target/arm: Convert SABA, SABD, UABA, UABD to decodetree
[qemu/ar7.git] / linux-user / signal.c
blob63ac2df53b768012e3ca97a279caaa4797f0225c
1 /*
2 * Emulation of Linux signals
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "gdbstub/user.h"
22 #include "exec/page-protection.h"
23 #include "hw/core/tcg-cpu-ops.h"
25 #include <sys/ucontext.h>
26 #include <sys/resource.h>
28 #include "qemu.h"
29 #include "user-internals.h"
30 #include "strace.h"
31 #include "loader.h"
32 #include "trace.h"
33 #include "signal-common.h"
34 #include "host-signal.h"
35 #include "user/safe-syscall.h"
36 #include "tcg/tcg.h"
38 /* target_siginfo_t must fit in gdbstub's siginfo save area. */
39 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH);
41 static struct target_sigaction sigact_table[TARGET_NSIG];
43 static void host_signal_handler(int host_signum, siginfo_t *info,
44 void *puc);
46 /* Fallback addresses into sigtramp page. */
47 abi_ulong default_sigreturn;
48 abi_ulong default_rt_sigreturn;
51 * System includes define _NSIG as SIGRTMAX + 1, but qemu (like the kernel)
52 * defines TARGET_NSIG as TARGET_SIGRTMAX and the first signal is 1.
53 * Signal number 0 is reserved for use as kill(pid, 0), to test whether
54 * a process exists without sending it a signal.
56 #ifdef __SIGRTMAX
57 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG);
58 #endif
59 static uint8_t host_to_target_signal_table[_NSIG] = {
60 #define MAKE_SIG_ENTRY(sig) [sig] = TARGET_##sig,
61 MAKE_SIGNAL_LIST
62 #undef MAKE_SIG_ENTRY
65 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1];
67 /* valid sig is between 1 and _NSIG - 1 */
68 int host_to_target_signal(int sig)
70 if (sig < 1) {
71 return sig;
73 if (sig >= _NSIG) {
74 return TARGET_NSIG + 1;
76 return host_to_target_signal_table[sig];
79 /* valid sig is between 1 and TARGET_NSIG */
80 int target_to_host_signal(int sig)
82 if (sig < 1) {
83 return sig;
85 if (sig > TARGET_NSIG) {
86 return _NSIG;
88 return target_to_host_signal_table[sig];
91 static inline void target_sigaddset(target_sigset_t *set, int signum)
93 signum--;
94 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
95 set->sig[signum / TARGET_NSIG_BPW] |= mask;
98 static inline int target_sigismember(const target_sigset_t *set, int signum)
100 signum--;
101 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
102 return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0);
105 void host_to_target_sigset_internal(target_sigset_t *d,
106 const sigset_t *s)
108 int host_sig, target_sig;
109 target_sigemptyset(d);
110 for (host_sig = 1; host_sig < _NSIG; host_sig++) {
111 target_sig = host_to_target_signal(host_sig);
112 if (target_sig < 1 || target_sig > TARGET_NSIG) {
113 continue;
115 if (sigismember(s, host_sig)) {
116 target_sigaddset(d, target_sig);
121 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
123 target_sigset_t d1;
124 int i;
126 host_to_target_sigset_internal(&d1, s);
127 for(i = 0;i < TARGET_NSIG_WORDS; i++)
128 d->sig[i] = tswapal(d1.sig[i]);
131 void target_to_host_sigset_internal(sigset_t *d,
132 const target_sigset_t *s)
134 int host_sig, target_sig;
135 sigemptyset(d);
136 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) {
137 host_sig = target_to_host_signal(target_sig);
138 if (host_sig < 1 || host_sig >= _NSIG) {
139 continue;
141 if (target_sigismember(s, target_sig)) {
142 sigaddset(d, host_sig);
147 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
149 target_sigset_t s1;
150 int i;
152 for(i = 0;i < TARGET_NSIG_WORDS; i++)
153 s1.sig[i] = tswapal(s->sig[i]);
154 target_to_host_sigset_internal(d, &s1);
157 void host_to_target_old_sigset(abi_ulong *old_sigset,
158 const sigset_t *sigset)
160 target_sigset_t d;
161 host_to_target_sigset(&d, sigset);
162 *old_sigset = d.sig[0];
165 void target_to_host_old_sigset(sigset_t *sigset,
166 const abi_ulong *old_sigset)
168 target_sigset_t d;
169 int i;
171 d.sig[0] = *old_sigset;
172 for(i = 1;i < TARGET_NSIG_WORDS; i++)
173 d.sig[i] = 0;
174 target_to_host_sigset(sigset, &d);
177 int block_signals(void)
179 TaskState *ts = get_task_state(thread_cpu);
180 sigset_t set;
182 /* It's OK to block everything including SIGSEGV, because we won't
183 * run any further guest code before unblocking signals in
184 * process_pending_signals().
186 sigfillset(&set);
187 sigprocmask(SIG_SETMASK, &set, 0);
189 return qatomic_xchg(&ts->signal_pending, 1);
192 /* Wrapper for sigprocmask function
193 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset
194 * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if
195 * a signal was already pending and the syscall must be restarted, or
196 * 0 on success.
197 * If set is NULL, this is guaranteed not to fail.
199 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
201 TaskState *ts = get_task_state(thread_cpu);
203 if (oldset) {
204 *oldset = ts->signal_mask;
207 if (set) {
208 int i;
210 if (block_signals()) {
211 return -QEMU_ERESTARTSYS;
214 switch (how) {
215 case SIG_BLOCK:
216 sigorset(&ts->signal_mask, &ts->signal_mask, set);
217 break;
218 case SIG_UNBLOCK:
219 for (i = 1; i <= NSIG; ++i) {
220 if (sigismember(set, i)) {
221 sigdelset(&ts->signal_mask, i);
224 break;
225 case SIG_SETMASK:
226 ts->signal_mask = *set;
227 break;
228 default:
229 g_assert_not_reached();
232 /* Silently ignore attempts to change blocking status of KILL or STOP */
233 sigdelset(&ts->signal_mask, SIGKILL);
234 sigdelset(&ts->signal_mask, SIGSTOP);
236 return 0;
239 /* Just set the guest's signal mask to the specified value; the
240 * caller is assumed to have called block_signals() already.
242 void set_sigmask(const sigset_t *set)
244 TaskState *ts = get_task_state(thread_cpu);
246 ts->signal_mask = *set;
249 /* sigaltstack management */
251 int on_sig_stack(unsigned long sp)
253 TaskState *ts = get_task_state(thread_cpu);
255 return (sp - ts->sigaltstack_used.ss_sp
256 < ts->sigaltstack_used.ss_size);
259 int sas_ss_flags(unsigned long sp)
261 TaskState *ts = get_task_state(thread_cpu);
263 return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE
264 : on_sig_stack(sp) ? SS_ONSTACK : 0);
267 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka)
270 * This is the X/Open sanctioned signal stack switching.
272 TaskState *ts = get_task_state(thread_cpu);
274 if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) {
275 return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
277 return sp;
280 void target_save_altstack(target_stack_t *uss, CPUArchState *env)
282 TaskState *ts = get_task_state(thread_cpu);
284 __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp);
285 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags);
286 __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size);
289 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env)
291 TaskState *ts = get_task_state(thread_cpu);
292 size_t minstacksize = TARGET_MINSIGSTKSZ;
293 target_stack_t ss;
295 #if defined(TARGET_PPC64)
296 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */
297 struct image_info *image = ts->info;
298 if (get_ppc64_abi(image) > 1) {
299 minstacksize = 4096;
301 #endif
303 __get_user(ss.ss_sp, &uss->ss_sp);
304 __get_user(ss.ss_size, &uss->ss_size);
305 __get_user(ss.ss_flags, &uss->ss_flags);
307 if (on_sig_stack(get_sp_from_cpustate(env))) {
308 return -TARGET_EPERM;
311 switch (ss.ss_flags) {
312 default:
313 return -TARGET_EINVAL;
315 case TARGET_SS_DISABLE:
316 ss.ss_size = 0;
317 ss.ss_sp = 0;
318 break;
320 case TARGET_SS_ONSTACK:
321 case 0:
322 if (ss.ss_size < minstacksize) {
323 return -TARGET_ENOMEM;
325 break;
328 ts->sigaltstack_used.ss_sp = ss.ss_sp;
329 ts->sigaltstack_used.ss_size = ss.ss_size;
330 return 0;
333 /* siginfo conversion */
335 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
336 const siginfo_t *info)
338 int sig = host_to_target_signal(info->si_signo);
339 int si_code = info->si_code;
340 int si_type;
341 tinfo->si_signo = sig;
342 tinfo->si_errno = 0;
343 tinfo->si_code = info->si_code;
345 /* This memset serves two purposes:
346 * (1) ensure we don't leak random junk to the guest later
347 * (2) placate false positives from gcc about fields
348 * being used uninitialized if it chooses to inline both this
349 * function and tswap_siginfo() into host_to_target_siginfo().
351 memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad));
353 /* This is awkward, because we have to use a combination of
354 * the si_code and si_signo to figure out which of the union's
355 * members are valid. (Within the host kernel it is always possible
356 * to tell, but the kernel carefully avoids giving userspace the
357 * high 16 bits of si_code, so we don't have the information to
358 * do this the easy way...) We therefore make our best guess,
359 * bearing in mind that a guest can spoof most of the si_codes
360 * via rt_sigqueueinfo() if it likes.
362 * Once we have made our guess, we record it in the top 16 bits of
363 * the si_code, so that tswap_siginfo() later can use it.
364 * tswap_siginfo() will strip these top bits out before writing
365 * si_code to the guest (sign-extending the lower bits).
368 switch (si_code) {
369 case SI_USER:
370 case SI_TKILL:
371 case SI_KERNEL:
372 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel.
373 * These are the only unspoofable si_code values.
375 tinfo->_sifields._kill._pid = info->si_pid;
376 tinfo->_sifields._kill._uid = info->si_uid;
377 si_type = QEMU_SI_KILL;
378 break;
379 default:
380 /* Everything else is spoofable. Make best guess based on signal */
381 switch (sig) {
382 case TARGET_SIGCHLD:
383 tinfo->_sifields._sigchld._pid = info->si_pid;
384 tinfo->_sifields._sigchld._uid = info->si_uid;
385 if (si_code == CLD_EXITED)
386 tinfo->_sifields._sigchld._status = info->si_status;
387 else
388 tinfo->_sifields._sigchld._status
389 = host_to_target_signal(info->si_status & 0x7f)
390 | (info->si_status & ~0x7f);
391 tinfo->_sifields._sigchld._utime = info->si_utime;
392 tinfo->_sifields._sigchld._stime = info->si_stime;
393 si_type = QEMU_SI_CHLD;
394 break;
395 case TARGET_SIGIO:
396 tinfo->_sifields._sigpoll._band = info->si_band;
397 tinfo->_sifields._sigpoll._fd = info->si_fd;
398 si_type = QEMU_SI_POLL;
399 break;
400 default:
401 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */
402 tinfo->_sifields._rt._pid = info->si_pid;
403 tinfo->_sifields._rt._uid = info->si_uid;
404 /* XXX: potential problem if 64 bit */
405 tinfo->_sifields._rt._sigval.sival_ptr
406 = (abi_ulong)(unsigned long)info->si_value.sival_ptr;
407 si_type = QEMU_SI_RT;
408 break;
410 break;
413 tinfo->si_code = deposit32(si_code, 16, 16, si_type);
416 static void tswap_siginfo(target_siginfo_t *tinfo,
417 const target_siginfo_t *info)
419 int si_type = extract32(info->si_code, 16, 16);
420 int si_code = sextract32(info->si_code, 0, 16);
422 __put_user(info->si_signo, &tinfo->si_signo);
423 __put_user(info->si_errno, &tinfo->si_errno);
424 __put_user(si_code, &tinfo->si_code);
426 /* We can use our internal marker of which fields in the structure
427 * are valid, rather than duplicating the guesswork of
428 * host_to_target_siginfo_noswap() here.
430 switch (si_type) {
431 case QEMU_SI_KILL:
432 __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid);
433 __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid);
434 break;
435 case QEMU_SI_TIMER:
436 __put_user(info->_sifields._timer._timer1,
437 &tinfo->_sifields._timer._timer1);
438 __put_user(info->_sifields._timer._timer2,
439 &tinfo->_sifields._timer._timer2);
440 break;
441 case QEMU_SI_POLL:
442 __put_user(info->_sifields._sigpoll._band,
443 &tinfo->_sifields._sigpoll._band);
444 __put_user(info->_sifields._sigpoll._fd,
445 &tinfo->_sifields._sigpoll._fd);
446 break;
447 case QEMU_SI_FAULT:
448 __put_user(info->_sifields._sigfault._addr,
449 &tinfo->_sifields._sigfault._addr);
450 break;
451 case QEMU_SI_CHLD:
452 __put_user(info->_sifields._sigchld._pid,
453 &tinfo->_sifields._sigchld._pid);
454 __put_user(info->_sifields._sigchld._uid,
455 &tinfo->_sifields._sigchld._uid);
456 __put_user(info->_sifields._sigchld._status,
457 &tinfo->_sifields._sigchld._status);
458 __put_user(info->_sifields._sigchld._utime,
459 &tinfo->_sifields._sigchld._utime);
460 __put_user(info->_sifields._sigchld._stime,
461 &tinfo->_sifields._sigchld._stime);
462 break;
463 case QEMU_SI_RT:
464 __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid);
465 __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid);
466 __put_user(info->_sifields._rt._sigval.sival_ptr,
467 &tinfo->_sifields._rt._sigval.sival_ptr);
468 break;
469 default:
470 g_assert_not_reached();
474 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
476 target_siginfo_t tgt_tmp;
477 host_to_target_siginfo_noswap(&tgt_tmp, info);
478 tswap_siginfo(tinfo, &tgt_tmp);
481 /* XXX: we support only POSIX RT signals are used. */
482 /* XXX: find a solution for 64 bit (additional malloced data is needed) */
483 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
485 /* This conversion is used only for the rt_sigqueueinfo syscall,
486 * and so we know that the _rt fields are the valid ones.
488 abi_ulong sival_ptr;
490 __get_user(info->si_signo, &tinfo->si_signo);
491 __get_user(info->si_errno, &tinfo->si_errno);
492 __get_user(info->si_code, &tinfo->si_code);
493 __get_user(info->si_pid, &tinfo->_sifields._rt._pid);
494 __get_user(info->si_uid, &tinfo->_sifields._rt._uid);
495 __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr);
496 info->si_value.sival_ptr = (void *)(long)sival_ptr;
499 /* returns 1 if given signal should dump core if not handled */
500 static int core_dump_signal(int sig)
502 switch (sig) {
503 case TARGET_SIGABRT:
504 case TARGET_SIGFPE:
505 case TARGET_SIGILL:
506 case TARGET_SIGQUIT:
507 case TARGET_SIGSEGV:
508 case TARGET_SIGTRAP:
509 case TARGET_SIGBUS:
510 return (1);
511 default:
512 return (0);
516 static void signal_table_init(void)
518 int hsig, tsig, count;
521 * Signals are supported starting from TARGET_SIGRTMIN and going up
522 * until we run out of host realtime signals. Glibc uses the lower 2
523 * RT signals and (hopefully) nobody uses the upper ones.
524 * This is why SIGRTMIN (34) is generally greater than __SIGRTMIN (32).
525 * To fix this properly we would need to do manual signal delivery
526 * multiplexed over a single host signal.
527 * Attempts for configure "missing" signals via sigaction will be
528 * silently ignored.
530 * Remap the target SIGABRT, so that we can distinguish host abort
531 * from guest abort. When the guest registers a signal handler or
532 * calls raise(SIGABRT), the host will raise SIG_RTn. If the guest
533 * arrives at dump_core_and_abort(), we will map back to host SIGABRT
534 * so that the parent (native or emulated) sees the correct signal.
535 * Finally, also map host to guest SIGABRT so that the emulated
536 * parent sees the correct mapping from wait status.
539 hsig = SIGRTMIN;
540 host_to_target_signal_table[SIGABRT] = 0;
541 host_to_target_signal_table[hsig++] = TARGET_SIGABRT;
543 for (tsig = TARGET_SIGRTMIN;
544 hsig <= SIGRTMAX && tsig <= TARGET_NSIG;
545 hsig++, tsig++) {
546 host_to_target_signal_table[hsig] = tsig;
549 /* Invert the mapping that has already been assigned. */
550 for (hsig = 1; hsig < _NSIG; hsig++) {
551 tsig = host_to_target_signal_table[hsig];
552 if (tsig) {
553 assert(target_to_host_signal_table[tsig] == 0);
554 target_to_host_signal_table[tsig] = hsig;
558 host_to_target_signal_table[SIGABRT] = TARGET_SIGABRT;
560 /* Map everything else out-of-bounds. */
561 for (hsig = 1; hsig < _NSIG; hsig++) {
562 if (host_to_target_signal_table[hsig] == 0) {
563 host_to_target_signal_table[hsig] = TARGET_NSIG + 1;
566 for (count = 0, tsig = 1; tsig <= TARGET_NSIG; tsig++) {
567 if (target_to_host_signal_table[tsig] == 0) {
568 target_to_host_signal_table[tsig] = _NSIG;
569 count++;
573 trace_signal_table_init(count);
576 void signal_init(void)
578 TaskState *ts = get_task_state(thread_cpu);
579 struct sigaction act, oact;
581 /* initialize signal conversion tables */
582 signal_table_init();
584 /* Set the signal mask from the host mask. */
585 sigprocmask(0, 0, &ts->signal_mask);
587 sigfillset(&act.sa_mask);
588 act.sa_flags = SA_SIGINFO;
589 act.sa_sigaction = host_signal_handler;
592 * A parent process may configure ignored signals, but all other
593 * signals are default. For any target signals that have no host
594 * mapping, set to ignore. For all core_dump_signal, install our
595 * host signal handler so that we may invoke dump_core_and_abort.
596 * This includes SIGSEGV and SIGBUS, which are also need our signal
597 * handler for paging and exceptions.
599 for (int tsig = 1; tsig <= TARGET_NSIG; tsig++) {
600 int hsig = target_to_host_signal(tsig);
601 abi_ptr thand = TARGET_SIG_IGN;
603 if (hsig >= _NSIG) {
604 continue;
607 /* As we force remap SIGABRT, cannot probe and install in one step. */
608 if (tsig == TARGET_SIGABRT) {
609 sigaction(SIGABRT, NULL, &oact);
610 sigaction(hsig, &act, NULL);
611 } else {
612 struct sigaction *iact = core_dump_signal(tsig) ? &act : NULL;
613 sigaction(hsig, iact, &oact);
616 if (oact.sa_sigaction != (void *)SIG_IGN) {
617 thand = TARGET_SIG_DFL;
619 sigact_table[tsig - 1]._sa_handler = thand;
623 /* Force a synchronously taken signal. The kernel force_sig() function
624 * also forces the signal to "not blocked, not ignored", but for QEMU
625 * that work is done in process_pending_signals().
627 void force_sig(int sig)
629 CPUState *cpu = thread_cpu;
630 target_siginfo_t info = {};
632 info.si_signo = sig;
633 info.si_errno = 0;
634 info.si_code = TARGET_SI_KERNEL;
635 info._sifields._kill._pid = 0;
636 info._sifields._kill._uid = 0;
637 queue_signal(cpu_env(cpu), info.si_signo, QEMU_SI_KILL, &info);
641 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
642 * 'force' part is handled in process_pending_signals().
644 void force_sig_fault(int sig, int code, abi_ulong addr)
646 CPUState *cpu = thread_cpu;
647 target_siginfo_t info = {};
649 info.si_signo = sig;
650 info.si_errno = 0;
651 info.si_code = code;
652 info._sifields._sigfault._addr = addr;
653 queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info);
656 /* Force a SIGSEGV if we couldn't write to memory trying to set
657 * up the signal frame. oldsig is the signal we were trying to handle
658 * at the point of failure.
660 #if !defined(TARGET_RISCV)
661 void force_sigsegv(int oldsig)
663 if (oldsig == SIGSEGV) {
664 /* Make sure we don't try to deliver the signal again; this will
665 * end up with handle_pending_signal() calling dump_core_and_abort().
667 sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL;
669 force_sig(TARGET_SIGSEGV);
671 #endif
673 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
674 MMUAccessType access_type, bool maperr, uintptr_t ra)
676 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
678 if (tcg_ops->record_sigsegv) {
679 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
682 force_sig_fault(TARGET_SIGSEGV,
683 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
684 addr);
685 cpu->exception_index = EXCP_INTERRUPT;
686 cpu_loop_exit_restore(cpu, ra);
689 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
690 MMUAccessType access_type, uintptr_t ra)
692 const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
694 if (tcg_ops->record_sigbus) {
695 tcg_ops->record_sigbus(cpu, addr, access_type, ra);
698 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
699 cpu->exception_index = EXCP_INTERRUPT;
700 cpu_loop_exit_restore(cpu, ra);
703 /* abort execution with signal */
704 static G_NORETURN
705 void die_with_signal(int host_sig)
707 struct sigaction act = {
708 .sa_handler = SIG_DFL,
712 * The proper exit code for dying from an uncaught signal is -<signal>.
713 * The kernel doesn't allow exit() or _exit() to pass a negative value.
714 * To get the proper exit code we need to actually die from an uncaught
715 * signal. Here the default signal handler is installed, we send
716 * the signal and we wait for it to arrive.
718 sigfillset(&act.sa_mask);
719 sigaction(host_sig, &act, NULL);
721 kill(getpid(), host_sig);
723 /* Make sure the signal isn't masked (reusing the mask inside of act). */
724 sigdelset(&act.sa_mask, host_sig);
725 sigsuspend(&act.sa_mask);
727 /* unreachable */
728 _exit(EXIT_FAILURE);
731 static G_NORETURN
732 void dump_core_and_abort(CPUArchState *env, int target_sig)
734 CPUState *cpu = env_cpu(env);
735 TaskState *ts = get_task_state(cpu);
736 int host_sig, core_dumped = 0;
738 /* On exit, undo the remapping of SIGABRT. */
739 if (target_sig == TARGET_SIGABRT) {
740 host_sig = SIGABRT;
741 } else {
742 host_sig = target_to_host_signal(target_sig);
744 trace_user_dump_core_and_abort(env, target_sig, host_sig);
745 gdb_signalled(env, target_sig);
747 /* dump core if supported by target binary format */
748 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
749 stop_all_tasks();
750 core_dumped =
751 ((*ts->bprm->core_dump)(target_sig, env) == 0);
753 if (core_dumped) {
754 /* we already dumped the core of target process, we don't want
755 * a coredump of qemu itself */
756 struct rlimit nodump;
757 getrlimit(RLIMIT_CORE, &nodump);
758 nodump.rlim_cur=0;
759 setrlimit(RLIMIT_CORE, &nodump);
760 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n",
761 target_sig, strsignal(host_sig), "core dumped" );
764 preexit_cleanup(env, 128 + target_sig);
765 die_with_signal(host_sig);
768 /* queue a signal so that it will be send to the virtual CPU as soon
769 as possible */
770 void queue_signal(CPUArchState *env, int sig, int si_type,
771 target_siginfo_t *info)
773 CPUState *cpu = env_cpu(env);
774 TaskState *ts = get_task_state(cpu);
776 trace_user_queue_signal(env, sig);
778 info->si_code = deposit32(info->si_code, 16, 16, si_type);
780 ts->sync_signal.info = *info;
781 ts->sync_signal.pending = sig;
782 /* signal that a new signal is pending */
783 qatomic_set(&ts->signal_pending, 1);
787 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
788 static inline void rewind_if_in_safe_syscall(void *puc)
790 host_sigcontext *uc = (host_sigcontext *)puc;
791 uintptr_t pcreg = host_signal_pc(uc);
793 if (pcreg > (uintptr_t)safe_syscall_start
794 && pcreg < (uintptr_t)safe_syscall_end) {
795 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
799 static G_NORETURN
800 void die_from_signal(siginfo_t *info)
802 char sigbuf[4], codebuf[12];
803 const char *sig, *code = NULL;
805 switch (info->si_signo) {
806 case SIGSEGV:
807 sig = "SEGV";
808 switch (info->si_code) {
809 case SEGV_MAPERR:
810 code = "MAPERR";
811 break;
812 case SEGV_ACCERR:
813 code = "ACCERR";
814 break;
816 break;
817 case SIGBUS:
818 sig = "BUS";
819 switch (info->si_code) {
820 case BUS_ADRALN:
821 code = "ADRALN";
822 break;
823 case BUS_ADRERR:
824 code = "ADRERR";
825 break;
827 break;
828 case SIGILL:
829 sig = "ILL";
830 switch (info->si_code) {
831 case ILL_ILLOPC:
832 code = "ILLOPC";
833 break;
834 case ILL_ILLOPN:
835 code = "ILLOPN";
836 break;
837 case ILL_ILLADR:
838 code = "ILLADR";
839 break;
840 case ILL_PRVOPC:
841 code = "PRVOPC";
842 break;
843 case ILL_PRVREG:
844 code = "PRVREG";
845 break;
846 case ILL_COPROC:
847 code = "COPROC";
848 break;
850 break;
851 case SIGFPE:
852 sig = "FPE";
853 switch (info->si_code) {
854 case FPE_INTDIV:
855 code = "INTDIV";
856 break;
857 case FPE_INTOVF:
858 code = "INTOVF";
859 break;
861 break;
862 case SIGTRAP:
863 sig = "TRAP";
864 break;
865 default:
866 snprintf(sigbuf, sizeof(sigbuf), "%d", info->si_signo);
867 sig = sigbuf;
868 break;
870 if (code == NULL) {
871 snprintf(codebuf, sizeof(sigbuf), "%d", info->si_code);
872 code = codebuf;
875 error_report("QEMU internal SIG%s {code=%s, addr=%p}",
876 sig, code, info->si_addr);
877 die_with_signal(info->si_signo);
880 static void host_sigsegv_handler(CPUState *cpu, siginfo_t *info,
881 host_sigcontext *uc)
883 uintptr_t host_addr = (uintptr_t)info->si_addr;
885 * Convert forcefully to guest address space: addresses outside
886 * reserved_va are still valid to report via SEGV_MAPERR.
888 bool is_valid = h2g_valid(host_addr);
889 abi_ptr guest_addr = h2g_nocheck(host_addr);
890 uintptr_t pc = host_signal_pc(uc);
891 bool is_write = host_signal_write(info, uc);
892 MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
893 bool maperr;
895 /* If this was a write to a TB protected page, restart. */
896 if (is_write
897 && is_valid
898 && info->si_code == SEGV_ACCERR
899 && handle_sigsegv_accerr_write(cpu, host_signal_mask(uc),
900 pc, guest_addr)) {
901 return;
905 * If the access was not on behalf of the guest, within the executable
906 * mapping of the generated code buffer, then it is a host bug.
908 if (access_type != MMU_INST_FETCH
909 && !in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
910 die_from_signal(info);
913 maperr = true;
914 if (is_valid && info->si_code == SEGV_ACCERR) {
916 * With reserved_va, the whole address space is PROT_NONE,
917 * which means that we may get ACCERR when we want MAPERR.
919 if (page_get_flags(guest_addr) & PAGE_VALID) {
920 maperr = false;
921 } else {
922 info->si_code = SEGV_MAPERR;
926 sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
927 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
930 static uintptr_t host_sigbus_handler(CPUState *cpu, siginfo_t *info,
931 host_sigcontext *uc)
933 uintptr_t pc = host_signal_pc(uc);
934 bool is_write = host_signal_write(info, uc);
935 MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
938 * If the access was not on behalf of the guest, within the executable
939 * mapping of the generated code buffer, then it is a host bug.
941 if (!in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
942 die_from_signal(info);
945 if (info->si_code == BUS_ADRALN) {
946 uintptr_t host_addr = (uintptr_t)info->si_addr;
947 abi_ptr guest_addr = h2g_nocheck(host_addr);
949 sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
950 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
952 return pc;
955 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
957 CPUState *cpu = thread_cpu;
958 CPUArchState *env = cpu_env(cpu);
959 TaskState *ts = get_task_state(cpu);
960 target_siginfo_t tinfo;
961 host_sigcontext *uc = puc;
962 struct emulated_sigtable *k;
963 int guest_sig;
964 uintptr_t pc = 0;
965 bool sync_sig = false;
966 void *sigmask;
969 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
970 * handling wrt signal blocking and unwinding. Non-spoofed SIGILL,
971 * SIGFPE, SIGTRAP are always host bugs.
973 if (info->si_code > 0) {
974 switch (host_sig) {
975 case SIGSEGV:
976 /* Only returns on handle_sigsegv_accerr_write success. */
977 host_sigsegv_handler(cpu, info, uc);
978 return;
979 case SIGBUS:
980 pc = host_sigbus_handler(cpu, info, uc);
981 sync_sig = true;
982 break;
983 case SIGILL:
984 case SIGFPE:
985 case SIGTRAP:
986 die_from_signal(info);
990 /* get target signal number */
991 guest_sig = host_to_target_signal(host_sig);
992 if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
993 return;
995 trace_user_host_signal(env, host_sig, guest_sig);
997 host_to_target_siginfo_noswap(&tinfo, info);
998 k = &ts->sigtab[guest_sig - 1];
999 k->info = tinfo;
1000 k->pending = guest_sig;
1001 ts->signal_pending = 1;
1004 * For synchronous signals, unwind the cpu state to the faulting
1005 * insn and then exit back to the main loop so that the signal
1006 * is delivered immediately.
1008 if (sync_sig) {
1009 cpu->exception_index = EXCP_INTERRUPT;
1010 cpu_loop_exit_restore(cpu, pc);
1013 rewind_if_in_safe_syscall(puc);
1016 * Block host signals until target signal handler entered. We
1017 * can't block SIGSEGV or SIGBUS while we're executing guest
1018 * code in case the guest code provokes one in the window between
1019 * now and it getting out to the main loop. Signals will be
1020 * unblocked again in process_pending_signals().
1022 * WARNING: we cannot use sigfillset() here because the sigmask
1023 * field is a kernel sigset_t, which is much smaller than the
1024 * libc sigset_t which sigfillset() operates on. Using sigfillset()
1025 * would write 0xff bytes off the end of the structure and trash
1026 * data on the struct.
1028 sigmask = host_signal_mask(uc);
1029 memset(sigmask, 0xff, SIGSET_T_SIZE);
1030 sigdelset(sigmask, SIGSEGV);
1031 sigdelset(sigmask, SIGBUS);
1033 /* interrupt the virtual CPU as soon as possible */
1034 cpu_exit(thread_cpu);
1037 /* do_sigaltstack() returns target values and errnos. */
1038 /* compare linux/kernel/signal.c:do_sigaltstack() */
1039 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr,
1040 CPUArchState *env)
1042 target_stack_t oss, *uoss = NULL;
1043 abi_long ret = -TARGET_EFAULT;
1045 if (uoss_addr) {
1046 /* Verify writability now, but do not alter user memory yet. */
1047 if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) {
1048 goto out;
1050 target_save_altstack(&oss, env);
1053 if (uss_addr) {
1054 target_stack_t *uss;
1056 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
1057 goto out;
1059 ret = target_restore_altstack(uss, env);
1060 if (ret) {
1061 goto out;
1065 if (uoss_addr) {
1066 memcpy(uoss, &oss, sizeof(oss));
1067 unlock_user_struct(uoss, uoss_addr, 1);
1068 uoss = NULL;
1070 ret = 0;
1072 out:
1073 if (uoss) {
1074 unlock_user_struct(uoss, uoss_addr, 0);
1076 return ret;
1079 /* do_sigaction() return target values and host errnos */
1080 int do_sigaction(int sig, const struct target_sigaction *act,
1081 struct target_sigaction *oact, abi_ulong ka_restorer)
1083 struct target_sigaction *k;
1084 int host_sig;
1085 int ret = 0;
1087 trace_signal_do_sigaction_guest(sig, TARGET_NSIG);
1089 if (sig < 1 || sig > TARGET_NSIG) {
1090 return -TARGET_EINVAL;
1093 if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) {
1094 return -TARGET_EINVAL;
1097 if (block_signals()) {
1098 return -QEMU_ERESTARTSYS;
1101 k = &sigact_table[sig - 1];
1102 if (oact) {
1103 __put_user(k->_sa_handler, &oact->_sa_handler);
1104 __put_user(k->sa_flags, &oact->sa_flags);
1105 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1106 __put_user(k->sa_restorer, &oact->sa_restorer);
1107 #endif
1108 /* Not swapped. */
1109 oact->sa_mask = k->sa_mask;
1111 if (act) {
1112 __get_user(k->_sa_handler, &act->_sa_handler);
1113 __get_user(k->sa_flags, &act->sa_flags);
1114 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1115 __get_user(k->sa_restorer, &act->sa_restorer);
1116 #endif
1117 #ifdef TARGET_ARCH_HAS_KA_RESTORER
1118 k->ka_restorer = ka_restorer;
1119 #endif
1120 /* To be swapped in target_to_host_sigset. */
1121 k->sa_mask = act->sa_mask;
1123 /* we update the host linux signal state */
1124 host_sig = target_to_host_signal(sig);
1125 trace_signal_do_sigaction_host(host_sig, TARGET_NSIG);
1126 if (host_sig > SIGRTMAX) {
1127 /* we don't have enough host signals to map all target signals */
1128 qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n",
1129 sig);
1131 * we don't return an error here because some programs try to
1132 * register an handler for all possible rt signals even if they
1133 * don't need it.
1134 * An error here can abort them whereas there can be no problem
1135 * to not have the signal available later.
1136 * This is the case for golang,
1137 * See https://github.com/golang/go/issues/33746
1138 * So we silently ignore the error.
1140 return 0;
1142 if (host_sig != SIGSEGV && host_sig != SIGBUS) {
1143 struct sigaction act1;
1145 sigfillset(&act1.sa_mask);
1146 act1.sa_flags = SA_SIGINFO;
1147 if (k->_sa_handler == TARGET_SIG_IGN) {
1149 * It is important to update the host kernel signal ignore
1150 * state to avoid getting unexpected interrupted syscalls.
1152 act1.sa_sigaction = (void *)SIG_IGN;
1153 } else if (k->_sa_handler == TARGET_SIG_DFL) {
1154 if (core_dump_signal(sig)) {
1155 act1.sa_sigaction = host_signal_handler;
1156 } else {
1157 act1.sa_sigaction = (void *)SIG_DFL;
1159 } else {
1160 act1.sa_sigaction = host_signal_handler;
1161 if (k->sa_flags & TARGET_SA_RESTART) {
1162 act1.sa_flags |= SA_RESTART;
1165 ret = sigaction(host_sig, &act1, NULL);
1168 return ret;
1171 static void handle_pending_signal(CPUArchState *cpu_env, int sig,
1172 struct emulated_sigtable *k)
1174 CPUState *cpu = env_cpu(cpu_env);
1175 abi_ulong handler;
1176 sigset_t set;
1177 target_siginfo_t unswapped;
1178 target_sigset_t target_old_set;
1179 struct target_sigaction *sa;
1180 TaskState *ts = get_task_state(cpu);
1182 trace_user_handle_signal(cpu_env, sig);
1183 /* dequeue signal */
1184 k->pending = 0;
1187 * Writes out siginfo values byteswapped, accordingly to the target.
1188 * It also cleans the si_type from si_code making it correct for
1189 * the target. We must hold on to the original unswapped copy for
1190 * strace below, because si_type is still required there.
1192 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
1193 unswapped = k->info;
1195 tswap_siginfo(&k->info, &k->info);
1197 sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info));
1198 if (!sig) {
1199 sa = NULL;
1200 handler = TARGET_SIG_IGN;
1201 } else {
1202 sa = &sigact_table[sig - 1];
1203 handler = sa->_sa_handler;
1206 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
1207 print_taken_signal(sig, &unswapped);
1210 if (handler == TARGET_SIG_DFL) {
1211 /* default handler : ignore some signal. The other are job control or fatal */
1212 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) {
1213 kill(getpid(),SIGSTOP);
1214 } else if (sig != TARGET_SIGCHLD &&
1215 sig != TARGET_SIGURG &&
1216 sig != TARGET_SIGWINCH &&
1217 sig != TARGET_SIGCONT) {
1218 dump_core_and_abort(cpu_env, sig);
1220 } else if (handler == TARGET_SIG_IGN) {
1221 /* ignore sig */
1222 } else if (handler == TARGET_SIG_ERR) {
1223 dump_core_and_abort(cpu_env, sig);
1224 } else {
1225 /* compute the blocked signals during the handler execution */
1226 sigset_t *blocked_set;
1228 target_to_host_sigset(&set, &sa->sa_mask);
1229 /* SA_NODEFER indicates that the current signal should not be
1230 blocked during the handler */
1231 if (!(sa->sa_flags & TARGET_SA_NODEFER))
1232 sigaddset(&set, target_to_host_signal(sig));
1234 /* save the previous blocked signal state to restore it at the
1235 end of the signal execution (see do_sigreturn) */
1236 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
1238 /* block signals in the handler */
1239 blocked_set = ts->in_sigsuspend ?
1240 &ts->sigsuspend_mask : &ts->signal_mask;
1241 sigorset(&ts->signal_mask, blocked_set, &set);
1242 ts->in_sigsuspend = 0;
1244 /* if the CPU is in VM86 mode, we restore the 32 bit values */
1245 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
1247 CPUX86State *env = cpu_env;
1248 if (env->eflags & VM_MASK)
1249 save_v86_state(env);
1251 #endif
1252 /* prepare the stack frame of the virtual CPU */
1253 #if defined(TARGET_ARCH_HAS_SETUP_FRAME)
1254 if (sa->sa_flags & TARGET_SA_SIGINFO) {
1255 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1256 } else {
1257 setup_frame(sig, sa, &target_old_set, cpu_env);
1259 #else
1260 /* These targets do not have traditional signals. */
1261 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1262 #endif
1263 if (sa->sa_flags & TARGET_SA_RESETHAND) {
1264 sa->_sa_handler = TARGET_SIG_DFL;
1269 void process_pending_signals(CPUArchState *cpu_env)
1271 CPUState *cpu = env_cpu(cpu_env);
1272 int sig;
1273 TaskState *ts = get_task_state(cpu);
1274 sigset_t set;
1275 sigset_t *blocked_set;
1277 while (qatomic_read(&ts->signal_pending)) {
1278 sigfillset(&set);
1279 sigprocmask(SIG_SETMASK, &set, 0);
1281 restart_scan:
1282 sig = ts->sync_signal.pending;
1283 if (sig) {
1284 /* Synchronous signals are forced,
1285 * see force_sig_info() and callers in Linux
1286 * Note that not all of our queue_signal() calls in QEMU correspond
1287 * to force_sig_info() calls in Linux (some are send_sig_info()).
1288 * However it seems like a kernel bug to me to allow the process
1289 * to block a synchronous signal since it could then just end up
1290 * looping round and round indefinitely.
1292 if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig])
1293 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
1294 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]);
1295 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
1298 handle_pending_signal(cpu_env, sig, &ts->sync_signal);
1301 for (sig = 1; sig <= TARGET_NSIG; sig++) {
1302 blocked_set = ts->in_sigsuspend ?
1303 &ts->sigsuspend_mask : &ts->signal_mask;
1305 if (ts->sigtab[sig - 1].pending &&
1306 (!sigismember(blocked_set,
1307 target_to_host_signal_table[sig]))) {
1308 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]);
1309 /* Restart scan from the beginning, as handle_pending_signal
1310 * might have resulted in a new synchronous signal (eg SIGSEGV).
1312 goto restart_scan;
1316 /* if no signal is pending, unblock signals and recheck (the act
1317 * of unblocking might cause us to take another host signal which
1318 * will set signal_pending again).
1320 qatomic_set(&ts->signal_pending, 0);
1321 ts->in_sigsuspend = 0;
1322 set = ts->signal_mask;
1323 sigdelset(&set, SIGSEGV);
1324 sigdelset(&set, SIGBUS);
1325 sigprocmask(SIG_SETMASK, &set, 0);
1327 ts->in_sigsuspend = 0;
1330 int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset,
1331 target_ulong sigsize)
1333 TaskState *ts = get_task_state(thread_cpu);
1334 sigset_t *host_set = &ts->sigsuspend_mask;
1335 target_sigset_t *target_sigset;
1337 if (sigsize != sizeof(*target_sigset)) {
1338 /* Like the kernel, we enforce correct size sigsets */
1339 return -TARGET_EINVAL;
1342 target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1);
1343 if (!target_sigset) {
1344 return -TARGET_EFAULT;
1346 target_to_host_sigset(host_set, target_sigset);
1347 unlock_user(target_sigset, sigset, 0);
1349 *pset = host_set;
1350 return 0;