2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/boards.h"
45 #include "hw/compat.h"
46 #include "hw/loader.h"
47 #include "exec/address-spaces.h"
48 #include "qemu/bitops.h"
49 #include "qemu/error-report.h"
50 #include "hw/pci-host/gpex.h"
51 #include "hw/arm/virt-acpi-build.h"
52 #include "hw/arm/sysbus-fdt.h"
53 #include "hw/platform-bus.h"
54 #include "hw/arm/fdt.h"
55 #include "hw/intc/arm_gic_common.h"
57 #include "hw/smbios/smbios.h"
58 #include "qapi/visitor.h"
59 #include "standard-headers/linux/input.h"
61 /* Number of external interrupt lines to configure the GIC with */
64 #define PLATFORM_BUS_NUM_IRQS 64
66 static ARMPlatformBusSystemParams platform_bus_params
;
68 typedef struct VirtBoardInfo
{
69 struct arm_boot_info bootinfo
;
70 const char *cpu_model
;
71 const MemMapEntry
*memmap
;
76 uint32_t clock_phandle
;
84 VirtBoardInfo
*daughterboard
;
94 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
95 #define VIRT_MACHINE(obj) \
96 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
97 #define VIRT_MACHINE_GET_CLASS(obj) \
98 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
99 #define VIRT_MACHINE_CLASS(klass) \
100 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
103 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
104 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
107 MachineClass *mc = MACHINE_CLASS(oc); \
108 virt_machine_##major##_##minor##_options(mc); \
109 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
111 mc->alias = "virt"; \
114 static const TypeInfo machvirt_##major##_##minor##_info = { \
115 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
116 .parent = TYPE_VIRT_MACHINE, \
117 .instance_init = virt_##major##_##minor##_instance_init, \
118 .class_init = virt_##major##_##minor##_class_init, \
120 static void machvirt_machine_##major##_##minor##_init(void) \
122 type_register_static(&machvirt_##major##_##minor##_info); \
124 type_init(machvirt_machine_##major##_##minor##_init);
126 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
127 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
128 #define DEFINE_VIRT_MACHINE(major, minor) \
129 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
132 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
133 * RAM can go up to the 256GB mark, leaving 256GB of the physical
134 * address space unallocated and free for future use between 256G and 512G.
135 * If we need to provide more RAM to VMs in the future then we need to:
136 * * allocate a second bank of RAM starting at 2TB and working up
137 * * fix the DT and ACPI table generation code in QEMU to correctly
138 * report two split lumps of RAM to the guest
139 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
140 * (We don't want to fill all the way up to 512GB with RAM because
141 * we might want it for non-RAM purposes later. Conversely it seems
142 * reasonable to assume that anybody configuring a VM with a quarter
143 * of a terabyte of RAM will be doing it on a host with more than a
144 * terabyte of physical address space.)
146 #define RAMLIMIT_GB 255
147 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
149 /* Addresses and sizes of our components.
150 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
151 * 128MB..256MB is used for miscellaneous device I/O.
152 * 256MB..1GB is reserved for possible future PCI support (ie where the
153 * PCI memory window will go if we add a PCI host controller).
154 * 1GB and up is RAM (which may happily spill over into the
155 * high memory region beyond 4GB).
156 * This represents a compromise between how much RAM can be given to
157 * a 32 bit VM and leaving space for expansion and in particular for PCI.
158 * Note that devices should generally be placed at multiples of 0x10000,
159 * to accommodate guests using 64K pages.
161 static const MemMapEntry a15memmap
[] = {
162 /* Space up to 0x8000000 is reserved for a boot ROM */
163 [VIRT_FLASH
] = { 0, 0x08000000 },
164 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
165 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
166 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
167 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
168 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
169 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
170 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
171 /* This redistributor space allows up to 2*64kB*123 CPUs */
172 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
173 [VIRT_UART
] = { 0x09000000, 0x00001000 },
174 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
175 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
176 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
177 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
178 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
179 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
180 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
181 [VIRT_SECURE_MEM
] = { 0x0e000000, 0x01000000 },
182 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
183 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
184 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
185 [VIRT_MEM
] = { 0x40000000, RAMLIMIT_BYTES
},
186 /* Second PCIe window, 512GB wide at the 512GB boundary */
187 [VIRT_PCIE_MMIO_HIGH
] = { 0x8000000000ULL
, 0x8000000000ULL
},
190 static const int a15irqmap
[] = {
193 [VIRT_PCIE
] = 3, /* ... to 6 */
195 [VIRT_SECURE_UART
] = 8,
196 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
197 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
198 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
201 static VirtBoardInfo machines
[] = {
203 .cpu_model
= "cortex-a15",
208 .cpu_model
= "cortex-a53",
213 .cpu_model
= "cortex-a57",
224 static VirtBoardInfo
*find_machine_info(const char *cpu
)
228 for (i
= 0; i
< ARRAY_SIZE(machines
); i
++) {
229 if (strcmp(cpu
, machines
[i
].cpu_model
) == 0) {
236 static void create_fdt(VirtBoardInfo
*vbi
)
238 void *fdt
= create_device_tree(&vbi
->fdt_size
);
241 error_report("create_device_tree() failed");
248 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
249 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
250 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
253 * /chosen and /memory nodes must exist for load_dtb
254 * to fill in necessary properties later
256 qemu_fdt_add_subnode(fdt
, "/chosen");
257 qemu_fdt_add_subnode(fdt
, "/memory");
258 qemu_fdt_setprop_string(fdt
, "/memory", "device_type", "memory");
260 /* Clock node, for the benefit of the UART. The kernel device tree
261 * binding documentation claims the PL011 node clock properties are
262 * optional but in practice if you omit them the kernel refuses to
263 * probe for the device.
265 vbi
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
266 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
267 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
268 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
269 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
270 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
272 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vbi
->clock_phandle
);
276 static void fdt_add_psci_node(const VirtBoardInfo
*vbi
)
278 uint32_t cpu_suspend_fn
;
282 void *fdt
= vbi
->fdt
;
283 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(0));
285 if (!vbi
->using_psci
) {
289 qemu_fdt_add_subnode(fdt
, "/psci");
290 if (armcpu
->psci_version
== 2) {
291 const char comp
[] = "arm,psci-0.2\0arm,psci";
292 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
294 cpu_off_fn
= QEMU_PSCI_0_2_FN_CPU_OFF
;
295 if (arm_feature(&armcpu
->env
, ARM_FEATURE_AARCH64
)) {
296 cpu_suspend_fn
= QEMU_PSCI_0_2_FN64_CPU_SUSPEND
;
297 cpu_on_fn
= QEMU_PSCI_0_2_FN64_CPU_ON
;
298 migrate_fn
= QEMU_PSCI_0_2_FN64_MIGRATE
;
300 cpu_suspend_fn
= QEMU_PSCI_0_2_FN_CPU_SUSPEND
;
301 cpu_on_fn
= QEMU_PSCI_0_2_FN_CPU_ON
;
302 migrate_fn
= QEMU_PSCI_0_2_FN_MIGRATE
;
305 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
307 cpu_suspend_fn
= QEMU_PSCI_0_1_FN_CPU_SUSPEND
;
308 cpu_off_fn
= QEMU_PSCI_0_1_FN_CPU_OFF
;
309 cpu_on_fn
= QEMU_PSCI_0_1_FN_CPU_ON
;
310 migrate_fn
= QEMU_PSCI_0_1_FN_MIGRATE
;
313 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
314 * to the instruction that should be used to invoke PSCI functions.
315 * However, the device tree binding uses 'method' instead, so that is
316 * what we should use here.
318 qemu_fdt_setprop_string(fdt
, "/psci", "method", "hvc");
320 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend", cpu_suspend_fn
);
321 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", cpu_off_fn
);
322 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", cpu_on_fn
);
323 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", migrate_fn
);
326 static void fdt_add_timer_nodes(const VirtBoardInfo
*vbi
, int gictype
)
328 /* Note that on A15 h/w these interrupts are level-triggered,
329 * but for the GIC implementation provided by both QEMU and KVM
330 * they are edge-triggered.
333 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
336 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
337 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
338 (1 << vbi
->smp_cpus
) - 1);
341 qemu_fdt_add_subnode(vbi
->fdt
, "/timer");
343 armcpu
= ARM_CPU(qemu_get_cpu(0));
344 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
345 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
346 qemu_fdt_setprop(vbi
->fdt
, "/timer", "compatible",
347 compat
, sizeof(compat
));
349 qemu_fdt_setprop_string(vbi
->fdt
, "/timer", "compatible",
352 qemu_fdt_setprop(vbi
->fdt
, "/timer", "always-on", NULL
, 0);
353 qemu_fdt_setprop_cells(vbi
->fdt
, "/timer", "interrupts",
354 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
355 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
356 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
357 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
360 static void fdt_add_cpu_nodes(const VirtBoardInfo
*vbi
)
367 * From Documentation/devicetree/bindings/arm/cpus.txt
368 * On ARM v8 64-bit systems value should be set to 2,
369 * that corresponds to the MPIDR_EL1 register size.
370 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
371 * in the system, #address-cells can be set to 1, since
372 * MPIDR_EL1[63:32] bits are not used for CPUs
375 * Here we actually don't know whether our system is 32- or 64-bit one.
376 * The simplest way to go is to examine affinity IDs of all our CPUs. If
377 * at least one of them has Aff3 populated, we set #address-cells to 2.
379 for (cpu
= 0; cpu
< vbi
->smp_cpus
; cpu
++) {
380 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
382 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
388 qemu_fdt_add_subnode(vbi
->fdt
, "/cpus");
389 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#address-cells", addr_cells
);
390 qemu_fdt_setprop_cell(vbi
->fdt
, "/cpus", "#size-cells", 0x0);
392 for (cpu
= vbi
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
393 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
394 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
396 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
397 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "cpu");
398 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible",
399 armcpu
->dtb_compatible
);
401 if (vbi
->using_psci
&& vbi
->smp_cpus
> 1) {
402 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
403 "enable-method", "psci");
406 if (addr_cells
== 2) {
407 qemu_fdt_setprop_u64(vbi
->fdt
, nodename
, "reg",
408 armcpu
->mp_affinity
);
410 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "reg",
411 armcpu
->mp_affinity
);
414 for (i
= 0; i
< nb_numa_nodes
; i
++) {
415 if (test_bit(cpu
, numa_info
[i
].node_cpu
)) {
416 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "numa-node-id", i
);
424 static void fdt_add_v2m_gic_node(VirtBoardInfo
*vbi
)
426 vbi
->v2m_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
427 qemu_fdt_add_subnode(vbi
->fdt
, "/intc/v2m");
428 qemu_fdt_setprop_string(vbi
->fdt
, "/intc/v2m", "compatible",
429 "arm,gic-v2m-frame");
430 qemu_fdt_setprop(vbi
->fdt
, "/intc/v2m", "msi-controller", NULL
, 0);
431 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc/v2m", "reg",
432 2, vbi
->memmap
[VIRT_GIC_V2M
].base
,
433 2, vbi
->memmap
[VIRT_GIC_V2M
].size
);
434 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc/v2m", "phandle", vbi
->v2m_phandle
);
437 static void fdt_add_gic_node(VirtBoardInfo
*vbi
, int type
)
439 vbi
->gic_phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
440 qemu_fdt_setprop_cell(vbi
->fdt
, "/", "interrupt-parent", vbi
->gic_phandle
);
442 qemu_fdt_add_subnode(vbi
->fdt
, "/intc");
443 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#interrupt-cells", 3);
444 qemu_fdt_setprop(vbi
->fdt
, "/intc", "interrupt-controller", NULL
, 0);
445 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#address-cells", 0x2);
446 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "#size-cells", 0x2);
447 qemu_fdt_setprop(vbi
->fdt
, "/intc", "ranges", NULL
, 0);
449 qemu_fdt_setprop_string(vbi
->fdt
, "/intc", "compatible",
451 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc", "reg",
452 2, vbi
->memmap
[VIRT_GIC_DIST
].base
,
453 2, vbi
->memmap
[VIRT_GIC_DIST
].size
,
454 2, vbi
->memmap
[VIRT_GIC_REDIST
].base
,
455 2, vbi
->memmap
[VIRT_GIC_REDIST
].size
);
457 /* 'cortex-a15-gic' means 'GIC v2' */
458 qemu_fdt_setprop_string(vbi
->fdt
, "/intc", "compatible",
459 "arm,cortex-a15-gic");
460 qemu_fdt_setprop_sized_cells(vbi
->fdt
, "/intc", "reg",
461 2, vbi
->memmap
[VIRT_GIC_DIST
].base
,
462 2, vbi
->memmap
[VIRT_GIC_DIST
].size
,
463 2, vbi
->memmap
[VIRT_GIC_CPU
].base
,
464 2, vbi
->memmap
[VIRT_GIC_CPU
].size
);
467 qemu_fdt_setprop_cell(vbi
->fdt
, "/intc", "phandle", vbi
->gic_phandle
);
470 static void fdt_add_pmu_nodes(const VirtBoardInfo
*vbi
, int gictype
)
474 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
477 armcpu
= ARM_CPU(cpu
);
478 if (!armcpu
->has_pmu
||
479 !kvm_arm_pmu_create(cpu
, PPI(VIRTUAL_PMU_IRQ
))) {
485 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
486 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
487 (1 << vbi
->smp_cpus
) - 1);
490 armcpu
= ARM_CPU(qemu_get_cpu(0));
491 qemu_fdt_add_subnode(vbi
->fdt
, "/pmu");
492 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
493 const char compat
[] = "arm,armv8-pmuv3";
494 qemu_fdt_setprop(vbi
->fdt
, "/pmu", "compatible",
495 compat
, sizeof(compat
));
496 qemu_fdt_setprop_cells(vbi
->fdt
, "/pmu", "interrupts",
497 GIC_FDT_IRQ_TYPE_PPI
, VIRTUAL_PMU_IRQ
, irqflags
);
501 static void create_v2m(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
504 int irq
= vbi
->irqmap
[VIRT_GIC_V2M
];
507 dev
= qdev_create(NULL
, "arm-gicv2m");
508 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vbi
->memmap
[VIRT_GIC_V2M
].base
);
509 qdev_prop_set_uint32(dev
, "base-spi", irq
);
510 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
511 qdev_init_nofail(dev
);
513 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
514 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
517 fdt_add_v2m_gic_node(vbi
);
520 static void create_gic(VirtBoardInfo
*vbi
, qemu_irq
*pic
, int type
, bool secure
)
522 /* We create a standalone GIC */
524 SysBusDevice
*gicbusdev
;
528 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
530 gicdev
= qdev_create(NULL
, gictype
);
531 qdev_prop_set_uint32(gicdev
, "revision", type
);
532 qdev_prop_set_uint32(gicdev
, "num-cpu", smp_cpus
);
533 /* Note that the num-irq property counts both internal and external
534 * interrupts; there are always 32 of the former (mandated by GIC spec).
536 qdev_prop_set_uint32(gicdev
, "num-irq", NUM_IRQS
+ 32);
537 if (!kvm_irqchip_in_kernel()) {
538 qdev_prop_set_bit(gicdev
, "has-security-extensions", secure
);
540 qdev_init_nofail(gicdev
);
541 gicbusdev
= SYS_BUS_DEVICE(gicdev
);
542 sysbus_mmio_map(gicbusdev
, 0, vbi
->memmap
[VIRT_GIC_DIST
].base
);
544 sysbus_mmio_map(gicbusdev
, 1, vbi
->memmap
[VIRT_GIC_REDIST
].base
);
546 sysbus_mmio_map(gicbusdev
, 1, vbi
->memmap
[VIRT_GIC_CPU
].base
);
549 /* Wire the outputs from each CPU's generic timer to the
550 * appropriate GIC PPI inputs, and the GIC's IRQ output to
551 * the CPU's IRQ input.
553 for (i
= 0; i
< smp_cpus
; i
++) {
554 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
555 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
557 /* Mapping from the output timer irq lines from the CPU to the
558 * GIC PPI inputs we use for the virt board.
560 const int timer_irq
[] = {
561 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
562 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
563 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
564 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
567 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
568 qdev_connect_gpio_out(cpudev
, irq
,
569 qdev_get_gpio_in(gicdev
,
570 ppibase
+ timer_irq
[irq
]));
573 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
574 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
575 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
578 for (i
= 0; i
< NUM_IRQS
; i
++) {
579 pic
[i
] = qdev_get_gpio_in(gicdev
, i
);
582 fdt_add_gic_node(vbi
, type
);
585 create_v2m(vbi
, pic
);
589 static void create_uart(const VirtBoardInfo
*vbi
, qemu_irq
*pic
, int uart
,
590 MemoryRegion
*mem
, CharDriverState
*chr
)
593 hwaddr base
= vbi
->memmap
[uart
].base
;
594 hwaddr size
= vbi
->memmap
[uart
].size
;
595 int irq
= vbi
->irqmap
[uart
];
596 const char compat
[] = "arm,pl011\0arm,primecell";
597 const char clocknames
[] = "uartclk\0apb_pclk";
598 DeviceState
*dev
= qdev_create(NULL
, "pl011");
599 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
601 qdev_prop_set_chr(dev
, "chardev", chr
);
602 qdev_init_nofail(dev
);
603 memory_region_add_subregion(mem
, base
,
604 sysbus_mmio_get_region(s
, 0));
605 sysbus_connect_irq(s
, 0, pic
[irq
]);
607 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
608 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
609 /* Note that we can't use setprop_string because of the embedded NUL */
610 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible",
611 compat
, sizeof(compat
));
612 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
614 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
615 GIC_FDT_IRQ_TYPE_SPI
, irq
,
616 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
617 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "clocks",
618 vbi
->clock_phandle
, vbi
->clock_phandle
);
619 qemu_fdt_setprop(vbi
->fdt
, nodename
, "clock-names",
620 clocknames
, sizeof(clocknames
));
622 if (uart
== VIRT_UART
) {
623 qemu_fdt_setprop_string(vbi
->fdt
, "/chosen", "stdout-path", nodename
);
625 /* Mark as not usable by the normal world */
626 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "status", "disabled");
627 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "secure-status", "okay");
633 static void create_rtc(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
636 hwaddr base
= vbi
->memmap
[VIRT_RTC
].base
;
637 hwaddr size
= vbi
->memmap
[VIRT_RTC
].size
;
638 int irq
= vbi
->irqmap
[VIRT_RTC
];
639 const char compat
[] = "arm,pl031\0arm,primecell";
641 sysbus_create_simple("pl031", base
, pic
[irq
]);
643 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
644 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
645 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
646 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
648 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
649 GIC_FDT_IRQ_TYPE_SPI
, irq
,
650 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
651 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "clocks", vbi
->clock_phandle
);
652 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "clock-names", "apb_pclk");
656 static DeviceState
*gpio_key_dev
;
657 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
659 /* use gpio Pin 3 for power button event */
660 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
663 static Notifier virt_system_powerdown_notifier
= {
664 .notify
= virt_powerdown_req
667 static void create_gpio(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
670 DeviceState
*pl061_dev
;
671 hwaddr base
= vbi
->memmap
[VIRT_GPIO
].base
;
672 hwaddr size
= vbi
->memmap
[VIRT_GPIO
].size
;
673 int irq
= vbi
->irqmap
[VIRT_GPIO
];
674 const char compat
[] = "arm,pl061\0arm,primecell";
676 pl061_dev
= sysbus_create_simple("pl061", base
, pic
[irq
]);
678 uint32_t phandle
= qemu_fdt_alloc_phandle(vbi
->fdt
);
679 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
680 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
681 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
683 qemu_fdt_setprop(vbi
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
684 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#gpio-cells", 2);
685 qemu_fdt_setprop(vbi
->fdt
, nodename
, "gpio-controller", NULL
, 0);
686 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
687 GIC_FDT_IRQ_TYPE_SPI
, irq
,
688 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
689 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "clocks", vbi
->clock_phandle
);
690 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "clock-names", "apb_pclk");
691 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "phandle", phandle
);
693 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
694 qdev_get_gpio_in(pl061_dev
, 3));
695 qemu_fdt_add_subnode(vbi
->fdt
, "/gpio-keys");
696 qemu_fdt_setprop_string(vbi
->fdt
, "/gpio-keys", "compatible", "gpio-keys");
697 qemu_fdt_setprop_cell(vbi
->fdt
, "/gpio-keys", "#size-cells", 0);
698 qemu_fdt_setprop_cell(vbi
->fdt
, "/gpio-keys", "#address-cells", 1);
700 qemu_fdt_add_subnode(vbi
->fdt
, "/gpio-keys/poweroff");
701 qemu_fdt_setprop_string(vbi
->fdt
, "/gpio-keys/poweroff",
702 "label", "GPIO Key Poweroff");
703 qemu_fdt_setprop_cell(vbi
->fdt
, "/gpio-keys/poweroff", "linux,code",
705 qemu_fdt_setprop_cells(vbi
->fdt
, "/gpio-keys/poweroff",
706 "gpios", phandle
, 3, 0);
708 /* connect powerdown request */
709 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier
);
714 static void create_virtio_devices(const VirtBoardInfo
*vbi
, qemu_irq
*pic
)
717 hwaddr size
= vbi
->memmap
[VIRT_MMIO
].size
;
719 /* We create the transports in forwards order. Since qbus_realize()
720 * prepends (not appends) new child buses, the incrementing loop below will
721 * create a list of virtio-mmio buses with decreasing base addresses.
723 * When a -device option is processed from the command line,
724 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
725 * order. The upshot is that -device options in increasing command line
726 * order are mapped to virtio-mmio buses with decreasing base addresses.
728 * When this code was originally written, that arrangement ensured that the
729 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
730 * the first -device on the command line. (The end-to-end order is a
731 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
732 * guest kernel's name-to-address assignment strategy.)
734 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
735 * the message, if not necessarily the code, of commit 70161ff336.
736 * Therefore the loop now establishes the inverse of the original intent.
738 * Unfortunately, we can't counteract the kernel change by reversing the
739 * loop; it would break existing command lines.
741 * In any case, the kernel makes no guarantee about the stability of
742 * enumeration order of virtio devices (as demonstrated by it changing
743 * between kernel versions). For reliable and stable identification
744 * of disks users must use UUIDs or similar mechanisms.
746 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
747 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
748 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
750 sysbus_create_simple("virtio-mmio", base
, pic
[irq
]);
753 /* We add dtb nodes in reverse order so that they appear in the finished
754 * device tree lowest address first.
756 * Note that this mapping is independent of the loop above. The previous
757 * loop influences virtio device to virtio transport assignment, whereas
758 * this loop controls how virtio transports are laid out in the dtb.
760 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
762 int irq
= vbi
->irqmap
[VIRT_MMIO
] + i
;
763 hwaddr base
= vbi
->memmap
[VIRT_MMIO
].base
+ i
* size
;
765 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
766 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
767 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
768 "compatible", "virtio,mmio");
769 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
771 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupts",
772 GIC_FDT_IRQ_TYPE_SPI
, irq
,
773 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
778 static void create_one_flash(const char *name
, hwaddr flashbase
,
779 hwaddr flashsize
, const char *file
,
780 MemoryRegion
*sysmem
)
782 /* Create and map a single flash device. We use the same
783 * parameters as the flash devices on the Versatile Express board.
785 DriveInfo
*dinfo
= drive_get_next(IF_PFLASH
);
786 DeviceState
*dev
= qdev_create(NULL
, "cfi.pflash01");
787 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
788 const uint64_t sectorlength
= 256 * 1024;
791 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
795 qdev_prop_set_uint32(dev
, "num-blocks", flashsize
/ sectorlength
);
796 qdev_prop_set_uint64(dev
, "sector-length", sectorlength
);
797 qdev_prop_set_uint8(dev
, "width", 4);
798 qdev_prop_set_uint8(dev
, "device-width", 2);
799 qdev_prop_set_bit(dev
, "big-endian", false);
800 qdev_prop_set_uint16(dev
, "id0", 0x89);
801 qdev_prop_set_uint16(dev
, "id1", 0x18);
802 qdev_prop_set_uint16(dev
, "id2", 0x00);
803 qdev_prop_set_uint16(dev
, "id3", 0x00);
804 qdev_prop_set_string(dev
, "name", name
);
805 qdev_init_nofail(dev
);
807 memory_region_add_subregion(sysmem
, flashbase
,
808 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0));
814 if (drive_get(IF_PFLASH
, 0, 0)) {
815 error_report("The contents of the first flash device may be "
816 "specified with -bios or with -drive if=pflash... "
817 "but you cannot use both options at once");
820 fn
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, file
);
822 error_report("Could not find ROM image '%s'", file
);
825 image_size
= load_image_mr(fn
, sysbus_mmio_get_region(sbd
, 0));
827 if (image_size
< 0) {
828 error_report("Could not load ROM image '%s'", file
);
834 static void create_flash(const VirtBoardInfo
*vbi
,
835 MemoryRegion
*sysmem
,
836 MemoryRegion
*secure_sysmem
)
838 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
839 * Any file passed via -bios goes in the first of these.
840 * sysmem is the system memory space. secure_sysmem is the secure view
841 * of the system, and the first flash device should be made visible only
842 * there. The second flash device is visible to both secure and nonsecure.
843 * If sysmem == secure_sysmem this means there is no separate Secure
844 * address space and both flash devices are generally visible.
846 hwaddr flashsize
= vbi
->memmap
[VIRT_FLASH
].size
/ 2;
847 hwaddr flashbase
= vbi
->memmap
[VIRT_FLASH
].base
;
850 create_one_flash("virt.flash0", flashbase
, flashsize
,
851 bios_name
, secure_sysmem
);
852 create_one_flash("virt.flash1", flashbase
+ flashsize
, flashsize
,
855 if (sysmem
== secure_sysmem
) {
856 /* Report both flash devices as a single node in the DT */
857 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
858 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
859 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
860 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
861 2, flashbase
, 2, flashsize
,
862 2, flashbase
+ flashsize
, 2, flashsize
);
863 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
866 /* Report the devices as separate nodes so we can mark one as
867 * only visible to the secure world.
869 nodename
= g_strdup_printf("/secflash@%" PRIx64
, flashbase
);
870 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
871 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
872 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
873 2, flashbase
, 2, flashsize
);
874 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
875 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "status", "disabled");
876 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "secure-status", "okay");
879 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
880 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
881 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "compatible", "cfi-flash");
882 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
883 2, flashbase
+ flashsize
, 2, flashsize
);
884 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "bank-width", 4);
889 static void create_fw_cfg(const VirtBoardInfo
*vbi
, AddressSpace
*as
)
891 hwaddr base
= vbi
->memmap
[VIRT_FW_CFG
].base
;
892 hwaddr size
= vbi
->memmap
[VIRT_FW_CFG
].size
;
895 fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
897 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
898 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
899 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
900 "compatible", "qemu,fw-cfg-mmio");
901 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
906 static void create_pcie_irq_map(const VirtBoardInfo
*vbi
, uint32_t gic_phandle
,
907 int first_irq
, const char *nodename
)
910 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
911 uint32_t *irq_map
= full_irq_map
;
913 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
914 for (pin
= 0; pin
< 4; pin
++) {
915 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
916 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
917 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
921 devfn
<< 8, 0, 0, /* devfn */
922 pin
+ 1, /* PCI pin */
923 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
925 /* Convert map to big endian */
926 for (i
= 0; i
< 10; i
++) {
927 irq_map
[i
] = cpu_to_be32(map
[i
]);
933 qemu_fdt_setprop(vbi
->fdt
, nodename
, "interrupt-map",
934 full_irq_map
, sizeof(full_irq_map
));
936 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "interrupt-map-mask",
937 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
941 static void create_pcie(const VirtBoardInfo
*vbi
, qemu_irq
*pic
,
944 hwaddr base_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].base
;
945 hwaddr size_mmio
= vbi
->memmap
[VIRT_PCIE_MMIO
].size
;
946 hwaddr base_mmio_high
= vbi
->memmap
[VIRT_PCIE_MMIO_HIGH
].base
;
947 hwaddr size_mmio_high
= vbi
->memmap
[VIRT_PCIE_MMIO_HIGH
].size
;
948 hwaddr base_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].base
;
949 hwaddr size_pio
= vbi
->memmap
[VIRT_PCIE_PIO
].size
;
950 hwaddr base_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].base
;
951 hwaddr size_ecam
= vbi
->memmap
[VIRT_PCIE_ECAM
].size
;
952 hwaddr base
= base_mmio
;
953 int nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
954 int irq
= vbi
->irqmap
[VIRT_PCIE
];
955 MemoryRegion
*mmio_alias
;
956 MemoryRegion
*mmio_reg
;
957 MemoryRegion
*ecam_alias
;
958 MemoryRegion
*ecam_reg
;
964 dev
= qdev_create(NULL
, TYPE_GPEX_HOST
);
965 qdev_init_nofail(dev
);
967 /* Map only the first size_ecam bytes of ECAM space */
968 ecam_alias
= g_new0(MemoryRegion
, 1);
969 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
970 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
971 ecam_reg
, 0, size_ecam
);
972 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
974 /* Map the MMIO window into system address space so as to expose
975 * the section of PCI MMIO space which starts at the same base address
976 * (ie 1:1 mapping for that part of PCI MMIO space visible through
979 mmio_alias
= g_new0(MemoryRegion
, 1);
980 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
981 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
982 mmio_reg
, base_mmio
, size_mmio
);
983 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
986 /* Map high MMIO space */
987 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
989 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
990 mmio_reg
, base_mmio_high
, size_mmio_high
);
991 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
995 /* Map IO port space */
996 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
998 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
999 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
, pic
[irq
+ i
]);
1002 pci
= PCI_HOST_BRIDGE(dev
);
1004 for (i
= 0; i
< nb_nics
; i
++) {
1005 NICInfo
*nd
= &nd_table
[i
];
1008 nd
->model
= g_strdup("virtio");
1011 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
1015 nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
1016 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
1017 qemu_fdt_setprop_string(vbi
->fdt
, nodename
,
1018 "compatible", "pci-host-ecam-generic");
1019 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "pci");
1020 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#address-cells", 3);
1021 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#size-cells", 2);
1022 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "bus-range", 0,
1025 if (vbi
->v2m_phandle
) {
1026 qemu_fdt_setprop_cells(vbi
->fdt
, nodename
, "msi-parent",
1030 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg",
1031 2, base_ecam
, 2, size_ecam
);
1034 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
1035 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1036 2, base_pio
, 2, size_pio
,
1037 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1038 2, base_mmio
, 2, size_mmio
,
1039 1, FDT_PCI_RANGE_MMIO_64BIT
,
1041 2, base_mmio_high
, 2, size_mmio_high
);
1043 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "ranges",
1044 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1045 2, base_pio
, 2, size_pio
,
1046 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1047 2, base_mmio
, 2, size_mmio
);
1050 qemu_fdt_setprop_cell(vbi
->fdt
, nodename
, "#interrupt-cells", 1);
1051 create_pcie_irq_map(vbi
, vbi
->gic_phandle
, irq
, nodename
);
1056 static void create_platform_bus(VirtBoardInfo
*vbi
, qemu_irq
*pic
)
1061 ARMPlatformBusFDTParams
*fdt_params
= g_new(ARMPlatformBusFDTParams
, 1);
1062 MemoryRegion
*sysmem
= get_system_memory();
1064 platform_bus_params
.platform_bus_base
= vbi
->memmap
[VIRT_PLATFORM_BUS
].base
;
1065 platform_bus_params
.platform_bus_size
= vbi
->memmap
[VIRT_PLATFORM_BUS
].size
;
1066 platform_bus_params
.platform_bus_first_irq
= vbi
->irqmap
[VIRT_PLATFORM_BUS
];
1067 platform_bus_params
.platform_bus_num_irqs
= PLATFORM_BUS_NUM_IRQS
;
1069 fdt_params
->system_params
= &platform_bus_params
;
1070 fdt_params
->binfo
= &vbi
->bootinfo
;
1071 fdt_params
->intc
= "/intc";
1073 * register a machine init done notifier that creates the device tree
1074 * nodes of the platform bus and its children dynamic sysbus devices
1076 arm_register_platform_bus_fdt_creator(fdt_params
);
1078 dev
= qdev_create(NULL
, TYPE_PLATFORM_BUS_DEVICE
);
1079 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
1080 qdev_prop_set_uint32(dev
, "num_irqs",
1081 platform_bus_params
.platform_bus_num_irqs
);
1082 qdev_prop_set_uint32(dev
, "mmio_size",
1083 platform_bus_params
.platform_bus_size
);
1084 qdev_init_nofail(dev
);
1085 s
= SYS_BUS_DEVICE(dev
);
1087 for (i
= 0; i
< platform_bus_params
.platform_bus_num_irqs
; i
++) {
1088 int irqn
= platform_bus_params
.platform_bus_first_irq
+ i
;
1089 sysbus_connect_irq(s
, i
, pic
[irqn
]);
1092 memory_region_add_subregion(sysmem
,
1093 platform_bus_params
.platform_bus_base
,
1094 sysbus_mmio_get_region(s
, 0));
1097 static void create_secure_ram(VirtBoardInfo
*vbi
, MemoryRegion
*secure_sysmem
)
1099 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
1101 hwaddr base
= vbi
->memmap
[VIRT_SECURE_MEM
].base
;
1102 hwaddr size
= vbi
->memmap
[VIRT_SECURE_MEM
].size
;
1104 memory_region_init_ram(secram
, NULL
, "virt.secure-ram", size
, &error_fatal
);
1105 vmstate_register_ram_global(secram
);
1106 memory_region_add_subregion(secure_sysmem
, base
, secram
);
1108 nodename
= g_strdup_printf("/secram@%" PRIx64
, base
);
1109 qemu_fdt_add_subnode(vbi
->fdt
, nodename
);
1110 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "device_type", "memory");
1111 qemu_fdt_setprop_sized_cells(vbi
->fdt
, nodename
, "reg", 2, base
, 2, size
);
1112 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "status", "disabled");
1113 qemu_fdt_setprop_string(vbi
->fdt
, nodename
, "secure-status", "okay");
1118 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
1120 const VirtBoardInfo
*board
= (const VirtBoardInfo
*)binfo
;
1122 *fdt_size
= board
->fdt_size
;
1126 static void virt_build_smbios(VirtGuestInfo
*guest_info
)
1128 FWCfgState
*fw_cfg
= guest_info
->fw_cfg
;
1129 uint8_t *smbios_tables
, *smbios_anchor
;
1130 size_t smbios_tables_len
, smbios_anchor_len
;
1131 const char *product
= "QEMU Virtual Machine";
1137 if (kvm_enabled()) {
1138 product
= "KVM Virtual Machine";
1141 smbios_set_defaults("QEMU", product
,
1142 "1.0", false, true, SMBIOS_ENTRY_POINT_30
);
1144 smbios_get_tables(NULL
, 0, &smbios_tables
, &smbios_tables_len
,
1145 &smbios_anchor
, &smbios_anchor_len
);
1147 if (smbios_anchor
) {
1148 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-tables",
1149 smbios_tables
, smbios_tables_len
);
1150 fw_cfg_add_file(fw_cfg
, "etc/smbios/smbios-anchor",
1151 smbios_anchor
, smbios_anchor_len
);
1156 void virt_guest_info_machine_done(Notifier
*notifier
, void *data
)
1158 VirtGuestInfoState
*guest_info_state
= container_of(notifier
,
1159 VirtGuestInfoState
, machine_done
);
1160 virt_acpi_setup(&guest_info_state
->info
);
1161 virt_build_smbios(&guest_info_state
->info
);
1164 static void machvirt_init(MachineState
*machine
)
1166 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1167 qemu_irq pic
[NUM_IRQS
];
1168 MemoryRegion
*sysmem
= get_system_memory();
1169 MemoryRegion
*secure_sysmem
= NULL
;
1170 int gic_version
= vms
->gic_version
;
1171 int n
, virt_max_cpus
;
1172 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1173 const char *cpu_model
= machine
->cpu_model
;
1175 VirtGuestInfoState
*guest_info_state
= g_malloc0(sizeof *guest_info_state
);
1176 VirtGuestInfo
*guest_info
= &guest_info_state
->info
;
1178 bool firmware_loaded
= bios_name
|| drive_get(IF_PFLASH
, 0, 0);
1181 cpu_model
= "cortex-a15";
1184 /* We can probe only here because during property set
1185 * KVM is not available yet
1188 if (!kvm_enabled()) {
1189 error_report("gic-version=host requires KVM");
1193 gic_version
= kvm_arm_vgic_probe();
1195 error_report("Unable to determine GIC version supported by host");
1200 /* Separate the actual CPU model name from any appended features */
1201 cpustr
= g_strsplit(cpu_model
, ",", 2);
1203 vbi
= find_machine_info(cpustr
[0]);
1206 error_report("mach-virt: CPU %s not supported", cpustr
[0]);
1210 /* If we have an EL3 boot ROM then the assumption is that it will
1211 * implement PSCI itself, so disable QEMU's internal implementation
1212 * so it doesn't get in the way. Instead of starting secondary
1213 * CPUs in PSCI powerdown state we will start them all running and
1214 * let the boot ROM sort them out.
1215 * The usual case is that we do use QEMU's PSCI implementation.
1217 vbi
->using_psci
= !(vms
->secure
&& firmware_loaded
);
1219 /* The maximum number of CPUs depends on the GIC version, or on how
1220 * many redistributors we can fit into the memory map.
1222 if (gic_version
== 3) {
1223 virt_max_cpus
= vbi
->memmap
[VIRT_GIC_REDIST
].size
/ 0x20000;
1225 virt_max_cpus
= GIC_NCPU
;
1228 if (max_cpus
> virt_max_cpus
) {
1229 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1230 "supported by machine 'mach-virt' (%d)",
1231 max_cpus
, virt_max_cpus
);
1235 vbi
->smp_cpus
= smp_cpus
;
1237 if (machine
->ram_size
> vbi
->memmap
[VIRT_MEM
].size
) {
1238 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB
);
1243 if (kvm_enabled()) {
1244 error_report("mach-virt: KVM does not support Security extensions");
1248 /* The Secure view of the world is the same as the NonSecure,
1249 * but with a few extra devices. Create it as a container region
1250 * containing the system memory at low priority; any secure-only
1251 * devices go in at higher priority and take precedence.
1253 secure_sysmem
= g_new(MemoryRegion
, 1);
1254 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1256 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1261 for (n
= 0; n
< smp_cpus
; n
++) {
1262 ObjectClass
*oc
= cpu_class_by_name(TYPE_ARM_CPU
, cpustr
[0]);
1263 CPUClass
*cc
= CPU_CLASS(oc
);
1266 char *cpuopts
= g_strdup(cpustr
[1]);
1269 error_report("Unable to find CPU definition");
1272 cpuobj
= object_new(object_class_get_name(oc
));
1274 /* Handle any CPU options specified by the user */
1275 cc
->parse_features(CPU(cpuobj
), cpuopts
, &err
);
1278 error_report_err(err
);
1283 object_property_set_bool(cpuobj
, false, "has_el3", NULL
);
1286 if (vbi
->using_psci
) {
1287 object_property_set_int(cpuobj
, QEMU_PSCI_CONDUIT_HVC
,
1288 "psci-conduit", NULL
);
1290 /* Secondary CPUs start in PSCI powered-down state */
1292 object_property_set_bool(cpuobj
, true,
1293 "start-powered-off", NULL
);
1297 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
1298 object_property_set_int(cpuobj
, vbi
->memmap
[VIRT_CPUPERIPHS
].base
,
1299 "reset-cbar", &error_abort
);
1302 object_property_set_link(cpuobj
, OBJECT(sysmem
), "memory",
1305 object_property_set_link(cpuobj
, OBJECT(secure_sysmem
),
1306 "secure-memory", &error_abort
);
1309 object_property_set_bool(cpuobj
, true, "realized", NULL
);
1312 fdt_add_timer_nodes(vbi
, gic_version
);
1313 fdt_add_cpu_nodes(vbi
);
1314 fdt_add_psci_node(vbi
);
1316 memory_region_allocate_system_memory(ram
, NULL
, "mach-virt.ram",
1318 memory_region_add_subregion(sysmem
, vbi
->memmap
[VIRT_MEM
].base
, ram
);
1320 create_flash(vbi
, sysmem
, secure_sysmem
? secure_sysmem
: sysmem
);
1322 create_gic(vbi
, pic
, gic_version
, vms
->secure
);
1324 fdt_add_pmu_nodes(vbi
, gic_version
);
1326 create_uart(vbi
, pic
, VIRT_UART
, sysmem
, serial_hds
[0]);
1329 create_secure_ram(vbi
, secure_sysmem
);
1330 create_uart(vbi
, pic
, VIRT_SECURE_UART
, secure_sysmem
, serial_hds
[1]);
1333 create_rtc(vbi
, pic
);
1335 create_pcie(vbi
, pic
, vms
->highmem
);
1337 create_gpio(vbi
, pic
);
1339 /* Create mmio transports, so the user can create virtio backends
1340 * (which will be automatically plugged in to the transports). If
1341 * no backend is created the transport will just sit harmlessly idle.
1343 create_virtio_devices(vbi
, pic
);
1345 create_fw_cfg(vbi
, &address_space_memory
);
1346 rom_set_fw(fw_cfg_find());
1348 guest_info
->smp_cpus
= smp_cpus
;
1349 guest_info
->fw_cfg
= fw_cfg_find();
1350 guest_info
->memmap
= vbi
->memmap
;
1351 guest_info
->irqmap
= vbi
->irqmap
;
1352 guest_info
->use_highmem
= vms
->highmem
;
1353 guest_info
->gic_version
= gic_version
;
1354 guest_info_state
->machine_done
.notify
= virt_guest_info_machine_done
;
1355 qemu_add_machine_init_done_notifier(&guest_info_state
->machine_done
);
1357 vbi
->bootinfo
.ram_size
= machine
->ram_size
;
1358 vbi
->bootinfo
.kernel_filename
= machine
->kernel_filename
;
1359 vbi
->bootinfo
.kernel_cmdline
= machine
->kernel_cmdline
;
1360 vbi
->bootinfo
.initrd_filename
= machine
->initrd_filename
;
1361 vbi
->bootinfo
.nb_cpus
= smp_cpus
;
1362 vbi
->bootinfo
.board_id
= -1;
1363 vbi
->bootinfo
.loader_start
= vbi
->memmap
[VIRT_MEM
].base
;
1364 vbi
->bootinfo
.get_dtb
= machvirt_dtb
;
1365 vbi
->bootinfo
.firmware_loaded
= firmware_loaded
;
1366 arm_load_kernel(ARM_CPU(first_cpu
), &vbi
->bootinfo
);
1369 * arm_load_kernel machine init done notifier registration must
1370 * happen before the platform_bus_create call. In this latter,
1371 * another notifier is registered which adds platform bus nodes.
1372 * Notifiers are executed in registration reverse order.
1374 create_platform_bus(vbi
, pic
);
1377 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1379 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1384 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1386 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1388 vms
->secure
= value
;
1391 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
1393 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1395 return vms
->highmem
;
1398 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
1400 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1402 vms
->highmem
= value
;
1405 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
1407 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1408 const char *val
= vms
->gic_version
== 3 ? "3" : "2";
1410 return g_strdup(val
);
1413 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
1415 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1417 if (!strcmp(value
, "3")) {
1418 vms
->gic_version
= 3;
1419 } else if (!strcmp(value
, "2")) {
1420 vms
->gic_version
= 2;
1421 } else if (!strcmp(value
, "host")) {
1422 vms
->gic_version
= 0; /* Will probe later */
1424 error_setg(errp
, "Invalid gic-version value");
1425 error_append_hint(errp
, "Valid values are 3, 2, host.\n");
1429 static void virt_machine_class_init(ObjectClass
*oc
, void *data
)
1431 MachineClass
*mc
= MACHINE_CLASS(oc
);
1433 mc
->init
= machvirt_init
;
1434 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1435 * it later in machvirt_init, where we have more information about the
1436 * configuration of the particular instance.
1438 mc
->max_cpus
= MAX_CPUMASK_BITS
;
1439 mc
->has_dynamic_sysbus
= true;
1440 mc
->block_default_type
= IF_VIRTIO
;
1442 mc
->pci_allow_0_address
= true;
1445 static const TypeInfo virt_machine_info
= {
1446 .name
= TYPE_VIRT_MACHINE
,
1447 .parent
= TYPE_MACHINE
,
1449 .instance_size
= sizeof(VirtMachineState
),
1450 .class_size
= sizeof(VirtMachineClass
),
1451 .class_init
= virt_machine_class_init
,
1454 static void machvirt_machine_init(void)
1456 type_register_static(&virt_machine_info
);
1458 type_init(machvirt_machine_init
);
1460 static void virt_2_7_instance_init(Object
*obj
)
1462 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1464 /* EL3 is disabled by default on virt: this makes us consistent
1465 * between KVM and TCG for this board, and it also allows us to
1466 * boot UEFI blobs which assume no TrustZone support.
1468 vms
->secure
= false;
1469 object_property_add_bool(obj
, "secure", virt_get_secure
,
1470 virt_set_secure
, NULL
);
1471 object_property_set_description(obj
, "secure",
1472 "Set on/off to enable/disable the ARM "
1473 "Security Extensions (TrustZone)",
1476 /* High memory is enabled by default */
1477 vms
->highmem
= true;
1478 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
1479 virt_set_highmem
, NULL
);
1480 object_property_set_description(obj
, "highmem",
1481 "Set on/off to enable/disable using "
1482 "physical address space above 32 bits",
1484 /* Default GIC type is v2 */
1485 vms
->gic_version
= 2;
1486 object_property_add_str(obj
, "gic-version", virt_get_gic_version
,
1487 virt_set_gic_version
, NULL
);
1488 object_property_set_description(obj
, "gic-version",
1490 "Valid values are 2, 3 and host", NULL
);
1493 static void virt_machine_2_7_options(MachineClass
*mc
)
1496 DEFINE_VIRT_MACHINE_AS_LATEST(2, 7)
1498 #define VIRT_COMPAT_2_6 \
1501 static void virt_2_6_instance_init(Object
*obj
)
1503 virt_2_7_instance_init(obj
);
1506 static void virt_machine_2_6_options(MachineClass
*mc
)
1508 virt_machine_2_7_options(mc
);
1509 SET_MACHINE_COMPAT(mc
, VIRT_COMPAT_2_6
);
1511 DEFINE_VIRT_MACHINE(2, 6)