Memory: Enable writeback for given memory region
[qemu/ar7.git] / include / exec / ram_addr.h
blob5adebb0bc7ccb4b47f43aff56973c4278ea46160
1 /*
2 * Declarations for cpu physical memory functions
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or
10 * later. See the COPYING file in the top-level directory.
15 * This header is for use by exec.c and memory.c ONLY. Do not include it.
16 * The functions declared here will be removed soon.
19 #ifndef RAM_ADDR_H
20 #define RAM_ADDR_H
22 #ifndef CONFIG_USER_ONLY
23 #include "cpu.h"
24 #include "hw/xen/xen.h"
25 #include "sysemu/tcg.h"
26 #include "exec/ramlist.h"
28 struct RAMBlock {
29 struct rcu_head rcu;
30 struct MemoryRegion *mr;
31 uint8_t *host;
32 uint8_t *colo_cache; /* For colo, VM's ram cache */
33 ram_addr_t offset;
34 ram_addr_t used_length;
35 ram_addr_t max_length;
36 void (*resized)(const char*, uint64_t length, void *host);
37 uint32_t flags;
38 /* Protected by iothread lock. */
39 char idstr[256];
40 /* RCU-enabled, writes protected by the ramlist lock */
41 QLIST_ENTRY(RAMBlock) next;
42 QLIST_HEAD(, RAMBlockNotifier) ramblock_notifiers;
43 int fd;
44 size_t page_size;
45 /* dirty bitmap used during migration */
46 unsigned long *bmap;
47 /* bitmap of already received pages in postcopy */
48 unsigned long *receivedmap;
51 * bitmap to track already cleared dirty bitmap. When the bit is
52 * set, it means the corresponding memory chunk needs a log-clear.
53 * Set this up to non-NULL to enable the capability to postpone
54 * and split clearing of dirty bitmap on the remote node (e.g.,
55 * KVM). The bitmap will be set only when doing global sync.
57 * NOTE: this bitmap is different comparing to the other bitmaps
58 * in that one bit can represent multiple guest pages (which is
59 * decided by the `clear_bmap_shift' variable below). On
60 * destination side, this should always be NULL, and the variable
61 * `clear_bmap_shift' is meaningless.
63 unsigned long *clear_bmap;
64 uint8_t clear_bmap_shift;
67 /**
68 * clear_bmap_size: calculate clear bitmap size
70 * @pages: number of guest pages
71 * @shift: guest page number shift
73 * Returns: number of bits for the clear bitmap
75 static inline long clear_bmap_size(uint64_t pages, uint8_t shift)
77 return DIV_ROUND_UP(pages, 1UL << shift);
80 /**
81 * clear_bmap_set: set clear bitmap for the page range
83 * @rb: the ramblock to operate on
84 * @start: the start page number
85 * @size: number of pages to set in the bitmap
87 * Returns: None
89 static inline void clear_bmap_set(RAMBlock *rb, uint64_t start,
90 uint64_t npages)
92 uint8_t shift = rb->clear_bmap_shift;
94 bitmap_set_atomic(rb->clear_bmap, start >> shift,
95 clear_bmap_size(npages, shift));
98 /**
99 * clear_bmap_test_and_clear: test clear bitmap for the page, clear if set
101 * @rb: the ramblock to operate on
102 * @page: the page number to check
104 * Returns: true if the bit was set, false otherwise
106 static inline bool clear_bmap_test_and_clear(RAMBlock *rb, uint64_t page)
108 uint8_t shift = rb->clear_bmap_shift;
110 return bitmap_test_and_clear_atomic(rb->clear_bmap, page >> shift, 1);
113 static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset)
115 return (b && b->host && offset < b->used_length) ? true : false;
118 static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
120 assert(offset_in_ramblock(block, offset));
121 return (char *)block->host + offset;
124 static inline unsigned long int ramblock_recv_bitmap_offset(void *host_addr,
125 RAMBlock *rb)
127 uint64_t host_addr_offset =
128 (uint64_t)(uintptr_t)(host_addr - (void *)rb->host);
129 return host_addr_offset >> TARGET_PAGE_BITS;
132 bool ramblock_is_pmem(RAMBlock *rb);
134 long qemu_minrampagesize(void);
135 long qemu_maxrampagesize(void);
138 * qemu_ram_alloc_from_file,
139 * qemu_ram_alloc_from_fd: Allocate a ram block from the specified backing
140 * file or device
142 * Parameters:
143 * @size: the size in bytes of the ram block
144 * @mr: the memory region where the ram block is
145 * @ram_flags: specify the properties of the ram block, which can be one
146 * or bit-or of following values
147 * - RAM_SHARED: mmap the backing file or device with MAP_SHARED
148 * - RAM_PMEM: the backend @mem_path or @fd is persistent memory
149 * Other bits are ignored.
150 * @mem_path or @fd: specify the backing file or device
151 * @errp: pointer to Error*, to store an error if it happens
153 * Return:
154 * On success, return a pointer to the ram block.
155 * On failure, return NULL.
157 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
158 uint32_t ram_flags, const char *mem_path,
159 Error **errp);
160 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
161 uint32_t ram_flags, int fd,
162 Error **errp);
164 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
165 MemoryRegion *mr, Error **errp);
166 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share, MemoryRegion *mr,
167 Error **errp);
168 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
169 void (*resized)(const char*,
170 uint64_t length,
171 void *host),
172 MemoryRegion *mr, Error **errp);
173 void qemu_ram_free(RAMBlock *block);
175 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp);
177 void qemu_ram_writeback(RAMBlock *block, ram_addr_t start, ram_addr_t length);
179 /* Clear whole block of mem */
180 static inline void qemu_ram_block_writeback(RAMBlock *block)
182 qemu_ram_writeback(block, 0, block->used_length);
185 #define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
186 #define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
188 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end);
190 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
191 ram_addr_t length,
192 unsigned client)
194 DirtyMemoryBlocks *blocks;
195 unsigned long end, page;
196 unsigned long idx, offset, base;
197 bool dirty = false;
199 assert(client < DIRTY_MEMORY_NUM);
201 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
202 page = start >> TARGET_PAGE_BITS;
204 WITH_RCU_READ_LOCK_GUARD() {
205 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
207 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
208 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
209 base = page - offset;
210 while (page < end) {
211 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
212 unsigned long num = next - base;
213 unsigned long found = find_next_bit(blocks->blocks[idx],
214 num, offset);
215 if (found < num) {
216 dirty = true;
217 break;
220 page = next;
221 idx++;
222 offset = 0;
223 base += DIRTY_MEMORY_BLOCK_SIZE;
227 return dirty;
230 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
231 ram_addr_t length,
232 unsigned client)
234 DirtyMemoryBlocks *blocks;
235 unsigned long end, page;
236 unsigned long idx, offset, base;
237 bool dirty = true;
239 assert(client < DIRTY_MEMORY_NUM);
241 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
242 page = start >> TARGET_PAGE_BITS;
244 RCU_READ_LOCK_GUARD();
246 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
248 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
249 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
250 base = page - offset;
251 while (page < end) {
252 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
253 unsigned long num = next - base;
254 unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset);
255 if (found < num) {
256 dirty = false;
257 break;
260 page = next;
261 idx++;
262 offset = 0;
263 base += DIRTY_MEMORY_BLOCK_SIZE;
266 return dirty;
269 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
270 unsigned client)
272 return cpu_physical_memory_get_dirty(addr, 1, client);
275 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
277 bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
278 bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
279 bool migration =
280 cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
281 return !(vga && code && migration);
284 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
285 ram_addr_t length,
286 uint8_t mask)
288 uint8_t ret = 0;
290 if (mask & (1 << DIRTY_MEMORY_VGA) &&
291 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
292 ret |= (1 << DIRTY_MEMORY_VGA);
294 if (mask & (1 << DIRTY_MEMORY_CODE) &&
295 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
296 ret |= (1 << DIRTY_MEMORY_CODE);
298 if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
299 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
300 ret |= (1 << DIRTY_MEMORY_MIGRATION);
302 return ret;
305 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
306 unsigned client)
308 unsigned long page, idx, offset;
309 DirtyMemoryBlocks *blocks;
311 assert(client < DIRTY_MEMORY_NUM);
313 page = addr >> TARGET_PAGE_BITS;
314 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
315 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
317 RCU_READ_LOCK_GUARD();
319 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
321 set_bit_atomic(offset, blocks->blocks[idx]);
324 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
325 ram_addr_t length,
326 uint8_t mask)
328 DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
329 unsigned long end, page;
330 unsigned long idx, offset, base;
331 int i;
333 if (!mask && !xen_enabled()) {
334 return;
337 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
338 page = start >> TARGET_PAGE_BITS;
340 WITH_RCU_READ_LOCK_GUARD() {
341 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
342 blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i]);
345 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
346 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
347 base = page - offset;
348 while (page < end) {
349 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
351 if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
352 bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
353 offset, next - page);
355 if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
356 bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
357 offset, next - page);
359 if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
360 bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
361 offset, next - page);
364 page = next;
365 idx++;
366 offset = 0;
367 base += DIRTY_MEMORY_BLOCK_SIZE;
371 xen_hvm_modified_memory(start, length);
374 #if !defined(_WIN32)
375 static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
376 ram_addr_t start,
377 ram_addr_t pages)
379 unsigned long i, j;
380 unsigned long page_number, c;
381 hwaddr addr;
382 ram_addr_t ram_addr;
383 unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
384 unsigned long hpratio = qemu_real_host_page_size / TARGET_PAGE_SIZE;
385 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
387 /* start address is aligned at the start of a word? */
388 if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
389 (hpratio == 1)) {
390 unsigned long **blocks[DIRTY_MEMORY_NUM];
391 unsigned long idx;
392 unsigned long offset;
393 long k;
394 long nr = BITS_TO_LONGS(pages);
396 idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
397 offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
398 DIRTY_MEMORY_BLOCK_SIZE);
400 WITH_RCU_READ_LOCK_GUARD() {
401 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
402 blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
405 for (k = 0; k < nr; k++) {
406 if (bitmap[k]) {
407 unsigned long temp = leul_to_cpu(bitmap[k]);
409 atomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
411 if (global_dirty_log) {
412 atomic_or(&blocks[DIRTY_MEMORY_MIGRATION][idx][offset],
413 temp);
416 if (tcg_enabled()) {
417 atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset],
418 temp);
422 if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
423 offset = 0;
424 idx++;
429 xen_hvm_modified_memory(start, pages << TARGET_PAGE_BITS);
430 } else {
431 uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
433 if (!global_dirty_log) {
434 clients &= ~(1 << DIRTY_MEMORY_MIGRATION);
438 * bitmap-traveling is faster than memory-traveling (for addr...)
439 * especially when most of the memory is not dirty.
441 for (i = 0; i < len; i++) {
442 if (bitmap[i] != 0) {
443 c = leul_to_cpu(bitmap[i]);
444 do {
445 j = ctzl(c);
446 c &= ~(1ul << j);
447 page_number = (i * HOST_LONG_BITS + j) * hpratio;
448 addr = page_number * TARGET_PAGE_SIZE;
449 ram_addr = start + addr;
450 cpu_physical_memory_set_dirty_range(ram_addr,
451 TARGET_PAGE_SIZE * hpratio, clients);
452 } while (c != 0);
457 #endif /* not _WIN32 */
459 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
460 ram_addr_t length,
461 unsigned client);
463 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
464 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client);
466 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
467 ram_addr_t start,
468 ram_addr_t length);
470 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
471 ram_addr_t length)
473 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
474 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
475 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
479 /* Called with RCU critical section */
480 static inline
481 uint64_t cpu_physical_memory_sync_dirty_bitmap(RAMBlock *rb,
482 ram_addr_t start,
483 ram_addr_t length,
484 uint64_t *real_dirty_pages)
486 ram_addr_t addr;
487 unsigned long word = BIT_WORD((start + rb->offset) >> TARGET_PAGE_BITS);
488 uint64_t num_dirty = 0;
489 unsigned long *dest = rb->bmap;
491 /* start address and length is aligned at the start of a word? */
492 if (((word * BITS_PER_LONG) << TARGET_PAGE_BITS) ==
493 (start + rb->offset) &&
494 !(length & ((BITS_PER_LONG << TARGET_PAGE_BITS) - 1))) {
495 int k;
496 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
497 unsigned long * const *src;
498 unsigned long idx = (word * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
499 unsigned long offset = BIT_WORD((word * BITS_PER_LONG) %
500 DIRTY_MEMORY_BLOCK_SIZE);
501 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
503 src = atomic_rcu_read(
504 &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
506 for (k = page; k < page + nr; k++) {
507 if (src[idx][offset]) {
508 unsigned long bits = atomic_xchg(&src[idx][offset], 0);
509 unsigned long new_dirty;
510 *real_dirty_pages += ctpopl(bits);
511 new_dirty = ~dest[k];
512 dest[k] |= bits;
513 new_dirty &= bits;
514 num_dirty += ctpopl(new_dirty);
517 if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
518 offset = 0;
519 idx++;
523 if (rb->clear_bmap) {
525 * Postpone the dirty bitmap clear to the point before we
526 * really send the pages, also we will split the clear
527 * dirty procedure into smaller chunks.
529 clear_bmap_set(rb, start >> TARGET_PAGE_BITS,
530 length >> TARGET_PAGE_BITS);
531 } else {
532 /* Slow path - still do that in a huge chunk */
533 memory_region_clear_dirty_bitmap(rb->mr, start, length);
535 } else {
536 ram_addr_t offset = rb->offset;
538 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
539 if (cpu_physical_memory_test_and_clear_dirty(
540 start + addr + offset,
541 TARGET_PAGE_SIZE,
542 DIRTY_MEMORY_MIGRATION)) {
543 *real_dirty_pages += 1;
544 long k = (start + addr) >> TARGET_PAGE_BITS;
545 if (!test_and_set_bit(k, dest)) {
546 num_dirty++;
552 return num_dirty;
554 #endif
555 #endif