2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/arm/virt.h"
35 #include "hw/devices.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/kvm.h"
41 #include "hw/boards.h"
42 #include "hw/loader.h"
43 #include "exec/address-spaces.h"
44 #include "qemu/bitops.h"
45 #include "qemu/error-report.h"
46 #include "hw/pci-host/gpex.h"
47 #include "hw/arm/virt-acpi-build.h"
48 #include "hw/arm/sysbus-fdt.h"
49 #include "hw/platform-bus.h"
50 #include "hw/arm/fdt.h"
51 #include "hw/intc/arm_gic_common.h"
53 #include "hw/smbios/smbios.h"
55 /* Number of external interrupt lines to configure the GIC with */
58 #define PLATFORM_BUS_NUM_IRQS 64
60 static ARMPlatformBusSystemParams platform_bus_params
;
62 typedef struct VirtBoardInfo
{
63 struct arm_boot_info bootinfo
;
64 const char *cpu_model
;
65 const MemMapEntry
*memmap
;
70 uint32_t clock_phandle
;
77 VirtBoardInfo
*daughterboard
;
86 #define TYPE_VIRT_MACHINE "virt"
87 #define VIRT_MACHINE(obj) \
88 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
89 #define VIRT_MACHINE_GET_CLASS(obj) \
90 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
91 #define VIRT_MACHINE_CLASS(klass) \
92 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
94 /* Addresses and sizes of our components.
95 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
96 * 128MB..256MB is used for miscellaneous device I/O.
97 * 256MB..1GB is reserved for possible future PCI support (ie where the
98 * PCI memory window will go if we add a PCI host controller).
99 * 1GB and up is RAM (which may happily spill over into the
100 * high memory region beyond 4GB).
101 * This represents a compromise between how much RAM can be given to
102 * a 32 bit VM and leaving space for expansion and in particular for PCI.
103 * Note that devices should generally be placed at multiples of 0x10000,
104 * to accommodate guests using 64K pages.
106 static const MemMapEntry a15memmap
[] = {
107 /* Space up to 0x8000000 is reserved for a boot ROM */
108 [VIRT_FLASH
] = { 0, 0x08000000 },
109 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
110 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
111 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
112 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
113 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
114 [VIRT_UART
] = { 0x09000000, 0x00001000 },
115 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
116 [VIRT_FW_CFG
] = { 0x09020000, 0x0000000a },
117 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
118 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
119 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
120 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
121 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
122 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
123 [VIRT_MEM
] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
124 /* Second PCIe window, 512GB wide at the 512GB boundary */
125 [VIRT_PCIE_MMIO_HIGH
] = { 0x8000000000ULL
, 0x8000000000ULL
},
128 static const int a15irqmap
[] = {
131 [VIRT_PCIE
] = 3, /* ... to 6 */
132 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
133 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
134 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
137 static VirtBoardInfo machines
[] = {
139 .cpu_model
= "cortex-a15",
144 .cpu_model
= "cortex-a53",
149 .cpu_model
= "cortex-a57",
160 static VirtBoardInfo
*find_machine_info(const char *cpu
)
164 for (i
= 0; i
< ARRAY_SIZE(machines
); i
++) {
165 if (strcmp(cpu
, machines
[i
].cpu_model
) == 0) {
172 static void create_fdt(VirtBoardInfo
*vbi
)
174 void *fdt
= create_device_tree(&vbi
->fdt_size
);
177 error_report("create_device_tree() failed");
184 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
185 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
186 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
189 * /chosen and /memory nodes must exist for load_dtb
190 * to fill in necessary properties later
192 qemu_fdt_add_subnode(fdt
, "/chosen");
193 qemu_fdt_add_subnode(fdt
, "/memory");
194 qemu_fdt_setprop_string(fdt
, "/memory", "device_type", "memory");
196 /* Clock node, for the benefit of the UART. The kernel device tree
197 * binding documentation claims the PL011 node clock properties are
198 * optional but in practice if you omit them the kernel refuses to
199 * probe for the device.
201 vbi
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
202 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
203 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
204 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
205 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
206 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
208 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vbi
->clock_phandle
);
212 static void fdt_add_psci_node(const VirtBoardInfo
*vbi
)
214 uint32_t cpu_suspend_fn
;
218 void *fdt
= vbi
->fdt
;
219 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(0));
221 qemu_fdt_add_subnode(fdt
, "/psci");
222 if (armcpu
->psci_version
== 2) {
223 const char comp
[] = "arm,psci-0.2\0arm,psci";
224 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
226 cpu_off_fn
= QEMU_PSCI_0_2_FN_CPU_OFF
;
227 if (arm_feature(&armcpu
->env
, ARM_FEATURE_AARCH64
)) {
228 cpu_suspend_fn
= QEMU_PSCI_0_2_FN64_CPU_SUSPEND
;
229 cpu_on_fn
= QEMU_PSCI_0_2_FN64_CPU_ON
;
230 migrate_fn
= QEMU_PSCI_0_2_FN64_MIGRATE
;
232 cpu_suspend_fn
= QEMU_PSCI_0_2_FN_CPU_SUSPEND
;
233 cpu_on_fn
= QEMU_PSCI_0_2_FN_CPU_ON
;
234 migrate_fn
= QEMU_PSCI_0_2_FN_MIGRATE
;
237 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
239 cpu_suspend_fn
= QEMU_PSCI_0_1_FN_CPU_SUSPEND
;
240 cpu_off_fn
= QEMU_PSCI_0_1_FN_CPU_OFF
;
241 cpu_on_fn
= QEMU_PSCI_0_1_FN_CPU_ON
;
242 migrate_fn
= QEMU_PSCI_0_1_FN_MIGRATE
;
245 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
246 * to the instruction that should be used to invoke PSCI functions.
247 * However, the device tree binding uses 'method' instead, so that is
248 * what we should use here.
250 qemu_fdt_setprop_string(fdt
, "/psci", "method", "hvc");
252 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend", cpu_suspend_fn
);
253 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", cpu_off_fn
);
254 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", cpu_on_fn
);
255 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", migrate_fn
);
258 static void fdt_add_timer_nodes(const VirtBoardInfo
*vbi
)
260 /* Note that on A15 h/w these interrupts are level-triggered,
261 * but for the GIC implementation provided by both QEMU and KVM
262 * they are edge-triggered.
265 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
267 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
268 GIC_FDT_IRQ_PPI_CPU_WIDTH
, (1 << vbi
->smp_cpus
) - 1);
270 qemu_fdt_add_subnode(vbi
->fdt
, "/timer");
272 armcpu
= ARM_CPU(qemu_get_cpu(0));
273 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
274 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
275 qemu_fdt_setprop(vbi
->fdt
, "/timer", "compatible",
276 compat
, sizeof(compat
));
278 qemu_fdt_setprop_string(vbi
->fdt
, "/timer", "compatible",
281 qemu_fdt_setprop_cells(vbi
->fdt
, "/timer", "interrupts",
282 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
283 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
284 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
285 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
288 static void fdt_add_cpu_nodes(const VirtBoardInfo
*vbi
)
294 * From Documentation/devicetree/bindings/arm/cpus.txt
295 * On ARM v8 64-bit systems value should be set to 2,
296 * that corresponds to the MPIDR_EL1 register size.
297 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
298 * in the system, #address-cells can be set to 1, since
299 * MPIDR_EL1[63:32] bits are not used for CPUs
302 * Here we actually don't know whether our system is 32- or 64-bit one.
303 * The simplest way to go is to examine affinity IDs of all our CPUs. If
304 * at least one of them has Aff3 populated, we set #address-cells to 2.
306 for (cpu
= 0; cpu
< vbi
->smp_cpus
; cpu
++) {
307 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
309 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
315 qemu_fdt_add_subnode(vbi
->fdt
, "/cpus");
316 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#address-cells", addr_cells
);
317 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#size-cells", 0x0);
319 for (cpu
= vbi
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
320 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
321 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
323 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
324 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "cpu");
325 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible",
326 armcpu
->dtb_compatible
);
328 if (vbi
->smp_cpus
> 1) {
329 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
330 "enable-method", "psci");
333 if (addr_cells
== 2) {
334 qemu_fdt_setprop_u64(vbi
->fdt
, nodename
, "reg",
335 armcpu
->mp_affinity
);
337 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "reg",
338 armcpu
->mp_affinity
);
345 static void fdt_add_v2m_gic_node(VirtBoardInfo
*vbi
)
347 vbi
->v2m_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
348 qemu_fdt_add_subnode(vbi
->fdt
, "/intc/v2m");
349 qemu_fdt_setprop_string(vbi
->fdt
, "/intc/v2m", "compatible",
350 "arm,gic-v2m-frame");
351 qemu_fdt_setprop(vbi
->fdt
, "/intc/v2m", "msi-controller", NULL
, 0);
352 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc/v2m", "reg",
353 2, vbi
->memmap
[VIRT_GIC_V2M
].base
,
354 2, vbi
->memmap
[VIRT_GIC_V2M
].size
);
355 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc/v2m", "phandle", vbi
->v2m_phandle
);
358 static void fdt_add_gic_node(VirtBoardInfo
*vbi
)
360 vbi
->gic_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
361 qemu_fdt_setprop_cell(vbi
->fdt
, "/", "interrupt-parent", vbi
->gic_phandle
);
363 qemu_fdt_add_subnode(vbi
->fdt
, "/intc");
364 /* 'cortex-a15-gic' means 'GIC v2' */
365 qemu_fdt_setprop_string(vbi
->fdt
, "/intc", "compatible",
366 "arm,cortex-a15-gic");
367 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#interrupt-cells", 3);
368 qemu_fdt_setprop(vbi
->fdt
, "/intc", "interrupt-controller", NULL
, 0);
369 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc", "reg",
370 2, vbi
->memmap
[VIRT_GIC_DIST
].base
,
371 2, vbi
->memmap
[VIRT_GIC_DIST
].size
,
372 2, vbi
->memmap
[VIRT_GIC_CPU
].base
,
373 2, vbi
->memmap
[VIRT_GIC_CPU
].size
);
374 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#address-cells", 0x2);
375 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#size-cells", 0x2);
376 qemu_fdt_setprop(vbi
->fdt
, "/intc", "ranges", NULL
, 0);
377 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "phandle", vbi
->gic_phandle
);
380 static void create_v2m(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
383 int irq
= vbi
->irqmap
[VIRT_GIC_V2M
];
386 dev
= qdev_create(NULL
, "arm-gicv2m");
387 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vbi
->memmap
[VIRT_GIC_V2M
].base
);
388 qdev_prop_set_uint32(dev
, "base-spi", irq
);
389 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
390 qdev_init_nofail(dev
);
392 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
393 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
396 fdt_add_v2m_gic_node(vbi
);
399 static void create_gic(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
401 /* We create a standalone GIC v2 */
403 SysBusDevice
*gicbusdev
;
407 gictype
= gic_class_name();
409 gicdev
= qdev_create(NULL
, gictype
);
410 qdev_prop_set_uint32(gicdev
, "revision", 2);
411 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
412 /* Note that the num-irq property counts both internal and external
413 * interrupts; there are always 32 of the former (mandated by GIC spec).
415 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
416 qdev_init_nofail(gicdev
);
417 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
418 sysbus_mmio_map(gicbusdev
, 0, vbi
->memmap
[VIRT_GIC_DIST
].base
);
419 sysbus_mmio_map(gicbusdev
, 1, vbi
->memmap
[VIRT_GIC_CPU
].base
);
421 /* Wire the outputs from each CPU's generic timer to the
422 * appropriate GIC PPI inputs, and the GIC's IRQ output to
423 * the CPU's IRQ input.
425 for (i
= 0; i
< smp_cpus
; i
++) {
426 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
427 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
429 /* Mapping from the output timer irq lines from the CPU to the
430 * GIC PPI inputs we use for the virt board.
432 const int timer_irq
[] = {
433 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
434 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
435 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
436 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
439 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
440 qdev_connect_gpio_out(cpudev
, irq
,
441 qdev_get_gpio_in(gicdev
,
442 ppibase
+ timer_irq
[irq
]));
445 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
446 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
447 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
450 for (i
= 0; i
< NUM_IRQS
; i
++) {
451 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
454 fdt_add_gic_node(vbi
);
456 create_v2m(vbi
, pic
);
459 static void create_uart(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
462 hwaddr base
= vbi
->memmap
[VIRT_UART
].base
;
463 hwaddr size
= vbi
->memmap
[VIRT_UART
].size
;
464 int irq
= vbi
->irqmap
[VIRT_UART
];
465 const char compat
[] = "arm,pl011\0arm,primecell";
466 const char clocknames
[] = "uartclk\0apb_pclk";
468 sysbus_create_simple("pl011", base
, pic
[irq
]);
470 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
471 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
472 /* Note that we can't use setprop_string because of the embedded NUL */
473 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible",
474 compat
, sizeof(compat
));
475 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
477 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
478 GIC_FDT_IRQ_TYPE_SPI
, irq
,
479 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
480 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "clocks",
481 vbi
->clock_phandle
, vbi
->clock_phandle
);
482 qemu_fdt_setprop(vbi
->fdt
, nodename
, "clock-names",
483 clocknames
, sizeof(clocknames
));
485 qemu_fdt_setprop_string(vbi
->fdt
, "/chosen", "stdout-path", nodename
);
489 static void create_rtc(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
492 hwaddr base
= vbi
->memmap
[VIRT_RTC
].base
;
493 hwaddr size
= vbi
->memmap
[VIRT_RTC
].size
;
494 int irq
= vbi
->irqmap
[VIRT_RTC
];
495 const char compat
[] = "arm,pl031\0arm,primecell";
497 sysbus_create_simple("pl031", base
, pic
[irq
]);
499 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
500 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
501 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
502 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
504 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
505 GIC_FDT_IRQ_TYPE_SPI
, irq
,
506 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
507 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "clocks", vbi
->clock_phandle
);
508 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "clock-names", "apb_pclk");
512 static void create_virtio_devices(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
515 hwaddr size
= vbi
->memmap
[VIRT_MMIO
].size
;
517 /* We create the transports in forwards order. Since qbus_realize()
518 * prepends (not appends) new child buses, the incrementing loop below will
519 * create a list of virtio-mmio buses with decreasing base addresses.
521 * When a -device option is processed from the command line,
522 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
523 * order. The upshot is that -device options in increasing command line
524 * order are mapped to virtio-mmio buses with decreasing base addresses.
526 * When this code was originally written, that arrangement ensured that the
527 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
528 * the first -device on the command line. (The end-to-end order is a
529 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
530 * guest kernel's name-to-address assignment strategy.)
532 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
533 * the message, if not necessarily the code, of commit 70161ff336.
534 * Therefore the loop now establishes the inverse of the original intent.
536 * Unfortunately, we can't counteract the kernel change by reversing the
537 * loop; it would break existing command lines.
539 * In any case, the kernel makes no guarantee about the stability of
540 * enumeration order of virtio devices (as demonstrated by it changing
541 * between kernel versions). For reliable and stable identification
542 * of disks users must use UUIDs or similar mechanisms.
544 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
545 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
546 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
548 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
551 /* We add dtb nodes in reverse order so that they appear in the finished
552 * device tree lowest address first.
554 * Note that this mapping is independent of the loop above. The previous
555 * loop influences virtio device to virtio transport assignment, whereas
556 * this loop controls how virtio transports are laid out in the dtb.
558 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
560 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
561 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
563 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
564 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
565 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
566 "compatible", "virtio,mmio");
567 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
569 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
570 GIC_FDT_IRQ_TYPE_SPI
, irq
,
571 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
576 static void create_one_flash(const char *name
, hwaddr flashbase
,
579 /* Create and map a single flash device. We use the same
580 * parameters as the flash devices on the Versatile Express board.
582 DriveInfo
*dinfo
= drive_get_next(IF_PFLASH
);
583 DeviceState
*dev
= qdev_create(NULL
, "cfi.pflash01");
584 const uint64_t sectorlength
= 256 * 1024;
587 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
591 qdev_prop_set_uint32(dev
, "num-blocks", flashsize
/ sectorlength
);
592 qdev_prop_set_uint64(dev
, "sector-length", sectorlength
);
593 qdev_prop_set_uint8(dev
, "width", 4);
594 qdev_prop_set_uint8(dev
, "device-width", 2);
595 qdev_prop_set_bit(dev
, "big-endian", false);
596 qdev_prop_set_uint16(dev
, "id0", 0x89);
597 qdev_prop_set_uint16(dev
, "id1", 0x18);
598 qdev_prop_set_uint16(dev
, "id2", 0x00);
599 qdev_prop_set_uint16(dev
, "id3", 0x00);
600 qdev_prop_set_string(dev
, "name", name
);
601 qdev_init_nofail(dev
);
603 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, flashbase
);
606 static void create_flash(const VirtBoardInfo
*vbi
)
608 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
609 * Any file passed via -bios goes in the first of these.
611 hwaddr flashsize
= vbi
->memmap
[VIRT_FLASH
].size
/ 2;
612 hwaddr flashbase
= vbi
->memmap
[VIRT_FLASH
].base
;
619 if (drive_get(IF_PFLASH
, 0, 0)) {
620 error_report("The contents of the first flash device may be "
621 "specified with -bios or with -drive if=pflash... "
622 "but you cannot use both options at once");
625 fn
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
627 error_report("Could not find ROM image '%s'", bios_name
);
630 image_size
= load_image_targphys(fn
, flashbase
, flashsize
);
632 if (image_size
< 0) {
633 error_report("Could not load ROM image '%s'", bios_name
);
638 create_one_flash("virt.flash0", flashbase
, flashsize
);
639 create_one_flash("virt.flash1", flashbase
+ flashsize
, flashsize
);
641 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
642 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
643 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
644 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
645 2, flashbase
, 2, flashsize
,
646 2, flashbase
+ flashsize
, 2, flashsize
);
647 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
651 static void create_fw_cfg(const VirtBoardInfo
*vbi
)
653 hwaddr base
= vbi
->memmap
[VIRT_FW_CFG
].base
;
654 hwaddr size
= vbi
->memmap
[VIRT_FW_CFG
].size
;
657 fw_cfg_init_mem_wide(base
+ 8, base
, 8);
659 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
660 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
661 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
662 "compatible", "qemu,fw-cfg-mmio");
663 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
668 static void create_pcie_irq_map(const VirtBoardInfo
*vbi
, uint32_t gic_phandle
,
669 int first_irq
, const char *nodename
)
672 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
673 uint32_t *irq_map
= full_irq_map
;
675 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
676 for (pin
= 0; pin
< 4; pin
++) {
677 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
678 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
679 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
683 devfn
<< 8, 0, 0, /* devfn */
684 pin
+ 1, /* PCI pin */
685 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
687 /* Convert map to big endian */
688 for (i
= 0; i
< 10; i
++) {
689 irq_map
[i
] = cpu_to_be32(map
[i
]);
695 qemu_fdt_setprop(vbi
->fdt
, nodename
, "interrupt-map",
696 full_irq_map
, sizeof(full_irq_map
));
698 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupt-map-mask",
699 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
703 static void create_pcie(const VirtBoardInfo
*vbi
, qemu_irq
*pic
,
706 hwaddr base_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].base
;
707 hwaddr size_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].size
;
708 hwaddr base_mmio_high
= vbi
->memmap
[VIRT_PCIE_MMIO_HIGH
].base
;
709 hwaddr size_mmio_high
= vbi
->memmap
[VIRT_PCIE_MMIO_HIGH
].size
;
710 hwaddr base_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].base
;
711 hwaddr size_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].size
;
712 hwaddr base_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].base
;
713 hwaddr size_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].size
;
714 hwaddr base
= base_mmio
;
715 int nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
716 int irq
= vbi
->irqmap
[VIRT_PCIE
];
717 MemoryRegion
*mmio_alias
;
718 MemoryRegion
*mmio_reg
;
719 MemoryRegion
*ecam_alias
;
720 MemoryRegion
*ecam_reg
;
725 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
726 qdev_init_nofail(dev
);
728 /* Map only the first size_ecam bytes of ECAM space */
729 ecam_alias
= g_new0(MemoryRegion
, 1);
730 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
731 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
732 ecam_reg
, 0, size_ecam
);
733 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
735 /* Map the MMIO window into system address space so as to expose
736 * the section of PCI MMIO space which starts at the same base address
737 * (ie 1:1 mapping for that part of PCI MMIO space visible through
740 mmio_alias
= g_new0(MemoryRegion
, 1);
741 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
742 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
743 mmio_reg
, base_mmio
, size_mmio
);
744 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
747 /* Map high MMIO space */
748 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
750 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
751 mmio_reg
, base_mmio_high
, size_mmio_high
);
752 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
756 /* Map IO port space */
757 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
759 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
760 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
763 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
764 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
765 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
766 "compatible", "pci-host-ecam-generic");
767 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "pci");
768 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#address-cells", 3);
769 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#size-cells", 2);
770 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "bus-range", 0,
773 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "msi-parent", vbi
->v2m_phandle
);
775 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
776 2, base_ecam
, 2, size_ecam
);
779 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
780 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
781 2, base_pio
, 2, size_pio
,
782 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
783 2, base_mmio
, 2, size_mmio
,
784 1, FDT_PCI_RANGE_MMIO_64BIT
,
786 2, base_mmio_high
, 2, size_mmio_high
);
788 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
789 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
790 2, base_pio
, 2, size_pio
,
791 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
792 2, base_mmio
, 2, size_mmio
);
795 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#interrupt-cells", 1);
796 create_pcie_irq_map(vbi
, vbi
->gic_phandle
, irq
, nodename
);
801 static void create_platform_bus(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
806 ARMPlatformBusFDTParams
*fdt_params
= g_new(ARMPlatformBusFDTParams
, 1);
807 MemoryRegion
*sysmem
= get_system_memory();
809 platform_bus_params
.platform_bus_base
= vbi
->memmap
[VIRT_PLATFORM_BUS
].base
;
810 platform_bus_params
.platform_bus_size
= vbi
->memmap
[VIRT_PLATFORM_BUS
].size
;
811 platform_bus_params
.platform_bus_first_irq
= vbi
->irqmap
[VIRT_PLATFORM_BUS
];
812 platform_bus_params
.platform_bus_num_irqs
= PLATFORM_BUS_NUM_IRQS
;
814 fdt_params
->system_params
= &platform_bus_params
;
815 fdt_params
->binfo
= &vbi
->bootinfo
;
816 fdt_params
->intc
= "/intc";
818 * register a machine init done notifier that creates the device tree
819 * nodes of the platform bus and its children dynamic sysbus devices
821 arm_register_platform_bus_fdt_creator(fdt_params
);
823 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
824 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
825 qdev_prop_set_uint32(dev
, "num_irqs",
826 platform_bus_params
.platform_bus_num_irqs
);
827 qdev_prop_set_uint32(dev
, "mmio_size",
828 platform_bus_params
.platform_bus_size
);
829 qdev_init_nofail(dev
);
830 s
= SYS_BUS_DEVICE(dev
);
832 for (i
= 0; i
< platform_bus_params
.platform_bus_num_irqs
; i
++) {
833 int irqn
= platform_bus_params
.platform_bus_first_irq
+ i
;
834 sysbus_connect_irq(s
, i
, pic
[irqn
]);
837 memory_region_add_subregion(sysmem
,
838 platform_bus_params
.platform_bus_base
,
839 sysbus_mmio_get_region(s
, 0));
842 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
844 const VirtBoardInfo
*board
= (const VirtBoardInfo
*)binfo
;
846 *fdt_size
= board
->fdt_size
;
850 static void virt_build_smbios(VirtGuestInfo
*guest_info
)
852 FWCfgState
*fw_cfg
= guest_info
->fw_cfg
;
853 uint8_t *smbios_tables
, *smbios_anchor
;
854 size_t smbios_tables_len
, smbios_anchor_len
;
860 smbios_set_defaults("QEMU", "QEMU Virtual Machine",
861 "1.0", false, true, SMBIOS_ENTRY_POINT_30
);
863 smbios_get_tables(NULL
, 0, &smbios_tables
, &smbios_tables_len
,
864 &smbios_anchor
, &smbios_anchor_len
);
867 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-tables",
868 smbios_tables
, smbios_tables_len
);
869 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-anchor",
870 smbios_anchor
, smbios_anchor_len
);
875 void virt_guest_info_machine_done(Notifier
*notifier
, void *data
)
877 VirtGuestInfoState
*guest_info_state
= container_of(notifier
,
878 VirtGuestInfoState
, machine_done
);
879 virt_acpi_setup(&guest_info_state
->info
);
880 virt_build_smbios(&guest_info_state
->info
);
883 static void machvirt_init(MachineState
*machine
)
885 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
886 qemu_irq pic
[NUM_IRQS
];
887 MemoryRegion
*sysmem
= get_system_memory();
889 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
890 const char *cpu_model
= machine
->cpu_model
;
892 VirtGuestInfoState
*guest_info_state
= g_malloc0(sizeof *guest_info_state
);
893 VirtGuestInfo
*guest_info
= &guest_info_state
->info
;
897 cpu_model
= "cortex-a15";
900 /* Separate the actual CPU model name from any appended features */
901 cpustr
= g_strsplit(cpu_model
, ",", 2);
903 vbi
= find_machine_info(cpustr
[0]);
906 error_report("mach-virt: CPU %s not supported", cpustr
[0]);
910 vbi
->smp_cpus
= smp_cpus
;
912 if (machine
->ram_size
> vbi
->memmap
[VIRT_MEM
].size
) {
913 error_report("mach-virt: cannot model more than 30GB RAM");
919 for (n
= 0; n
< smp_cpus
; n
++) {
920 ObjectClass
*oc
= cpu_class_by_name(TYPE_ARM_CPU
, cpustr
[0]);
921 CPUClass
*cc
= CPU_CLASS(oc
);
924 char *cpuopts
= g_strdup(cpustr
[1]);
927 fprintf(stderr
, "Unable to find CPU definition\n");
930 cpuobj
= object_new(object_class_get_name(oc
));
932 /* Handle any CPU options specified by the user */
933 cc
->parse_features(CPU(cpuobj
), cpuopts
, &err
);
936 error_report_err(err
);
941 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
944 object_property_set_int(cpuobj
, QEMU_PSCI_CONDUIT_HVC
, "psci-conduit",
947 /* Secondary CPUs start in PSCI powered-down state */
949 object_property_set_bool(cpuobj
, true, "start-powered-off", NULL
);
952 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
953 object_property_set_int(cpuobj
, vbi
->memmap
[VIRT_CPUPERIPHS
].base
,
954 "reset-cbar", &error_abort
);
957 object_property_set_bool(cpuobj
, true, "realized", NULL
);
960 fdt_add_timer_nodes(vbi
);
961 fdt_add_cpu_nodes(vbi
);
962 fdt_add_psci_node(vbi
);
964 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
966 memory_region_add_subregion(sysmem
, vbi
->memmap
[VIRT_MEM
].base
, ram
);
970 create_gic(vbi
, pic
);
972 create_uart(vbi
, pic
);
974 create_rtc(vbi
, pic
);
976 create_pcie(vbi
, pic
, vms
->highmem
);
978 /* Create mmio transports, so the user can create virtio backends
979 * (which will be automatically plugged in to the transports). If
980 * no backend is created the transport will just sit harmlessly idle.
982 create_virtio_devices(vbi
, pic
);
985 rom_set_fw(fw_cfg_find());
987 guest_info
->smp_cpus
= smp_cpus
;
988 guest_info
->fw_cfg
= fw_cfg_find();
989 guest_info
->memmap
= vbi
->memmap
;
990 guest_info
->irqmap
= vbi
->irqmap
;
991 guest_info
->use_highmem
= vms
->highmem
;
992 guest_info_state
->machine_done
.notify
= virt_guest_info_machine_done
;
993 qemu_add_machine_init_done_notifier(&guest_info_state
->machine_done
);
995 vbi
->bootinfo
.ram_size
= machine
->ram_size
;
996 vbi
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
997 vbi
->bootinfo
.kernel_cmdline
= machine
->kernel_cmdline
;
998 vbi
->bootinfo
.initrd_filename
= machine
->initrd_filename
;
999 vbi
->bootinfo
.nb_cpus
= smp_cpus
;
1000 vbi
->bootinfo
.board_id
= -1;
1001 vbi
->bootinfo
.loader_start
= vbi
->memmap
[VIRT_MEM
].base
;
1002 vbi
->bootinfo
.get_dtb
= machvirt_dtb
;
1003 vbi
->bootinfo
.firmware_loaded
= bios_name
|| drive_get(IF_PFLASH
, 0, 0);
1004 arm_load_kernel(ARM_CPU(first_cpu
), &vbi
->bootinfo
);
1007 * arm_load_kernel machine init done notifier registration must
1008 * happen before the platform_bus_create call. In this latter,
1009 * another notifier is registered which adds platform bus nodes.
1010 * Notifiers are executed in registration reverse order.
1012 create_platform_bus(vbi
, pic
);
1015 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1017 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1022 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1024 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1026 vms
->secure
= value
;
1029 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
1031 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1033 return vms
->highmem
;
1036 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
1038 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1040 vms
->highmem
= value
;
1043 static void virt_instance_init(Object
*obj
)
1045 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1047 /* EL3 is enabled by default on virt */
1049 object_property_add_bool(obj
, "secure", virt_get_secure
,
1050 virt_set_secure
, NULL
);
1051 object_property_set_description(obj
, "secure",
1052 "Set on/off to enable/disable the ARM "
1053 "Security Extensions (TrustZone)",
1056 /* High memory is enabled by default */
1057 vms
->highmem
= true;
1058 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
1059 virt_set_highmem
, NULL
);
1060 object_property_set_description(obj
, "highmem",
1061 "Set on/off to enable/disable using "
1062 "physical address space above 32 bits",
1066 static void virt_class_init(ObjectClass
*oc
, void *data
)
1068 MachineClass
*mc
= MACHINE_CLASS(oc
);
1070 mc
->name
= TYPE_VIRT_MACHINE
;
1071 mc
->desc
= "ARM Virtual Machine",
1072 mc
->init
= machvirt_init
;
1074 mc
->has_dynamic_sysbus
= true;
1075 mc
->block_default_type
= IF_VIRTIO
;
1079 static const TypeInfo machvirt_info
= {
1080 .name
= TYPE_VIRT_MACHINE
,
1081 .parent
= TYPE_MACHINE
,
1082 .instance_size
= sizeof(VirtMachineState
),
1083 .instance_init
= virt_instance_init
,
1084 .class_size
= sizeof(VirtMachineClass
),
1085 .class_init
= virt_class_init
,
1088 static void machvirt_machine_init(void)
1090 type_register_static(&machvirt_info
);
1093 machine_init(machvirt_machine_init
);