Merge tag 'pull-la-20220719' of https://gitlab.com/rth7680/qemu into staging
[qemu/ar7.git] / hw / i386 / intel_iommu.c
blob2162394e087bdd10c04a6d01eb980484e5e65618
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
41 #include "trace.h"
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
49 /* pe operations */
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
52 #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
53 if (ret_fr) { \
54 ret_fr = -ret_fr; \
55 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
56 trace_vtd_fault_disabled(); \
57 } else { \
58 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
59 } \
60 goto error; \
61 } \
64 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
65 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
67 static void vtd_panic_require_caching_mode(void)
69 error_report("We need to set caching-mode=on for intel-iommu to enable "
70 "device assignment with IOMMU protection.");
71 exit(1);
74 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
75 uint64_t wmask, uint64_t w1cmask)
77 stq_le_p(&s->csr[addr], val);
78 stq_le_p(&s->wmask[addr], wmask);
79 stq_le_p(&s->w1cmask[addr], w1cmask);
82 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
84 stq_le_p(&s->womask[addr], mask);
87 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
88 uint32_t wmask, uint32_t w1cmask)
90 stl_le_p(&s->csr[addr], val);
91 stl_le_p(&s->wmask[addr], wmask);
92 stl_le_p(&s->w1cmask[addr], w1cmask);
95 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
97 stl_le_p(&s->womask[addr], mask);
100 /* "External" get/set operations */
101 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
103 uint64_t oldval = ldq_le_p(&s->csr[addr]);
104 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
105 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
106 stq_le_p(&s->csr[addr],
107 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
110 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
112 uint32_t oldval = ldl_le_p(&s->csr[addr]);
113 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
114 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
115 stl_le_p(&s->csr[addr],
116 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
119 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
121 uint64_t val = ldq_le_p(&s->csr[addr]);
122 uint64_t womask = ldq_le_p(&s->womask[addr]);
123 return val & ~womask;
126 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
128 uint32_t val = ldl_le_p(&s->csr[addr]);
129 uint32_t womask = ldl_le_p(&s->womask[addr]);
130 return val & ~womask;
133 /* "Internal" get/set operations */
134 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
136 return ldq_le_p(&s->csr[addr]);
139 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
141 return ldl_le_p(&s->csr[addr]);
144 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
146 stq_le_p(&s->csr[addr], val);
149 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
150 uint32_t clear, uint32_t mask)
152 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
153 stl_le_p(&s->csr[addr], new_val);
154 return new_val;
157 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
158 uint64_t clear, uint64_t mask)
160 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
161 stq_le_p(&s->csr[addr], new_val);
162 return new_val;
165 static inline void vtd_iommu_lock(IntelIOMMUState *s)
167 qemu_mutex_lock(&s->iommu_lock);
170 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
172 qemu_mutex_unlock(&s->iommu_lock);
175 static void vtd_update_scalable_state(IntelIOMMUState *s)
177 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
179 if (s->scalable_mode) {
180 s->root_scalable = val & VTD_RTADDR_SMT;
184 static void vtd_update_iq_dw(IntelIOMMUState *s)
186 uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
188 if (s->ecap & VTD_ECAP_SMTS &&
189 val & VTD_IQA_DW_MASK) {
190 s->iq_dw = true;
191 } else {
192 s->iq_dw = false;
196 /* Whether the address space needs to notify new mappings */
197 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
199 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
202 /* GHashTable functions */
203 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
205 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
208 static guint vtd_uint64_hash(gconstpointer v)
210 return (guint)*(const uint64_t *)v;
213 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
214 gpointer user_data)
216 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
217 uint16_t domain_id = *(uint16_t *)user_data;
218 return entry->domain_id == domain_id;
221 /* The shift of an addr for a certain level of paging structure */
222 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
224 assert(level != 0);
225 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
228 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
230 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
233 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
234 gpointer user_data)
236 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
237 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
238 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
239 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
240 return (entry->domain_id == info->domain_id) &&
241 (((entry->gfn & info->mask) == gfn) ||
242 (entry->gfn == gfn_tlb));
245 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
246 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
248 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
250 VTDAddressSpace *vtd_as;
251 VTDBus *vtd_bus;
252 GHashTableIter bus_it;
253 uint32_t devfn_it;
255 trace_vtd_context_cache_reset();
257 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
259 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
260 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
261 vtd_as = vtd_bus->dev_as[devfn_it];
262 if (!vtd_as) {
263 continue;
265 vtd_as->context_cache_entry.context_cache_gen = 0;
268 s->context_cache_gen = 1;
271 /* Must be called with IOMMU lock held. */
272 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
274 assert(s->iotlb);
275 g_hash_table_remove_all(s->iotlb);
278 static void vtd_reset_iotlb(IntelIOMMUState *s)
280 vtd_iommu_lock(s);
281 vtd_reset_iotlb_locked(s);
282 vtd_iommu_unlock(s);
285 static void vtd_reset_caches(IntelIOMMUState *s)
287 vtd_iommu_lock(s);
288 vtd_reset_iotlb_locked(s);
289 vtd_reset_context_cache_locked(s);
290 vtd_iommu_unlock(s);
293 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
294 uint32_t level)
296 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
297 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
300 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
302 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
305 /* Must be called with IOMMU lock held */
306 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
307 hwaddr addr)
309 VTDIOTLBEntry *entry;
310 uint64_t key;
311 int level;
313 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
314 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
315 source_id, level);
316 entry = g_hash_table_lookup(s->iotlb, &key);
317 if (entry) {
318 goto out;
322 out:
323 return entry;
326 /* Must be with IOMMU lock held */
327 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
328 uint16_t domain_id, hwaddr addr, uint64_t slpte,
329 uint8_t access_flags, uint32_t level)
331 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
332 uint64_t *key = g_malloc(sizeof(*key));
333 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
335 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
336 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
337 trace_vtd_iotlb_reset("iotlb exceeds size limit");
338 vtd_reset_iotlb_locked(s);
341 entry->gfn = gfn;
342 entry->domain_id = domain_id;
343 entry->slpte = slpte;
344 entry->access_flags = access_flags;
345 entry->mask = vtd_slpt_level_page_mask(level);
346 *key = vtd_get_iotlb_key(gfn, source_id, level);
347 g_hash_table_replace(s->iotlb, key, entry);
350 /* Given the reg addr of both the message data and address, generate an
351 * interrupt via MSI.
353 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
354 hwaddr mesg_data_reg)
356 MSIMessage msi;
358 assert(mesg_data_reg < DMAR_REG_SIZE);
359 assert(mesg_addr_reg < DMAR_REG_SIZE);
361 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
362 msi.data = vtd_get_long_raw(s, mesg_data_reg);
364 trace_vtd_irq_generate(msi.address, msi.data);
366 apic_get_class()->send_msi(&msi);
369 /* Generate a fault event to software via MSI if conditions are met.
370 * Notice that the value of FSTS_REG being passed to it should be the one
371 * before any update.
373 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
375 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
376 pre_fsts & VTD_FSTS_IQE) {
377 error_report_once("There are previous interrupt conditions "
378 "to be serviced by software, fault event "
379 "is not generated");
380 return;
382 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
383 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
384 error_report_once("Interrupt Mask set, irq is not generated");
385 } else {
386 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
387 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
391 /* Check if the Fault (F) field of the Fault Recording Register referenced by
392 * @index is Set.
394 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
396 /* Each reg is 128-bit */
397 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
398 addr += 8; /* Access the high 64-bit half */
400 assert(index < DMAR_FRCD_REG_NR);
402 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
405 /* Update the PPF field of Fault Status Register.
406 * Should be called whenever change the F field of any fault recording
407 * registers.
409 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
411 uint32_t i;
412 uint32_t ppf_mask = 0;
414 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
415 if (vtd_is_frcd_set(s, i)) {
416 ppf_mask = VTD_FSTS_PPF;
417 break;
420 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
421 trace_vtd_fsts_ppf(!!ppf_mask);
424 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
426 /* Each reg is 128-bit */
427 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
428 addr += 8; /* Access the high 64-bit half */
430 assert(index < DMAR_FRCD_REG_NR);
432 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
433 vtd_update_fsts_ppf(s);
436 /* Must not update F field now, should be done later */
437 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
438 uint16_t source_id, hwaddr addr,
439 VTDFaultReason fault, bool is_write)
441 uint64_t hi = 0, lo;
442 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
444 assert(index < DMAR_FRCD_REG_NR);
446 lo = VTD_FRCD_FI(addr);
447 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
448 if (!is_write) {
449 hi |= VTD_FRCD_T;
451 vtd_set_quad_raw(s, frcd_reg_addr, lo);
452 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
454 trace_vtd_frr_new(index, hi, lo);
457 /* Try to collapse multiple pending faults from the same requester */
458 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
460 uint32_t i;
461 uint64_t frcd_reg;
462 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
464 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
465 frcd_reg = vtd_get_quad_raw(s, addr);
466 if ((frcd_reg & VTD_FRCD_F) &&
467 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
468 return true;
470 addr += 16; /* 128-bit for each */
472 return false;
475 /* Log and report an DMAR (address translation) fault to software */
476 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
477 hwaddr addr, VTDFaultReason fault,
478 bool is_write)
480 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
482 assert(fault < VTD_FR_MAX);
484 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
486 if (fsts_reg & VTD_FSTS_PFO) {
487 error_report_once("New fault is not recorded due to "
488 "Primary Fault Overflow");
489 return;
492 if (vtd_try_collapse_fault(s, source_id)) {
493 error_report_once("New fault is not recorded due to "
494 "compression of faults");
495 return;
498 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
499 error_report_once("Next Fault Recording Reg is used, "
500 "new fault is not recorded, set PFO field");
501 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
502 return;
505 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
507 if (fsts_reg & VTD_FSTS_PPF) {
508 error_report_once("There are pending faults already, "
509 "fault event is not generated");
510 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
511 s->next_frcd_reg++;
512 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
513 s->next_frcd_reg = 0;
515 } else {
516 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
517 VTD_FSTS_FRI(s->next_frcd_reg));
518 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
519 s->next_frcd_reg++;
520 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
521 s->next_frcd_reg = 0;
523 /* This case actually cause the PPF to be Set.
524 * So generate fault event (interrupt).
526 vtd_generate_fault_event(s, fsts_reg);
530 /* Handle Invalidation Queue Errors of queued invalidation interface error
531 * conditions.
533 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
535 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
537 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
538 vtd_generate_fault_event(s, fsts_reg);
541 /* Set the IWC field and try to generate an invalidation completion interrupt */
542 static void vtd_generate_completion_event(IntelIOMMUState *s)
544 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
545 trace_vtd_inv_desc_wait_irq("One pending, skip current");
546 return;
548 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
549 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
550 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
551 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
552 "new event not generated");
553 return;
554 } else {
555 /* Generate the interrupt event */
556 trace_vtd_inv_desc_wait_irq("Generating complete event");
557 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
558 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
562 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
563 VTDRootEntry *re,
564 uint8_t devfn)
566 if (s->root_scalable && devfn > UINT8_MAX / 2) {
567 return re->hi & VTD_ROOT_ENTRY_P;
570 return re->lo & VTD_ROOT_ENTRY_P;
573 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
574 VTDRootEntry *re)
576 dma_addr_t addr;
578 addr = s->root + index * sizeof(*re);
579 if (dma_memory_read(&address_space_memory, addr,
580 re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
581 re->lo = 0;
582 return -VTD_FR_ROOT_TABLE_INV;
584 re->lo = le64_to_cpu(re->lo);
585 re->hi = le64_to_cpu(re->hi);
586 return 0;
589 static inline bool vtd_ce_present(VTDContextEntry *context)
591 return context->lo & VTD_CONTEXT_ENTRY_P;
594 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
595 VTDRootEntry *re,
596 uint8_t index,
597 VTDContextEntry *ce)
599 dma_addr_t addr, ce_size;
601 /* we have checked that root entry is present */
602 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
603 VTD_CTX_ENTRY_LEGACY_SIZE;
605 if (s->root_scalable && index > UINT8_MAX / 2) {
606 index = index & (~VTD_DEVFN_CHECK_MASK);
607 addr = re->hi & VTD_ROOT_ENTRY_CTP;
608 } else {
609 addr = re->lo & VTD_ROOT_ENTRY_CTP;
612 addr = addr + index * ce_size;
613 if (dma_memory_read(&address_space_memory, addr,
614 ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
615 return -VTD_FR_CONTEXT_TABLE_INV;
618 ce->lo = le64_to_cpu(ce->lo);
619 ce->hi = le64_to_cpu(ce->hi);
620 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
621 ce->val[2] = le64_to_cpu(ce->val[2]);
622 ce->val[3] = le64_to_cpu(ce->val[3]);
624 return 0;
627 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
629 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
632 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
634 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
637 /* Whether the pte indicates the address of the page frame */
638 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
640 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
643 /* Get the content of a spte located in @base_addr[@index] */
644 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
646 uint64_t slpte;
648 assert(index < VTD_SL_PT_ENTRY_NR);
650 if (dma_memory_read(&address_space_memory,
651 base_addr + index * sizeof(slpte),
652 &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) {
653 slpte = (uint64_t)-1;
654 return slpte;
656 slpte = le64_to_cpu(slpte);
657 return slpte;
660 /* Given an iova and the level of paging structure, return the offset
661 * of current level.
663 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
665 return (iova >> vtd_slpt_level_shift(level)) &
666 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
669 /* Check Capability Register to see if the @level of page-table is supported */
670 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
672 return VTD_CAP_SAGAW_MASK & s->cap &
673 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
676 /* Return true if check passed, otherwise false */
677 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
678 VTDPASIDEntry *pe)
680 switch (VTD_PE_GET_TYPE(pe)) {
681 case VTD_SM_PASID_ENTRY_FLT:
682 case VTD_SM_PASID_ENTRY_SLT:
683 case VTD_SM_PASID_ENTRY_NESTED:
684 break;
685 case VTD_SM_PASID_ENTRY_PT:
686 if (!x86_iommu->pt_supported) {
687 return false;
689 break;
690 default:
691 /* Unknown type */
692 return false;
694 return true;
697 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
699 return pdire->val & 1;
703 * Caller of this function should check present bit if wants
704 * to use pdir entry for further usage except for fpd bit check.
706 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
707 uint32_t pasid,
708 VTDPASIDDirEntry *pdire)
710 uint32_t index;
711 dma_addr_t addr, entry_size;
713 index = VTD_PASID_DIR_INDEX(pasid);
714 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
715 addr = pasid_dir_base + index * entry_size;
716 if (dma_memory_read(&address_space_memory, addr,
717 pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
718 return -VTD_FR_PASID_TABLE_INV;
721 return 0;
724 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
726 return pe->val[0] & VTD_PASID_ENTRY_P;
729 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
730 uint32_t pasid,
731 dma_addr_t addr,
732 VTDPASIDEntry *pe)
734 uint32_t index;
735 dma_addr_t entry_size;
736 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
738 index = VTD_PASID_TABLE_INDEX(pasid);
739 entry_size = VTD_PASID_ENTRY_SIZE;
740 addr = addr + index * entry_size;
741 if (dma_memory_read(&address_space_memory, addr,
742 pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
743 return -VTD_FR_PASID_TABLE_INV;
746 /* Do translation type check */
747 if (!vtd_pe_type_check(x86_iommu, pe)) {
748 return -VTD_FR_PASID_TABLE_INV;
751 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
752 return -VTD_FR_PASID_TABLE_INV;
755 return 0;
759 * Caller of this function should check present bit if wants
760 * to use pasid entry for further usage except for fpd bit check.
762 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
763 uint32_t pasid,
764 VTDPASIDDirEntry *pdire,
765 VTDPASIDEntry *pe)
767 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
769 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
773 * This function gets a pasid entry from a specified pasid
774 * table (includes dir and leaf table) with a specified pasid.
775 * Sanity check should be done to ensure return a present
776 * pasid entry to caller.
778 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
779 dma_addr_t pasid_dir_base,
780 uint32_t pasid,
781 VTDPASIDEntry *pe)
783 int ret;
784 VTDPASIDDirEntry pdire;
786 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
787 pasid, &pdire);
788 if (ret) {
789 return ret;
792 if (!vtd_pdire_present(&pdire)) {
793 return -VTD_FR_PASID_TABLE_INV;
796 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
797 if (ret) {
798 return ret;
801 if (!vtd_pe_present(pe)) {
802 return -VTD_FR_PASID_TABLE_INV;
805 return 0;
808 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
809 VTDContextEntry *ce,
810 VTDPASIDEntry *pe)
812 uint32_t pasid;
813 dma_addr_t pasid_dir_base;
814 int ret = 0;
816 pasid = VTD_CE_GET_RID2PASID(ce);
817 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
818 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
820 return ret;
823 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
824 VTDContextEntry *ce,
825 bool *pe_fpd_set)
827 int ret;
828 uint32_t pasid;
829 dma_addr_t pasid_dir_base;
830 VTDPASIDDirEntry pdire;
831 VTDPASIDEntry pe;
833 pasid = VTD_CE_GET_RID2PASID(ce);
834 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
837 * No present bit check since fpd is meaningful even
838 * if the present bit is clear.
840 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
841 if (ret) {
842 return ret;
845 if (pdire.val & VTD_PASID_DIR_FPD) {
846 *pe_fpd_set = true;
847 return 0;
850 if (!vtd_pdire_present(&pdire)) {
851 return -VTD_FR_PASID_TABLE_INV;
855 * No present bit check since fpd is meaningful even
856 * if the present bit is clear.
858 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
859 if (ret) {
860 return ret;
863 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
864 *pe_fpd_set = true;
867 return 0;
870 /* Get the page-table level that hardware should use for the second-level
871 * page-table walk from the Address Width field of context-entry.
873 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
875 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
878 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
879 VTDContextEntry *ce)
881 VTDPASIDEntry pe;
883 if (s->root_scalable) {
884 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
885 return VTD_PE_GET_LEVEL(&pe);
888 return vtd_ce_get_level(ce);
891 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
893 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
896 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
897 VTDContextEntry *ce)
899 VTDPASIDEntry pe;
901 if (s->root_scalable) {
902 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
903 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
906 return vtd_ce_get_agaw(ce);
909 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
911 return ce->lo & VTD_CONTEXT_ENTRY_TT;
914 /* Only for Legacy Mode. Return true if check passed, otherwise false */
915 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
916 VTDContextEntry *ce)
918 switch (vtd_ce_get_type(ce)) {
919 case VTD_CONTEXT_TT_MULTI_LEVEL:
920 /* Always supported */
921 break;
922 case VTD_CONTEXT_TT_DEV_IOTLB:
923 if (!x86_iommu->dt_supported) {
924 error_report_once("%s: DT specified but not supported", __func__);
925 return false;
927 break;
928 case VTD_CONTEXT_TT_PASS_THROUGH:
929 if (!x86_iommu->pt_supported) {
930 error_report_once("%s: PT specified but not supported", __func__);
931 return false;
933 break;
934 default:
935 /* Unknown type */
936 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
937 vtd_ce_get_type(ce));
938 return false;
940 return true;
943 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
944 VTDContextEntry *ce, uint8_t aw)
946 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
947 return 1ULL << MIN(ce_agaw, aw);
950 /* Return true if IOVA passes range check, otherwise false. */
951 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
952 uint64_t iova, VTDContextEntry *ce,
953 uint8_t aw)
956 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
957 * in CAP_REG and AW in context-entry.
959 return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
962 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
963 VTDContextEntry *ce)
965 VTDPASIDEntry pe;
967 if (s->root_scalable) {
968 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
969 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
972 return vtd_ce_get_slpt_base(ce);
976 * Rsvd field masks for spte:
977 * vtd_spte_rsvd 4k pages
978 * vtd_spte_rsvd_large large pages
980 static uint64_t vtd_spte_rsvd[5];
981 static uint64_t vtd_spte_rsvd_large[5];
983 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
985 uint64_t rsvd_mask = vtd_spte_rsvd[level];
987 if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
988 (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
989 /* large page */
990 rsvd_mask = vtd_spte_rsvd_large[level];
993 return slpte & rsvd_mask;
996 /* Find the VTD address space associated with a given bus number */
997 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
999 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
1000 GHashTableIter iter;
1002 if (vtd_bus) {
1003 return vtd_bus;
1007 * Iterate over the registered buses to find the one which
1008 * currently holds this bus number and update the bus_num
1009 * lookup table.
1011 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1012 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1013 if (pci_bus_num(vtd_bus->bus) == bus_num) {
1014 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
1015 return vtd_bus;
1019 return NULL;
1022 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1023 * of the translation, can be used for deciding the size of large page.
1025 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1026 uint64_t iova, bool is_write,
1027 uint64_t *slptep, uint32_t *slpte_level,
1028 bool *reads, bool *writes, uint8_t aw_bits)
1030 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1031 uint32_t level = vtd_get_iova_level(s, ce);
1032 uint32_t offset;
1033 uint64_t slpte;
1034 uint64_t access_right_check;
1035 uint64_t xlat, size;
1037 if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
1038 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
1039 __func__, iova);
1040 return -VTD_FR_ADDR_BEYOND_MGAW;
1043 /* FIXME: what is the Atomics request here? */
1044 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1046 while (true) {
1047 offset = vtd_iova_level_offset(iova, level);
1048 slpte = vtd_get_slpte(addr, offset);
1050 if (slpte == (uint64_t)-1) {
1051 error_report_once("%s: detected read error on DMAR slpte "
1052 "(iova=0x%" PRIx64 ")", __func__, iova);
1053 if (level == vtd_get_iova_level(s, ce)) {
1054 /* Invalid programming of context-entry */
1055 return -VTD_FR_CONTEXT_ENTRY_INV;
1056 } else {
1057 return -VTD_FR_PAGING_ENTRY_INV;
1060 *reads = (*reads) && (slpte & VTD_SL_R);
1061 *writes = (*writes) && (slpte & VTD_SL_W);
1062 if (!(slpte & access_right_check)) {
1063 error_report_once("%s: detected slpte permission error "
1064 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1065 "slpte=0x%" PRIx64 ", write=%d)", __func__,
1066 iova, level, slpte, is_write);
1067 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1069 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1070 error_report_once("%s: detected splte reserve non-zero "
1071 "iova=0x%" PRIx64 ", level=0x%" PRIx32
1072 "slpte=0x%" PRIx64 ")", __func__, iova,
1073 level, slpte);
1074 return -VTD_FR_PAGING_ENTRY_RSVD;
1077 if (vtd_is_last_slpte(slpte, level)) {
1078 *slptep = slpte;
1079 *slpte_level = level;
1080 break;
1082 addr = vtd_get_slpte_addr(slpte, aw_bits);
1083 level--;
1086 xlat = vtd_get_slpte_addr(*slptep, aw_bits);
1087 size = ~vtd_slpt_level_page_mask(level) + 1;
1090 * From VT-d spec 3.14: Untranslated requests and translation
1091 * requests that result in an address in the interrupt range will be
1092 * blocked with condition code LGN.4 or SGN.8.
1094 if ((xlat > VTD_INTERRUPT_ADDR_LAST ||
1095 xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) {
1096 return 0;
1097 } else {
1098 error_report_once("%s: xlat address is in interrupt range "
1099 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1100 "slpte=0x%" PRIx64 ", write=%d, "
1101 "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ")",
1102 __func__, iova, level, slpte, is_write,
1103 xlat, size);
1104 return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
1105 -VTD_FR_INTERRUPT_ADDR;
1109 typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
1112 * Constant information used during page walking
1114 * @hook_fn: hook func to be called when detected page
1115 * @private: private data to be passed into hook func
1116 * @notify_unmap: whether we should notify invalid entries
1117 * @as: VT-d address space of the device
1118 * @aw: maximum address width
1119 * @domain: domain ID of the page walk
1121 typedef struct {
1122 VTDAddressSpace *as;
1123 vtd_page_walk_hook hook_fn;
1124 void *private;
1125 bool notify_unmap;
1126 uint8_t aw;
1127 uint16_t domain_id;
1128 } vtd_page_walk_info;
1130 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1132 VTDAddressSpace *as = info->as;
1133 vtd_page_walk_hook hook_fn = info->hook_fn;
1134 void *private = info->private;
1135 IOMMUTLBEntry *entry = &event->entry;
1136 DMAMap target = {
1137 .iova = entry->iova,
1138 .size = entry->addr_mask,
1139 .translated_addr = entry->translated_addr,
1140 .perm = entry->perm,
1142 const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1144 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1145 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1146 return 0;
1149 assert(hook_fn);
1151 /* Update local IOVA mapped ranges */
1152 if (event->type == IOMMU_NOTIFIER_MAP) {
1153 if (mapped) {
1154 /* If it's exactly the same translation, skip */
1155 if (!memcmp(mapped, &target, sizeof(target))) {
1156 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1157 entry->translated_addr);
1158 return 0;
1159 } else {
1161 * Translation changed. Normally this should not
1162 * happen, but it can happen when with buggy guest
1163 * OSes. Note that there will be a small window that
1164 * we don't have map at all. But that's the best
1165 * effort we can do. The ideal way to emulate this is
1166 * atomically modify the PTE to follow what has
1167 * changed, but we can't. One example is that vfio
1168 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1169 * interface to modify a mapping (meanwhile it seems
1170 * meaningless to even provide one). Anyway, let's
1171 * mark this as a TODO in case one day we'll have
1172 * a better solution.
1174 IOMMUAccessFlags cache_perm = entry->perm;
1175 int ret;
1177 /* Emulate an UNMAP */
1178 event->type = IOMMU_NOTIFIER_UNMAP;
1179 entry->perm = IOMMU_NONE;
1180 trace_vtd_page_walk_one(info->domain_id,
1181 entry->iova,
1182 entry->translated_addr,
1183 entry->addr_mask,
1184 entry->perm);
1185 ret = hook_fn(event, private);
1186 if (ret) {
1187 return ret;
1189 /* Drop any existing mapping */
1190 iova_tree_remove(as->iova_tree, &target);
1191 /* Recover the correct type */
1192 event->type = IOMMU_NOTIFIER_MAP;
1193 entry->perm = cache_perm;
1196 iova_tree_insert(as->iova_tree, &target);
1197 } else {
1198 if (!mapped) {
1199 /* Skip since we didn't map this range at all */
1200 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1201 return 0;
1203 iova_tree_remove(as->iova_tree, &target);
1206 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1207 entry->translated_addr, entry->addr_mask,
1208 entry->perm);
1209 return hook_fn(event, private);
1213 * vtd_page_walk_level - walk over specific level for IOVA range
1215 * @addr: base GPA addr to start the walk
1216 * @start: IOVA range start address
1217 * @end: IOVA range end address (start <= addr < end)
1218 * @read: whether parent level has read permission
1219 * @write: whether parent level has write permission
1220 * @info: constant information for the page walk
1222 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1223 uint64_t end, uint32_t level, bool read,
1224 bool write, vtd_page_walk_info *info)
1226 bool read_cur, write_cur, entry_valid;
1227 uint32_t offset;
1228 uint64_t slpte;
1229 uint64_t subpage_size, subpage_mask;
1230 IOMMUTLBEvent event;
1231 uint64_t iova = start;
1232 uint64_t iova_next;
1233 int ret = 0;
1235 trace_vtd_page_walk_level(addr, level, start, end);
1237 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1238 subpage_mask = vtd_slpt_level_page_mask(level);
1240 while (iova < end) {
1241 iova_next = (iova & subpage_mask) + subpage_size;
1243 offset = vtd_iova_level_offset(iova, level);
1244 slpte = vtd_get_slpte(addr, offset);
1246 if (slpte == (uint64_t)-1) {
1247 trace_vtd_page_walk_skip_read(iova, iova_next);
1248 goto next;
1251 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1252 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1253 goto next;
1256 /* Permissions are stacked with parents' */
1257 read_cur = read && (slpte & VTD_SL_R);
1258 write_cur = write && (slpte & VTD_SL_W);
1261 * As long as we have either read/write permission, this is a
1262 * valid entry. The rule works for both page entries and page
1263 * table entries.
1265 entry_valid = read_cur | write_cur;
1267 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1269 * This is a valid PDE (or even bigger than PDE). We need
1270 * to walk one further level.
1272 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1273 iova, MIN(iova_next, end), level - 1,
1274 read_cur, write_cur, info);
1275 } else {
1277 * This means we are either:
1279 * (1) the real page entry (either 4K page, or huge page)
1280 * (2) the whole range is invalid
1282 * In either case, we send an IOTLB notification down.
1284 event.entry.target_as = &address_space_memory;
1285 event.entry.iova = iova & subpage_mask;
1286 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1287 event.entry.addr_mask = ~subpage_mask;
1288 /* NOTE: this is only meaningful if entry_valid == true */
1289 event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1290 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1291 IOMMU_NOTIFIER_UNMAP;
1292 ret = vtd_page_walk_one(&event, info);
1295 if (ret < 0) {
1296 return ret;
1299 next:
1300 iova = iova_next;
1303 return 0;
1307 * vtd_page_walk - walk specific IOVA range, and call the hook
1309 * @s: intel iommu state
1310 * @ce: context entry to walk upon
1311 * @start: IOVA address to start the walk
1312 * @end: IOVA range end address (start <= addr < end)
1313 * @info: page walking information struct
1315 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1316 uint64_t start, uint64_t end,
1317 vtd_page_walk_info *info)
1319 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1320 uint32_t level = vtd_get_iova_level(s, ce);
1322 if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1323 return -VTD_FR_ADDR_BEYOND_MGAW;
1326 if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1327 /* Fix end so that it reaches the maximum */
1328 end = vtd_iova_limit(s, ce, info->aw);
1331 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1334 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1335 VTDRootEntry *re)
1337 /* Legacy Mode reserved bits check */
1338 if (!s->root_scalable &&
1339 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1340 goto rsvd_err;
1342 /* Scalable Mode reserved bits check */
1343 if (s->root_scalable &&
1344 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1345 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1346 goto rsvd_err;
1348 return 0;
1350 rsvd_err:
1351 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1352 ", lo=0x%"PRIx64,
1353 __func__, re->hi, re->lo);
1354 return -VTD_FR_ROOT_ENTRY_RSVD;
1357 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1358 VTDContextEntry *ce)
1360 if (!s->root_scalable &&
1361 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1362 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1363 error_report_once("%s: invalid context entry: hi=%"PRIx64
1364 ", lo=%"PRIx64" (reserved nonzero)",
1365 __func__, ce->hi, ce->lo);
1366 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1369 if (s->root_scalable &&
1370 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1371 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1372 ce->val[2] ||
1373 ce->val[3])) {
1374 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1375 ", val[2]=%"PRIx64
1376 ", val[1]=%"PRIx64
1377 ", val[0]=%"PRIx64" (reserved nonzero)",
1378 __func__, ce->val[3], ce->val[2],
1379 ce->val[1], ce->val[0]);
1380 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1383 return 0;
1386 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1387 VTDContextEntry *ce)
1389 VTDPASIDEntry pe;
1392 * Make sure in Scalable Mode, a present context entry
1393 * has valid rid2pasid setting, which includes valid
1394 * rid2pasid field and corresponding pasid entry setting
1396 return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1399 /* Map a device to its corresponding domain (context-entry) */
1400 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1401 uint8_t devfn, VTDContextEntry *ce)
1403 VTDRootEntry re;
1404 int ret_fr;
1405 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1407 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1408 if (ret_fr) {
1409 return ret_fr;
1412 if (!vtd_root_entry_present(s, &re, devfn)) {
1413 /* Not error - it's okay we don't have root entry. */
1414 trace_vtd_re_not_present(bus_num);
1415 return -VTD_FR_ROOT_ENTRY_P;
1418 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1419 if (ret_fr) {
1420 return ret_fr;
1423 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1424 if (ret_fr) {
1425 return ret_fr;
1428 if (!vtd_ce_present(ce)) {
1429 /* Not error - it's okay we don't have context entry. */
1430 trace_vtd_ce_not_present(bus_num, devfn);
1431 return -VTD_FR_CONTEXT_ENTRY_P;
1434 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1435 if (ret_fr) {
1436 return ret_fr;
1439 /* Check if the programming of context-entry is valid */
1440 if (!s->root_scalable &&
1441 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1442 error_report_once("%s: invalid context entry: hi=%"PRIx64
1443 ", lo=%"PRIx64" (level %d not supported)",
1444 __func__, ce->hi, ce->lo,
1445 vtd_ce_get_level(ce));
1446 return -VTD_FR_CONTEXT_ENTRY_INV;
1449 if (!s->root_scalable) {
1450 /* Do translation type check */
1451 if (!vtd_ce_type_check(x86_iommu, ce)) {
1452 /* Errors dumped in vtd_ce_type_check() */
1453 return -VTD_FR_CONTEXT_ENTRY_INV;
1455 } else {
1457 * Check if the programming of context-entry.rid2pasid
1458 * and corresponding pasid setting is valid, and thus
1459 * avoids to check pasid entry fetching result in future
1460 * helper function calling.
1462 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1463 if (ret_fr) {
1464 return ret_fr;
1468 return 0;
1471 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
1472 void *private)
1474 memory_region_notify_iommu(private, 0, *event);
1475 return 0;
1478 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1479 VTDContextEntry *ce)
1481 VTDPASIDEntry pe;
1483 if (s->root_scalable) {
1484 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1485 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1488 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1491 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1492 VTDContextEntry *ce,
1493 hwaddr addr, hwaddr size)
1495 IntelIOMMUState *s = vtd_as->iommu_state;
1496 vtd_page_walk_info info = {
1497 .hook_fn = vtd_sync_shadow_page_hook,
1498 .private = (void *)&vtd_as->iommu,
1499 .notify_unmap = true,
1500 .aw = s->aw_bits,
1501 .as = vtd_as,
1502 .domain_id = vtd_get_domain_id(s, ce),
1505 return vtd_page_walk(s, ce, addr, addr + size, &info);
1508 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1510 int ret;
1511 VTDContextEntry ce;
1512 IOMMUNotifier *n;
1514 if (!(vtd_as->iommu.iommu_notify_flags & IOMMU_NOTIFIER_IOTLB_EVENTS)) {
1515 return 0;
1518 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1519 pci_bus_num(vtd_as->bus),
1520 vtd_as->devfn, &ce);
1521 if (ret) {
1522 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1524 * It's a valid scenario to have a context entry that is
1525 * not present. For example, when a device is removed
1526 * from an existing domain then the context entry will be
1527 * zeroed by the guest before it was put into another
1528 * domain. When this happens, instead of synchronizing
1529 * the shadow pages we should invalidate all existing
1530 * mappings and notify the backends.
1532 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1533 vtd_address_space_unmap(vtd_as, n);
1535 ret = 0;
1537 return ret;
1540 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1544 * Check if specific device is configured to bypass address
1545 * translation for DMA requests. In Scalable Mode, bypass
1546 * 1st-level translation or 2nd-level translation, it depends
1547 * on PGTT setting.
1549 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce)
1551 VTDPASIDEntry pe;
1552 int ret;
1554 if (s->root_scalable) {
1555 ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1556 if (ret) {
1557 error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1558 __func__, ret);
1559 return false;
1561 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1564 return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1568 static bool vtd_as_pt_enabled(VTDAddressSpace *as)
1570 IntelIOMMUState *s;
1571 VTDContextEntry ce;
1572 int ret;
1574 assert(as);
1576 s = as->iommu_state;
1577 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1578 as->devfn, &ce);
1579 if (ret) {
1581 * Possibly failed to parse the context entry for some reason
1582 * (e.g., during init, or any guest configuration errors on
1583 * context entries). We should assume PT not enabled for
1584 * safety.
1586 return false;
1589 return vtd_dev_pt_enabled(s, &ce);
1592 /* Return whether the device is using IOMMU translation. */
1593 static bool vtd_switch_address_space(VTDAddressSpace *as)
1595 bool use_iommu;
1596 /* Whether we need to take the BQL on our own */
1597 bool take_bql = !qemu_mutex_iothread_locked();
1599 assert(as);
1601 use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
1603 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1604 VTD_PCI_SLOT(as->devfn),
1605 VTD_PCI_FUNC(as->devfn),
1606 use_iommu);
1609 * It's possible that we reach here without BQL, e.g., when called
1610 * from vtd_pt_enable_fast_path(). However the memory APIs need
1611 * it. We'd better make sure we have had it already, or, take it.
1613 if (take_bql) {
1614 qemu_mutex_lock_iothread();
1617 /* Turn off first then on the other */
1618 if (use_iommu) {
1619 memory_region_set_enabled(&as->nodmar, false);
1620 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1621 } else {
1622 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1623 memory_region_set_enabled(&as->nodmar, true);
1626 if (take_bql) {
1627 qemu_mutex_unlock_iothread();
1630 return use_iommu;
1633 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1635 GHashTableIter iter;
1636 VTDBus *vtd_bus;
1637 int i;
1639 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1640 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1641 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1642 if (!vtd_bus->dev_as[i]) {
1643 continue;
1645 vtd_switch_address_space(vtd_bus->dev_as[i]);
1650 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1652 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1655 static const bool vtd_qualified_faults[] = {
1656 [VTD_FR_RESERVED] = false,
1657 [VTD_FR_ROOT_ENTRY_P] = false,
1658 [VTD_FR_CONTEXT_ENTRY_P] = true,
1659 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1660 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1661 [VTD_FR_WRITE] = true,
1662 [VTD_FR_READ] = true,
1663 [VTD_FR_PAGING_ENTRY_INV] = true,
1664 [VTD_FR_ROOT_TABLE_INV] = false,
1665 [VTD_FR_CONTEXT_TABLE_INV] = false,
1666 [VTD_FR_INTERRUPT_ADDR] = true,
1667 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1668 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1669 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1670 [VTD_FR_PASID_TABLE_INV] = false,
1671 [VTD_FR_SM_INTERRUPT_ADDR] = true,
1672 [VTD_FR_MAX] = false,
1675 /* To see if a fault condition is "qualified", which is reported to software
1676 * only if the FPD field in the context-entry used to process the faulting
1677 * request is 0.
1679 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1681 return vtd_qualified_faults[fault];
1684 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1686 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1689 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1691 VTDBus *vtd_bus;
1692 VTDAddressSpace *vtd_as;
1693 bool success = false;
1695 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1696 if (!vtd_bus) {
1697 goto out;
1700 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1701 if (!vtd_as) {
1702 goto out;
1705 if (vtd_switch_address_space(vtd_as) == false) {
1706 /* We switched off IOMMU region successfully. */
1707 success = true;
1710 out:
1711 trace_vtd_pt_enable_fast_path(source_id, success);
1714 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1715 * translation.
1717 * Called from RCU critical section.
1719 * @bus_num: The bus number
1720 * @devfn: The devfn, which is the combined of device and function number
1721 * @is_write: The access is a write operation
1722 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1724 * Returns true if translation is successful, otherwise false.
1726 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1727 uint8_t devfn, hwaddr addr, bool is_write,
1728 IOMMUTLBEntry *entry)
1730 IntelIOMMUState *s = vtd_as->iommu_state;
1731 VTDContextEntry ce;
1732 uint8_t bus_num = pci_bus_num(bus);
1733 VTDContextCacheEntry *cc_entry;
1734 uint64_t slpte, page_mask;
1735 uint32_t level;
1736 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1737 int ret_fr;
1738 bool is_fpd_set = false;
1739 bool reads = true;
1740 bool writes = true;
1741 uint8_t access_flags;
1742 VTDIOTLBEntry *iotlb_entry;
1745 * We have standalone memory region for interrupt addresses, we
1746 * should never receive translation requests in this region.
1748 assert(!vtd_is_interrupt_addr(addr));
1750 vtd_iommu_lock(s);
1752 cc_entry = &vtd_as->context_cache_entry;
1754 /* Try to fetch slpte form IOTLB */
1755 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1756 if (iotlb_entry) {
1757 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1758 iotlb_entry->domain_id);
1759 slpte = iotlb_entry->slpte;
1760 access_flags = iotlb_entry->access_flags;
1761 page_mask = iotlb_entry->mask;
1762 goto out;
1765 /* Try to fetch context-entry from cache first */
1766 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1767 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1768 cc_entry->context_entry.lo,
1769 cc_entry->context_cache_gen);
1770 ce = cc_entry->context_entry;
1771 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1772 if (!is_fpd_set && s->root_scalable) {
1773 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1774 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1776 } else {
1777 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1778 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1779 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1780 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1782 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1783 /* Update context-cache */
1784 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1785 cc_entry->context_cache_gen,
1786 s->context_cache_gen);
1787 cc_entry->context_entry = ce;
1788 cc_entry->context_cache_gen = s->context_cache_gen;
1792 * We don't need to translate for pass-through context entries.
1793 * Also, let's ignore IOTLB caching as well for PT devices.
1795 if (vtd_dev_pt_enabled(s, &ce)) {
1796 entry->iova = addr & VTD_PAGE_MASK_4K;
1797 entry->translated_addr = entry->iova;
1798 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1799 entry->perm = IOMMU_RW;
1800 trace_vtd_translate_pt(source_id, entry->iova);
1803 * When this happens, it means firstly caching-mode is not
1804 * enabled, and this is the first passthrough translation for
1805 * the device. Let's enable the fast path for passthrough.
1807 * When passthrough is disabled again for the device, we can
1808 * capture it via the context entry invalidation, then the
1809 * IOMMU region can be swapped back.
1811 vtd_pt_enable_fast_path(s, source_id);
1812 vtd_iommu_unlock(s);
1813 return true;
1816 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1817 &reads, &writes, s->aw_bits);
1818 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1820 page_mask = vtd_slpt_level_page_mask(level);
1821 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1822 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1823 access_flags, level);
1824 out:
1825 vtd_iommu_unlock(s);
1826 entry->iova = addr & page_mask;
1827 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1828 entry->addr_mask = ~page_mask;
1829 entry->perm = access_flags;
1830 return true;
1832 error:
1833 vtd_iommu_unlock(s);
1834 entry->iova = 0;
1835 entry->translated_addr = 0;
1836 entry->addr_mask = 0;
1837 entry->perm = IOMMU_NONE;
1838 return false;
1841 static void vtd_root_table_setup(IntelIOMMUState *s)
1843 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1844 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1846 vtd_update_scalable_state(s);
1848 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1851 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1852 uint32_t index, uint32_t mask)
1854 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1857 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1859 uint64_t value = 0;
1860 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1861 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1862 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1863 s->intr_eime = value & VTD_IRTA_EIME;
1865 /* Notify global invalidation */
1866 vtd_iec_notify_all(s, true, 0, 0);
1868 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1871 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1873 VTDAddressSpace *vtd_as;
1875 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1876 vtd_sync_shadow_page_table(vtd_as);
1880 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1882 trace_vtd_inv_desc_cc_global();
1883 /* Protects context cache */
1884 vtd_iommu_lock(s);
1885 s->context_cache_gen++;
1886 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1887 vtd_reset_context_cache_locked(s);
1889 vtd_iommu_unlock(s);
1890 vtd_address_space_refresh_all(s);
1892 * From VT-d spec 6.5.2.1, a global context entry invalidation
1893 * should be followed by a IOTLB global invalidation, so we should
1894 * be safe even without this. Hoewever, let's replay the region as
1895 * well to be safer, and go back here when we need finer tunes for
1896 * VT-d emulation codes.
1898 vtd_iommu_replay_all(s);
1901 /* Do a context-cache device-selective invalidation.
1902 * @func_mask: FM field after shifting
1904 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1905 uint16_t source_id,
1906 uint16_t func_mask)
1908 uint16_t mask;
1909 VTDBus *vtd_bus;
1910 VTDAddressSpace *vtd_as;
1911 uint8_t bus_n, devfn;
1912 uint16_t devfn_it;
1914 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1916 switch (func_mask & 3) {
1917 case 0:
1918 mask = 0; /* No bits in the SID field masked */
1919 break;
1920 case 1:
1921 mask = 4; /* Mask bit 2 in the SID field */
1922 break;
1923 case 2:
1924 mask = 6; /* Mask bit 2:1 in the SID field */
1925 break;
1926 case 3:
1927 mask = 7; /* Mask bit 2:0 in the SID field */
1928 break;
1929 default:
1930 g_assert_not_reached();
1932 mask = ~mask;
1934 bus_n = VTD_SID_TO_BUS(source_id);
1935 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1936 if (vtd_bus) {
1937 devfn = VTD_SID_TO_DEVFN(source_id);
1938 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1939 vtd_as = vtd_bus->dev_as[devfn_it];
1940 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1941 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1942 VTD_PCI_FUNC(devfn_it));
1943 vtd_iommu_lock(s);
1944 vtd_as->context_cache_entry.context_cache_gen = 0;
1945 vtd_iommu_unlock(s);
1947 * Do switch address space when needed, in case if the
1948 * device passthrough bit is switched.
1950 vtd_switch_address_space(vtd_as);
1952 * So a device is moving out of (or moving into) a
1953 * domain, resync the shadow page table.
1954 * This won't bring bad even if we have no such
1955 * notifier registered - the IOMMU notification
1956 * framework will skip MAP notifications if that
1957 * happened.
1959 vtd_sync_shadow_page_table(vtd_as);
1965 /* Context-cache invalidation
1966 * Returns the Context Actual Invalidation Granularity.
1967 * @val: the content of the CCMD_REG
1969 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1971 uint64_t caig;
1972 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1974 switch (type) {
1975 case VTD_CCMD_DOMAIN_INVL:
1976 /* Fall through */
1977 case VTD_CCMD_GLOBAL_INVL:
1978 caig = VTD_CCMD_GLOBAL_INVL_A;
1979 vtd_context_global_invalidate(s);
1980 break;
1982 case VTD_CCMD_DEVICE_INVL:
1983 caig = VTD_CCMD_DEVICE_INVL_A;
1984 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1985 break;
1987 default:
1988 error_report_once("%s: invalid context: 0x%" PRIx64,
1989 __func__, val);
1990 caig = 0;
1992 return caig;
1995 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1997 trace_vtd_inv_desc_iotlb_global();
1998 vtd_reset_iotlb(s);
1999 vtd_iommu_replay_all(s);
2002 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
2004 VTDContextEntry ce;
2005 VTDAddressSpace *vtd_as;
2007 trace_vtd_inv_desc_iotlb_domain(domain_id);
2009 vtd_iommu_lock(s);
2010 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
2011 &domain_id);
2012 vtd_iommu_unlock(s);
2014 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2015 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2016 vtd_as->devfn, &ce) &&
2017 domain_id == vtd_get_domain_id(s, &ce)) {
2018 vtd_sync_shadow_page_table(vtd_as);
2023 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
2024 uint16_t domain_id, hwaddr addr,
2025 uint8_t am)
2027 VTDAddressSpace *vtd_as;
2028 VTDContextEntry ce;
2029 int ret;
2030 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
2032 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
2033 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2034 vtd_as->devfn, &ce);
2035 if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
2036 if (vtd_as_has_map_notifier(vtd_as)) {
2038 * As long as we have MAP notifications registered in
2039 * any of our IOMMU notifiers, we need to sync the
2040 * shadow page table.
2042 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2043 } else {
2045 * For UNMAP-only notifiers, we don't need to walk the
2046 * page tables. We just deliver the PSI down to
2047 * invalidate caches.
2049 IOMMUTLBEvent event = {
2050 .type = IOMMU_NOTIFIER_UNMAP,
2051 .entry = {
2052 .target_as = &address_space_memory,
2053 .iova = addr,
2054 .translated_addr = 0,
2055 .addr_mask = size - 1,
2056 .perm = IOMMU_NONE,
2059 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2065 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2066 hwaddr addr, uint8_t am)
2068 VTDIOTLBPageInvInfo info;
2070 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2072 assert(am <= VTD_MAMV);
2073 info.domain_id = domain_id;
2074 info.addr = addr;
2075 info.mask = ~((1 << am) - 1);
2076 vtd_iommu_lock(s);
2077 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2078 vtd_iommu_unlock(s);
2079 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
2082 /* Flush IOTLB
2083 * Returns the IOTLB Actual Invalidation Granularity.
2084 * @val: the content of the IOTLB_REG
2086 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2088 uint64_t iaig;
2089 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2090 uint16_t domain_id;
2091 hwaddr addr;
2092 uint8_t am;
2094 switch (type) {
2095 case VTD_TLB_GLOBAL_FLUSH:
2096 iaig = VTD_TLB_GLOBAL_FLUSH_A;
2097 vtd_iotlb_global_invalidate(s);
2098 break;
2100 case VTD_TLB_DSI_FLUSH:
2101 domain_id = VTD_TLB_DID(val);
2102 iaig = VTD_TLB_DSI_FLUSH_A;
2103 vtd_iotlb_domain_invalidate(s, domain_id);
2104 break;
2106 case VTD_TLB_PSI_FLUSH:
2107 domain_id = VTD_TLB_DID(val);
2108 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2109 am = VTD_IVA_AM(addr);
2110 addr = VTD_IVA_ADDR(addr);
2111 if (am > VTD_MAMV) {
2112 error_report_once("%s: address mask overflow: 0x%" PRIx64,
2113 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2114 iaig = 0;
2115 break;
2117 iaig = VTD_TLB_PSI_FLUSH_A;
2118 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2119 break;
2121 default:
2122 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2123 __func__, val);
2124 iaig = 0;
2126 return iaig;
2129 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2131 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2133 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2134 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2137 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2139 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2141 trace_vtd_inv_qi_enable(en);
2143 if (en) {
2144 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2145 /* 2^(x+8) entries */
2146 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2147 s->qi_enabled = true;
2148 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2149 /* Ok - report back to driver */
2150 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2152 if (s->iq_tail != 0) {
2154 * This is a spec violation but Windows guests are known to set up
2155 * Queued Invalidation this way so we allow the write and process
2156 * Invalidation Descriptors right away.
2158 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2159 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2160 vtd_fetch_inv_desc(s);
2163 } else {
2164 if (vtd_queued_inv_disable_check(s)) {
2165 /* disable Queued Invalidation */
2166 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2167 s->iq_head = 0;
2168 s->qi_enabled = false;
2169 /* Ok - report back to driver */
2170 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2171 } else {
2172 error_report_once("%s: detected improper state when disable QI "
2173 "(head=0x%x, tail=0x%x, last_type=%d)",
2174 __func__,
2175 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2180 /* Set Root Table Pointer */
2181 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2183 vtd_root_table_setup(s);
2184 /* Ok - report back to driver */
2185 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2186 vtd_reset_caches(s);
2187 vtd_address_space_refresh_all(s);
2190 /* Set Interrupt Remap Table Pointer */
2191 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2193 vtd_interrupt_remap_table_setup(s);
2194 /* Ok - report back to driver */
2195 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2198 /* Handle Translation Enable/Disable */
2199 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2201 if (s->dmar_enabled == en) {
2202 return;
2205 trace_vtd_dmar_enable(en);
2207 if (en) {
2208 s->dmar_enabled = true;
2209 /* Ok - report back to driver */
2210 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2211 } else {
2212 s->dmar_enabled = false;
2214 /* Clear the index of Fault Recording Register */
2215 s->next_frcd_reg = 0;
2216 /* Ok - report back to driver */
2217 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2220 vtd_reset_caches(s);
2221 vtd_address_space_refresh_all(s);
2224 /* Handle Interrupt Remap Enable/Disable */
2225 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2227 trace_vtd_ir_enable(en);
2229 if (en) {
2230 s->intr_enabled = true;
2231 /* Ok - report back to driver */
2232 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2233 } else {
2234 s->intr_enabled = false;
2235 /* Ok - report back to driver */
2236 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2240 /* Handle write to Global Command Register */
2241 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2243 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2244 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2245 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2246 uint32_t changed = status ^ val;
2248 trace_vtd_reg_write_gcmd(status, val);
2249 if ((changed & VTD_GCMD_TE) && s->dma_translation) {
2250 /* Translation enable/disable */
2251 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2253 if (val & VTD_GCMD_SRTP) {
2254 /* Set/update the root-table pointer */
2255 vtd_handle_gcmd_srtp(s);
2257 if (changed & VTD_GCMD_QIE) {
2258 /* Queued Invalidation Enable */
2259 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2261 if (val & VTD_GCMD_SIRTP) {
2262 /* Set/update the interrupt remapping root-table pointer */
2263 vtd_handle_gcmd_sirtp(s);
2265 if ((changed & VTD_GCMD_IRE) &&
2266 x86_iommu_ir_supported(x86_iommu)) {
2267 /* Interrupt remap enable/disable */
2268 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2272 /* Handle write to Context Command Register */
2273 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2275 uint64_t ret;
2276 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2278 /* Context-cache invalidation request */
2279 if (val & VTD_CCMD_ICC) {
2280 if (s->qi_enabled) {
2281 error_report_once("Queued Invalidation enabled, "
2282 "should not use register-based invalidation");
2283 return;
2285 ret = vtd_context_cache_invalidate(s, val);
2286 /* Invalidation completed. Change something to show */
2287 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2288 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2289 ret);
2293 /* Handle write to IOTLB Invalidation Register */
2294 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2296 uint64_t ret;
2297 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2299 /* IOTLB invalidation request */
2300 if (val & VTD_TLB_IVT) {
2301 if (s->qi_enabled) {
2302 error_report_once("Queued Invalidation enabled, "
2303 "should not use register-based invalidation");
2304 return;
2306 ret = vtd_iotlb_flush(s, val);
2307 /* Invalidation completed. Change something to show */
2308 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2309 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2310 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2314 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2315 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2316 VTDInvDesc *inv_desc)
2318 dma_addr_t base_addr = s->iq;
2319 uint32_t offset = s->iq_head;
2320 uint32_t dw = s->iq_dw ? 32 : 16;
2321 dma_addr_t addr = base_addr + offset * dw;
2323 if (dma_memory_read(&address_space_memory, addr,
2324 inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
2325 error_report_once("Read INV DESC failed.");
2326 return false;
2328 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2329 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2330 if (dw == 32) {
2331 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2332 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2334 return true;
2337 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2339 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2340 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2341 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2342 " (reserved nonzero)", __func__, inv_desc->hi,
2343 inv_desc->lo);
2344 return false;
2346 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2347 /* Status Write */
2348 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2349 VTD_INV_DESC_WAIT_DATA_SHIFT);
2351 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2353 /* FIXME: need to be masked with HAW? */
2354 dma_addr_t status_addr = inv_desc->hi;
2355 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2356 status_data = cpu_to_le32(status_data);
2357 if (dma_memory_write(&address_space_memory, status_addr,
2358 &status_data, sizeof(status_data),
2359 MEMTXATTRS_UNSPECIFIED)) {
2360 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2361 return false;
2363 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2364 /* Interrupt flag */
2365 vtd_generate_completion_event(s);
2366 } else {
2367 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2368 " (unknown type)", __func__, inv_desc->hi,
2369 inv_desc->lo);
2370 return false;
2372 return true;
2375 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2376 VTDInvDesc *inv_desc)
2378 uint16_t sid, fmask;
2380 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2381 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2382 " (reserved nonzero)", __func__, inv_desc->hi,
2383 inv_desc->lo);
2384 return false;
2386 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2387 case VTD_INV_DESC_CC_DOMAIN:
2388 trace_vtd_inv_desc_cc_domain(
2389 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2390 /* Fall through */
2391 case VTD_INV_DESC_CC_GLOBAL:
2392 vtd_context_global_invalidate(s);
2393 break;
2395 case VTD_INV_DESC_CC_DEVICE:
2396 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2397 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2398 vtd_context_device_invalidate(s, sid, fmask);
2399 break;
2401 default:
2402 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2403 " (invalid type)", __func__, inv_desc->hi,
2404 inv_desc->lo);
2405 return false;
2407 return true;
2410 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2412 uint16_t domain_id;
2413 uint8_t am;
2414 hwaddr addr;
2416 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2417 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2418 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2419 ", lo=0x%"PRIx64" (reserved bits unzero)",
2420 __func__, inv_desc->hi, inv_desc->lo);
2421 return false;
2424 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2425 case VTD_INV_DESC_IOTLB_GLOBAL:
2426 vtd_iotlb_global_invalidate(s);
2427 break;
2429 case VTD_INV_DESC_IOTLB_DOMAIN:
2430 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2431 vtd_iotlb_domain_invalidate(s, domain_id);
2432 break;
2434 case VTD_INV_DESC_IOTLB_PAGE:
2435 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2436 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2437 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2438 if (am > VTD_MAMV) {
2439 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2440 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2441 __func__, inv_desc->hi, inv_desc->lo,
2442 am, (unsigned)VTD_MAMV);
2443 return false;
2445 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2446 break;
2448 default:
2449 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2450 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2451 __func__, inv_desc->hi, inv_desc->lo,
2452 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2453 return false;
2455 return true;
2458 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2459 VTDInvDesc *inv_desc)
2461 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2462 inv_desc->iec.index,
2463 inv_desc->iec.index_mask);
2465 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2466 inv_desc->iec.index,
2467 inv_desc->iec.index_mask);
2468 return true;
2471 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2472 VTDInvDesc *inv_desc)
2474 VTDAddressSpace *vtd_dev_as;
2475 IOMMUTLBEvent event;
2476 struct VTDBus *vtd_bus;
2477 hwaddr addr;
2478 uint64_t sz;
2479 uint16_t sid;
2480 uint8_t devfn;
2481 bool size;
2482 uint8_t bus_num;
2484 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2485 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2486 devfn = sid & 0xff;
2487 bus_num = sid >> 8;
2488 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2490 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2491 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2492 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2493 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2494 inv_desc->hi, inv_desc->lo);
2495 return false;
2498 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2499 if (!vtd_bus) {
2500 goto done;
2503 vtd_dev_as = vtd_bus->dev_as[devfn];
2504 if (!vtd_dev_as) {
2505 goto done;
2508 /* According to ATS spec table 2.4:
2509 * S = 0, bits 15:12 = xxxx range size: 4K
2510 * S = 1, bits 15:12 = xxx0 range size: 8K
2511 * S = 1, bits 15:12 = xx01 range size: 16K
2512 * S = 1, bits 15:12 = x011 range size: 32K
2513 * S = 1, bits 15:12 = 0111 range size: 64K
2514 * ...
2516 if (size) {
2517 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2518 addr &= ~(sz - 1);
2519 } else {
2520 sz = VTD_PAGE_SIZE;
2523 event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2524 event.entry.target_as = &vtd_dev_as->as;
2525 event.entry.addr_mask = sz - 1;
2526 event.entry.iova = addr;
2527 event.entry.perm = IOMMU_NONE;
2528 event.entry.translated_addr = 0;
2529 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2531 done:
2532 return true;
2535 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2537 VTDInvDesc inv_desc;
2538 uint8_t desc_type;
2540 trace_vtd_inv_qi_head(s->iq_head);
2541 if (!vtd_get_inv_desc(s, &inv_desc)) {
2542 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2543 return false;
2546 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2547 /* FIXME: should update at first or at last? */
2548 s->iq_last_desc_type = desc_type;
2550 switch (desc_type) {
2551 case VTD_INV_DESC_CC:
2552 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2553 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2554 return false;
2556 break;
2558 case VTD_INV_DESC_IOTLB:
2559 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2560 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2561 return false;
2563 break;
2566 * TODO: the entity of below two cases will be implemented in future series.
2567 * To make guest (which integrates scalable mode support patch set in
2568 * iommu driver) work, just return true is enough so far.
2570 case VTD_INV_DESC_PC:
2571 break;
2573 case VTD_INV_DESC_PIOTLB:
2574 break;
2576 case VTD_INV_DESC_WAIT:
2577 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2578 if (!vtd_process_wait_desc(s, &inv_desc)) {
2579 return false;
2581 break;
2583 case VTD_INV_DESC_IEC:
2584 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2585 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2586 return false;
2588 break;
2590 case VTD_INV_DESC_DEVICE:
2591 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2592 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2593 return false;
2595 break;
2597 default:
2598 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2599 " (unknown type)", __func__, inv_desc.hi,
2600 inv_desc.lo);
2601 return false;
2603 s->iq_head++;
2604 if (s->iq_head == s->iq_size) {
2605 s->iq_head = 0;
2607 return true;
2610 /* Try to fetch and process more Invalidation Descriptors */
2611 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2613 int qi_shift;
2615 /* Refer to 10.4.23 of VT-d spec 3.0 */
2616 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2618 trace_vtd_inv_qi_fetch();
2620 if (s->iq_tail >= s->iq_size) {
2621 /* Detects an invalid Tail pointer */
2622 error_report_once("%s: detected invalid QI tail "
2623 "(tail=0x%x, size=0x%x)",
2624 __func__, s->iq_tail, s->iq_size);
2625 vtd_handle_inv_queue_error(s);
2626 return;
2628 while (s->iq_head != s->iq_tail) {
2629 if (!vtd_process_inv_desc(s)) {
2630 /* Invalidation Queue Errors */
2631 vtd_handle_inv_queue_error(s);
2632 break;
2634 /* Must update the IQH_REG in time */
2635 vtd_set_quad_raw(s, DMAR_IQH_REG,
2636 (((uint64_t)(s->iq_head)) << qi_shift) &
2637 VTD_IQH_QH_MASK);
2641 /* Handle write to Invalidation Queue Tail Register */
2642 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2644 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2646 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2647 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2648 __func__, val);
2649 return;
2651 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2652 trace_vtd_inv_qi_tail(s->iq_tail);
2654 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2655 /* Process Invalidation Queue here */
2656 vtd_fetch_inv_desc(s);
2660 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2662 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2663 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2664 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2666 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2667 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2668 trace_vtd_fsts_clear_ip();
2670 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2671 * Descriptors if there are any when Queued Invalidation is enabled?
2675 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2677 uint32_t fectl_reg;
2678 /* FIXME: when software clears the IM field, check the IP field. But do we
2679 * need to compare the old value and the new value to conclude that
2680 * software clears the IM field? Or just check if the IM field is zero?
2682 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2684 trace_vtd_reg_write_fectl(fectl_reg);
2686 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2687 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2688 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2692 static void vtd_handle_ics_write(IntelIOMMUState *s)
2694 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2695 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2697 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2698 trace_vtd_reg_ics_clear_ip();
2699 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2703 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2705 uint32_t iectl_reg;
2706 /* FIXME: when software clears the IM field, check the IP field. But do we
2707 * need to compare the old value and the new value to conclude that
2708 * software clears the IM field? Or just check if the IM field is zero?
2710 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2712 trace_vtd_reg_write_iectl(iectl_reg);
2714 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2715 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2716 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2720 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2722 IntelIOMMUState *s = opaque;
2723 uint64_t val;
2725 trace_vtd_reg_read(addr, size);
2727 if (addr + size > DMAR_REG_SIZE) {
2728 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2729 " size=0x%x", __func__, addr, size);
2730 return (uint64_t)-1;
2733 switch (addr) {
2734 /* Root Table Address Register, 64-bit */
2735 case DMAR_RTADDR_REG:
2736 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2737 if (size == 4) {
2738 val = val & ((1ULL << 32) - 1);
2740 break;
2742 case DMAR_RTADDR_REG_HI:
2743 assert(size == 4);
2744 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2745 break;
2747 /* Invalidation Queue Address Register, 64-bit */
2748 case DMAR_IQA_REG:
2749 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2750 if (size == 4) {
2751 val = val & ((1ULL << 32) - 1);
2753 break;
2755 case DMAR_IQA_REG_HI:
2756 assert(size == 4);
2757 val = s->iq >> 32;
2758 break;
2760 default:
2761 if (size == 4) {
2762 val = vtd_get_long(s, addr);
2763 } else {
2764 val = vtd_get_quad(s, addr);
2768 return val;
2771 static void vtd_mem_write(void *opaque, hwaddr addr,
2772 uint64_t val, unsigned size)
2774 IntelIOMMUState *s = opaque;
2776 trace_vtd_reg_write(addr, size, val);
2778 if (addr + size > DMAR_REG_SIZE) {
2779 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2780 " size=0x%x", __func__, addr, size);
2781 return;
2784 switch (addr) {
2785 /* Global Command Register, 32-bit */
2786 case DMAR_GCMD_REG:
2787 vtd_set_long(s, addr, val);
2788 vtd_handle_gcmd_write(s);
2789 break;
2791 /* Context Command Register, 64-bit */
2792 case DMAR_CCMD_REG:
2793 if (size == 4) {
2794 vtd_set_long(s, addr, val);
2795 } else {
2796 vtd_set_quad(s, addr, val);
2797 vtd_handle_ccmd_write(s);
2799 break;
2801 case DMAR_CCMD_REG_HI:
2802 assert(size == 4);
2803 vtd_set_long(s, addr, val);
2804 vtd_handle_ccmd_write(s);
2805 break;
2807 /* IOTLB Invalidation Register, 64-bit */
2808 case DMAR_IOTLB_REG:
2809 if (size == 4) {
2810 vtd_set_long(s, addr, val);
2811 } else {
2812 vtd_set_quad(s, addr, val);
2813 vtd_handle_iotlb_write(s);
2815 break;
2817 case DMAR_IOTLB_REG_HI:
2818 assert(size == 4);
2819 vtd_set_long(s, addr, val);
2820 vtd_handle_iotlb_write(s);
2821 break;
2823 /* Invalidate Address Register, 64-bit */
2824 case DMAR_IVA_REG:
2825 if (size == 4) {
2826 vtd_set_long(s, addr, val);
2827 } else {
2828 vtd_set_quad(s, addr, val);
2830 break;
2832 case DMAR_IVA_REG_HI:
2833 assert(size == 4);
2834 vtd_set_long(s, addr, val);
2835 break;
2837 /* Fault Status Register, 32-bit */
2838 case DMAR_FSTS_REG:
2839 assert(size == 4);
2840 vtd_set_long(s, addr, val);
2841 vtd_handle_fsts_write(s);
2842 break;
2844 /* Fault Event Control Register, 32-bit */
2845 case DMAR_FECTL_REG:
2846 assert(size == 4);
2847 vtd_set_long(s, addr, val);
2848 vtd_handle_fectl_write(s);
2849 break;
2851 /* Fault Event Data Register, 32-bit */
2852 case DMAR_FEDATA_REG:
2853 assert(size == 4);
2854 vtd_set_long(s, addr, val);
2855 break;
2857 /* Fault Event Address Register, 32-bit */
2858 case DMAR_FEADDR_REG:
2859 if (size == 4) {
2860 vtd_set_long(s, addr, val);
2861 } else {
2863 * While the register is 32-bit only, some guests (Xen...) write to
2864 * it with 64-bit.
2866 vtd_set_quad(s, addr, val);
2868 break;
2870 /* Fault Event Upper Address Register, 32-bit */
2871 case DMAR_FEUADDR_REG:
2872 assert(size == 4);
2873 vtd_set_long(s, addr, val);
2874 break;
2876 /* Protected Memory Enable Register, 32-bit */
2877 case DMAR_PMEN_REG:
2878 assert(size == 4);
2879 vtd_set_long(s, addr, val);
2880 break;
2882 /* Root Table Address Register, 64-bit */
2883 case DMAR_RTADDR_REG:
2884 if (size == 4) {
2885 vtd_set_long(s, addr, val);
2886 } else {
2887 vtd_set_quad(s, addr, val);
2889 break;
2891 case DMAR_RTADDR_REG_HI:
2892 assert(size == 4);
2893 vtd_set_long(s, addr, val);
2894 break;
2896 /* Invalidation Queue Tail Register, 64-bit */
2897 case DMAR_IQT_REG:
2898 if (size == 4) {
2899 vtd_set_long(s, addr, val);
2900 } else {
2901 vtd_set_quad(s, addr, val);
2903 vtd_handle_iqt_write(s);
2904 break;
2906 case DMAR_IQT_REG_HI:
2907 assert(size == 4);
2908 vtd_set_long(s, addr, val);
2909 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2910 break;
2912 /* Invalidation Queue Address Register, 64-bit */
2913 case DMAR_IQA_REG:
2914 if (size == 4) {
2915 vtd_set_long(s, addr, val);
2916 } else {
2917 vtd_set_quad(s, addr, val);
2919 vtd_update_iq_dw(s);
2920 break;
2922 case DMAR_IQA_REG_HI:
2923 assert(size == 4);
2924 vtd_set_long(s, addr, val);
2925 break;
2927 /* Invalidation Completion Status Register, 32-bit */
2928 case DMAR_ICS_REG:
2929 assert(size == 4);
2930 vtd_set_long(s, addr, val);
2931 vtd_handle_ics_write(s);
2932 break;
2934 /* Invalidation Event Control Register, 32-bit */
2935 case DMAR_IECTL_REG:
2936 assert(size == 4);
2937 vtd_set_long(s, addr, val);
2938 vtd_handle_iectl_write(s);
2939 break;
2941 /* Invalidation Event Data Register, 32-bit */
2942 case DMAR_IEDATA_REG:
2943 assert(size == 4);
2944 vtd_set_long(s, addr, val);
2945 break;
2947 /* Invalidation Event Address Register, 32-bit */
2948 case DMAR_IEADDR_REG:
2949 assert(size == 4);
2950 vtd_set_long(s, addr, val);
2951 break;
2953 /* Invalidation Event Upper Address Register, 32-bit */
2954 case DMAR_IEUADDR_REG:
2955 assert(size == 4);
2956 vtd_set_long(s, addr, val);
2957 break;
2959 /* Fault Recording Registers, 128-bit */
2960 case DMAR_FRCD_REG_0_0:
2961 if (size == 4) {
2962 vtd_set_long(s, addr, val);
2963 } else {
2964 vtd_set_quad(s, addr, val);
2966 break;
2968 case DMAR_FRCD_REG_0_1:
2969 assert(size == 4);
2970 vtd_set_long(s, addr, val);
2971 break;
2973 case DMAR_FRCD_REG_0_2:
2974 if (size == 4) {
2975 vtd_set_long(s, addr, val);
2976 } else {
2977 vtd_set_quad(s, addr, val);
2978 /* May clear bit 127 (Fault), update PPF */
2979 vtd_update_fsts_ppf(s);
2981 break;
2983 case DMAR_FRCD_REG_0_3:
2984 assert(size == 4);
2985 vtd_set_long(s, addr, val);
2986 /* May clear bit 127 (Fault), update PPF */
2987 vtd_update_fsts_ppf(s);
2988 break;
2990 case DMAR_IRTA_REG:
2991 if (size == 4) {
2992 vtd_set_long(s, addr, val);
2993 } else {
2994 vtd_set_quad(s, addr, val);
2996 break;
2998 case DMAR_IRTA_REG_HI:
2999 assert(size == 4);
3000 vtd_set_long(s, addr, val);
3001 break;
3003 default:
3004 if (size == 4) {
3005 vtd_set_long(s, addr, val);
3006 } else {
3007 vtd_set_quad(s, addr, val);
3012 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
3013 IOMMUAccessFlags flag, int iommu_idx)
3015 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3016 IntelIOMMUState *s = vtd_as->iommu_state;
3017 IOMMUTLBEntry iotlb = {
3018 /* We'll fill in the rest later. */
3019 .target_as = &address_space_memory,
3021 bool success;
3023 if (likely(s->dmar_enabled)) {
3024 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
3025 addr, flag & IOMMU_WO, &iotlb);
3026 } else {
3027 /* DMAR disabled, passthrough, use 4k-page*/
3028 iotlb.iova = addr & VTD_PAGE_MASK_4K;
3029 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
3030 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
3031 iotlb.perm = IOMMU_RW;
3032 success = true;
3035 if (likely(success)) {
3036 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
3037 VTD_PCI_SLOT(vtd_as->devfn),
3038 VTD_PCI_FUNC(vtd_as->devfn),
3039 iotlb.iova, iotlb.translated_addr,
3040 iotlb.addr_mask);
3041 } else {
3042 error_report_once("%s: detected translation failure "
3043 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3044 __func__, pci_bus_num(vtd_as->bus),
3045 VTD_PCI_SLOT(vtd_as->devfn),
3046 VTD_PCI_FUNC(vtd_as->devfn),
3047 addr);
3050 return iotlb;
3053 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3054 IOMMUNotifierFlag old,
3055 IOMMUNotifierFlag new,
3056 Error **errp)
3058 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3059 IntelIOMMUState *s = vtd_as->iommu_state;
3061 /* TODO: add support for VFIO and vhost users */
3062 if (s->snoop_control) {
3063 error_setg_errno(errp, ENOTSUP,
3064 "Snoop Control with vhost or VFIO is not supported");
3065 return -ENOTSUP;
3068 /* Update per-address-space notifier flags */
3069 vtd_as->notifier_flags = new;
3071 if (old == IOMMU_NOTIFIER_NONE) {
3072 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3073 } else if (new == IOMMU_NOTIFIER_NONE) {
3074 QLIST_REMOVE(vtd_as, next);
3076 return 0;
3079 static int vtd_post_load(void *opaque, int version_id)
3081 IntelIOMMUState *iommu = opaque;
3084 * We don't need to migrate the root_scalable because we can
3085 * simply do the calculation after the loading is complete. We
3086 * can actually do similar things with root, dmar_enabled, etc.
3087 * however since we've had them already so we'd better keep them
3088 * for compatibility of migration.
3090 vtd_update_scalable_state(iommu);
3092 vtd_update_iq_dw(iommu);
3095 * Memory regions are dynamically turned on/off depending on
3096 * context entry configurations from the guest. After migration,
3097 * we need to make sure the memory regions are still correct.
3099 vtd_switch_address_space_all(iommu);
3101 return 0;
3104 static const VMStateDescription vtd_vmstate = {
3105 .name = "iommu-intel",
3106 .version_id = 1,
3107 .minimum_version_id = 1,
3108 .priority = MIG_PRI_IOMMU,
3109 .post_load = vtd_post_load,
3110 .fields = (VMStateField[]) {
3111 VMSTATE_UINT64(root, IntelIOMMUState),
3112 VMSTATE_UINT64(intr_root, IntelIOMMUState),
3113 VMSTATE_UINT64(iq, IntelIOMMUState),
3114 VMSTATE_UINT32(intr_size, IntelIOMMUState),
3115 VMSTATE_UINT16(iq_head, IntelIOMMUState),
3116 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3117 VMSTATE_UINT16(iq_size, IntelIOMMUState),
3118 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3119 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3120 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3121 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
3122 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3123 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3124 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3125 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3126 VMSTATE_END_OF_LIST()
3130 static const MemoryRegionOps vtd_mem_ops = {
3131 .read = vtd_mem_read,
3132 .write = vtd_mem_write,
3133 .endianness = DEVICE_LITTLE_ENDIAN,
3134 .impl = {
3135 .min_access_size = 4,
3136 .max_access_size = 8,
3138 .valid = {
3139 .min_access_size = 4,
3140 .max_access_size = 8,
3144 static Property vtd_properties[] = {
3145 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3146 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3147 ON_OFF_AUTO_AUTO),
3148 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3149 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3150 VTD_HOST_ADDRESS_WIDTH),
3151 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3152 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3153 DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
3154 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3155 DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
3156 DEFINE_PROP_END_OF_LIST(),
3159 /* Read IRTE entry with specific index */
3160 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3161 VTD_IR_TableEntry *entry, uint16_t sid)
3163 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3164 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3165 dma_addr_t addr = 0x00;
3166 uint16_t mask, source_id;
3167 uint8_t bus, bus_max, bus_min;
3169 if (index >= iommu->intr_size) {
3170 error_report_once("%s: index too large: ind=0x%x",
3171 __func__, index);
3172 return -VTD_FR_IR_INDEX_OVER;
3175 addr = iommu->intr_root + index * sizeof(*entry);
3176 if (dma_memory_read(&address_space_memory, addr,
3177 entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
3178 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3179 __func__, index, addr);
3180 return -VTD_FR_IR_ROOT_INVAL;
3183 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3184 le64_to_cpu(entry->data[0]));
3186 if (!entry->irte.present) {
3187 error_report_once("%s: detected non-present IRTE "
3188 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3189 __func__, index, le64_to_cpu(entry->data[1]),
3190 le64_to_cpu(entry->data[0]));
3191 return -VTD_FR_IR_ENTRY_P;
3194 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3195 entry->irte.__reserved_2) {
3196 error_report_once("%s: detected non-zero reserved IRTE "
3197 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3198 __func__, index, le64_to_cpu(entry->data[1]),
3199 le64_to_cpu(entry->data[0]));
3200 return -VTD_FR_IR_IRTE_RSVD;
3203 if (sid != X86_IOMMU_SID_INVALID) {
3204 /* Validate IRTE SID */
3205 source_id = le32_to_cpu(entry->irte.source_id);
3206 switch (entry->irte.sid_vtype) {
3207 case VTD_SVT_NONE:
3208 break;
3210 case VTD_SVT_ALL:
3211 mask = vtd_svt_mask[entry->irte.sid_q];
3212 if ((source_id & mask) != (sid & mask)) {
3213 error_report_once("%s: invalid IRTE SID "
3214 "(index=%u, sid=%u, source_id=%u)",
3215 __func__, index, sid, source_id);
3216 return -VTD_FR_IR_SID_ERR;
3218 break;
3220 case VTD_SVT_BUS:
3221 bus_max = source_id >> 8;
3222 bus_min = source_id & 0xff;
3223 bus = sid >> 8;
3224 if (bus > bus_max || bus < bus_min) {
3225 error_report_once("%s: invalid SVT_BUS "
3226 "(index=%u, bus=%u, min=%u, max=%u)",
3227 __func__, index, bus, bus_min, bus_max);
3228 return -VTD_FR_IR_SID_ERR;
3230 break;
3232 default:
3233 error_report_once("%s: detected invalid IRTE SVT "
3234 "(index=%u, type=%d)", __func__,
3235 index, entry->irte.sid_vtype);
3236 /* Take this as verification failure. */
3237 return -VTD_FR_IR_SID_ERR;
3241 return 0;
3244 /* Fetch IRQ information of specific IR index */
3245 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3246 X86IOMMUIrq *irq, uint16_t sid)
3248 VTD_IR_TableEntry irte = {};
3249 int ret = 0;
3251 ret = vtd_irte_get(iommu, index, &irte, sid);
3252 if (ret) {
3253 return ret;
3256 irq->trigger_mode = irte.irte.trigger_mode;
3257 irq->vector = irte.irte.vector;
3258 irq->delivery_mode = irte.irte.delivery_mode;
3259 irq->dest = le32_to_cpu(irte.irte.dest_id);
3260 if (!iommu->intr_eime) {
3261 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3262 #define VTD_IR_APIC_DEST_SHIFT (8)
3263 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3264 VTD_IR_APIC_DEST_SHIFT;
3266 irq->dest_mode = irte.irte.dest_mode;
3267 irq->redir_hint = irte.irte.redir_hint;
3269 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3270 irq->delivery_mode, irq->dest, irq->dest_mode);
3272 return 0;
3275 /* Interrupt remapping for MSI/MSI-X entry */
3276 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3277 MSIMessage *origin,
3278 MSIMessage *translated,
3279 uint16_t sid)
3281 int ret = 0;
3282 VTD_IR_MSIAddress addr;
3283 uint16_t index;
3284 X86IOMMUIrq irq = {};
3286 assert(origin && translated);
3288 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3290 if (!iommu || !iommu->intr_enabled) {
3291 memcpy(translated, origin, sizeof(*origin));
3292 goto out;
3295 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3296 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3297 "address=0x%" PRIx64, __func__, origin->address);
3298 return -VTD_FR_IR_REQ_RSVD;
3301 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3302 if (addr.addr.__head != 0xfee) {
3303 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3304 __func__, addr.data);
3305 return -VTD_FR_IR_REQ_RSVD;
3308 /* This is compatible mode. */
3309 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3310 memcpy(translated, origin, sizeof(*origin));
3311 goto out;
3314 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3316 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3317 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3319 if (addr.addr.sub_valid) {
3320 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3321 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3324 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3325 if (ret) {
3326 return ret;
3329 if (addr.addr.sub_valid) {
3330 trace_vtd_ir_remap_type("MSI");
3331 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3332 error_report_once("%s: invalid IR MSI "
3333 "(sid=%u, address=0x%" PRIx64
3334 ", data=0x%" PRIx32 ")",
3335 __func__, sid, origin->address, origin->data);
3336 return -VTD_FR_IR_REQ_RSVD;
3338 } else {
3339 uint8_t vector = origin->data & 0xff;
3340 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3342 trace_vtd_ir_remap_type("IOAPIC");
3343 /* IOAPIC entry vector should be aligned with IRTE vector
3344 * (see vt-d spec 5.1.5.1). */
3345 if (vector != irq.vector) {
3346 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3349 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3350 * (see vt-d spec 5.1.5.1). */
3351 if (trigger_mode != irq.trigger_mode) {
3352 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3353 irq.trigger_mode);
3358 * We'd better keep the last two bits, assuming that guest OS
3359 * might modify it. Keep it does not hurt after all.
3361 irq.msi_addr_last_bits = addr.addr.__not_care;
3363 /* Translate X86IOMMUIrq to MSI message */
3364 x86_iommu_irq_to_msi_message(&irq, translated);
3366 out:
3367 trace_vtd_ir_remap_msi(origin->address, origin->data,
3368 translated->address, translated->data);
3369 return 0;
3372 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3373 MSIMessage *dst, uint16_t sid)
3375 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3376 src, dst, sid);
3379 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3380 uint64_t *data, unsigned size,
3381 MemTxAttrs attrs)
3383 return MEMTX_OK;
3386 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3387 uint64_t value, unsigned size,
3388 MemTxAttrs attrs)
3390 int ret = 0;
3391 MSIMessage from = {}, to = {};
3392 uint16_t sid = X86_IOMMU_SID_INVALID;
3394 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3395 from.data = (uint32_t) value;
3397 if (!attrs.unspecified) {
3398 /* We have explicit Source ID */
3399 sid = attrs.requester_id;
3402 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3403 if (ret) {
3404 /* TODO: report error */
3405 /* Drop this interrupt */
3406 return MEMTX_ERROR;
3409 apic_get_class()->send_msi(&to);
3411 return MEMTX_OK;
3414 static const MemoryRegionOps vtd_mem_ir_ops = {
3415 .read_with_attrs = vtd_mem_ir_read,
3416 .write_with_attrs = vtd_mem_ir_write,
3417 .endianness = DEVICE_LITTLE_ENDIAN,
3418 .impl = {
3419 .min_access_size = 4,
3420 .max_access_size = 4,
3422 .valid = {
3423 .min_access_size = 4,
3424 .max_access_size = 4,
3428 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3430 uintptr_t key = (uintptr_t)bus;
3431 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3432 VTDAddressSpace *vtd_dev_as;
3433 char name[128];
3435 if (!vtd_bus) {
3436 uintptr_t *new_key = g_malloc(sizeof(*new_key));
3437 *new_key = (uintptr_t)bus;
3438 /* No corresponding free() */
3439 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3440 PCI_DEVFN_MAX);
3441 vtd_bus->bus = bus;
3442 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3445 vtd_dev_as = vtd_bus->dev_as[devfn];
3447 if (!vtd_dev_as) {
3448 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3449 PCI_FUNC(devfn));
3450 vtd_bus->dev_as[devfn] = vtd_dev_as = g_new0(VTDAddressSpace, 1);
3452 vtd_dev_as->bus = bus;
3453 vtd_dev_as->devfn = (uint8_t)devfn;
3454 vtd_dev_as->iommu_state = s;
3455 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3456 vtd_dev_as->iova_tree = iova_tree_new();
3458 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3459 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3462 * Build the DMAR-disabled container with aliases to the
3463 * shared MRs. Note that aliasing to a shared memory region
3464 * could help the memory API to detect same FlatViews so we
3465 * can have devices to share the same FlatView when DMAR is
3466 * disabled (either by not providing "intel_iommu=on" or with
3467 * "iommu=pt"). It will greatly reduce the total number of
3468 * FlatViews of the system hence VM runs faster.
3470 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3471 "vtd-nodmar", &s->mr_nodmar, 0,
3472 memory_region_size(&s->mr_nodmar));
3475 * Build the per-device DMAR-enabled container.
3477 * TODO: currently we have per-device IOMMU memory region only
3478 * because we have per-device IOMMU notifiers for devices. If
3479 * one day we can abstract the IOMMU notifiers out of the
3480 * memory regions then we can also share the same memory
3481 * region here just like what we've done above with the nodmar
3482 * region.
3484 strcat(name, "-dmar");
3485 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3486 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3487 name, UINT64_MAX);
3488 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3489 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3490 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3491 VTD_INTERRUPT_ADDR_FIRST,
3492 &vtd_dev_as->iommu_ir, 1);
3495 * Hook both the containers under the root container, we
3496 * switch between DMAR & noDMAR by enable/disable
3497 * corresponding sub-containers
3499 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3500 MEMORY_REGION(&vtd_dev_as->iommu),
3502 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3503 &vtd_dev_as->nodmar, 0);
3505 vtd_switch_address_space(vtd_dev_as);
3507 return vtd_dev_as;
3510 /* Unmap the whole range in the notifier's scope. */
3511 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3513 hwaddr size, remain;
3514 hwaddr start = n->start;
3515 hwaddr end = n->end;
3516 IntelIOMMUState *s = as->iommu_state;
3517 DMAMap map;
3520 * Note: all the codes in this function has a assumption that IOVA
3521 * bits are no more than VTD_MGAW bits (which is restricted by
3522 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3525 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3527 * Don't need to unmap regions that is bigger than the whole
3528 * VT-d supported address space size
3530 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3533 assert(start <= end);
3534 size = remain = end - start + 1;
3536 while (remain >= VTD_PAGE_SIZE) {
3537 IOMMUTLBEvent event;
3538 uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3539 uint64_t size = mask + 1;
3541 assert(size);
3543 event.type = IOMMU_NOTIFIER_UNMAP;
3544 event.entry.iova = start;
3545 event.entry.addr_mask = mask;
3546 event.entry.target_as = &address_space_memory;
3547 event.entry.perm = IOMMU_NONE;
3548 /* This field is meaningless for unmap */
3549 event.entry.translated_addr = 0;
3551 memory_region_notify_iommu_one(n, &event);
3553 start += size;
3554 remain -= size;
3557 assert(!remain);
3559 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3560 VTD_PCI_SLOT(as->devfn),
3561 VTD_PCI_FUNC(as->devfn),
3562 n->start, size);
3564 map.iova = n->start;
3565 map.size = size;
3566 iova_tree_remove(as->iova_tree, &map);
3569 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3571 VTDAddressSpace *vtd_as;
3572 IOMMUNotifier *n;
3574 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3575 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3576 vtd_address_space_unmap(vtd_as, n);
3581 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3583 vtd_address_space_unmap_all(s);
3584 vtd_switch_address_space_all(s);
3587 static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
3589 memory_region_notify_iommu_one(private, event);
3590 return 0;
3593 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3595 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3596 IntelIOMMUState *s = vtd_as->iommu_state;
3597 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3598 VTDContextEntry ce;
3601 * The replay can be triggered by either a invalidation or a newly
3602 * created entry. No matter what, we release existing mappings
3603 * (it means flushing caches for UNMAP-only registers).
3605 vtd_address_space_unmap(vtd_as, n);
3607 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3608 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3609 "legacy mode",
3610 bus_n, PCI_SLOT(vtd_as->devfn),
3611 PCI_FUNC(vtd_as->devfn),
3612 vtd_get_domain_id(s, &ce),
3613 ce.hi, ce.lo);
3614 if (vtd_as_has_map_notifier(vtd_as)) {
3615 /* This is required only for MAP typed notifiers */
3616 vtd_page_walk_info info = {
3617 .hook_fn = vtd_replay_hook,
3618 .private = (void *)n,
3619 .notify_unmap = false,
3620 .aw = s->aw_bits,
3621 .as = vtd_as,
3622 .domain_id = vtd_get_domain_id(s, &ce),
3625 vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3627 } else {
3628 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3629 PCI_FUNC(vtd_as->devfn));
3632 return;
3635 /* Do the initialization. It will also be called when reset, so pay
3636 * attention when adding new initialization stuff.
3638 static void vtd_init(IntelIOMMUState *s)
3640 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3642 memset(s->csr, 0, DMAR_REG_SIZE);
3643 memset(s->wmask, 0, DMAR_REG_SIZE);
3644 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3645 memset(s->womask, 0, DMAR_REG_SIZE);
3647 s->root = 0;
3648 s->root_scalable = false;
3649 s->dmar_enabled = false;
3650 s->intr_enabled = false;
3651 s->iq_head = 0;
3652 s->iq_tail = 0;
3653 s->iq = 0;
3654 s->iq_size = 0;
3655 s->qi_enabled = false;
3656 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3657 s->iq_dw = false;
3658 s->next_frcd_reg = 0;
3659 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3660 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3661 VTD_CAP_MGAW(s->aw_bits);
3662 if (s->dma_drain) {
3663 s->cap |= VTD_CAP_DRAIN;
3665 if (s->dma_translation) {
3666 if (s->aw_bits >= VTD_HOST_AW_39BIT) {
3667 s->cap |= VTD_CAP_SAGAW_39bit;
3669 if (s->aw_bits >= VTD_HOST_AW_48BIT) {
3670 s->cap |= VTD_CAP_SAGAW_48bit;
3673 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3676 * Rsvd field masks for spte
3678 vtd_spte_rsvd[0] = ~0ULL;
3679 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3680 x86_iommu->dt_supported);
3681 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3682 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3683 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3685 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3686 x86_iommu->dt_supported);
3687 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3688 x86_iommu->dt_supported);
3690 if (s->scalable_mode || s->snoop_control) {
3691 vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
3692 vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
3693 vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
3696 if (x86_iommu_ir_supported(x86_iommu)) {
3697 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3698 if (s->intr_eim == ON_OFF_AUTO_ON) {
3699 s->ecap |= VTD_ECAP_EIM;
3701 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3704 if (x86_iommu->dt_supported) {
3705 s->ecap |= VTD_ECAP_DT;
3708 if (x86_iommu->pt_supported) {
3709 s->ecap |= VTD_ECAP_PT;
3712 if (s->caching_mode) {
3713 s->cap |= VTD_CAP_CM;
3716 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3717 if (s->scalable_mode) {
3718 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3721 if (s->snoop_control) {
3722 s->ecap |= VTD_ECAP_SC;
3725 vtd_reset_caches(s);
3727 /* Define registers with default values and bit semantics */
3728 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3729 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3730 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3731 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3732 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3733 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3734 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3735 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3736 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3738 /* Advanced Fault Logging not supported */
3739 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3740 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3741 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3742 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3744 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3745 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3747 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3749 /* Treated as RO for implementations that PLMR and PHMR fields reported
3750 * as Clear in the CAP_REG.
3751 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3753 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3755 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3756 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3757 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3758 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3759 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3760 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3761 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3762 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3763 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3765 /* IOTLB registers */
3766 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3767 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3768 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3770 /* Fault Recording Registers, 128-bit */
3771 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3772 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3775 * Interrupt remapping registers.
3777 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3780 /* Should not reset address_spaces when reset because devices will still use
3781 * the address space they got at first (won't ask the bus again).
3783 static void vtd_reset(DeviceState *dev)
3785 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3787 vtd_init(s);
3788 vtd_address_space_refresh_all(s);
3791 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3793 IntelIOMMUState *s = opaque;
3794 VTDAddressSpace *vtd_as;
3796 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3798 vtd_as = vtd_find_add_as(s, bus, devfn);
3799 return &vtd_as->as;
3802 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3804 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3806 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3807 error_setg(errp, "eim=on cannot be selected without intremap=on");
3808 return false;
3811 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3812 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3813 && x86_iommu_ir_supported(x86_iommu) ?
3814 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3816 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3817 if (!kvm_irqchip_is_split()) {
3818 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3819 return false;
3823 /* Currently only address widths supported are 39 and 48 bits */
3824 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3825 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3826 error_setg(errp, "Supported values for aw-bits are: %d, %d",
3827 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3828 return false;
3831 if (s->scalable_mode && !s->dma_drain) {
3832 error_setg(errp, "Need to set dma_drain for scalable mode");
3833 return false;
3836 return true;
3839 static int vtd_machine_done_notify_one(Object *child, void *unused)
3841 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3844 * We hard-coded here because vfio-pci is the only special case
3845 * here. Let's be more elegant in the future when we can, but so
3846 * far there seems to be no better way.
3848 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
3849 vtd_panic_require_caching_mode();
3852 return 0;
3855 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
3857 object_child_foreach_recursive(object_get_root(),
3858 vtd_machine_done_notify_one, NULL);
3861 static Notifier vtd_machine_done_notify = {
3862 .notify = vtd_machine_done_hook,
3865 static void vtd_realize(DeviceState *dev, Error **errp)
3867 MachineState *ms = MACHINE(qdev_get_machine());
3868 PCMachineState *pcms = PC_MACHINE(ms);
3869 X86MachineState *x86ms = X86_MACHINE(ms);
3870 PCIBus *bus = pcms->bus;
3871 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3873 if (!vtd_decide_config(s, errp)) {
3874 return;
3877 QLIST_INIT(&s->vtd_as_with_notifiers);
3878 qemu_mutex_init(&s->iommu_lock);
3879 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3880 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3881 "intel_iommu", DMAR_REG_SIZE);
3883 /* Create the shared memory regions by all devices */
3884 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3885 UINT64_MAX);
3886 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3887 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3888 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3889 "vtd-sys-alias", get_system_memory(), 0,
3890 memory_region_size(get_system_memory()));
3891 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3892 &s->mr_sys_alias, 0);
3893 memory_region_add_subregion_overlap(&s->mr_nodmar,
3894 VTD_INTERRUPT_ADDR_FIRST,
3895 &s->mr_ir, 1);
3897 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3898 /* No corresponding destroy */
3899 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3900 g_free, g_free);
3901 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3902 g_free, g_free);
3903 vtd_init(s);
3904 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3905 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3906 /* Pseudo address space under root PCI bus. */
3907 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3908 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
3911 static void vtd_class_init(ObjectClass *klass, void *data)
3913 DeviceClass *dc = DEVICE_CLASS(klass);
3914 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
3916 dc->reset = vtd_reset;
3917 dc->vmsd = &vtd_vmstate;
3918 device_class_set_props(dc, vtd_properties);
3919 dc->hotpluggable = false;
3920 x86_class->realize = vtd_realize;
3921 x86_class->int_remap = vtd_int_remap;
3922 /* Supported by the pc-q35-* machine types */
3923 dc->user_creatable = true;
3924 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3925 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
3928 static const TypeInfo vtd_info = {
3929 .name = TYPE_INTEL_IOMMU_DEVICE,
3930 .parent = TYPE_X86_IOMMU_DEVICE,
3931 .instance_size = sizeof(IntelIOMMUState),
3932 .class_init = vtd_class_init,
3935 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3936 void *data)
3938 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3940 imrc->translate = vtd_iommu_translate;
3941 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3942 imrc->replay = vtd_iommu_replay;
3945 static const TypeInfo vtd_iommu_memory_region_info = {
3946 .parent = TYPE_IOMMU_MEMORY_REGION,
3947 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3948 .class_init = vtd_iommu_memory_region_class_init,
3951 static void vtd_register_types(void)
3953 type_register_static(&vtd_info);
3954 type_register_static(&vtd_iommu_memory_region_info);
3957 type_init(vtd_register_types)