Merge remote-tracking branch 'remotes/bonzini-gitlab/tags/for-upstream' into staging
[qemu/ar7.git] / hw / xtensa / xtfpga.c
blob7be53f1895b20e644ebaf88df93393e91dbc92bf
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "qapi/error.h"
31 #include "cpu.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/boards.h"
34 #include "hw/loader.h"
35 #include "hw/qdev-properties.h"
36 #include "elf.h"
37 #include "exec/memory.h"
38 #include "exec/address-spaces.h"
39 #include "hw/char/serial.h"
40 #include "net/net.h"
41 #include "hw/sysbus.h"
42 #include "hw/block/flash.h"
43 #include "chardev/char.h"
44 #include "sysemu/device_tree.h"
45 #include "sysemu/reset.h"
46 #include "sysemu/runstate.h"
47 #include "qemu/error-report.h"
48 #include "qemu/option.h"
49 #include "bootparam.h"
50 #include "xtensa_memory.h"
51 #include "hw/xtensa/mx_pic.h"
52 #include "migration/vmstate.h"
54 typedef struct XtfpgaFlashDesc {
55 hwaddr base;
56 size_t size;
57 size_t boot_base;
58 size_t sector_size;
59 } XtfpgaFlashDesc;
61 typedef struct XtfpgaBoardDesc {
62 const XtfpgaFlashDesc *flash;
63 size_t sram_size;
64 const hwaddr *io;
65 } XtfpgaBoardDesc;
67 typedef struct XtfpgaFpgaState {
68 MemoryRegion iomem;
69 uint32_t freq;
70 uint32_t leds;
71 uint32_t switches;
72 } XtfpgaFpgaState;
74 static void xtfpga_fpga_reset(void *opaque)
76 XtfpgaFpgaState *s = opaque;
78 s->leds = 0;
79 s->switches = 0;
82 static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
83 unsigned size)
85 XtfpgaFpgaState *s = opaque;
87 switch (addr) {
88 case 0x0: /*build date code*/
89 return 0x09272011;
91 case 0x4: /*processor clock frequency, Hz*/
92 return s->freq;
94 case 0x8: /*LEDs (off = 0, on = 1)*/
95 return s->leds;
97 case 0xc: /*DIP switches (off = 0, on = 1)*/
98 return s->switches;
100 return 0;
103 static void xtfpga_fpga_write(void *opaque, hwaddr addr,
104 uint64_t val, unsigned size)
106 XtfpgaFpgaState *s = opaque;
108 switch (addr) {
109 case 0x8: /*LEDs (off = 0, on = 1)*/
110 s->leds = val;
111 break;
113 case 0x10: /*board reset*/
114 if (val == 0xdead) {
115 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
117 break;
121 static const MemoryRegionOps xtfpga_fpga_ops = {
122 .read = xtfpga_fpga_read,
123 .write = xtfpga_fpga_write,
124 .endianness = DEVICE_NATIVE_ENDIAN,
127 static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
128 hwaddr base, uint32_t freq)
130 XtfpgaFpgaState *s = g_malloc(sizeof(XtfpgaFpgaState));
132 memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
133 "xtfpga.fpga", 0x10000);
134 memory_region_add_subregion(address_space, base, &s->iomem);
135 s->freq = freq;
136 xtfpga_fpga_reset(s);
137 qemu_register_reset(xtfpga_fpga_reset, s);
138 return s;
141 static void xtfpga_net_init(MemoryRegion *address_space,
142 hwaddr base,
143 hwaddr descriptors,
144 hwaddr buffers,
145 qemu_irq irq, NICInfo *nd)
147 DeviceState *dev;
148 SysBusDevice *s;
149 MemoryRegion *ram;
151 dev = qdev_new("open_eth");
152 qdev_set_nic_properties(dev, nd);
154 s = SYS_BUS_DEVICE(dev);
155 sysbus_realize_and_unref(s, &error_fatal);
156 sysbus_connect_irq(s, 0, irq);
157 memory_region_add_subregion(address_space, base,
158 sysbus_mmio_get_region(s, 0));
159 memory_region_add_subregion(address_space, descriptors,
160 sysbus_mmio_get_region(s, 1));
162 ram = g_malloc(sizeof(*ram));
163 memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB,
164 &error_fatal);
165 vmstate_register_ram_global(ram);
166 memory_region_add_subregion(address_space, buffers, ram);
169 static PFlashCFI01 *xtfpga_flash_init(MemoryRegion *address_space,
170 const XtfpgaBoardDesc *board,
171 DriveInfo *dinfo, int be)
173 SysBusDevice *s;
174 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
176 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo));
177 qdev_prop_set_uint32(dev, "num-blocks",
178 board->flash->size / board->flash->sector_size);
179 qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
180 qdev_prop_set_uint8(dev, "width", 2);
181 qdev_prop_set_bit(dev, "big-endian", be);
182 qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
183 s = SYS_BUS_DEVICE(dev);
184 sysbus_realize_and_unref(s, &error_fatal);
185 memory_region_add_subregion(address_space, board->flash->base,
186 sysbus_mmio_get_region(s, 0));
187 return PFLASH_CFI01(dev);
190 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
192 XtensaCPU *cpu = opaque;
194 return cpu_get_phys_page_debug(CPU(cpu), addr);
197 static void xtfpga_reset(void *opaque)
199 XtensaCPU *cpu = opaque;
201 cpu_reset(CPU(cpu));
204 static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
205 unsigned size)
207 return 0;
210 static void xtfpga_io_write(void *opaque, hwaddr addr,
211 uint64_t val, unsigned size)
215 static const MemoryRegionOps xtfpga_io_ops = {
216 .read = xtfpga_io_read,
217 .write = xtfpga_io_write,
218 .endianness = DEVICE_NATIVE_ENDIAN,
221 static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
223 #ifdef TARGET_WORDS_BIGENDIAN
224 int be = 1;
225 #else
226 int be = 0;
227 #endif
228 MemoryRegion *system_memory = get_system_memory();
229 XtensaCPU *cpu = NULL;
230 CPUXtensaState *env = NULL;
231 MemoryRegion *system_io;
232 XtensaMxPic *mx_pic = NULL;
233 qemu_irq *extints;
234 DriveInfo *dinfo;
235 PFlashCFI01 *flash = NULL;
236 const char *kernel_filename = machine->kernel_filename;
237 const char *kernel_cmdline = machine->kernel_cmdline;
238 const char *dtb_filename = machine->dtb;
239 const char *initrd_filename = machine->initrd_filename;
240 const unsigned system_io_size = 224 * MiB;
241 uint32_t freq = 10000000;
242 int n;
243 unsigned int smp_cpus = machine->smp.cpus;
245 if (smp_cpus > 1) {
246 mx_pic = xtensa_mx_pic_init(31);
247 qemu_register_reset(xtensa_mx_pic_reset, mx_pic);
249 for (n = 0; n < smp_cpus; n++) {
250 CPUXtensaState *cenv = NULL;
252 cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
253 cenv = &cpu->env;
254 if (!env) {
255 env = cenv;
256 freq = env->config->clock_freq_khz * 1000;
259 if (mx_pic) {
260 MemoryRegion *mx_eri;
262 mx_eri = xtensa_mx_pic_register_cpu(mx_pic,
263 xtensa_get_extints(cenv),
264 xtensa_get_runstall(cenv));
265 memory_region_add_subregion(xtensa_get_er_region(cenv),
266 0, mx_eri);
268 cenv->sregs[PRID] = n;
269 xtensa_select_static_vectors(cenv, n != 0);
270 qemu_register_reset(xtfpga_reset, cpu);
271 /* Need MMU initialized prior to ELF loading,
272 * so that ELF gets loaded into virtual addresses
274 cpu_reset(CPU(cpu));
276 if (smp_cpus > 1) {
277 extints = xtensa_mx_pic_get_extints(mx_pic);
278 } else {
279 extints = xtensa_get_extints(env);
282 if (env) {
283 XtensaMemory sysram = env->config->sysram;
285 sysram.location[0].size = machine->ram_size;
286 xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
287 system_memory);
288 xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
289 system_memory);
290 xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
291 system_memory);
292 xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
293 system_memory);
294 xtensa_create_memory_regions(&sysram, "xtensa.sysram",
295 system_memory);
298 system_io = g_malloc(sizeof(*system_io));
299 memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
300 system_io_size);
301 memory_region_add_subregion(system_memory, board->io[0], system_io);
302 if (board->io[1]) {
303 MemoryRegion *io = g_malloc(sizeof(*io));
305 memory_region_init_alias(io, NULL, "xtfpga.io.cached",
306 system_io, 0, system_io_size);
307 memory_region_add_subregion(system_memory, board->io[1], io);
309 xtfpga_fpga_init(system_io, 0x0d020000, freq);
310 if (nd_table[0].used) {
311 xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
312 extints[1], nd_table);
315 serial_mm_init(system_io, 0x0d050020, 2, extints[0],
316 115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
318 dinfo = drive_get(IF_PFLASH, 0, 0);
319 if (dinfo) {
320 flash = xtfpga_flash_init(system_io, board, dinfo, be);
323 /* Use presence of kernel file name as 'boot from SRAM' switch. */
324 if (kernel_filename) {
325 uint32_t entry_point = env->pc;
326 size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
327 uint32_t tagptr = env->config->sysrom.location[0].addr +
328 board->sram_size;
329 uint32_t cur_tagptr;
330 BpMemInfo memory_location = {
331 .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
332 .start = tswap32(env->config->sysram.location[0].addr),
333 .end = tswap32(env->config->sysram.location[0].addr +
334 machine->ram_size),
336 uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
337 machine->ram_size : 0x08000000;
338 uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
340 lowmem_end += env->config->sysram.location[0].addr;
341 cur_lowmem += env->config->sysram.location[0].addr;
343 xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
344 system_memory);
346 if (kernel_cmdline) {
347 bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
349 if (dtb_filename) {
350 bp_size += get_tag_size(sizeof(uint32_t));
352 if (initrd_filename) {
353 bp_size += get_tag_size(sizeof(BpMemInfo));
356 /* Put kernel bootparameters to the end of that SRAM */
357 tagptr = (tagptr - bp_size) & ~0xff;
358 cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
359 cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
360 sizeof(memory_location), &memory_location);
362 if (kernel_cmdline) {
363 cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
364 strlen(kernel_cmdline) + 1, kernel_cmdline);
366 #ifdef CONFIG_FDT
367 if (dtb_filename) {
368 int fdt_size;
369 void *fdt = load_device_tree(dtb_filename, &fdt_size);
370 uint32_t dtb_addr = tswap32(cur_lowmem);
372 if (!fdt) {
373 error_report("could not load DTB '%s'", dtb_filename);
374 exit(EXIT_FAILURE);
377 cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
378 cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
379 sizeof(dtb_addr), &dtb_addr);
380 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB);
381 g_free(fdt);
383 #else
384 if (dtb_filename) {
385 error_report("could not load DTB '%s': "
386 "FDT support is not configured in QEMU",
387 dtb_filename);
388 exit(EXIT_FAILURE);
390 #endif
391 if (initrd_filename) {
392 BpMemInfo initrd_location = { 0 };
393 int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
394 lowmem_end - cur_lowmem);
396 if (initrd_size < 0) {
397 initrd_size = load_image_targphys(initrd_filename,
398 cur_lowmem,
399 lowmem_end - cur_lowmem);
401 if (initrd_size < 0) {
402 error_report("could not load initrd '%s'", initrd_filename);
403 exit(EXIT_FAILURE);
405 initrd_location.start = tswap32(cur_lowmem);
406 initrd_location.end = tswap32(cur_lowmem + initrd_size);
407 cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
408 sizeof(initrd_location), &initrd_location);
409 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB);
411 cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
412 env->regs[2] = tagptr;
414 uint64_t elf_entry;
415 int success = load_elf(kernel_filename, NULL, translate_phys_addr, cpu,
416 &elf_entry, NULL, NULL, NULL, be, EM_XTENSA, 0, 0);
417 if (success > 0) {
418 entry_point = elf_entry;
419 } else {
420 hwaddr ep;
421 int is_linux;
422 success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
423 translate_phys_addr, cpu);
424 if (success > 0 && is_linux) {
425 entry_point = ep;
426 } else {
427 error_report("could not load kernel '%s'",
428 kernel_filename);
429 exit(EXIT_FAILURE);
432 if (entry_point != env->pc) {
433 uint8_t boot[] = {
434 #ifdef TARGET_WORDS_BIGENDIAN
435 0x60, 0x00, 0x08, /* j 1f */
436 0x00, /* .literal_position */
437 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
438 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
439 /* 1: */
440 0x10, 0xff, 0xfe, /* l32r a0, entry_pc */
441 0x12, 0xff, 0xfe, /* l32r a2, entry_a2 */
442 0x0a, 0x00, 0x00, /* jx a0 */
443 #else
444 0x06, 0x02, 0x00, /* j 1f */
445 0x00, /* .literal_position */
446 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
447 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
448 /* 1: */
449 0x01, 0xfe, 0xff, /* l32r a0, entry_pc */
450 0x21, 0xfe, 0xff, /* l32r a2, entry_a2 */
451 0xa0, 0x00, 0x00, /* jx a0 */
452 #endif
454 uint32_t entry_pc = tswap32(entry_point);
455 uint32_t entry_a2 = tswap32(tagptr);
457 memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
458 memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
459 cpu_physical_memory_write(env->pc, boot, sizeof(boot));
461 } else {
462 if (flash) {
463 MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
464 MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
465 uint32_t size = env->config->sysrom.location[0].size;
467 if (board->flash->size - board->flash->boot_base < size) {
468 size = board->flash->size - board->flash->boot_base;
471 memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
472 flash_mr, board->flash->boot_base, size);
473 memory_region_add_subregion(system_memory,
474 env->config->sysrom.location[0].addr,
475 flash_io);
476 } else {
477 xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
478 system_memory);
483 #define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB)
485 static const hwaddr xtfpga_mmu_io[2] = {
486 0xf0000000,
489 static const hwaddr xtfpga_nommu_io[2] = {
490 0x90000000,
491 0x70000000,
494 static const XtfpgaFlashDesc lx60_flash = {
495 .base = 0x08000000,
496 .size = 0x00400000,
497 .sector_size = 0x10000,
500 static void xtfpga_lx60_init(MachineState *machine)
502 static const XtfpgaBoardDesc lx60_board = {
503 .flash = &lx60_flash,
504 .sram_size = 0x20000,
505 .io = xtfpga_mmu_io,
507 xtfpga_init(&lx60_board, machine);
510 static void xtfpga_lx60_nommu_init(MachineState *machine)
512 static const XtfpgaBoardDesc lx60_board = {
513 .flash = &lx60_flash,
514 .sram_size = 0x20000,
515 .io = xtfpga_nommu_io,
517 xtfpga_init(&lx60_board, machine);
520 static const XtfpgaFlashDesc lx200_flash = {
521 .base = 0x08000000,
522 .size = 0x01000000,
523 .sector_size = 0x20000,
526 static void xtfpga_lx200_init(MachineState *machine)
528 static const XtfpgaBoardDesc lx200_board = {
529 .flash = &lx200_flash,
530 .sram_size = 0x2000000,
531 .io = xtfpga_mmu_io,
533 xtfpga_init(&lx200_board, machine);
536 static void xtfpga_lx200_nommu_init(MachineState *machine)
538 static const XtfpgaBoardDesc lx200_board = {
539 .flash = &lx200_flash,
540 .sram_size = 0x2000000,
541 .io = xtfpga_nommu_io,
543 xtfpga_init(&lx200_board, machine);
546 static const XtfpgaFlashDesc ml605_flash = {
547 .base = 0x08000000,
548 .size = 0x01000000,
549 .sector_size = 0x20000,
552 static void xtfpga_ml605_init(MachineState *machine)
554 static const XtfpgaBoardDesc ml605_board = {
555 .flash = &ml605_flash,
556 .sram_size = 0x2000000,
557 .io = xtfpga_mmu_io,
559 xtfpga_init(&ml605_board, machine);
562 static void xtfpga_ml605_nommu_init(MachineState *machine)
564 static const XtfpgaBoardDesc ml605_board = {
565 .flash = &ml605_flash,
566 .sram_size = 0x2000000,
567 .io = xtfpga_nommu_io,
569 xtfpga_init(&ml605_board, machine);
572 static const XtfpgaFlashDesc kc705_flash = {
573 .base = 0x00000000,
574 .size = 0x08000000,
575 .boot_base = 0x06000000,
576 .sector_size = 0x20000,
579 static void xtfpga_kc705_init(MachineState *machine)
581 static const XtfpgaBoardDesc kc705_board = {
582 .flash = &kc705_flash,
583 .sram_size = 0x2000000,
584 .io = xtfpga_mmu_io,
586 xtfpga_init(&kc705_board, machine);
589 static void xtfpga_kc705_nommu_init(MachineState *machine)
591 static const XtfpgaBoardDesc kc705_board = {
592 .flash = &kc705_flash,
593 .sram_size = 0x2000000,
594 .io = xtfpga_nommu_io,
596 xtfpga_init(&kc705_board, machine);
599 static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
601 MachineClass *mc = MACHINE_CLASS(oc);
603 mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
604 mc->init = xtfpga_lx60_init;
605 mc->max_cpus = 32;
606 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
607 mc->default_ram_size = 64 * MiB;
610 static const TypeInfo xtfpga_lx60_type = {
611 .name = MACHINE_TYPE_NAME("lx60"),
612 .parent = TYPE_MACHINE,
613 .class_init = xtfpga_lx60_class_init,
616 static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
618 MachineClass *mc = MACHINE_CLASS(oc);
620 mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
621 mc->init = xtfpga_lx60_nommu_init;
622 mc->max_cpus = 32;
623 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
624 mc->default_ram_size = 64 * MiB;
627 static const TypeInfo xtfpga_lx60_nommu_type = {
628 .name = MACHINE_TYPE_NAME("lx60-nommu"),
629 .parent = TYPE_MACHINE,
630 .class_init = xtfpga_lx60_nommu_class_init,
633 static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
635 MachineClass *mc = MACHINE_CLASS(oc);
637 mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
638 mc->init = xtfpga_lx200_init;
639 mc->max_cpus = 32;
640 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
641 mc->default_ram_size = 96 * MiB;
644 static const TypeInfo xtfpga_lx200_type = {
645 .name = MACHINE_TYPE_NAME("lx200"),
646 .parent = TYPE_MACHINE,
647 .class_init = xtfpga_lx200_class_init,
650 static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
652 MachineClass *mc = MACHINE_CLASS(oc);
654 mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
655 mc->init = xtfpga_lx200_nommu_init;
656 mc->max_cpus = 32;
657 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
658 mc->default_ram_size = 96 * MiB;
661 static const TypeInfo xtfpga_lx200_nommu_type = {
662 .name = MACHINE_TYPE_NAME("lx200-nommu"),
663 .parent = TYPE_MACHINE,
664 .class_init = xtfpga_lx200_nommu_class_init,
667 static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
669 MachineClass *mc = MACHINE_CLASS(oc);
671 mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
672 mc->init = xtfpga_ml605_init;
673 mc->max_cpus = 32;
674 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
675 mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
678 static const TypeInfo xtfpga_ml605_type = {
679 .name = MACHINE_TYPE_NAME("ml605"),
680 .parent = TYPE_MACHINE,
681 .class_init = xtfpga_ml605_class_init,
684 static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
686 MachineClass *mc = MACHINE_CLASS(oc);
688 mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
689 mc->init = xtfpga_ml605_nommu_init;
690 mc->max_cpus = 32;
691 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
692 mc->default_ram_size = 256 * MiB;
695 static const TypeInfo xtfpga_ml605_nommu_type = {
696 .name = MACHINE_TYPE_NAME("ml605-nommu"),
697 .parent = TYPE_MACHINE,
698 .class_init = xtfpga_ml605_nommu_class_init,
701 static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
703 MachineClass *mc = MACHINE_CLASS(oc);
705 mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
706 mc->init = xtfpga_kc705_init;
707 mc->max_cpus = 32;
708 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
709 mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
712 static const TypeInfo xtfpga_kc705_type = {
713 .name = MACHINE_TYPE_NAME("kc705"),
714 .parent = TYPE_MACHINE,
715 .class_init = xtfpga_kc705_class_init,
718 static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
720 MachineClass *mc = MACHINE_CLASS(oc);
722 mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
723 mc->init = xtfpga_kc705_nommu_init;
724 mc->max_cpus = 32;
725 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
726 mc->default_ram_size = 256 * MiB;
729 static const TypeInfo xtfpga_kc705_nommu_type = {
730 .name = MACHINE_TYPE_NAME("kc705-nommu"),
731 .parent = TYPE_MACHINE,
732 .class_init = xtfpga_kc705_nommu_class_init,
735 static void xtfpga_machines_init(void)
737 type_register_static(&xtfpga_lx60_type);
738 type_register_static(&xtfpga_lx200_type);
739 type_register_static(&xtfpga_ml605_type);
740 type_register_static(&xtfpga_kc705_type);
741 type_register_static(&xtfpga_lx60_nommu_type);
742 type_register_static(&xtfpga_lx200_nommu_type);
743 type_register_static(&xtfpga_ml605_nommu_type);
744 type_register_static(&xtfpga_kc705_nommu_type);
747 type_init(xtfpga_machines_init)