelIOMMUState *s = vtd_as->iommu_state;
2031 IOMMUTLBEntry ret = {
2032 .target_as = &address_space_memory,
2033 .iova = addr,
2034 .translated_addr = 0,
2035 .addr_mask = ~(hwaddr)0,
2036 .perm = IOMMU_NONE,
2039 if (!s->dmar_enabled) {
2040 /* DMAR disabled, passthrough, use 4k-page*/
2041 ret.iova = addr & VTD_PAGE_MASK_4K;
2042 ret.translated_addr = addr & VTD_PAGE_MASK_4K;
2043 ret.addr_mask = ~VTD_PAGE_MASK_4K;
2044 ret.perm = IOMMU_RW;
2045 return ret;
2048 vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, addr,
2049 is_write, &ret);
2050 VTD_DPRINTF(MMU,
2051 "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
2052 " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, pci_bus_num(vtd_as->bus),
2053 VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn),
2054 vtd_as->devfn, addr, ret.translated_addr);
2055 return ret;
2058 static void vtd_iommu_notify_flag_changed(MemoryRegion *iommu,
2059 IOMMUNotifierFlag old,
2060 IOMMUNotifierFlag new)
2062 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2064 if (new & IOMMU_NOTIFIER_MAP) {
2065 error_report("Device at bus %s addr %02x.%d requires iommu "
2066 "notifier which is currently not supported by "
2067 "intel-iommu emulation",
2068 vtd_as->bus->qbus.name, PCI_SLOT(vtd_as->devfn),
2069 PCI_FUNC(vtd_as->devfn));
2070 exit(1);
2074 static const VMStateDescription vtd_vmstate = {
2075 .name = "iommu-intel",
2076 .version_id = 1,
2077 .minimum_version_id = 1,
2078 .priority = MIG_PRI_IOMMU,
2079 .fields = (VMStateField[]) {
2080 VMSTATE_UINT64(root, IntelIOMMUState),
2081 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2082 VMSTATE_UINT64(iq, IntelIOMMUState),
2083 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2084 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2085 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2086 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2087 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2088 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2089 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2090 VMSTATE_BOOL(root_extended, IntelIOMMUState),
2091 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2092 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2093 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2094 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2095 VMSTATE_END_OF_LIST()
2099 static const MemoryRegionOps vtd_mem_ops = {
2100 .read = vtd_mem_read,
2101 .write = vtd_mem_write,
2102 .endianness = DEVICE_LITTLE_ENDIAN,
2103 .impl = {
2104 .min_access_size = 4,
2105 .max_access_size = 8,
2107 .valid = {
2108 .min_access_size = 4,
2109 .max_access_size = 8,
2113 static Property vtd_properties[] = {
2114 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2115 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2116 ON_OFF_AUTO_AUTO),
2117 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2118 DEFINE_PROP_END_OF_LIST(),
2121 /* Read IRTE entry with specific index */
2122 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2123 VTD_IR_TableEntry *entry, uint16_t sid)
2125 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2126 {0xffff, 0xfffb, 0xfff9, 0xfff8};
2127 dma_addr_t addr = 0x00;
2128 uint16_t mask, source_id;
2129 uint8_t bus, bus_max, bus_min;
2131 addr = iommu->intr_root + index * sizeof(*entry);
2132 if (dma_memory_read(&address_space_memory, addr, entry,
2133 sizeof(*entry))) {
2134 VTD_DPRINTF(GENERAL, "error: fail to access IR root at 0x%"PRIx64
2135 " + %"PRIu16, iommu->intr_root, index);
2136 return -VTD_FR_IR_ROOT_INVAL;
2139 if (!entry->irte.present) {
2140 VTD_DPRINTF(GENERAL, "error: present flag not set in IRTE"
2141 " entry index %u value 0x%"PRIx64 " 0x%"PRIx64,
2142 index, le64_to_cpu(entry->data[1]),
2143 le64_to_cpu(entry->data[0]));
2144 return -VTD_FR_IR_ENTRY_P;
2147 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2148 entry->irte.__reserved_2) {
2149 VTD_DPRINTF(GENERAL, "error: IRTE entry index %"PRIu16
2150 " reserved fields non-zero: 0x%"PRIx64 " 0x%"PRIx64,
2151 index, le64_to_cpu(entry->data[1]),
2152 le64_to_cpu(entry->data[0]));
2153 return -VTD_FR_IR_IRTE_RSVD;
2156 if (sid != X86_IOMMU_SID_INVALID) {
2157 /* Validate IRTE SID */
2158 source_id = le32_to_cpu(entry->irte.source_id);
2159 switch (entry->irte.sid_vtype) {
2160 case VTD_SVT_NONE:
2161 VTD_DPRINTF(IR, "No SID validation for IRTE index %d", index);
2162 break;
2164 case VTD_SVT_ALL:
2165 mask = vtd_svt_mask[entry->irte.sid_q];
2166 if ((source_id & mask) != (sid & mask)) {
2167 VTD_DPRINTF(GENERAL, "SID validation for IRTE index "
2168 "%d failed (reqid 0x%04x sid 0x%04x)", index,
2169 sid, source_id);
2170 return -VTD_FR_IR_SID_ERR;
2172 break;
2174 case VTD_SVT_BUS:
2175 bus_max = source_id >> 8;
2176 bus_min = source_id & 0xff;
2177 bus = sid >> 8;
2178 if (bus > bus_max || bus < bus_min) {
2179 VTD_DPRINTF(GENERAL, "SID validation for IRTE index %d "
2180 "failed (bus %d outside %d-%d)", index, bus,
2181 bus_min, bus_max);
2182 return -VTD_FR_IR_SID_ERR;
2184 break;
2186 default:
2187 VTD_DPRINTF(GENERAL, "Invalid SVT bits (0x%x) in IRTE index "
2188 "%d", entry->irte.sid_vtype, index);
2189 /* Take this as verification failure. */
2190 return -VTD_FR_IR_SID_ERR;
2191 break;
2195 return 0;
2198 /* Fetch IRQ information of specific IR index */
2199 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2200 VTDIrq *irq, uint16_t sid)
2202 VTD_IR_TableEntry irte = {};
2203 int ret = 0;
2205 ret = vtd_irte_get(iommu, index, &irte, sid);
2206 if (ret) {
2207 return ret;
2210 irq->trigger_mode = irte.irte.trigger_mode;
2211 irq->vector = irte.irte.vector;
2212 irq->delivery_mode = irte.irte.delivery_mode;
2213 irq->dest = le32_to_cpu(irte.irte.dest_id);
2214 if (!iommu->intr_eime) {
2215 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
2216 #define VTD_IR_APIC_DEST_SHIFT (8)
2217 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2218 VTD_IR_APIC_DEST_SHIFT;
2220 irq->dest_mode = irte.irte.dest_mode;
2221 irq->redir_hint = irte.irte.redir_hint;
2223 VTD_DPRINTF(IR, "remapping interrupt index %d: trig:%u,vec:%u,"
2224 "deliver:%u,dest:%u,dest_mode:%u", index,
2225 irq->trigger_mode, irq->vector, irq->delivery_mode,
2226 irq->dest, irq->dest_mode);
2228 return 0;
2231 /* Generate one MSI message from VTDIrq info */
2232 static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2234 VTD_MSIMessage msg = {};
2236 /* Generate address bits */
2237 msg.dest_mode = irq->dest_mode;
2238 msg.redir_hint = irq->redir_hint;
2239 msg.dest = irq->dest;
2240 msg.__addr_hi = irq->dest & 0xffffff00;
2241 msg.__addr_head = cpu_to_le32(0xfee);
2242 /* Keep this from original MSI address bits */
2243 msg.__not_used = irq->msi_addr_last_bits;
2245 /* Generate data bits */
2246 msg.vector = irq->vector;
2247 msg.delivery_mode = irq->delivery_mode;
2248 msg.level = 1;
2249 msg.trigger_mode = irq->trigger_mode;
2251 msg_out->address = msg.msi_addr;
2252 msg_out->data = msg.msi_data;
2255 /* Interrupt remapping for MSI/MSI-X entry */
2256 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2257 MSIMessage *origin,
2258 MSIMessage *translated,
2259 uint16_t sid)
2261 int ret = 0;
2262 VTD_IR_MSIAddress addr;
2263 uint16_t index;
2264 VTDIrq irq = {};
2266 assert(origin && translated);
2268 if (!iommu || !iommu->intr_enabled) {
2269 goto do_not_translate;
2272 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2273 VTD_DPRINTF(GENERAL, "error: MSI addr high 32 bits nonzero"
2274 " during interrupt remapping: 0x%"PRIx32,
2275 (uint32_t)((origin->address & VTD_MSI_ADDR_HI_MASK) >> \
2276 VTD_MSI_ADDR_HI_SHIFT));
2277 return -VTD_FR_IR_REQ_RSVD;
2280 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2281 if (addr.addr.__head != 0xfee) {
2282 VTD_DPRINTF(GENERAL, "error: MSI addr low 32 bits invalid: "
2283 "0x%"PRIx32, addr.data);
2284 return -VTD_FR_IR_REQ_RSVD;
2287 /* This is compatible mode. */
2288 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2289 goto do_not_translate;
2292 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2294 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
2295 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
2297 if (addr.addr.sub_valid) {
2298 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2299 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2302 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2303 if (ret) {
2304 return ret;
2307 if (addr.addr.sub_valid) {
2308 VTD_DPRINTF(IR, "received MSI interrupt");
2309 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2310 VTD_DPRINTF(GENERAL, "error: MSI data bits non-zero for "
2311 "interrupt remappable entry: 0x%"PRIx32,
2312 origin->data);
2313 return -VTD_FR_IR_REQ_RSVD;
2315 } else {
2316 uint8_t vector = origin->data & 0xff;
2317 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2319 VTD_DPRINTF(IR, "received IOAPIC interrupt");
2320 /* IOAPIC entry vector should be aligned with IRTE vector
2321 * (see vt-d spec 5.1.5.1). */
2322 if (vector != irq.vector) {
2323 VTD_DPRINTF(GENERAL, "IOAPIC vector inconsistent: "
2324 "entry: %d, IRTE: %d, index: %d",
2325 vector, irq.vector, index);
2328 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2329 * (see vt-d spec 5.1.5.1). */
2330 if (trigger_mode != irq.trigger_mode) {
2331 VTD_DPRINTF(GENERAL, "IOAPIC trigger mode inconsistent: "
2332 "entry: %u, IRTE: %u, index: %d",
2333 trigger_mode, irq.trigger_mode, index);
2339 * We'd better keep the last two bits, assuming that guest OS
2340 * might modify it. Keep it does not hurt after all.
2342 irq.msi_addr_last_bits = addr.addr.__not_care;
2344 /* Translate VTDIrq to MSI message */
2345 vtd_generate_msi_message(&irq, translated);
2347 VTD_DPRINTF(IR, "mapping MSI 0x%"PRIx64":0x%"PRIx32 " -> "
2348 "0x%"PRIx64":0x%"PRIx32, origin->address, origin->data,
2349 translated->address, translated->data);
2350 return 0;
2352 do_not_translate:
2353 memcpy(translated, origin, sizeof(*origin));
2354 return 0;
2357 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2358 MSIMessage *dst, uint16_t sid)
2360 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2361 src, dst, sid);
2364 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2365 uint64_t *data, unsigned size,
2366 MemTxAttrs attrs)
2368 return MEMTX_OK;
2371 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2372 uint64_t value, unsigned size,
2373 MemTxAttrs attrs)
2375 int ret = 0;
2376 MSIMessage from = {}, to = {};
2377 uint16_t sid = X86_IOMMU_SID_INVALID;
2379 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2380 from.data = (uint32_t) value;
2382 if (!attrs.unspecified) {
2383 /* We have explicit Source ID */
2384 sid = attrs.requester_id;
2387 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2388 if (ret) {
2389 /* TODO: report error */
2390 VTD_DPRINTF(GENERAL, "int remap fail for addr 0x%"PRIx64
2391 " data 0x%"PRIx32, from.address, from.data);
2392 /* Drop this interrupt */
2393 return MEMTX_ERROR;
2396 VTD_DPRINTF(IR, "delivering MSI 0x%"PRIx64":0x%"PRIx32
2397 " for device sid 0x%04x",
2398 to.address, to.data, sid);
2400 apic_get_class()->send_msi(&to);
2402 return MEMTX_OK;
2405 static const MemoryRegionOps vtd_mem_ir_ops = {
2406 .read_with_attrs = vtd_mem_ir_read,
2407 .write_with_attrs = vtd_mem_ir_write,
2408 .endianness = DEVICE_LITTLE_ENDIAN,
2409 .impl = {
2410 .min_access_size = 4,
2411 .max_access_size = 4,
2413 .valid = {
2414 .min_access_size = 4,
2415 .max_access_size = 4,
2419 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2421 uintptr_t key = (uintptr_t)bus;
2422 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2423 VTDAddressSpace *vtd_dev_as;
2424 char name[128];
2426 if (!vtd_bus) {
2427 uintptr_t *new_key = g_malloc(sizeof(*new_key));
2428 *new_key = (uintptr_t)bus;
2429 /* No corresponding free() */
2430 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2431 X86_IOMMU_PCI_DEVFN_MAX);
2432 vtd_bus->bus = bus;
2433 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
2436 vtd_dev_as = vtd_bus->dev_as[devfn];
2438 if (!vtd_dev_as) {
2439 snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
2440 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2442 vtd_dev_as->bus = bus;
2443 vtd_dev_as->devfn = (uint8_t)devfn;
2444 vtd_dev_as->iommu_state = s;
2445 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2446 memory_region_init_iommu(&vtd_dev_as->iommu, OBJECT(s),
2447 &s->iommu_ops, "intel_iommu", UINT64_MAX);
2448 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2449 &vtd_mem_ir_ops, s, "intel_iommu_ir",
2450 VTD_INTERRUPT_ADDR_SIZE);
2451 memory_region_add_subregion(&vtd_dev_as->iommu, VTD_INTERRUPT_ADDR_FIRST,
2452 &vtd_dev_as->iommu_ir);
2453 address_space_init(&vtd_dev_as->as,
2454 &vtd_dev_as->iommu, name);
2456 return vtd_dev_as;
2459 /* Do the initialization. It will also be called when reset, so pay
2460 * attention when adding new initialization stuff.
2462 static void vtd_init(IntelIOMMUState *s)
2464 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2466 memset(s->csr, 0, DMAR_REG_SIZE);
2467 memset(s->wmask, 0, DMAR_REG_SIZE);
2468 memset(s->w1cmask, 0, DMAR_REG_SIZE);
2469 memset(s->womask, 0, DMAR_REG_SIZE);
2471 s->iommu_ops.translate = vtd_iommu_translate;
2472 s->iommu_ops.notify_flag_changed = vtd_iommu_notify_flag_changed;
2473 s->root = 0;
2474 s->root_extended = false;
2475 s->dmar_enabled = false;
2476 s->iq_head = 0;
2477 s->iq_tail = 0;
2478 s->iq = 0;
2479 s->iq_size = 0;
2480 s->qi_enabled = false;
2481 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2482 s->next_frcd_reg = 0;
2483 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
2484 VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS;
2485 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
2487 if (x86_iommu->intr_supported) {
2488 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
2489 if (s->intr_eim == ON_OFF_AUTO_ON) {
2490 s->ecap |= VTD_ECAP_EIM;
2492 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
2495 if (x86_iommu->dt_supported) {
2496 s->ecap |= VTD_ECAP_DT;
2499 vtd_reset_context_cache(s);
2500 vtd_reset_iotlb(s);
2502 /* Define registers with default values and bit semantics */
2503 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
2504 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
2505 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
2506 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
2507 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
2508 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
2509 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
2510 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
2511 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
2513 /* Advanced Fault Logging not supported */
2514 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
2515 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2516 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
2517 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
2519 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
2520 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
2522 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
2524 /* Treated as RO for implementations that PLMR and PHMR fields reported
2525 * as Clear in the CAP_REG.
2526 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
2528 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
2530 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
2531 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
2532 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
2533 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
2534 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2535 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
2536 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
2537 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
2538 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
2540 /* IOTLB registers */
2541 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
2542 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
2543 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2545 /* Fault Recording Registers, 128-bit */
2546 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2547 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
2550 * Interrupt remapping registers.
2552 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
2555 /* Should not reset address_spaces when reset because devices will still use
2556 * the address space they got at first (won't ask the bus again).
2558 static void vtd_reset(DeviceState *dev)
2560 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2562 VTD_DPRINTF(GENERAL, "");
2563 vtd_init(s);
2566 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
2568 IntelIOMMUState *s = opaque;
2569 VTDAddressSpace *vtd_as;
2571 assert(0 <= devfn && devfn < X86_IOMMU_PCI_DEVFN_MAX);
2573 vtd_as = vtd_find_add_as(s, bus, devfn);
2574 return &vtd_as->as;
2577 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
2579 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2581 /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
2582 if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
2583 !kvm_irqchip_is_split()) {
2584 error_setg(errp, "Intel Interrupt Remapping cannot work with "
2585 "kernel-irqchip=on, please use 'split|off'.");
2586 return false;
2588 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
2589 error_setg(errp, "eim=on cannot be selected without intremap=on");
2590 return false;
2593 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
2594 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
2595 && x86_iommu->intr_supported ?
2596 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2598 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
2599 if (!kvm_irqchip_in_kernel()) {
2600 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
2601 return false;
2603 if (!kvm_enable_x2apic()) {
2604 error_setg(errp, "eim=on requires support on the KVM side"
2605 "(X2APIC_API, first shipped in v4.7)");
2606 return false;
2610 return true;
2613 static void vtd_realize(DeviceState *dev, Error **errp)
2615 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
2616 PCIBus *bus = pcms->bus;
2617 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2618 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
2620 VTD_DPRINTF(GENERAL, "");
2621 x86_iommu->type = TYPE_INTEL;
2623 if (!vtd_decide_config(s, errp)) {
2624 return;
2627 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
2628 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
2629 "intel_iommu", DMAR_REG_SIZE);
2630 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
2631 /* No corresponding destroy */
2632 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2633 g_free, g_free);
2634 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2635 g_free, g_free);
2636 vtd_init(s);
2637 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
2638 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
2639 /* Pseudo address space under root PCI bus. */
2640 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
2643 static void vtd_class_init(ObjectClass *klass, void *data)
2645 DeviceClass *dc = DEVICE_CLASS(klass);
2646 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
2648 dc->reset = vtd_reset;
2649 dc->vmsd = &vtd_vmstate;
2650 dc->props = vtd_properties;
2651 dc->hotpluggable = false;
2652 x86_class->realize = vtd_realize;
2653 x86_class->int_remap = vtd_int_remap;
2656 static const TypeInfo vtd_info = {
2657 .name = TYPE_INTEL_IOMMU_DEVICE,
2658 .parent = TYPE_X86_IOMMU_DEVICE,
2659 .instance_size = sizeof(IntelIOMMUState),
2660 .class_init = vtd_class_init,
2663 static void vtd_register_types(void)
2665 VTD_DPRINTF(GENERAL, "");
2666 type_register_static(&vtd_info);
2669 type_init(vtd_register_types)