pc: use new CPU hotplug interface since 2.7 machine type
[qemu/ar7.git] / hw / arm / virt.c
blobc5c125e9204a0d752717b3ef04b07b34d7778462
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/boards.h"
45 #include "hw/compat.h"
46 #include "hw/loader.h"
47 #include "exec/address-spaces.h"
48 #include "qemu/bitops.h"
49 #include "qemu/error-report.h"
50 #include "hw/pci-host/gpex.h"
51 #include "hw/arm/virt-acpi-build.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic_common.h"
56 #include "kvm_arm.h"
57 #include "hw/smbios/smbios.h"
58 #include "qapi/visitor.h"
59 #include "standard-headers/linux/input.h"
61 /* Number of external interrupt lines to configure the GIC with */
62 #define NUM_IRQS 256
64 #define PLATFORM_BUS_NUM_IRQS 64
66 static ARMPlatformBusSystemParams platform_bus_params;
68 typedef struct VirtBoardInfo {
69 struct arm_boot_info bootinfo;
70 const char *cpu_model;
71 const MemMapEntry *memmap;
72 const int *irqmap;
73 int smp_cpus;
74 void *fdt;
75 int fdt_size;
76 uint32_t clock_phandle;
77 uint32_t gic_phandle;
78 uint32_t v2m_phandle;
79 bool using_psci;
80 } VirtBoardInfo;
82 typedef struct {
83 MachineClass parent;
84 VirtBoardInfo *daughterboard;
85 } VirtMachineClass;
87 typedef struct {
88 MachineState parent;
89 bool secure;
90 bool highmem;
91 int32_t gic_version;
92 } VirtMachineState;
94 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
95 #define VIRT_MACHINE(obj) \
96 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
97 #define VIRT_MACHINE_GET_CLASS(obj) \
98 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
99 #define VIRT_MACHINE_CLASS(klass) \
100 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
103 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
104 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
105 void *data) \
107 MachineClass *mc = MACHINE_CLASS(oc); \
108 virt_machine_##major##_##minor##_options(mc); \
109 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
110 if (latest) { \
111 mc->alias = "virt"; \
114 static const TypeInfo machvirt_##major##_##minor##_info = { \
115 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
116 .parent = TYPE_VIRT_MACHINE, \
117 .instance_init = virt_##major##_##minor##_instance_init, \
118 .class_init = virt_##major##_##minor##_class_init, \
119 }; \
120 static void machvirt_machine_##major##_##minor##_init(void) \
122 type_register_static(&machvirt_##major##_##minor##_info); \
124 type_init(machvirt_machine_##major##_##minor##_init);
126 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
127 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
128 #define DEFINE_VIRT_MACHINE(major, minor) \
129 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
132 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
133 * RAM can go up to the 256GB mark, leaving 256GB of the physical
134 * address space unallocated and free for future use between 256G and 512G.
135 * If we need to provide more RAM to VMs in the future then we need to:
136 * * allocate a second bank of RAM starting at 2TB and working up
137 * * fix the DT and ACPI table generation code in QEMU to correctly
138 * report two split lumps of RAM to the guest
139 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
140 * (We don't want to fill all the way up to 512GB with RAM because
141 * we might want it for non-RAM purposes later. Conversely it seems
142 * reasonable to assume that anybody configuring a VM with a quarter
143 * of a terabyte of RAM will be doing it on a host with more than a
144 * terabyte of physical address space.)
146 #define RAMLIMIT_GB 255
147 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
149 /* Addresses and sizes of our components.
150 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
151 * 128MB..256MB is used for miscellaneous device I/O.
152 * 256MB..1GB is reserved for possible future PCI support (ie where the
153 * PCI memory window will go if we add a PCI host controller).
154 * 1GB and up is RAM (which may happily spill over into the
155 * high memory region beyond 4GB).
156 * This represents a compromise between how much RAM can be given to
157 * a 32 bit VM and leaving space for expansion and in particular for PCI.
158 * Note that devices should generally be placed at multiples of 0x10000,
159 * to accommodate guests using 64K pages.
161 static const MemMapEntry a15memmap[] = {
162 /* Space up to 0x8000000 is reserved for a boot ROM */
163 [VIRT_FLASH] = { 0, 0x08000000 },
164 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
165 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
166 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
167 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
168 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
169 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
170 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
171 /* This redistributor space allows up to 2*64kB*123 CPUs */
172 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
173 [VIRT_UART] = { 0x09000000, 0x00001000 },
174 [VIRT_RTC] = { 0x09010000, 0x00001000 },
175 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
176 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
177 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
178 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
179 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
180 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
181 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
182 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
183 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
184 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
185 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
186 /* Second PCIe window, 512GB wide at the 512GB boundary */
187 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
190 static const int a15irqmap[] = {
191 [VIRT_UART] = 1,
192 [VIRT_RTC] = 2,
193 [VIRT_PCIE] = 3, /* ... to 6 */
194 [VIRT_GPIO] = 7,
195 [VIRT_SECURE_UART] = 8,
196 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
197 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
198 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
201 static VirtBoardInfo machines[] = {
203 .cpu_model = "cortex-a15",
204 .memmap = a15memmap,
205 .irqmap = a15irqmap,
208 .cpu_model = "cortex-a53",
209 .memmap = a15memmap,
210 .irqmap = a15irqmap,
213 .cpu_model = "cortex-a57",
214 .memmap = a15memmap,
215 .irqmap = a15irqmap,
218 .cpu_model = "host",
219 .memmap = a15memmap,
220 .irqmap = a15irqmap,
224 static VirtBoardInfo *find_machine_info(const char *cpu)
226 int i;
228 for (i = 0; i < ARRAY_SIZE(machines); i++) {
229 if (strcmp(cpu, machines[i].cpu_model) == 0) {
230 return &machines[i];
233 return NULL;
236 static void create_fdt(VirtBoardInfo *vbi)
238 void *fdt = create_device_tree(&vbi->fdt_size);
240 if (!fdt) {
241 error_report("create_device_tree() failed");
242 exit(1);
245 vbi->fdt = fdt;
247 /* Header */
248 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
249 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
250 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
253 * /chosen and /memory nodes must exist for load_dtb
254 * to fill in necessary properties later
256 qemu_fdt_add_subnode(fdt, "/chosen");
257 qemu_fdt_add_subnode(fdt, "/memory");
258 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
260 /* Clock node, for the benefit of the UART. The kernel device tree
261 * binding documentation claims the PL011 node clock properties are
262 * optional but in practice if you omit them the kernel refuses to
263 * probe for the device.
265 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
266 qemu_fdt_add_subnode(fdt, "/apb-pclk");
267 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
268 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
269 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
270 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
271 "clk24mhz");
272 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
276 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
278 uint32_t cpu_suspend_fn;
279 uint32_t cpu_off_fn;
280 uint32_t cpu_on_fn;
281 uint32_t migrate_fn;
282 void *fdt = vbi->fdt;
283 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
285 if (!vbi->using_psci) {
286 return;
289 qemu_fdt_add_subnode(fdt, "/psci");
290 if (armcpu->psci_version == 2) {
291 const char comp[] = "arm,psci-0.2\0arm,psci";
292 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
294 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
295 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
296 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
297 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
298 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
299 } else {
300 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
301 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
302 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
304 } else {
305 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
307 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
308 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
309 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
310 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
313 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
314 * to the instruction that should be used to invoke PSCI functions.
315 * However, the device tree binding uses 'method' instead, so that is
316 * what we should use here.
318 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
320 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
321 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
322 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
323 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
326 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
328 /* Note that on A15 h/w these interrupts are level-triggered,
329 * but for the GIC implementation provided by both QEMU and KVM
330 * they are edge-triggered.
332 ARMCPU *armcpu;
333 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
335 if (gictype == 2) {
336 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
337 GIC_FDT_IRQ_PPI_CPU_WIDTH,
338 (1 << vbi->smp_cpus) - 1);
341 qemu_fdt_add_subnode(vbi->fdt, "/timer");
343 armcpu = ARM_CPU(qemu_get_cpu(0));
344 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
345 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
346 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
347 compat, sizeof(compat));
348 } else {
349 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
350 "arm,armv7-timer");
352 qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0);
353 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
354 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
355 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
356 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
357 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
360 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
362 int cpu;
363 int addr_cells = 1;
364 unsigned int i;
367 * From Documentation/devicetree/bindings/arm/cpus.txt
368 * On ARM v8 64-bit systems value should be set to 2,
369 * that corresponds to the MPIDR_EL1 register size.
370 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
371 * in the system, #address-cells can be set to 1, since
372 * MPIDR_EL1[63:32] bits are not used for CPUs
373 * identification.
375 * Here we actually don't know whether our system is 32- or 64-bit one.
376 * The simplest way to go is to examine affinity IDs of all our CPUs. If
377 * at least one of them has Aff3 populated, we set #address-cells to 2.
379 for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
380 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
382 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
383 addr_cells = 2;
384 break;
388 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
389 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
390 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
392 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
393 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
394 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
396 qemu_fdt_add_subnode(vbi->fdt, nodename);
397 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
398 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
399 armcpu->dtb_compatible);
401 if (vbi->using_psci && vbi->smp_cpus > 1) {
402 qemu_fdt_setprop_string(vbi->fdt, nodename,
403 "enable-method", "psci");
406 if (addr_cells == 2) {
407 qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
408 armcpu->mp_affinity);
409 } else {
410 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
411 armcpu->mp_affinity);
414 for (i = 0; i < nb_numa_nodes; i++) {
415 if (test_bit(cpu, numa_info[i].node_cpu)) {
416 qemu_fdt_setprop_cell(vbi->fdt, nodename, "numa-node-id", i);
420 g_free(nodename);
424 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
426 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
427 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
428 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
429 "arm,gic-v2m-frame");
430 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
431 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
432 2, vbi->memmap[VIRT_GIC_V2M].base,
433 2, vbi->memmap[VIRT_GIC_V2M].size);
434 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
437 static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
439 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
440 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
442 qemu_fdt_add_subnode(vbi->fdt, "/intc");
443 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
444 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
445 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
446 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
447 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
448 if (type == 3) {
449 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
450 "arm,gic-v3");
451 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
452 2, vbi->memmap[VIRT_GIC_DIST].base,
453 2, vbi->memmap[VIRT_GIC_DIST].size,
454 2, vbi->memmap[VIRT_GIC_REDIST].base,
455 2, vbi->memmap[VIRT_GIC_REDIST].size);
456 } else {
457 /* 'cortex-a15-gic' means 'GIC v2' */
458 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
459 "arm,cortex-a15-gic");
460 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
461 2, vbi->memmap[VIRT_GIC_DIST].base,
462 2, vbi->memmap[VIRT_GIC_DIST].size,
463 2, vbi->memmap[VIRT_GIC_CPU].base,
464 2, vbi->memmap[VIRT_GIC_CPU].size);
467 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
470 static void fdt_add_pmu_nodes(const VirtBoardInfo *vbi, int gictype)
472 CPUState *cpu;
473 ARMCPU *armcpu;
474 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
476 CPU_FOREACH(cpu) {
477 armcpu = ARM_CPU(cpu);
478 if (!armcpu->has_pmu ||
479 !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
480 return;
484 if (gictype == 2) {
485 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
486 GIC_FDT_IRQ_PPI_CPU_WIDTH,
487 (1 << vbi->smp_cpus) - 1);
490 armcpu = ARM_CPU(qemu_get_cpu(0));
491 qemu_fdt_add_subnode(vbi->fdt, "/pmu");
492 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
493 const char compat[] = "arm,armv8-pmuv3";
494 qemu_fdt_setprop(vbi->fdt, "/pmu", "compatible",
495 compat, sizeof(compat));
496 qemu_fdt_setprop_cells(vbi->fdt, "/pmu", "interrupts",
497 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
501 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
503 int i;
504 int irq = vbi->irqmap[VIRT_GIC_V2M];
505 DeviceState *dev;
507 dev = qdev_create(NULL, "arm-gicv2m");
508 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
509 qdev_prop_set_uint32(dev, "base-spi", irq);
510 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
511 qdev_init_nofail(dev);
513 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
514 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
517 fdt_add_v2m_gic_node(vbi);
520 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure)
522 /* We create a standalone GIC */
523 DeviceState *gicdev;
524 SysBusDevice *gicbusdev;
525 const char *gictype;
526 int i;
528 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
530 gicdev = qdev_create(NULL, gictype);
531 qdev_prop_set_uint32(gicdev, "revision", type);
532 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
533 /* Note that the num-irq property counts both internal and external
534 * interrupts; there are always 32 of the former (mandated by GIC spec).
536 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
537 if (!kvm_irqchip_in_kernel()) {
538 qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
540 qdev_init_nofail(gicdev);
541 gicbusdev = SYS_BUS_DEVICE(gicdev);
542 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
543 if (type == 3) {
544 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
545 } else {
546 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
549 /* Wire the outputs from each CPU's generic timer to the
550 * appropriate GIC PPI inputs, and the GIC's IRQ output to
551 * the CPU's IRQ input.
553 for (i = 0; i < smp_cpus; i++) {
554 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
555 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
556 int irq;
557 /* Mapping from the output timer irq lines from the CPU to the
558 * GIC PPI inputs we use for the virt board.
560 const int timer_irq[] = {
561 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
562 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
563 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
564 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
567 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
568 qdev_connect_gpio_out(cpudev, irq,
569 qdev_get_gpio_in(gicdev,
570 ppibase + timer_irq[irq]));
573 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
574 sysbus_connect_irq(gicbusdev, i + smp_cpus,
575 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
578 for (i = 0; i < NUM_IRQS; i++) {
579 pic[i] = qdev_get_gpio_in(gicdev, i);
582 fdt_add_gic_node(vbi, type);
584 if (type == 2) {
585 create_v2m(vbi, pic);
589 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart,
590 MemoryRegion *mem, CharDriverState *chr)
592 char *nodename;
593 hwaddr base = vbi->memmap[uart].base;
594 hwaddr size = vbi->memmap[uart].size;
595 int irq = vbi->irqmap[uart];
596 const char compat[] = "arm,pl011\0arm,primecell";
597 const char clocknames[] = "uartclk\0apb_pclk";
598 DeviceState *dev = qdev_create(NULL, "pl011");
599 SysBusDevice *s = SYS_BUS_DEVICE(dev);
601 qdev_prop_set_chr(dev, "chardev", chr);
602 qdev_init_nofail(dev);
603 memory_region_add_subregion(mem, base,
604 sysbus_mmio_get_region(s, 0));
605 sysbus_connect_irq(s, 0, pic[irq]);
607 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
608 qemu_fdt_add_subnode(vbi->fdt, nodename);
609 /* Note that we can't use setprop_string because of the embedded NUL */
610 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
611 compat, sizeof(compat));
612 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
613 2, base, 2, size);
614 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
615 GIC_FDT_IRQ_TYPE_SPI, irq,
616 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
617 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
618 vbi->clock_phandle, vbi->clock_phandle);
619 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
620 clocknames, sizeof(clocknames));
622 if (uart == VIRT_UART) {
623 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
624 } else {
625 /* Mark as not usable by the normal world */
626 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
627 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
630 g_free(nodename);
633 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
635 char *nodename;
636 hwaddr base = vbi->memmap[VIRT_RTC].base;
637 hwaddr size = vbi->memmap[VIRT_RTC].size;
638 int irq = vbi->irqmap[VIRT_RTC];
639 const char compat[] = "arm,pl031\0arm,primecell";
641 sysbus_create_simple("pl031", base, pic[irq]);
643 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
644 qemu_fdt_add_subnode(vbi->fdt, nodename);
645 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
646 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
647 2, base, 2, size);
648 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
649 GIC_FDT_IRQ_TYPE_SPI, irq,
650 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
651 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
652 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
653 g_free(nodename);
656 static DeviceState *gpio_key_dev;
657 static void virt_powerdown_req(Notifier *n, void *opaque)
659 /* use gpio Pin 3 for power button event */
660 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
663 static Notifier virt_system_powerdown_notifier = {
664 .notify = virt_powerdown_req
667 static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic)
669 char *nodename;
670 DeviceState *pl061_dev;
671 hwaddr base = vbi->memmap[VIRT_GPIO].base;
672 hwaddr size = vbi->memmap[VIRT_GPIO].size;
673 int irq = vbi->irqmap[VIRT_GPIO];
674 const char compat[] = "arm,pl061\0arm,primecell";
676 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
678 uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt);
679 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
680 qemu_fdt_add_subnode(vbi->fdt, nodename);
681 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
682 2, base, 2, size);
683 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
684 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2);
685 qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0);
686 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
687 GIC_FDT_IRQ_TYPE_SPI, irq,
688 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
689 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
690 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
691 qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle);
693 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
694 qdev_get_gpio_in(pl061_dev, 3));
695 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys");
696 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys");
697 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0);
698 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1);
700 qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff");
701 qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff",
702 "label", "GPIO Key Poweroff");
703 qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code",
704 KEY_POWER);
705 qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff",
706 "gpios", phandle, 3, 0);
708 /* connect powerdown request */
709 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
711 g_free(nodename);
714 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
716 int i;
717 hwaddr size = vbi->memmap[VIRT_MMIO].size;
719 /* We create the transports in forwards order. Since qbus_realize()
720 * prepends (not appends) new child buses, the incrementing loop below will
721 * create a list of virtio-mmio buses with decreasing base addresses.
723 * When a -device option is processed from the command line,
724 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
725 * order. The upshot is that -device options in increasing command line
726 * order are mapped to virtio-mmio buses with decreasing base addresses.
728 * When this code was originally written, that arrangement ensured that the
729 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
730 * the first -device on the command line. (The end-to-end order is a
731 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
732 * guest kernel's name-to-address assignment strategy.)
734 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
735 * the message, if not necessarily the code, of commit 70161ff336.
736 * Therefore the loop now establishes the inverse of the original intent.
738 * Unfortunately, we can't counteract the kernel change by reversing the
739 * loop; it would break existing command lines.
741 * In any case, the kernel makes no guarantee about the stability of
742 * enumeration order of virtio devices (as demonstrated by it changing
743 * between kernel versions). For reliable and stable identification
744 * of disks users must use UUIDs or similar mechanisms.
746 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
747 int irq = vbi->irqmap[VIRT_MMIO] + i;
748 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
750 sysbus_create_simple("virtio-mmio", base, pic[irq]);
753 /* We add dtb nodes in reverse order so that they appear in the finished
754 * device tree lowest address first.
756 * Note that this mapping is independent of the loop above. The previous
757 * loop influences virtio device to virtio transport assignment, whereas
758 * this loop controls how virtio transports are laid out in the dtb.
760 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
761 char *nodename;
762 int irq = vbi->irqmap[VIRT_MMIO] + i;
763 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
765 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
766 qemu_fdt_add_subnode(vbi->fdt, nodename);
767 qemu_fdt_setprop_string(vbi->fdt, nodename,
768 "compatible", "virtio,mmio");
769 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
770 2, base, 2, size);
771 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
772 GIC_FDT_IRQ_TYPE_SPI, irq,
773 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
774 g_free(nodename);
778 static void create_one_flash(const char *name, hwaddr flashbase,
779 hwaddr flashsize, const char *file,
780 MemoryRegion *sysmem)
782 /* Create and map a single flash device. We use the same
783 * parameters as the flash devices on the Versatile Express board.
785 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
786 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
787 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
788 const uint64_t sectorlength = 256 * 1024;
790 if (dinfo) {
791 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
792 &error_abort);
795 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
796 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
797 qdev_prop_set_uint8(dev, "width", 4);
798 qdev_prop_set_uint8(dev, "device-width", 2);
799 qdev_prop_set_bit(dev, "big-endian", false);
800 qdev_prop_set_uint16(dev, "id0", 0x89);
801 qdev_prop_set_uint16(dev, "id1", 0x18);
802 qdev_prop_set_uint16(dev, "id2", 0x00);
803 qdev_prop_set_uint16(dev, "id3", 0x00);
804 qdev_prop_set_string(dev, "name", name);
805 qdev_init_nofail(dev);
807 memory_region_add_subregion(sysmem, flashbase,
808 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
810 if (file) {
811 char *fn;
812 int image_size;
814 if (drive_get(IF_PFLASH, 0, 0)) {
815 error_report("The contents of the first flash device may be "
816 "specified with -bios or with -drive if=pflash... "
817 "but you cannot use both options at once");
818 exit(1);
820 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
821 if (!fn) {
822 error_report("Could not find ROM image '%s'", file);
823 exit(1);
825 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
826 g_free(fn);
827 if (image_size < 0) {
828 error_report("Could not load ROM image '%s'", file);
829 exit(1);
834 static void create_flash(const VirtBoardInfo *vbi,
835 MemoryRegion *sysmem,
836 MemoryRegion *secure_sysmem)
838 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
839 * Any file passed via -bios goes in the first of these.
840 * sysmem is the system memory space. secure_sysmem is the secure view
841 * of the system, and the first flash device should be made visible only
842 * there. The second flash device is visible to both secure and nonsecure.
843 * If sysmem == secure_sysmem this means there is no separate Secure
844 * address space and both flash devices are generally visible.
846 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
847 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
848 char *nodename;
850 create_one_flash("virt.flash0", flashbase, flashsize,
851 bios_name, secure_sysmem);
852 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
853 NULL, sysmem);
855 if (sysmem == secure_sysmem) {
856 /* Report both flash devices as a single node in the DT */
857 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
858 qemu_fdt_add_subnode(vbi->fdt, nodename);
859 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
860 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
861 2, flashbase, 2, flashsize,
862 2, flashbase + flashsize, 2, flashsize);
863 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
864 g_free(nodename);
865 } else {
866 /* Report the devices as separate nodes so we can mark one as
867 * only visible to the secure world.
869 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
870 qemu_fdt_add_subnode(vbi->fdt, nodename);
871 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
872 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
873 2, flashbase, 2, flashsize);
874 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
875 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
876 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
877 g_free(nodename);
879 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
880 qemu_fdt_add_subnode(vbi->fdt, nodename);
881 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
882 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
883 2, flashbase + flashsize, 2, flashsize);
884 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
885 g_free(nodename);
889 static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
891 hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
892 hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
893 char *nodename;
895 fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
897 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
898 qemu_fdt_add_subnode(vbi->fdt, nodename);
899 qemu_fdt_setprop_string(vbi->fdt, nodename,
900 "compatible", "qemu,fw-cfg-mmio");
901 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
902 2, base, 2, size);
903 g_free(nodename);
906 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
907 int first_irq, const char *nodename)
909 int devfn, pin;
910 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
911 uint32_t *irq_map = full_irq_map;
913 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
914 for (pin = 0; pin < 4; pin++) {
915 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
916 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
917 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
918 int i;
920 uint32_t map[] = {
921 devfn << 8, 0, 0, /* devfn */
922 pin + 1, /* PCI pin */
923 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
925 /* Convert map to big endian */
926 for (i = 0; i < 10; i++) {
927 irq_map[i] = cpu_to_be32(map[i]);
929 irq_map += 10;
933 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
934 full_irq_map, sizeof(full_irq_map));
936 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
937 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
938 0x7 /* PCI irq */);
941 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
942 bool use_highmem)
944 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
945 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
946 hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
947 hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
948 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
949 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
950 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
951 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
952 hwaddr base = base_mmio;
953 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
954 int irq = vbi->irqmap[VIRT_PCIE];
955 MemoryRegion *mmio_alias;
956 MemoryRegion *mmio_reg;
957 MemoryRegion *ecam_alias;
958 MemoryRegion *ecam_reg;
959 DeviceState *dev;
960 char *nodename;
961 int i;
962 PCIHostState *pci;
964 dev = qdev_create(NULL, TYPE_GPEX_HOST);
965 qdev_init_nofail(dev);
967 /* Map only the first size_ecam bytes of ECAM space */
968 ecam_alias = g_new0(MemoryRegion, 1);
969 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
970 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
971 ecam_reg, 0, size_ecam);
972 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
974 /* Map the MMIO window into system address space so as to expose
975 * the section of PCI MMIO space which starts at the same base address
976 * (ie 1:1 mapping for that part of PCI MMIO space visible through
977 * the window).
979 mmio_alias = g_new0(MemoryRegion, 1);
980 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
981 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
982 mmio_reg, base_mmio, size_mmio);
983 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
985 if (use_highmem) {
986 /* Map high MMIO space */
987 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
989 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
990 mmio_reg, base_mmio_high, size_mmio_high);
991 memory_region_add_subregion(get_system_memory(), base_mmio_high,
992 high_mmio_alias);
995 /* Map IO port space */
996 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
998 for (i = 0; i < GPEX_NUM_IRQS; i++) {
999 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1002 pci = PCI_HOST_BRIDGE(dev);
1003 if (pci->bus) {
1004 for (i = 0; i < nb_nics; i++) {
1005 NICInfo *nd = &nd_table[i];
1007 if (!nd->model) {
1008 nd->model = g_strdup("virtio");
1011 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1015 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1016 qemu_fdt_add_subnode(vbi->fdt, nodename);
1017 qemu_fdt_setprop_string(vbi->fdt, nodename,
1018 "compatible", "pci-host-ecam-generic");
1019 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
1020 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
1021 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
1022 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
1023 nr_pcie_buses - 1);
1025 if (vbi->v2m_phandle) {
1026 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
1027 vbi->v2m_phandle);
1030 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
1031 2, base_ecam, 2, size_ecam);
1033 if (use_highmem) {
1034 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1035 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1036 2, base_pio, 2, size_pio,
1037 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1038 2, base_mmio, 2, size_mmio,
1039 1, FDT_PCI_RANGE_MMIO_64BIT,
1040 2, base_mmio_high,
1041 2, base_mmio_high, 2, size_mmio_high);
1042 } else {
1043 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
1044 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1045 2, base_pio, 2, size_pio,
1046 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1047 2, base_mmio, 2, size_mmio);
1050 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
1051 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
1053 g_free(nodename);
1056 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
1058 DeviceState *dev;
1059 SysBusDevice *s;
1060 int i;
1061 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1062 MemoryRegion *sysmem = get_system_memory();
1064 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
1065 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
1066 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
1067 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1069 fdt_params->system_params = &platform_bus_params;
1070 fdt_params->binfo = &vbi->bootinfo;
1071 fdt_params->intc = "/intc";
1073 * register a machine init done notifier that creates the device tree
1074 * nodes of the platform bus and its children dynamic sysbus devices
1076 arm_register_platform_bus_fdt_creator(fdt_params);
1078 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1079 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1080 qdev_prop_set_uint32(dev, "num_irqs",
1081 platform_bus_params.platform_bus_num_irqs);
1082 qdev_prop_set_uint32(dev, "mmio_size",
1083 platform_bus_params.platform_bus_size);
1084 qdev_init_nofail(dev);
1085 s = SYS_BUS_DEVICE(dev);
1087 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1088 int irqn = platform_bus_params.platform_bus_first_irq + i;
1089 sysbus_connect_irq(s, i, pic[irqn]);
1092 memory_region_add_subregion(sysmem,
1093 platform_bus_params.platform_bus_base,
1094 sysbus_mmio_get_region(s, 0));
1097 static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem)
1099 MemoryRegion *secram = g_new(MemoryRegion, 1);
1100 char *nodename;
1101 hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base;
1102 hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size;
1104 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1105 vmstate_register_ram_global(secram);
1106 memory_region_add_subregion(secure_sysmem, base, secram);
1108 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1109 qemu_fdt_add_subnode(vbi->fdt, nodename);
1110 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory");
1111 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size);
1112 qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
1113 qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
1115 g_free(nodename);
1118 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1120 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
1122 *fdt_size = board->fdt_size;
1123 return board->fdt;
1126 static void virt_build_smbios(VirtGuestInfo *guest_info)
1128 FWCfgState *fw_cfg = guest_info->fw_cfg;
1129 uint8_t *smbios_tables, *smbios_anchor;
1130 size_t smbios_tables_len, smbios_anchor_len;
1131 const char *product = "QEMU Virtual Machine";
1133 if (!fw_cfg) {
1134 return;
1137 if (kvm_enabled()) {
1138 product = "KVM Virtual Machine";
1141 smbios_set_defaults("QEMU", product,
1142 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1144 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1145 &smbios_anchor, &smbios_anchor_len);
1147 if (smbios_anchor) {
1148 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
1149 smbios_tables, smbios_tables_len);
1150 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
1151 smbios_anchor, smbios_anchor_len);
1155 static
1156 void virt_guest_info_machine_done(Notifier *notifier, void *data)
1158 VirtGuestInfoState *guest_info_state = container_of(notifier,
1159 VirtGuestInfoState, machine_done);
1160 virt_acpi_setup(&guest_info_state->info);
1161 virt_build_smbios(&guest_info_state->info);
1164 static void machvirt_init(MachineState *machine)
1166 VirtMachineState *vms = VIRT_MACHINE(machine);
1167 qemu_irq pic[NUM_IRQS];
1168 MemoryRegion *sysmem = get_system_memory();
1169 MemoryRegion *secure_sysmem = NULL;
1170 int gic_version = vms->gic_version;
1171 int n, virt_max_cpus;
1172 MemoryRegion *ram = g_new(MemoryRegion, 1);
1173 const char *cpu_model = machine->cpu_model;
1174 VirtBoardInfo *vbi;
1175 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1176 VirtGuestInfo *guest_info = &guest_info_state->info;
1177 char **cpustr;
1178 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1180 if (!cpu_model) {
1181 cpu_model = "cortex-a15";
1184 /* We can probe only here because during property set
1185 * KVM is not available yet
1187 if (!gic_version) {
1188 if (!kvm_enabled()) {
1189 error_report("gic-version=host requires KVM");
1190 exit(1);
1193 gic_version = kvm_arm_vgic_probe();
1194 if (!gic_version) {
1195 error_report("Unable to determine GIC version supported by host");
1196 exit(1);
1200 /* Separate the actual CPU model name from any appended features */
1201 cpustr = g_strsplit(cpu_model, ",", 2);
1203 vbi = find_machine_info(cpustr[0]);
1205 if (!vbi) {
1206 error_report("mach-virt: CPU %s not supported", cpustr[0]);
1207 exit(1);
1210 /* If we have an EL3 boot ROM then the assumption is that it will
1211 * implement PSCI itself, so disable QEMU's internal implementation
1212 * so it doesn't get in the way. Instead of starting secondary
1213 * CPUs in PSCI powerdown state we will start them all running and
1214 * let the boot ROM sort them out.
1215 * The usual case is that we do use QEMU's PSCI implementation.
1217 vbi->using_psci = !(vms->secure && firmware_loaded);
1219 /* The maximum number of CPUs depends on the GIC version, or on how
1220 * many redistributors we can fit into the memory map.
1222 if (gic_version == 3) {
1223 virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
1224 } else {
1225 virt_max_cpus = GIC_NCPU;
1228 if (max_cpus > virt_max_cpus) {
1229 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1230 "supported by machine 'mach-virt' (%d)",
1231 max_cpus, virt_max_cpus);
1232 exit(1);
1235 vbi->smp_cpus = smp_cpus;
1237 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
1238 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1239 exit(1);
1242 if (vms->secure) {
1243 if (kvm_enabled()) {
1244 error_report("mach-virt: KVM does not support Security extensions");
1245 exit(1);
1248 /* The Secure view of the world is the same as the NonSecure,
1249 * but with a few extra devices. Create it as a container region
1250 * containing the system memory at low priority; any secure-only
1251 * devices go in at higher priority and take precedence.
1253 secure_sysmem = g_new(MemoryRegion, 1);
1254 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1255 UINT64_MAX);
1256 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1259 create_fdt(vbi);
1261 for (n = 0; n < smp_cpus; n++) {
1262 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1263 CPUClass *cc = CPU_CLASS(oc);
1264 Object *cpuobj;
1265 Error *err = NULL;
1266 char *cpuopts = g_strdup(cpustr[1]);
1268 if (!oc) {
1269 error_report("Unable to find CPU definition");
1270 exit(1);
1272 cpuobj = object_new(object_class_get_name(oc));
1274 /* Handle any CPU options specified by the user */
1275 cc->parse_features(CPU(cpuobj), cpuopts, &err);
1276 g_free(cpuopts);
1277 if (err) {
1278 error_report_err(err);
1279 exit(1);
1282 if (!vms->secure) {
1283 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1286 if (vbi->using_psci) {
1287 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1288 "psci-conduit", NULL);
1290 /* Secondary CPUs start in PSCI powered-down state */
1291 if (n > 0) {
1292 object_property_set_bool(cpuobj, true,
1293 "start-powered-off", NULL);
1297 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1298 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1299 "reset-cbar", &error_abort);
1302 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1303 &error_abort);
1304 if (vms->secure) {
1305 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1306 "secure-memory", &error_abort);
1309 object_property_set_bool(cpuobj, true, "realized", NULL);
1311 g_strfreev(cpustr);
1312 fdt_add_timer_nodes(vbi, gic_version);
1313 fdt_add_cpu_nodes(vbi);
1314 fdt_add_psci_node(vbi);
1316 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1317 machine->ram_size);
1318 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1320 create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1322 create_gic(vbi, pic, gic_version, vms->secure);
1324 fdt_add_pmu_nodes(vbi, gic_version);
1326 create_uart(vbi, pic, VIRT_UART, sysmem, serial_hds[0]);
1328 if (vms->secure) {
1329 create_secure_ram(vbi, secure_sysmem);
1330 create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1333 create_rtc(vbi, pic);
1335 create_pcie(vbi, pic, vms->highmem);
1337 create_gpio(vbi, pic);
1339 /* Create mmio transports, so the user can create virtio backends
1340 * (which will be automatically plugged in to the transports). If
1341 * no backend is created the transport will just sit harmlessly idle.
1343 create_virtio_devices(vbi, pic);
1345 create_fw_cfg(vbi, &address_space_memory);
1346 rom_set_fw(fw_cfg_find());
1348 guest_info->smp_cpus = smp_cpus;
1349 guest_info->fw_cfg = fw_cfg_find();
1350 guest_info->memmap = vbi->memmap;
1351 guest_info->irqmap = vbi->irqmap;
1352 guest_info->use_highmem = vms->highmem;
1353 guest_info->gic_version = gic_version;
1354 guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1355 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1357 vbi->bootinfo.ram_size = machine->ram_size;
1358 vbi->bootinfo.kernel_filename = machine->kernel_filename;
1359 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1360 vbi->bootinfo.initrd_filename = machine->initrd_filename;
1361 vbi->bootinfo.nb_cpus = smp_cpus;
1362 vbi->bootinfo.board_id = -1;
1363 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1364 vbi->bootinfo.get_dtb = machvirt_dtb;
1365 vbi->bootinfo.firmware_loaded = firmware_loaded;
1366 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1369 * arm_load_kernel machine init done notifier registration must
1370 * happen before the platform_bus_create call. In this latter,
1371 * another notifier is registered which adds platform bus nodes.
1372 * Notifiers are executed in registration reverse order.
1374 create_platform_bus(vbi, pic);
1377 static bool virt_get_secure(Object *obj, Error **errp)
1379 VirtMachineState *vms = VIRT_MACHINE(obj);
1381 return vms->secure;
1384 static void virt_set_secure(Object *obj, bool value, Error **errp)
1386 VirtMachineState *vms = VIRT_MACHINE(obj);
1388 vms->secure = value;
1391 static bool virt_get_highmem(Object *obj, Error **errp)
1393 VirtMachineState *vms = VIRT_MACHINE(obj);
1395 return vms->highmem;
1398 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1400 VirtMachineState *vms = VIRT_MACHINE(obj);
1402 vms->highmem = value;
1405 static char *virt_get_gic_version(Object *obj, Error **errp)
1407 VirtMachineState *vms = VIRT_MACHINE(obj);
1408 const char *val = vms->gic_version == 3 ? "3" : "2";
1410 return g_strdup(val);
1413 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1415 VirtMachineState *vms = VIRT_MACHINE(obj);
1417 if (!strcmp(value, "3")) {
1418 vms->gic_version = 3;
1419 } else if (!strcmp(value, "2")) {
1420 vms->gic_version = 2;
1421 } else if (!strcmp(value, "host")) {
1422 vms->gic_version = 0; /* Will probe later */
1423 } else {
1424 error_setg(errp, "Invalid gic-version value");
1425 error_append_hint(errp, "Valid values are 3, 2, host.\n");
1429 static void virt_machine_class_init(ObjectClass *oc, void *data)
1431 MachineClass *mc = MACHINE_CLASS(oc);
1433 mc->init = machvirt_init;
1434 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1435 * it later in machvirt_init, where we have more information about the
1436 * configuration of the particular instance.
1438 mc->max_cpus = MAX_CPUMASK_BITS;
1439 mc->has_dynamic_sysbus = true;
1440 mc->block_default_type = IF_VIRTIO;
1441 mc->no_cdrom = 1;
1442 mc->pci_allow_0_address = true;
1445 static const TypeInfo virt_machine_info = {
1446 .name = TYPE_VIRT_MACHINE,
1447 .parent = TYPE_MACHINE,
1448 .abstract = true,
1449 .instance_size = sizeof(VirtMachineState),
1450 .class_size = sizeof(VirtMachineClass),
1451 .class_init = virt_machine_class_init,
1454 static void machvirt_machine_init(void)
1456 type_register_static(&virt_machine_info);
1458 type_init(machvirt_machine_init);
1460 static void virt_2_7_instance_init(Object *obj)
1462 VirtMachineState *vms = VIRT_MACHINE(obj);
1464 /* EL3 is disabled by default on virt: this makes us consistent
1465 * between KVM and TCG for this board, and it also allows us to
1466 * boot UEFI blobs which assume no TrustZone support.
1468 vms->secure = false;
1469 object_property_add_bool(obj, "secure", virt_get_secure,
1470 virt_set_secure, NULL);
1471 object_property_set_description(obj, "secure",
1472 "Set on/off to enable/disable the ARM "
1473 "Security Extensions (TrustZone)",
1474 NULL);
1476 /* High memory is enabled by default */
1477 vms->highmem = true;
1478 object_property_add_bool(obj, "highmem", virt_get_highmem,
1479 virt_set_highmem, NULL);
1480 object_property_set_description(obj, "highmem",
1481 "Set on/off to enable/disable using "
1482 "physical address space above 32 bits",
1483 NULL);
1484 /* Default GIC type is v2 */
1485 vms->gic_version = 2;
1486 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1487 virt_set_gic_version, NULL);
1488 object_property_set_description(obj, "gic-version",
1489 "Set GIC version. "
1490 "Valid values are 2, 3 and host", NULL);
1493 static void virt_machine_2_7_options(MachineClass *mc)
1496 DEFINE_VIRT_MACHINE_AS_LATEST(2, 7)
1498 #define VIRT_COMPAT_2_6 \
1499 HW_COMPAT_2_6
1501 static void virt_2_6_instance_init(Object *obj)
1503 virt_2_7_instance_init(obj);
1506 static void virt_machine_2_6_options(MachineClass *mc)
1508 virt_machine_2_7_options(mc);
1509 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1511 DEFINE_VIRT_MACHINE(2, 6)